
Response to Anonymous Referee #2 

 

We thank the anonymous referee for a very comprehensive review of our manuscript and many very 

useful comments. A lot of important aspects were mentioned that we will use to improve our 

manuscript. We will address the specific aspects in the following. Please find our answers in red and 

the original comments in black.  

This study uses convolutional neural networks (both 2D and 1D) to model streamflow in three karst 

spring catchments.  They compare 1D CNNs, which process time series of weather station forcing data, 

to sequential 2D – 1D CNNs, which process gridded meteorological forcing data from climate 

reanalysis.  The use of widely available gridded meteorological data is advantageous due to its more 

complete spatiotemporal availability, in comparison to data from weather stations. 

  

This is an interesting study with potentially applicable results; however, there are several key 

limitations with its current form. The literature review at present is insufficient and does not provide 

enough information to explain the relevance or context of the results.  In many cases, the likelihood of 

hypotheses and claims is stated without justification. Additionally, conclusions surrounding the 

potential of these models for karst catchment localization and delineation are currently overstepping 

the results shown. 

  

Major comments 

  

Overall, the introduction is very brief and does not provide adequate context for the current work. 

Johannet et al (1994) is referred to but it is not stated what they did.  The authors can expand to 

consider the further history of ANNs in water related research (e.g. Hsu et al 1995, Maier and Dancy 

1996, Zealand et al 1999, Maier and Dandy 2000 and the references therein), which can lead to the 

use of deeper networks in water research. Additionally, 1D CNNs have been used for streamflow 

prediction in the past by others who the authors do not refer to (e.g. Hussain et al 2020, Van et al 

2020).  By further fleshing out the relevant history the authors can more convincingly present the 

relevance and potential applications of their work.  

We admit that the introduction is very brief, since we specifically focused on the application of CNN 

on karst spring discharge modeling. We do not think that a comprehensive introduction of ANN 

applications in water resources related research in general is possible nor necessary. However, in a 

revised version, we will provide more context of specific ANN and CNN applications in the areas of 

groundwater modeling and streamflow forecasting and as well as on a broader water resources 

application context. 

  

Why do the authors use a 1D CNN to learn temporal features rather than an LSTM, despite the many 

successes of LSTM-based modelling for streamflow prediction (e.g. Kratzert et al. 2018, 2019a, 2019b; 

Gauch et al. 2021, Frame et al. 2021, Anderson and Radic 2021; note that this list is not comprehensive 

or that all required but these papers can be a starting point for the authors to consider)?  While there 

is a brief mention that 1D-CNNs are fast/stable, there is little mention or consideration given to the 

vast success of the LSTM approach at both daily and hourly scales, which is surprising given their 

prevalence. This study uses only three catchments and so I can’t imagine that the training time 

between a 2D – 1D CNN model vs a CNN-LSTM model would be prohibitively different. There is 



opportunity here to compare the two approaches quantitatively to see which performs better (e.g. 

perhaps a CNN-LSTM model will be able to simulate the streamflow peaks around Oct 2020 in Figure 

3), or if there are differences in the “catchment delineation” results.  While the authors don’t 

absolutely need to perform this comparison, it would certainly help to justify their methodological 

choices (2D-1D CNN vs CNN-LSTM).   

Thank you for this comment, which is completely understandable, especially given the successes of 

LSTM models, some of which you mentioned yourself. We will give an extended justification of model 

choices for the 1D-CNN models that we used in a revised version of our manuscript. In preliminary 

work we did indeed also test LSTM models in combination with 2DCNNs and you are correct, for the 

2D-models there is no large difference in training time (at least for these three sites) between 

2DCNN+1DCNN and 2DCNN+LSTM. However, we also did not find systematic superiority or 

performance differences between LSTM and 1DCNNs as subsequent models to the 2DCNNs. Moreover, 

we also have shown in the closely related application of groundwater level forecasting, that 1D CNNs 

have in most cases an equal performance to LSTMs (Wunsch et al., 2021). Van et al (2020) also show 

the potential of CNNs compared to LSTMs in case of rainfall runoff modeling. 

To be methodologically more consistent, we therefore decided to neglect 2DCNN+LSTM models. This 

way, we do not change the forecasting model itself, but only replace the climate station input data by 

a 2D-CNN model, which learns relevant data itself. The primary goal of our study was to show that 

spatially distributed climate data can act as a reliable substitute in case of bad availability of climate 

station data. By not mixing up different model types, in our opinion a comparison between 1D and 2D-

based models is more convincing.  Though it would of course be possible to compare the CNN vs. the 

LSTM approach quantitatively to see which performs better, we would like to avoid this, as it would be 

just a different kind of research aspect and we prefer to keep the focus and the comparison of 1D vs. 

2D meteorological inputs. 
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In many cases, the authors assert the likelihood of a claim without justification.  These instances either 

need further exploration or to be reframed as “possible” rather than “probable”.  For example, in line 

297 it is stated that the main source of uncertainty is “probably the uncertainty of parameter values 

resulting from the ERA5-land grid cell sizes”.  How are the authors confident that this is “probable”?  

Are the authors referring to the uncertainty, or error?  There are other places where the authors 

describe a result or hypothesis as being “probable” without any justification.  These instances are more 

conjecture than a discussion of probability (e.g. line 344, line 359, line 363, among others) and are not 

very convincing without additional support.  Furthermore, there are instances where highly certain 

language is used without quantification (e.g. “perfectly” in line 297) or a contradictory mixture of 
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language is used (e.g. “probably perfectly” in line 360; “quite exactly” in line 411).  These should be 

changed as well.  Another example is in line 407, where the authors suggest that the shape of the 

sensitivity pattern may be a “relic from spatial correlation of precipitation events”.  Can this hypothesis 

be supported or explored with evidence?  The authors have the needed precipitation data so I am not 

sure why this conjecture is here without support. 

Thank you for this important comment. We apologize for our inaccurate wording. We will revise our 

manuscript accordingly and will provide justification where necessary and possible.  

  

I have concerns that the sensitivity methods applied do not actually work to “delineate” or “identify” 

the catchments to the degree that the authors are claiming.  One key difference between Anderson 

and Radic (2021) and this study is that the basins in Anderson and Radic (2021) are in different regions 

of the input space, while the basins here are all centered (Figure 6).  Having stations in different regions 

of the input was key to interpret if the model was learning to focus on the right regions in Anderson 

and Radic (2021); e.g. in Figure 7 in Anderson and Radic (2021), the model is sensitive in different 

regions which tells us that the model is learning different things for different stations.  In Figures 6 and 

C1, one could argue that the models here have learned to generally focus on the central area under all 

circumstances and it is just coincidence that the basins are centered there as well.  As I see it, in order 

to make steps towards catchment delineation, the authors need to demonstrate that the model 

automatically focuses on (1) the right location and (2) have the right “area of sensitivity”.  Neither of 

these points are quantified in this work, while both are referred to qualitatively; however, both can 

(and should) be more rigorously investigated.  To point (1), the authors could run different tests with 

the basins placed at different locations in the input (e.g. 9 (or more) models could be made for each 

basin – one with the basin located in the top left area of the input, one with the basin located in the 

top center area of the input, etc).  Then, the location of maximum sensitivity can be quantified and 

compared to the location of the basin.  In this way (or in some similar way), the authors could more 

concretely conclude whether their approach is learning to focus on the correct area of the input or 

not.  To point (2), the authors could run different tests with different input areas (e.g. for each basin, 

the authors could double/triple/etc the number of pixels in the x- and y- directions).  Then, the “most 

sensitive area” can be quantified (e.g. the area greater than the half-maximum sensitivity, or some 

alternative metric) and compared with the basin area.  The authors can find: is the most sensitive area 

always comparable to the known basin area?  By addressing these two points (either as described 

above or in some other way), the authors can more convincingly state whether the CNN approach has 

potential for catchment delineation.  

We understand your concerns. We have already started to perform additional model runs to show that 

our models can learn the correct location, regardless of the position of the catchment. Please find a 

preliminary result for Unica springs in the following: 

 

 

We will add the results of this analyses to the revised manuscript. 



Regarding point (2): Currently we think that this point is hard to evaluate. A threshold of the “most 

sensitive area” would hardly be transferable a) between parameters (as it strongly depends on the 

autocorrelation of different inputs, e.g. T is usually more auto-correlated than P) and b) between 

specific regions (in mountainous regions, meteorological parameters are less auto-correlated than in 

flat landscapes). Though this is an interesting idea, and we will keep in mind for future research, we do 

not think it is possible to include it in the current study. 

 

Additional comments: 

  

Paragraph starting at line 43: This paragraph can be hard to follow when very little has been done to 

describe the architectures (e.g. the acronym ‘LSTM’ has not been defined). 

Thank you, we will better introduce LSTMs in a revised version of the manuscript. 

  

Line 55: The authors state ANNs to be superior for points i) and iii), but no justification is given as to 

why they expect this. 

Indeed, our formulation is not well justified and therefore misleading. In fact, we think that the most 

important advantage of our ANN-approach over a pure event-correlation is that ANNs are able to 

represent non-linear relationships. We will reformulate this part in the revised manuscript. 

  

Line 200: Add references for batch normalization (e.g. Loffe et al, 2015) and dropout (e.g. Srivastava 

et al, 2014) 

Thank you. Will be done.  

  

Line 203: LSTMs are claimed to be slower and with similar performance as compared to 1D CNNs for 

“this specific application”.  Does that mean that the authors have used LSTMs for streamflow modelling 

in karst catchments as well? 

As mentioned above, we have compared LSTMs and CNNs in preliminary work of this study (i.e. for 

karst spring modelling) and we also compared them for the closely related application of groundwater 

level forecasting. We will clarify this in the revised manuscript.  

  

Section 3.2: It would be very useful to have an overview of the models that were used. Currently in 

Table 1 there is the time splitting scheme.  In addition, it should be more clearly listed the length of 

the input sequence, number of observations, and number of parameters in each model (or layer). 

Thank you for this comment. This information is indeed missing. We will provide it in a revised version 

or at least in a Supplement. 

  

Section 3.4:  This section is very brief and does provide much context for the methods chosen (e.g. why 

follow Anderson and Radic, and not other interpretability methods?). Some statements are vague (e.g. 

“In short it works by perturbing spatial fractions of the input data by using a 2D-Gaussian curve” – what 

is meant by ‘using’?).  The final few sentences are written with certainty, although the methods have 

not been applied yet (e.g. “… a smaller area will most certainly have a higher influence on the spring 

discharge…”).  This section can be challenging to follow, and I suspect especially so for readers who are 

not as familiar with Anderson and Radic (2021). 



We are sorry that we obviously do not provide sufficient context. We will modify this section to better 

clarify what was done by Anderson & Radic and to what we refer. Regarding the visualization of input 

importance, we follow the approach of Anderson and Radic, because we think it is logical and yet 

simple, and it proved to be appropriate in a similar context. The method chosen, should be able to 

handle time series aspects, such as different areas being important for different time steps. Other 

interpretability methods are mostly applied to classification problems. Therefore, perturbing the input, 

instead of using activation and gradient methods, or saliency maps (gradient ascent), seems to be a 

valid approach to capture the time variance of the input importance. 

Concerning the final few sentences “… a smaller area will most certainly have a higher influence on the 

spring discharge…”: We conclude that from the aspect of different spatial auto-correlation of the input 

parameters (what we meant with “very different spatial heterogeneity and variability”) which is usually 

higher for T than for P – thus it seems logic that the “sensitive area” is larger for T and smaller for P. 

Overall, this was meant as a justification for our modification of the original method. We will try to 

better explain this in a revised version. 

  

Line 254: How is “satisfying fit” qualified?  Satisfying as compared to what? 

We meant compared to the usual range of NSE and R² for different modelling approaches for Karst 

springs and water resources modeling in general, where an NSE > 0.65 is regarded as satisfying. We 

will be more precise in our wording in a revised version of our manuscript. 

  

Line 276: It is not surprising that the models are within the same “order of magnitude”.  

An order of magnitude of NSE spans 0.1 through 1, which is a huge range of performance. 

We apologize for that mistake, which comes from inadequate translation of a figure of speech. We 

meant “in the same range”. We will correct this. 

  

Sections 4.1 – 4.3: These sections are a mixture of results and discussion.  While that is not inherently 

an issue, both results and discussion are mixed throughout each section in ways that vary from section 

to section (e.g. 4.1 begins with results, but 4.2 begins with discussion before even a description of 

Figure 4).  It would be easier to read and follow if the authors were more consistent between sections 

(e.g. first have results of 4.1, then discussion of 4.1, then results of 4.2 etc).  

Thank you for this hint. We will restructure the Results and Discussion part accordingly.  

  

Line 331: It seems the authors mean “substantially” and not “significantly” as there is no discussion of 

statistical significance here.  “Significant” is also referred to in author places where the authors do not 

appear to mean it in the formal sense. 

We apologize for unprecise wording and will adapt our manuscript accordingly in a revised version. 

  

Line 339: If this new model is not going to be discussed or explored clearly, then it should not be 

brought up at all.  

Thank you for this comment. We will remove this part from a revised version. 

 

 

 

 



Lines 371 – 377: This is description of other studies should be moved to the introduction. 

We will reconsider both the structures of our discussion and the according part in the introduction. In 

its current form we do not introduce the study areas in the introduction, but we will think of an 

appropriate placement of these studies. 

  

Section 4.4 (and Section 3.4): It is not clear how the authors are defining catchment 

delineation/identification. Are they referring to the areas of the sensitivity fields that are greater than 

the half-maximum of sensitivity?  For which input variable?  It should be clarified just how the step 

from sensitivity heat map to catchment delineation could be made. 

Currently we do not quantitively evaluate the sensitivity heatmaps, but judge only visually, if the 

known catchment coincides well with the high-sensitive areas on the heatmaps. So maybe “identifying 

the approximate catchment location” is a better formulation than “catchment delineation” in the 

present state. We will clarify this in a revised version. Primary purpose of this study was to show the 

usefulness of the 2D approach for discharge forecasting. Identifying the catchment location was a very 

interesting additional aspect, which seems to be worth investigating further in the future. We will add 

a short discussion of possibilities for catchment delineation that should be explored in future studies. 
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