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Abstract. Germany’s 2018-2020 consecutive drought events resulted in impacts in multiple sectors including agriculture,
forestry, water management, energy production, and transport. High-resolution information systems are key to preparedness
for such extreme drought events. This study evaluates the new setup of the one-kilometre German drought monitor (GDM),
which is based on daily soil moisture (SM) simulations from the mesoscale hydrological model (mHM). The simulated SM is
compared against a set of diverse observations from single profile measurements, spatially distributed sensor networks, cosmic-
ray neutron stations and lysimeters at 40 sites in Germany. Our results show that the agreement of simulated and observed SM
dynamics in the upper soil (0-25 cm) is especially high in the vegetative active period (0.84 median correlation R) and lower
in winter (0.59 median R). The lower agreement in winter results from methodological uncertainties in both simulations and
observations. Moderate but significant improvements between the coarser 4km resolution setup and the ~1.2km resolution
GDM in the agreement to observed SM dynamics is observed in autumn (40.07 median R) and winter (+0.12 median R).
Both model setups display similar correlations to observations in the dry anomaly spectrum, with higher overall agreement of
simulations to observations with a larger spatial footprint. The higher resolution of the second GDM version allows for a more
detailed representation of the spatial variability of SM, which is particularly beneficial for local risk assessments. Furthermore,
the results underline that nationwide drought information systems depend both on appropriate simulations of the water cycle

and a broad, high-quality observational soil moisture database.

1 Introduction

The extreme drought events since 2018 in Germany led to multi-sectoral impacts (Madruga de Brito et al., 2020; Orth et al.,

2022) and increased stakeholder awareness. Moreover, recent studies emphasized that extreme SM drought events will be
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more likely and more severe in Central Europe under future warming scenarios (Samaniego et al., 2018; Grillakis, 2019).
The singularity of the 2018/19 drought within observational records in terms of consecutive multiyear water deficits has been
confirmed for Germany and Central Europe (Boergens et al., 2020; Hari et al., 2020; Rakovec et al., 2022). With these prospects
comes an increased need for state-of-the-art information on droughts as a basis for precise assessment of the uniqueness and
potential impacts of drought events from local to continental scales.

In recent years, several national and international drought monitoring systems have been developed. The German Drought
Monitor (GDM) was first introduced in 2014 as an information platform for agricultural droughts in Germany under www.ufz.
de/droughtmonitor and is operationally updated daily (Zink et al., 2016). Core to the GDM is simulated SM using the open-
source mesoscale hydrological model (mHM; Samaniego et al., 2010; Kumar et al., 2013). The GDM provides a near real-time
status of SM and drought in Germany with a time lag of one day due to the meteorological data availability. Information on the
drought status is provided for the uppermost soil layer (25 cm) and total soil column (varying depth depending on the soil map)
by calculating the Soil Moisture Index (SMI; Samaniego et al., 2013) and Plant Available Water (PAW). With around 2200
media contributions in the year 2020 and more than four million website views since 2018 alongside its use in national and
federal state agencies, it proved its important role as a drought information tool in Germany. The feedback and requests received
show that the GDM is used by interested public and practitioners as well as media and politics to obtain up-to-date drought
information. A crucial aspect for optimal use of scientific environmental data, from a practitioners point of view, is applicability
to local purposes. Data from targeted stakeholder interviews within the EDgE project (http://edge.climate.copernicus.eu) and
in Climalert (http://climalert.eu/) with a core stakeholder group of 15 farmers in Central Germany supported this need. So far,
hydrological models applied at national or international level in operational drought services were mostly run on relatively low
spatial resolutions, e.g. with grid cell size 5 x 5km? in the European drought observatory (EDO) (Sepulcre-Canto et al., 2012)
or 4 x 4km? in the GDM (Zink et al., 2017). The spatial resolution is mainly restricted due to input data availability, such as
the soil map BUEK1000 (spatial resolution 1:1,000,000) for Germany.

Recently, an updated version of the nationwide German soil database (BGR, 2020) was published with 25 times higher res-
olution enabling hydrological modelling at much higher spatial resolution (=~ 1.2 x1.2km?, an ~ 11 fold increase to the prior
GDM version). Nevertheless, it was not clear how the quality of the SM simulations would change at higher spatial resolution.
In contrast to other environmental variables it is very challenging to aggregate SM to a larger scale due to its highly hetero-
geneous nature and measurement uncertainties (Western et al., 2004; Bogena et al., 2010; Rosenbaum et al., 2012). Simulated
SM derived from hydrological models is the prime alternative to observed SM and is widely employed for SM estimation
on regional to global scales (Keyantash and Dracup, 2002). Nevertheless, simulations also face methodological uncertainties,
especially under transient conditions such as those caused by climate change (Marx et al., 2018; O et al., 2020). Cammalleri
et al. (2015) investigated the use of hydrological models for drought monitoring in Europe using SM anomalies and drought
classification metrics and found that including multiple hydrological models improved overall performance. Furthermore, hy-
drological models are typically calibrated based on streamflow, which represents the integral hydrological catchment response.
Besides validating the modelled streamflow, there is a clear need to thoroughly evaluate other water cycle components that are

not used for constraining the model parameters. Ideally, such validations require observations of the variable of interest that
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(a) cover the same spatial scales as the model and extend over different climate regimes within the study area and (b) extend
over long temporal scales, which would allow them to be termed “representative”. Although large-scale meteorology-driven
SM variations can display seasonal varying length scales up to 500 km (Koster et al., 2019), small-scale SM variability largely
depends on local site characteristics such as soil properties, topography and land use. Therefore, optimal drought monitoring
systems over large areas should make use of the best available observation data in combination with a smart simulation system.

Enormous efforts have been and are being made to construct environmental observation networks from regional to global
scales. Within global environmental monitoring networks such as FLUXNET which focuses on measuring ecosystem carbon
fluxes (Baldocchi et al., 2001), SM is sometimes measured in multiple depths at single profiles. However, extensive validations
of simulated SM from hydrological models are hampered by the limited spatial representativeness of point-scale sensors and
hence require novel measurement approaches to bridge the scale gap between local observations and model resolutions. Mea-
surements that capture the spatial structure of SM at larger scales are expensive and time-consuming, and for this reason are
rare and only applicable in comparatively small catchments of a few tens of hectares (Bogena et al., 2010). In Germany, the
infrastructure of Terrestrial Environmental Observatories (TERENO) has been established since 2008 to build up a nationwide
long-term monitoring network in which one of the focuses is on hydrological variables (Zacharias et al., 2011; Bogena, 2016).
Many of those sites were equipped with spatially distributed measurements of SM networks (SDM, Bogena et al., 2010) and
Cosmic-Ray Neutron Sensors (CRNS, Zreda et al., 2012; Andreasen et al., 2017; Schron et al., 2018)). CRNS detectors count
neutrons of the natural cosmic-ray background radiation as a proxy for soil water content (Desilets et al., 2010; Kohli et al.,
2021). The integral measurement footprint covers areas of 300-600 m diameter and depths of 15-70 cm, both increasing for
dryer conditions (Kohli et al., 2015; Schron et al., 2017). The CRNS method has emerged as a reliable technique to continu-
ously monitor root-zone SM at the field scale (Bogena et al., 2015; Andreasen et al., 2017) and has been used recently for the
validation of land surface and hydrological models (Han et al., 2016; Iwema et al., 2017; Dimitrova-Petrova et al., 2020).

Satellite-based SM data benefits from spatial coverage at the kilometre scale, but the shallow penetration of the signal in the
upper few centimeters of the soil is a significant constraint. While those signals also depend on the surface condition, vegetation
density and microwave frequencies, these products themselves require ground-based SM observations for validation (Peng
et al., 2021). The time series of SDM and CRNS observations at the TERENO sites appear to be better suited for evaluation of
the drought monitor model in terms of long-term continuity and root-zone representation. In particular, the data covers recent
wet (e.g. 2017) and dry (e.g. 2015, 2018-2020) years, including extreme drought conditions.

Here, we evaluate SM simulations from mHM at the one and four kilometre scale simulated against an unprecedented com-
pilation of SM observations from 40 locations across Germany. A wide range of climatic conditions and vegetation types is
covered. Specifically, the study aims to answer two questions. Firstly, how well do the high-resolution German-wide SM sim-
ulations capture the dynamics in observed SM? Emphasis is given on the comparison of different SM measurement techniques
due to their relevance for interpreting the evaluation results. Secondly, can SM simulations at higher spatial modelling res-
olution including refined spatial-resolution soil input data be provided with a consistent quality? Higher resolution does not
necessarily improve the model performance, and may even worsen the quality of the simulation results. To assess this, the low-

resolution model setup GDM-v1-2016 as well as the one kilometer setup GDM-v2-2021 are compared against multi-method
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SM observations. Furthermore, drought characteristics estimated with both model setups are compared using annual drought

intensities over the last 69 years (1952-2020).

2 Methods and Datasets
2.1 The mesoscale Hydrological Model (mHM)

The mesoscale Hydrological Model is a grid-based spatially distributed hydrological model driven by daily precipitation,
temperature and potential evapotranspiration PET. It accounts for major hydrological processes such as snow generation and
snowmelt, canopy interception, soil infiltration, ET, deep percolation, baseflow generation, and surface runoff routing. The
open-source model code repository is available and is under active development and maintenance (https://git.ufz.de/mhm/mhm).
The model uses three distinct levels to organize the modelling procedures: level 0 (LO) for input data of the sub-grid physical
basin characteristics, level 1 (L1) for the realization of the integrated hydrological processes and level 2 (L2) for specification
of meteorological forcing inputs. An unique component of mHM is the Multiscale Parameter Regionalization (MPR) tech-
nique (Samaniego et al., 2010) that allows inferring spatial variability of the required model parameters seamlessly on various
modelling scales. One of the distinguishing aspects of the MPR approach compared to other regionalization techniques is to
deliver a quasi scale-invariant model performance across modelling scales and improve the transferability of model parameters
to ungauged basins (Kumar et al., 2013; Rakovec et al., 2016; Samaniego et al., 2017). The model was applied and evaluated
in multiple climatological regions including Europe (Thober et al., 2015; Rakovec et al., 2016), West Africa (Dembélé et al.,
2020), India (Saha et al., 2021) and the conterminous United States (Livneh et al., 2015; Rakovec et al., 2019). Within the
MPR technique, the subgrid physical basin characteristics at LO are linked to model parameters through transfer functions and
a set of global parameters and subsequently upscaled to generate effective parameters at L1. The aggregation is based on a set
of upscaling rules (e.g. arithmetic or harmonic mean) following flux conservation schemes (Samaniego et al., 2010).

A general overview on the model processes and parameterization can be obtained from Samaniego et al. (2010) and Kumar
et al. (2013). Only the SM component of mHM is described here, due to its relevance for this study. The incoming precipitation
and snowmelt are partitioned into root-zone SM and runoff components, depending on the degree of soil saturation, using a
power function similar to the well-known HBV model (Samaniego et al., 2010). The degree of non-linearity depends on the
underlying vegetation and soil characteristics following the MPR framework (Samaniego et al., 2010; Kumar et al., 2013). The
evapotranspiration from soil layers is estimated as a fraction of the potential evapotranspiration depending on the SM stress
and the fraction of vegetation roots present in each layer (Samaniego et al., 2010). The moisture stress function depends on the
specification of soil-water content at a permanent wilting point, critical and saturation levels, which are determined using a set

of pedo-transfer functions estimated within the MPR framework (Livneh et al., 2015; Zacharias and Wessolek, 2007).



2.2 Model setups at 4x 4 km? and 1.2 x 1.2 km? spatial resolution

The new setup GDM-v2-2021, as used in the GDM version 2, includes several changes to the previous model setup GDM-
120 v1-2016. The main features of the two mHM setups that are used in the analysis are described in Table 1. While the GDM-
v1-2016 uses mHM version 5.6, in GDM-v2-2021 mHM was updated to version 5.10 (see https://github.com/mhm-ufz). The
implemented changes in mHM did not change the hydrological process representations related to SM that were used in the
simulations here. Between the setups GDM-v1-2016 and GDM-v2-2021, the projection system was changed from the projected
coordinate system Gauss-Krueger 4 (EPSG:31468) to the World Geodetic coordinate system (EPSG:4326). While the size of
125 the grid cells in the GDM-v1-2016 setup was fixed at 4x4km? (L1 level), the grid cell size in the GDM-v2-2021 setup is
measured in degree. As such, the grid cell size varies with latitude, with grid cell width in east/west direction decreasing from
1.23 km at 47.25° N latitude (south of Germany) to 0.98 km at 55.5° N latitude (north of Germany) and a constant grid cell

length of 1.7 km in north/south direction.

Table 1. Main features of the model setups GDM-v1-2016 and GDM-v2-2021. Core to the setups is the mesoscale hydrological model mHM.
Vertical discretization of soil layers in the hydrological model mHM and projection system are denoted. In the spatial model resolution
the Level 0 (LO) describes the subgrid variability of relevant basins characteristics. Level 1 (L1) and Level 2 (L2) describe the dominant
hydrological processes and meteorological forcings, respectively. Datasets used as model inputs for soil as well as land use and geology on

L0 model resolution are stated.

Setup spatial model soil vertical soil projection land use hydro geology
resolution dataset discretization dataset dataset
GDM-v2-2021 L1 and L2: BUEK200 4 layers: Latlon GLOBCOVER GLIM
0.01562° x0.01562° 0-5cm (EPSG:4326)
eq. ~1.2x1.2km? 5-25cm
LO0: 0.001953125° x 25-60 cm
0.001953125° 60—variable cm
GDM-v1-2016 L1 and L2: BUEK1000 3 layers: Gauss Kriiger-4 CORINE HUEK?200
4x4km? 0-5cm (EPSG:31468)
LO: 5-25cm
100x 100m? 25-variable cm
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Soil texture (sand and clay fraction) and mineral bulk density are derived from national digital soil maps provided by the
BGR (Federal Institute for Geosciences and Natural Resources). The BUEK200 dataset (BGR, 2020) used in the GDM-v2-2021
setup substantially increased the mapping resolution compared to the BUEK1000 dataset (BGR, 1998) used in the GDM-v1-
2016 setup (scale 1:1 000000 to 1:200 000). At the time of the creation of this study, the database version of BUEK200 was
v0.5. Figure 1 shows the depth averaged clay contents for an exemplary region in Central Germany where SM observations
that were used in the analysis are located. The soil map used for the study (BUEK), is the standardized basic soil mapping
for Germany. It shows the distribution and association of soils and their properties in Germany. The map content is classified
according to soil regions and soil landscapes. For each map unit a soil series is given composed of an index soil (dominant soil)
and accompanying soils. For modeling, the soil properties of the index soil within the spatial mapping unit were used to derive
the model parameters.

The soil depths in mHM are discretized into an upper soil layer at depth 0-25 cm, including a top layer at depth 0-5 cm,
and the remaining depth of the soil profile. In the GDM-v2-2021 setup an additional layer at 25-60 cm was added due to
stakeholder feedback, mainly from the agricultural sector. The tillage depth is set to 30 cm in both model setups. The land use
datasets used in the model setups GDM-v1-2016 and GDM-v2-2021 were CORINE (EEA, 2009) and GLOBCOVER (ESA,
2009), respectively. Hydrogeological input data that define the aquifer properties and govern the baseflow recession rates, was
derived from the HUEK200 database for GDM-v1-2016 (BGR, 2009) and the GLIM database for GDM-v2-2021 (Hartmann,
Jorg and Moosdorf, Nils, 2012). Digital elevation models were derived from BKG (2010) and USGS (2017) respectively.

GDM-v1-2016 GDM-v2-2021

cLay(s) 120 0 35
M 10 25 [0 »40
m s

Figure 1. Average derived clay [%] over the soil column from the BUEK 1000 soil dataset used in the GDM- v1-2016 model setup (left panel)
versus the BUEK200 soil dataset used in the GDM-v2-2021 model setup (right panel). The grid shows the respective modelling resolution
L1 at which the hydrological processes are simulated (see table 1). Both setups are projected in WGS 84 (EPSG:4326).
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2.2.1 Meteorological input data

Precipitation, as well as minimum, maximum and average air temperature, are interpolated on a daily timescale based on
meteorological station data from the German Weather Service (DWD) using external drift kriging (EDK) with elevation as the
drift variable. The meteorological station data is subject to extensive quality controls (Kaspar et al., 2013). Additionally, quality
controls such as checking the plausible variable range are implemented in the preprocessing steps of the interpolation routine.
Theoretical variograms are estimated based on all available station data to derive seamless fields of hydro-meteorological fluxes
and states for entire Germany (Zink et al., 2017). An exponential model is used for precipitation and spherical models for the
temperature variables. The interpolation method and variogram parameter estimation for Germany are described and evaluated
in detail in Zink et al. (2017) including cross-validation metrics and comparison to the comparable REGNIE gridded dataset
by the German Weather Service (Rauthe et al., 2013). PET is calculated using the Hargreaves-Samani Method (Hargreaves
and Samani, 1985) that is based on the interpolated temperature fields (average, minimum, and maximum) and (potential)

extraterrestrial radiation, which is computed depending on the latitude of the location and day of the year.
2.2.2 Multibasin model calibrations

The unknown parameters of the mHM setup GDM-v2-2021 were calibrated against observed discharge using the Kling-Gupta
efficiency (KGE; Gupta et al., 2009) as the objective function. The parameter optimization was conducted using the Dynam-
ically Dimensioned Search (DDS; Tolson and Shoemaker, 2007) algorithm with 1000 iterations, which underwent detailed
scrutiny, as follows. In a first step, 200 parameter sets were obtained using a multi-basin/domain-wide joint basin calibration
strategy, in which a subset of six basins was randomly selected (out of 201 total basins) and then jointly calibrated during a
common period of 1990-2005 (see Table S1 in the Supplements). Subsequently, all 200 parameter sets were evaluated against
the full ensemble of 201 basins during an extended period of 1986-2005 (with a warming period of 5 years). The parameter
set with the best performance in terms of the median daily KGE over 201 basins was selected and used for the consequent
analysis (See Table S2 in the Supplements). This updated approach is based on the earlier calibrations of the GDM-v1-2016
setup (Zink et al., 2017) in which the Nash—Sutcliffe efficiency instead of the KGE was applied and individual single-basin
instead of the multi-basin calibrations were carried out as input to the model cross-evaluation at locations that were not used for
model calibration. Previous works also focused on multibasin calibrations of mHM in other regions, such as Mizukami et al.
(2017); Rakovec et al. (2019). The model performance of the best cross-evaluated parameters of the GDM-v2-2021 based on
daily streamflow from 201 catchments in Germany yielded a median performance of 0.761 KGE (see Fig. Al).

2.3 Soil moisture observations

The SM observations used to conduct the model evaluations were gathered from the environmental observation networks
TERENO (Zacharias et al., 2011) and FLUXNET (FLUXNET2015 Dataset; Pastorello et al., 2020) as well as from the Cun-
nersdorf site operated by the DWD. In total, SM data from 40 locations were compiled and processed for the analysis (see

Fig. 1). Although it is not feasible to establish an evenly distributed grid of SM measurements on a national level (Vereecken
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et al., 2008), the available locations cover a wide range of climatic and vegetation conditions in Germany.

In total, we analysed 46 measurements from 24 grassland sites, nine crop sites, six forest sites and one site containing a forest
clearing. Four of the sites have multiple measurement methods available, which allowed comparing the evaluations between
the measurement methods at single sites. The elevation ranges from 4 to 1252 meters a.m.s.l., and the long-term yearly pre-
cipitation sums range from below 500 mm to more than 1 500 mm. Time series lengths of the observations are between 2.8 and

17.8 years with a median (mean) of 6.5 (6.7) years. A detailed overview of the location characteristics is shown in Table 3.
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Figure 2. SM observations of 40 locations distributed over Germany were used in the SM evaluations of the GDM-v2-2021 and GDM-
v1-2016 model setups. The subplots display the experimental sites in greater detail, representing different climate gradients in Germany.
The maps show the digital elevation model on the hydrological subgrid variability resolution LO of mHM in the GDM-v2-2021 setup
(0.001953125° x 0.001953125°). The grid corresponds to the modelling resolution L1 in the GDM-v2-2021 setup (0.01562° x 0.01562°,
which equals /= 1.2 x 1.2km?) at which the hydrological processes are simulated. The lower panel shows the distribution of different SM
observations depending on land use type, elevation and average yearly precipitation. Note that some of the 40 locations have multiple SM

data sources (n = 46).

The data is comprised of four different SM measurement methods. SM observations from seven FLUXNET and 16 TERENO

sites in Germany based on several vertically distributed sensors within one soil profile were used (in the following abbrevi-
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ated SPM). The sensor depths are described in Table 3. SPM sites used from TERENO-Northeast Observatory are further
described in Itzerott et al. (2018a) and Itzerott et al. (2018b). SM data from lysimeters are available for four sites from the
TERENO-SOILCan lysimeter network (Piitz et al., 2016) at the Bad Lauchstiddt experimental site and the TERENO Pre-
Alpine Observatory (PAO) (Kiese et al., 2018). Lysimeters are large vessels containing an undisturbed soil column to allow
gravimetric measurements. Since the lysimeter vessels are closed at the bottom, water tension is adjusted to reference measure-
ments at the same depth in the undisturbed soil close to the lysimeter (Piitz et al., 2016; Kiese et al., 2018). In the lysimeters,
SM is measured by single sensors in multiple depths. At each SOILCan-site multiple lysimeters are organized in hexagons
(Piitz et al., 2016). The number of lysimeters per site are described in Table 3.

For three of the 40 sites (Am Grossen Bruch, Hohes Holz and Wiistebach), spatially distributed measurements (SPM) of
SM are available. Multiple sensors are installed in a spatial grid at different depths covering an area of some hundreds of
square metres. For the locations Hohes Holz and Am Grossen Bruch 39 and 20 profile with sensors at multiple depths were
used respectively (depths varied slightly between profiles depending on soil property changes). Therefore, they are not denoted
explicitly. For the Wiistebach site, 51 profiles with two sensors each at 5 cm, 20 cm, and 50 cm depth were used (Wiekenkamp
et al., 2019). The Wiistebach SM measurement network is described in detail in Bogena et al. (2018).

SM observations derived from Cosmic Ray Neutron Sensing (CRNS) stations were used from 17 sites (see Table 3) of
the TERENO observatories (Bogena et al., 2022). The soil albedo component of cosmic-ray neutrons is particularly prone to
changes of SM (Desilets et al., 2010; Kohli et al., 2021). However, since neutrons are sensitive to all pools of hydrogen, the
measured neutron signal is also affected by biomass (Baatz et al., 2015), intercepted water (Bogena et al., 2013; Schron et al.,
2017), and snow (Schattan et al., 2017) and therefore requires a correction of the measured signal in this respect. In this study,
periods of snow cover have been excluded from the CRNS data. SM from CRNS data has been calculated by standard methods
(Desilets et al., 2010; Zreda et al., 2012) and aggregated to daily time steps. This leads to typical statistical uncertainties of less
than 3 vol.% (Schron et al., 2018).

All SM data was checked according to their flagging conventions for doubtful or low-quality values. In some cases, doubtful
data was removed manually after personal communication from site maintainers (e.g. some sites from the TERENO PAO
lysimeter sites showed doubtful data after frost in early 2017). The available SM data in the respective depths, as noted in
Table 3, was aggregated to weighted vertical averages according to the soil discretization depths in mHM (0-25 cm, 25-60 cm
and 0-60 cm). Highest weights were allocated when the sensor depth is located in the center of the soil depth range and weights
linearly decrease towards the edges of the soil depth range. The spatial mean values were calculated for the SDM measurements

based on the available sensors.
2.4 Soil moisture data preparation and evaluation metrics

Since the computation of SM drought indices, including the estimation of SM probability distributions by kernel density
estimates, is hampered for the available observed data due to the limited length of observed SM data (<10 years for most
locations), the analysis here is based on a comparison of observed to simulated SM (e.g., Samaniego et al., 2013). It is widely

known that absolute SM values cannot be adequately determined by a regional model (partly due to the spatial heterogeneity),
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yet the hydrological model typically captures the temporal dynamics well (Koster et al., 2009). As drought is defined by the
deviation from normal conditions, SM anomalies were calculated. To preserve the units of volumetric SM [mm/mm] and the
original range of SM dynamics, standardization by dividing standard deviation was not undertaken in this study. The anomalies

are calculated in two ways. First, the mean of all values in each SM time series is subtracted.

9(anom)i’k = 92‘ k —g (1)

)

Secondly, the multi-year mean for each day of the year is subtracted to deseasonalize the anomalies. The removal of the
annual average cycle of SM is necessary for the subsequent drought classification based on percentile thresholds as described

in the next section.

O(deseas — cmom)“C =01 —0; 2)

where 4 is the calendar day of the year (DOY 1, ..., 365) and k is the year. To reduce uncertainty in the mean resulting
from heterogeneous and small sample sizes, for each ¢ a moving window with 15 days on each side of the day was used to
increase the sample size and the multiyear mean of each 7 was calculated based on the mean of randomly drawing 500 bootstrap
samples. Since there are some data gaps in the observed data (see Table 3 for data availability), the simulated data was masked
to the available observed data to allow a comparable calculation of SM seasonality. Leap days were removed before calculating
the deseasonalized anomalies.

The evaluation of observed against simulated SM is based on the Spearman rank correlation coefficient (R). The Spearman
rank correlation coefficient is a non-parametric measure to quantify the strength of the monotonic relationship between two
variables. The correlations are calculated on whole data records as well as on sub-periods (months, seasons and vegetative active
period) to investigate the seasonal variability in the performance metrics. Paired Wilcoxon signed-rank tests were conducted to

identify significant changes between the model setups.
2.4.1 Soil moisture index computation and analysis

Simulated SM by the two model setups is used to compute a Soil Moisture Index (SMI) following Samaniego et al. (2013) and
Zink et al. (2016) enabling a SM drought analysis based on long term SM data. The SMI for a given cell and day is estimated

as
SMI, = E'p(xy) (3)

and it represents the quantile at the SM fraction value x (normalized against the respective saturated soil water content).
denotes the simulated monthly SM fraction at a time ¢ and Frp is the empirical distribution function estimated using non-
parametric kernel density estimates. The optimal bandwidths are estimated by minimizing a cross-validation error estimate.
Details regarding the computation of the SMI can be found in Samaniego et al. (2013).

The SMI drought threshold concept used in the German Drought Monitor is based on the D0O-D4 classification system for
droughts from the US-Drought monitor (Svoboda et al., 2002) that related drought categories to potential impact types. The
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drought thresholds reflect the occurrence of similar SM conditions in the past and hence indicate the potential impacts of
these conditions (Zink et al., 2016). A cell at time ¢ is under drought when SMI; < 7. Here, 7 denotes that the soil water
content in a cell is less than the values occurring 7 x 100% of the time. The 20th percentile used as 7 in this study is defined as
moderate drought conditions, that indicate conditions of “possible damages to crops and pastures”. Extreme drought conditions
are defined as the 5th percentile indicating “high probability of major losses in crops and pastures”. The resulting impact of
SM drought conditions need to be identified for each specific impact type based on the timing within the year and duration of
drought conditions. For example, Peichl et al. (2018, 2021) identified specific monthly damage functions between the SMI and
different crops using varying statistical methods. The work showed that dry SM anomalies in some months can reduce yield
(e.g., August, September for maize), while in other months it may increase crop yield (e.g., May for maize). Impacts of SM
droughts can affect a broad range of sectors besides agriculture. Especially, the considered soil depth of the SMI is relevant
for different sectors. While the drought conditions in the upper soil (0-25 cm and 0-60 cm) are more relevant to agriculture,
drought in the total soil column (up to 2 meters) indicate potential impacts on water resources and the forestry sector.

SMI based drought statistics are calculated for the years 1952-2020 on fixed temporal (annual and vegetative active period
from April to October) and spatial scales (per grid cell and aggregated for Germany). When calculating the cumulative density
functions of SM, a common statistical basis of 1951-2015 was used for both model setups. The drought intensities (DI) per

year are calculated by

1 &
DI:d*A;/[T—SJ\MZ-@)]+ )
0 A

with the area of interest A (here Germany) and duration d (t; — to) in days (annual ¢g Jan 1st to £; Dec 31st and vegetative
active period tg Apr Ist to t; Oct 31st ). The drought intensities take into account the degree of negative departure from drought
conditions (hence, the extremer the drought conditions, the higher the intensities) as well the temporal aggregation length and
the spatial aggregation area. The area under drought is calculated as the percentage of grid cells where SMI < 0.2 averaged

over the respective temporal periods.

3 Results and Discussion

In the following sections, the comparisons of the multi-method SM observations with two hydrological model simulations are
presented and discussed to investigate the proposed research objectives. In section 3.1, a comparison of SM observations to
the simulations from the high-resolution operational model setup GDM-v2-2021 is shown. The setup allows a comparison of
observations to the 0-25 cm layer as well as to the additional, deeper soil layer of 25-60 cm. In section 3.2, the differences be-
tween the two simulation setups are shown for annual drought intensities during 1952-2020 and compared to SM observations.
The two mHM simulations are used in their operational setups, meaning that only data and information available for the whole
of Germany was used. Additional available information on soils or meteorological measurements at the observation sites was

not incorporated in the simulations.
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3.1 Comparison of high resolution simulations against observed SM dynamics

Here, 1.2x1.2 km? simulations in two soil layers (GDM-v2-2021) are compared to SM observations using four different
measurement methods: Cosmic Ray Neutron Sensing (CRNS), spatially distributed measurements (SDM), single profile mea-
surements (SPM) and lysimeter (LY SI). SM anomalies as well as deseasonalized SM anomalies are used.

Figure 3 shows the results for three selected locations that contain both CRNS and SDM measurements for the six-year
period 2014-2019. In general, the SM anomalies and deseasonalized data agree well, with a small reduction of correlations for
the deseasonalized data. Furthermore, observations and simulations agree well both in the uppermost soil layer (0-25 cm and in
the deeper layer (25-60 cm depth). The correlation strength between simulations and observations from different measurement
techniques is similar for the sites Am Grossen Bruch and Hohes Holz, but deviates more for the Wiistebach site. It is worth
noting that different spatial scales are mapped by those measurements. While the SPM (not included here) represents point
information, the SDM and CRNS cover an area less than 0.1 km? and the mHM simulations cover an area of ~ 1.44 km?2.
In general, the day-to-day variability is lower in simulations than in observations. At the forest sites Wiistebach and Hohes
Holz, the day-to-day variability in the CRNS data is higher than in SDM. Several environmental factors other than SM can
influence the CRNS signals (see Methods). While the changing biomass might have a low impact on the signal, it can introduce
a (constant) systematic bias. Since only anomalies are analysed here, the impact of such bias on this (comparative) anomaly
analysis should be minimal. Intercepted water on leaves and in the litter layer can be particularly challenging to quantify,
especially in forested stations such as Hohes Holz or Wiistebach (Bogena et al., 2013; Schron et al., 2017). It might lead
to stronger dynamics in the CRNS signal during and shortly after rain events, in comparison to the model output or other
observation methods. Additionally, partial deforestation in 2013 at the Wiistebach site modified SM flows resulting in stronger
response to rainfall (Wiekenkamp et al., 2019). Nevertheless, there is no general tendency for lower correlations at forest
sites than crop and grassland sites (see Figure 4). Crop sites show slightly lower correlations than grassland sites, which
is expected since anthropogenic activities (e.g., crop rotation) are not represented in mHM. Correlations display no clear
tendency across the range of elevation and precipitation regimes. In general, Figure 4 reveals that the model performance does
not systematically depend on site conditions. Moreover, no systematic relationship between correlations and the length of the

time series can be found (see Figure 4 d)).
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Figure 3. SM time series for 2014-2019 for the selected locations Am Grossen Bruch, Hohes Holz and Wiistebach, showing SDM and
CRNS data against simulated data from mHM in 0-25 cm and 25-60 cm depth in the GDM-v2-2021 setup. The Hordorf site also contains
both CRNS and SDM measurements, but with much shorter time series length. The stations with longer time series were selected for
visualization. Spearman rank correlation coefficients are denoted at the left side of each time series. Panel (a) shows SM anomalies including

seasonality and panel (b) shows deseasonalized SM anomalies.
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Figure 4. Spearman rank correlation coefficients of the simulated versus observed deseasonalized SM anomalies against site characteristics:
(a) land use, (b) elevation and (c) average yearly precipitation and (d) length of the time series. See Table 3 for detailed overview per
location. Colors denote the SM data method (Cosmic Ray Neutron Sensing (CRNS), spatially distributed measurements (SDM), single
profile measurements (SPM) and lysimeter (LY SI)) and shapes the land use types reported at the locations (abbreviated as following: grass =

grassland, clear= forest clearing, LY SI=Lysimeter).

Monthly Spearman correlation coefficients for all locations and measurement methods at 0-25 cm depth are shown in Fig. 5.
The correlation coefficients show an apparent clear seasonal variation, with the highest values in summer/autumn months and
the lowest values in winter. The highest median correlation is detected in August (0.87), while the lowest median correlation
is found in January (0.37). The spread of the correlation coefficients within the different locations is largest in winter months,
with some locations have correlations close to 1.0. While in February and March, some locations with CRNS, SPM and LY SI
measurements show correlations below zero. The intra-annual variation of performance metrics was similar to the findings of
Xia et al. (2014), that extensively evaluated simulated SM from four different hydrological models (Noah, Mosaic, SAC, VIC)
in the North American Land Data Assimilation System phase 2 (NLDAS-2) dataset, which is used for drought monitoring in
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the United States and similarly observed generally higher correlations in summer and lower correlations in winter. The lower
correlations observed in winter could be related to higher uncertainties in simulations and observations with respect to frozen
soils and snow cover. The sensor quality of SDM, SPM and LY SI in winter can be reduced during frost days. Especially, SPM
and LY SI measurements can be affected by sensor failures as they rely only on few sensors compared to the spatially distributed
measurements (SDM) with a larger number of sensors. Annex Figure A3 shows correlations between simulated SM, CRNS and
SDM. Low correlations between simulation and observations are accompanied by low correlations between the measurement
methods, especially in winter. In a climate impact study investigating low flows over Europe, it could be shown that uncertainty
due to the selection of the hydrological model dominates the overall uncertainty including the meteorological drivers in snow
dominated areas (Marx et al., 2018). Furthermore, the mHM does not contain a full energy balance model, which limits the

description of soil frost depths.
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Figure 5. Comparison of the simulated mHM SM (0-25 cm) in the GDM-v2-2021 setup to observed SM anomalies without (a) and with
(b) subtraction of the mean seasonal SM cycle for each month depicted with boxplots. SM anomalies are plotted for each location and
coloured according to the SM measurement menthod used. Note that sample sizes between measurement methods differ (CRNS: n=17,
SDM: n=3,SPM: n=23; LYSI: n=4). Data points that are not both significantly (p-value < 0.05) and positively correlated are marked with x.

See Figure A2 for detailed comparisons.
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Observations using different SM measurement methods display considerably different correlations. The SPM generally vary
more, with large variation in winter and the presence of low-performance outliers in summer months. CRNS measurements
show a consistently high performance in summer months but notably low correlations in winter (especially January). As snow
days were removed from the time series in the CRNS measurements, the anomaly calculation from the remaining data was
impacted by a smaller sample size. Another reason for the lower correlations observed might be due to the variable penetration
depth of CRNS, which ranges between 15 to 70 cm depending on SM (Kohli et al., 2015; Schron et al., 2017). This could
introduce systematic and temporally variable errors and affect the correlation between observed and simulated soil water
content (Baroni et al., 2018). Comparison to the mHM top soil (0-25cm) layer is assumed to remain a good compromise,
since the soil water distribution is rather homogeneous between 0 and 25 cm under wet conditions. Under dry conditions the
footprint is deeper and more heterogenous, but the highest sensitivity is in the upper soil layers (exponential sensitivity). The
SDM measurements show the most consistent performance across all months with the exception of May, as illustrated in
Figure A2 a). All measurement methods at these sites show a drop in correlations to the SM simulations in May and June,
while the observations have higher correlations between each other (see also Figure A3). This points to deficiencies in the
model, which may be related to the static vegetation module in mHM which does not include processes such as possible
early onset of the growing season and consequent earlier depletion of the soil water storage. Moreover, lower correlations of
deseasonalized anomalies in May are detected especially at forest locations (median of 0.63 over all forest locations). The
timing of leaf unfolding in trees, usually between late April to May (Chen et al., 2018), is subject to annual fluctuations
and affects evaporation from the soil and therefore SM dynamics. Figure A2 b) depicts the SPM data from FLUXNET and
TERENO separately, which cover the time periods 1997-2014 and 2011-2019, respectively. The seasonal variation of the
correlations is in good agreement among both monitoring networks and time periods. The performance at TERENO sites is
generally higher than at the FLUXNET sites, possibly due to a larger number of sensors installed along the soil depth in the
TERENO sites which may improve the vertical averaging of SM (see Table 3).
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Figure 6. Spearman correlation coefficients of the simulated mHM SM in the GDM-v2-2021 against observed deseasonalized SM anomalies
depicted with boxplots for three depths (0-25 cm, 0-60 cm, 25-60 cm). Values of each location are plotted and colours denote the measure-
ment method of the SM data (SDM: spatially distributed measurements; SPM: single profile measurements; LYSI: Lysimeter). Here only
locations with measurements at 25-60 cm depth are taken into account (SDM: n=3,SPM: n=19; LYSI: n=4). Data points that are not both

significantly (p-value < 0.05) and positively correlated are marked with x.

The Spearman correlation coefficients for each season and soil depth is depicted in Figure 6. Note that here only locations
that have SM data in all depths were considered and CRNS data was excluded as its varying penetration depth does not allow
a consistent depth-wise evaluation. This leads to a smaller sample sizes of locations (n=26). Figure 6 shows that the median
correlation is lower for the deeper SM simulations for all seasons, except for winter. In spring, the lower depth also shows the
strongest negative difference to the upper depth in comparison to summer and autumn (Spring A — 0.19, Summer A — 0.12,
Fall A —0.02). The correlations vary more in the 25-60 cm depth between locations in all seasons, with more outliers of very
low correlations observed. Since the mHM was conceptualized for dominant processes at the large scale (mesoscale), not all
processes that are important at the local scale are currently accounted for (e.g. species specific root water uptake, lateral flow or
groundwater soil water interaction). For instance, Rosenbaum et al. (2012) showed for the distributed SM measurements at the
Wiistebach catchment that SM dynamics in the topsoil (5-50 cm depth) are influenced by groundwater. Processes of capillary
rise are not modelled in mHM, hence it is expected that agreement to simulated SM by mHM at sites with groundwater-
influence is lower compared to groundwater-distant sites. This effect should increase with depth due to increasing groundwater
influence that could explain the lower correlations in the 25-60 cm depth. SPM sites might be more affected by this than SDM
in which these effects can be averaged out. Identification of groundwater characteristics at each measurement site was, however,
out of scope for this study. The SDM overperform SPM and LYSI, with higher than average correlation values especially for
the 25-60 cm depth, which underlines the assumption that local characteristics of single sensors e.g. groundwater influence

and the resulting spatial variability of SM (Famiglietti et al., 2008) are averaged out over a larger area and generally supports
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the closer scale match of SDM measurements and the 1.2x 1.2 km? simulation grid cells. It has to be noted that the SPM at the

same sites as the SDM also show comparable high correlation values (for an overview of the locations, see Table 3).
3.2 Comparison of different mHM model setups

In the following, the comparison between observations and the two model setups GDM-v1-2016 and GDM-v2-2021 (i.e., GDM
version 1 and 2), as well as drought metrics between the two simulation setups are shown and discussed. Table 2 shows the me-
dian values of the Spearman correlation coefficients for selected sub-periods (seasons, vegetative active period April-October)
and for the full year. Considering the observed SM data from all locations and measurement methods, the median correla-
tions between the two simulation setups slightly increase by +0.05 in GDM-v2-2021. The results on an seasonal scale show a
small decrease in the correlations in spring (A — 0.03) and summer (A — 0.01), but a significant increase of correlations in fall
(A 40.07) and winter (A 4 0.12) in the new model setup. Several of the changes in the model setup may provide explanations
for the improved model agreement to observed SM dynamics in fall and winter. The higher modelling resolution of the 1 km
runs may better resolve the sub-grid variability of cold season related processes such as snow accumulation that improves the
simulated SM dynamics. As well, the finer spatial soil texture representation possibly contribute to an improved model repre-
sentation of soil wetting/drying e.g. especially during saturated conditions in the cold season. When analysing the metric over
the vegetative and non-vegetative active period (defined from April-October and November-March, respectively), the increase
in median correlations is +0.03 and +0.10 respectively. Median correlations using CRNS and SPM measurements support the
overall findings. In general, the results show that the CRNS yield higher median correlation than the SPM measurements for
both model setups, except for spring. While the median correlation in winter increased by 40.17 between GDM-v1-2016 to
GDM-v2-2021 for CRNS, there is only a small increase in correlation of +0.03 for SPM. Similar results showing an overall in-
crease in simulation performance were found by Albergel et al. (2012). In their study, the EMCWF operational and re-analysis
SM product using the hydrological model H-TESSEL was improved due to changes in the soil hydrology in the model and
an increase of model resolution. They concluded that a better representation of soil texture might obtain further improve-
ments. Furthermore, De Lannoy et al. (2014) found moderate improvements in the agreement of SM simulations compared to

observations through implementing updated soil texture information.
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Table 2. Median Spearman rank correlation coefficients R of simulated (GDM-v1-2016, GDM-v2-2021) versus observed deseasonalized
SM anomalies at depth 0-25 cm. The correlation coefficients are calculated annually, seasonally (spring=March, April, May; summer=June,
July, August; fall=September, October, November; winter=December, January, February) and over the vegetative and non-vegetative active
period (defined from April-October and non-veg November—March respectively). Note that some of the 40 locations have multiple SM data
sources available, resulting in n = 46; see Table 3. Stars denote significant differences (p-value < 0.05) in correlations between the model

setups according to paired Wilcoxon signed-rank test.

metric method setup annual spring summer fall winter  non-veg veg
ALL  GDM-v2-2021 0.78 0.65 0.85 0.84 0.49 059 0.84
m=46)  GDM-v1-2016 0.73 0.68 0.86 0.77 0.37 049  0.81

A +005 -0.03 001 +0.07 (*) +0.12(*) +0.10(*) +0.03

R[] CRNS GDM-v2-2021 081  0.63 0.88 0.86 0.60 0.65 0.86
=17  GDM-vI-2016  0.79  0.67 0.88 0.80 0.46 048  0.84

A +0.02  -0.04 0.0 +0.06(*) +0.14(*) +0.17(*) +0.02

SPM  GDM-v2-2021  0.72  0.67 0.79 0.78 0.39 045  0.82

=3 GDM-vI-2016  0.71  0.69 0.80 0.76 0.34 042 077

A +0.01 -0.02 -0.01 +0.02 +0.05 +0.03  +0.05

Spearman rank correlations between simulated and observed deseasonalized SM anomalies that fall below the 20th percentile
in the observed SM time series are shown in Figure 7 to specifically analyse the dry anomaly spectrum. It is important to
emphasize that we do not aim to estimate drought periods here, as its solid calculation requires a much longer time series.
The drought estimation is performed using histograms for every grid cell and day of the year (see method section 2.4.1).
Consequently, estimating robust percentiles requires time series lengths of minimum 30 years — this means that the time series
length of the observational data is considered insufficient. Figure 7 a) shows a median correlation of 0.61 over all observations
in the GDM-v2-2021 setup. The performance in the two model setups remains similar. However, the comparison separated
between the measurements with larger spatial footprint (SDM, CRNS) and point scale measurements (SPM, LY SI) shows that
the agreement between simulations and the larger footprint observations increased towards the high resolution setup, but the
median agreement to the point scale SM measurement decreased. In general, the measurements with larger spatial footprint
display higher agreement to the simulations. Due to the varying day-to-day variability of SM between the SM observation
types and the simulations, in Figure 7 b) additionally a statistical smoothing was applied by calculating a running 30 day mean
on the daily SM time series before subtraction of the seasonal SM cycle. This approach is similar to the SM preprocessing for
the SMI as proposed in Zink et al. (2016). Figure 7 b) shows when smoothing is applied, the agreement between observations
and simulations during dry periods can be substantially improved to a median correlation of 0.7 over all observations in the
GDM-v2-2021 setup (= 1-km resolution). Especially the agreement between the point scale measurements and simulations is

increased to a median correlation of 0.63 in both model setups.
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Figure 7. Correlations of deseasonalized daily SM below the 20th percentile (based on the observed SM time series) between simulations
and observations (a). In (b) additionally a statistical smoothing was applied by calculating a running 30 day mean on the daily SM time
series before subtraction of the seasonal cycle. The correlations are shown for all observations (n=46) and separated between observations
with larger spatial footprint (n=20) including Cosmic Ray Neutron Sensing (CRNS) and spatially distributed measurements (SDM) as well

as point measurements (n=26) including single profile measurements (SPM) and lysimeters (LYSI) .

Next, we contrast the drought characteristics based on the two model setups to assess the differences in drought ranking
and the spatial structure of drought events. Annual drought intensities aggregated over Germany based on the daily SMI using
simulated SM from 1952-2020 are presented in Fig. 8 and grid-based for the last decade in Fig. 9. Fig. 8 shows only marginal
differences between the model setups, which are slightly more prominent in the top soil compared to the total soil column.
The model setups largely agree on the three years with the most intensive droughts. The ranking in the top soil during the
vegetative active period differs slightly due to the similar drought intensities in the years 1959, 1976 and 2003. The drought
years are more pronounced with respect to drought intensities in the GDM-v2-2021 setup in the top soil, but in contrast, the
average drought area is estimated larger in the GDM-v1-2016 setup in those years. Generally, the classification of drought

years aggregated over Germany results in similar estimates using the different operational drought monitor setups.
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Figure 8. SM drought intensities spatially aggregated over Germany during the vegetative active period (April - October) in the top soil
(5-25 cm) and total soil column (up to 2m). The size of the circles represents the average area under drought. The three largest drought

events are numbered in each panel. Colours represent the two model setups.

To assess regional differences in drought characteristics between the model setups, Figure 9 shows the drought intensity
maps in the vegetative active period for 2011-2020. Drought intensities are more spatially diverse in the GDM-v2-2021 setup
stemming from the higher granularity of the GDM-v2-2021 setup including higher-resolution soil information and less smooth
patterns than the GDM-v1-2016. Nevertheless, the general patterns are similar between the two setups. Regionally large dif-
ferences can be seen (e.g., the drought intensities in the Swabian and Franconian Jura region are more pronounced concerning
the neighbouring areas in the GDM-v1-2016 setup — see years 2017 and 2019 for the total soil). Additionally, the differences
in drought intensities are more pronounced in the total soil column in the last decade, which can be explained by multi-annual,
cumulative effects. The current total soil drought lasts in many regions for at least three years. In Figure 10 the variance be-
tween grid cells for drought intensities during the vegetative active period are shown as semi-variograms. In general, the spatial
variance is larger in the total soil than top soil. The GDM-v2-2021 setup shows a general larger spatial variance between grid
cells in the top soil and larger increase with distance (see Figure 10 (a)). The spatial variance in the total soil is lower at smaller
distances in the GDM-v1-2016 setup, but slightly higher at larger distances. Figure 10 (b) showing semi-variance normalized

by distance demonstrates that in the GDM-v2-2021 setup the distance-normalized variance of drought intensities is increased
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especially at small spatial scale in both the top and total soil, indicating larger local differences in response to drought intensi-
ties. These findings are in line with Livneh et al. (2015) who investigated the influence of different soil databases on resulting
hydrologic fluxes. They reported that the higher variability of soil properties in the finer soil database generally resulted in
simulations with more variability in (extreme) hydrologic responses.

We would like to highlight that in our study several changes between the operational model setups were implemented
besides changing the underlying soil dataset as described in section 2.2. The changes such as the land use and geology datasets
influence the hydrological simulations, yet they play a minor role for the SM simulations compared to the change in the soil
dataset. The SM simulations are not influenced by the geological dataset, because no direct feedback from the saturated aquifer
to the SM reservoir is implemented in mHM. To demonstrate the different role of the change in SM dynamics related to the
specific soil and land use datasets temporal correlations between SM from separated model runs fixing all model settings
(L1 ~ 1.2 x 1.2 km? resolution, default mHM parameters) only changing the soil dataset (BUEK200 — BUEK1000) and in a
separate step only changing the land use dataset (CORINE — GLOBCOVER) are shown in Figure A4. The change of the soil
dataset has a much larger impact on the SM simulations compared to the change of the land use dataset in these specific model
setups. The CORINE and GLOBCOVER land use datasets both have already high horizontal resolutions (=100 m and 300 m,
respectively). The differences between the land use datasets mostly lie in the subgrid scale of the mHM hydrological modelling

resolution and have a minor effect on the upscaled hydrological response at the L1 level (here ~ 1.2 x 1.2 km?).
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Figure 9. SM drought intensities (DI) per grid cell for (a) upper soil (5-25 cm) and (b) total soil column (up to 2 m) during the vegetative
active period (April -October) in the last decade (2011-2020) for the model setups GDM-v1-2016 and GDM-v2-2021 and for the absolute
differences between the setups (GDM-v1-2016 - GDM-v2-2021). The GDM-v1-2016 data was remapped to the GDM-v2-2021 grid for the
difference calculation. Graphs including of years from 1952 on can be found at https://www.ufz.de/index.php?de=47252.
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Figure 10. Empirical semi-variograms for drought intensities during the vegetative active period in upper soil for the GDM-v1-2016 and the

GDM-v2-2021 setup. The bin size was set to 5 km that corresponds to the nearest larger even kilometre bin size relative to the GDM-v2-2016

modelling resolution. The length scale and nugget of the fitted exponential theoretical semi-variograms are noted in the legend. Subplot (b)

shows the semivariance normalized by distance and the x axis is log scaled.
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Table 3. Overview of SM measurement sites. Method denotes the different data sources: Cosmic Ray Neutron Sensing (CRNS), spatially
distributed measurements (SDM), single profile measurements (SPM) and lysimeter (LY SI). Network denotes the environmental observation
network name (for TERENO: GC =Central Germany; Rur/E = Rur/Eifel; NE = Northeast, PAO = Pre Alpine Observatory) and land use
describes the site characteristics (grass= grassland, crop = cropland, DBF = Deciduous Broadleaved Forest, ENF = Evergreen Needled Forest,
clear=clearing). For FLUXNET, the original site name is included in parentheses. Sensor depths and numbers are denoted. R Spearman
correlation coefficients of simulated versus observed deseasonalized SM anomalies in the GDM-v2-2021 setup shown are based on the

whole period at 0-25 cm and 25-60 cm depth.

network site method land use begin end availability data n elevation precipitation sensor 1 sensor depth R R
0-25cm 25-60 cm 0-25cm 25-60cm
BadLauchstidt LYSI crop 2016-01-01 2018-12-31 100 % 1091 118 m 498 mm 3 10 30,50 0.73 0.71
Ermsleben SPM grass 2012-01-25 2019-12-31 81% 2343 167m 541 mm 1 10, 20 30, 40, 50, 60 0.80 0.68
Am Grossen Bruch CRNS grass 2014-06-24 2019-11-28 95 % 1892 81m 545mm 0.79 -
SDM 2014-07-30 2019-11-18 84% 1618 20 var. var. 0.82 0.84
8 SPM 2014-02-07 2019-12-31 98 % 2114 1 10, 20 30, 40, 50 0.86 0.85
% Hecklingen SPM grass 2013-07-05 2019-12-31 94 % 2223 93m 525 mm 1 10, 20 30, 40, 50 0.72 0.71
5 HohesHolz CRNS DBF 2014-08-27 2019-11-28 91 % 1745 203m 645 mm 0.80 -
- SDM 2012-07-20 2019-12-30 96 % 2613 39 var. var. 0.88 0.86
SPM 2013-04-25 2019-12-31 97 % 2358 2 10,20 30, 40, 50 0.87 0.88
Hordorf CRNS crop 2016-09-29 2019-11-28 88 % 1022 80m 554 mm 0.83 -
SPM 2015-11-06 2019-12-31 98 % 1493 1 10, 20 30, 40, 50 0.82 0.74
Aachen CRNS crop 2012-01-13 2019-05-01 91 % 2437 216m 875mm 0.67 -
Gevenich CRNS crop 2011-07-06 2019-01-04 91 % 2496 104 m 766 mm 0.84 -
Heinsberg CRNS grass 2011-09-08 2019-05-01 94 % 2628 6l m 712 mm 0.83 -
Kall CRNS grass 2011-09-14 2019-05-01 78 % 2185 492m 861 mm 0.82 -
Kleinau CRNS grass 2015-08-25 2019-04-26 87% 1169 355m 937 mm 0.88 -
% Merzenhausen CRNS crop 2011-05-18 2019-04-03 90 % 2597 91m 767 mm 0.85 -
g Rollesbrl CRNS grass 2011-05-18 2018-12-31 87 % 2409 516m 1183 mm 0.77 -
E Rollesbr2 CRNS grass 2012-06-30 2018-12-25 86 % 2045 516m 1183 mm 0.82 -
E Ruraue CRNS grass 2011-11-08 2019-01-01 90 % 2340 102m 734 mm 0.77 -
Schoeneseiffen CRNS grass 2015-08-13 2019-04-25 83 % 1120 567m 1119 mm 0.82 -
Selhausen CRNS crop 2015-03-06 2019-04-26 95% 1441 102m 726 mm 0.77 -
Wildenrath CRNS clear 2012-05-11 2019-03-23 91% 2273 79m 776 mm 0.80 -
Wiistebach CRNS ENF 2011-03-12 2018-10-05 79 % 2173 614m 1165 mm 0.44 -
SDM 2009-01-27 2019-12-31 100 % 3989 150 10, 20 (2x) 50 0.75 0.74
AltTellin SPM grass 2014-05-10 2019-12-30 90 % 1859 9m 551 mm 1 10, 20 30, 40, 50 0.87 0.26
Bentzin SPM grass 2013-08-19 2019-12-30 98 % 2281 5m 568 mm 1 10, 20 30, 40, 50, 60 0.53 0.77
Droennewitz SPM grass 2014-04-12 2019-12-30 3% 1519 33m 598 mm 1 10,20 30, 40, 50, 60 0.59 0.66
o Goermin SPM grass 2013-08-19 2019-12-30 95 % 2207 Tm 569 mm 1 10, 20 30, 40, 50, 60 0.73 0.47
CZ> Leppin SPM 2013-01-28 2019-12-30 96 % 2420 6m 563 mm 1 10, 20 30, 40, 50, 60 0.71 0.53
E Medrow SPM grass 2015-07-13 2019-12-30 100 % 1627 Sm 595 mm 1 10, 20 30, 40, 50, 60 0.78 0.76
E Muehlenkamp SPM grass 2012-01-01 2019-12-30 82% 2388 8m 574 mm 1 10,20 30, 40, 50, 60 0.71 0.37
Ueckeritz SPM grass 2013-01-28 2019-12-30 93% 2349 4m 562 mm 1 10,20 30, 40, 50, 60 0.63 0.61
‘Wotenick SPM grass 2014-04-30 2019-12-30 95 % 1964 I1m 588 mm 1 10, 20 30, 40, 50, 60 0.63 0.51
Zarnekla SPM grass 2013-01-23 2019-12-30 95 % 2404 6m 590 mm 1 10,20 30, 40, 50, 60 0.83 0.77
g Fendt LYSI grass 2017-01-01 2019-12-31 100 % 1090 634m 1059 mm 18 10 30,50 0.80 0.7
% Graswang LYSI grass 2017-03-17 2019-12-31 93% 948 916m 1570 mm 6 10 30,50 0.77 0.66
E Rottenbuch LYSI grass 2017-03-17 2019-12-31 93% 948 765m 1265 mm 12 10 30,50 0.54 0.53
=
Gebesee (DE-Geb) SPM crop 2001-01-16 2014-12-31 91% 4657 156 m 522 mm 1 8,16 32 0.38 0.33
Grillenburg (DE-Gri) SPM grass 2006-11-21 2014-12-31 98 % 2891 394m 856 mm 1 10 - 0.68 -
E Hainich (DE-Hai) SPM DBF 2002-12-27 2012-12-31 98 % 3570 420m 774 mm 1 8,16 32 0.72 0.57
é Klingenberg (DE-KIi) SPM crop 2004-11-27 2014-12-31 87 % 3208 478 m 860 mm 1 10 - 0.57 -
E Lackenberg (DE-Lkb) SPM ENF 2009-05-01 2013-12-31 90 % 1533 1252m 1573 mm 1 4 - 0.44 -
Leinefelde (DE-Lnf) SPM DBF 2002-05-01 2012-12-31 72% 2796 453m 784 mm 1 8,16 32 0.83 0.77
Tharandt (DE-Tha) SPM ENF 1997-03-06 2014-12-31 95 % 6189 369m 791 mm 1 10 - 0.57 -
§ Cunnersdorf CRNS crop 2016-06-23 2019-12-31 95% 1217 131m 634 mm 0.83 0.68
a
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4 Summary and conclusions

This study evaluates soil moisture (SM) dynamics from two mHM simulations used as operational model setups in the German
Drought Monitor (GDM). The increase of hydrological modelling resolution between the model setups from 4 x4 km? in the
GDM-v1-2016 setup to ~1.2x 1.2 km? in the GDM-v2-2021 setup was pessible-due-to-motivated by the implementation of a
higher-resolution input soil data (BUEK1000 to BUEK200). The comparisons between observed and simulated SM are-were
conducted using various ground-based SM observations with multiple measurement methods and different climate gradients.
The agreement between simulated and observed SM dynamics is especially high in the vegetative active period (median R
0.84 in GDM-v2-2021) and lower in winter (median R 0.59 in GDM-v2-2021). It was shown that the ~1.2km resolution
GDM not only produces simulated SM in similar quality as the lower resolution model setup, but partly enhances the model
ability to simulate observed SM dynamics. We identified significant improvements between the first and second GDM versions
in terms of agreement to observed SM, with enhanced correlations during fall (+-0.07 median) and winter (4-0.12 median).

However, the overall improvements were relatively small, partly because the lower resolution model setup (4x4km grid cells)

was already capturing the observed SM dynamics well. Both model setups display similar correlations to observations in the
dry anomaly spectrum, with higher overall agreement of simulations to observations with a larger spatial footprint. Although
several changes were made between the operational model setups as changing landuse and hydrogeology datasets in addition

to the change in the underlying soil dataset (see section 2.2), it was demonstrated that the soil dataset played the dominant role
in the changes in simulated SM dynamics. Annual drought statistics and ranking based on drought intensities and average area

under drought computed on the time frame 1952-2020 were robust between the model setups, with only minor differences
on the scale of Germany. The spatial structures in the higher-resolution GDM-v2-2021 setup, including an updated soil map,
display larger granularity and spatially more diverse responses to drought, allowing a more refined representation of spatial
SM heterogeneity. The higher spatial resolution achieved is of great relevance, especially concerning local risk assessments.
The results underline the importance of long-term measurement series for developing and optimising data products such as
the GDM. Good coverage of relevant environmental gradients with suitable measurement networks is essential due to rapidly
changing environmental conditions. The direct comparison of the different measurement methods for recording SM showed
the importance of measurement methods such as CRNS or SDM, which allow better estimates of mean SM conditions across
larger areas. However, the temporal and spatial availability still limits the studies, such as the one presented here, in terms of
statistical robustness. Furthermore, we did not analyse deeper soil depths (> 60 cm), as most measurement sites do not have
SM data at those depths. Continuous improvements of the SM observational database will be beneficial for future hydrological
model evaluations. For future studies, a solution to the variable penetration depth of CRNS could be to compare observed
and simulated neutron counts directly by using the COSMIC forward model (Shuttleworth et al., 2013), which is designed
to account for irregular SM profiles in all modelled depth layers. While COSMIC has been already implemented in mHM,
its proper parameterization would require dedicated research and is outside of the scope of this study. Regarding the SDM

measurements, a source of uncertainty remains in the calculation the spatial average. The mean calculation is challenging due
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to the varying number of available sensors in the measurement grids over time. A robust mean calculation with advanced sensor
weighting is currently a subject of active research.

We compared the model simulations in terms of SM dynamics for their relevance for SM droughts, which are defined as
a negative deviation from normal SM conditions. The integration of observed SM data in the model calibration itself could
improve the absolute estimations of simulated SM and the model internal flux partitioning. This approach has been successfully
demonstrated using CRNS data in the Rur catchment in Germany (Baatz et al., 2017) and remotely sensed SM in the Danube
catchment (Wanders et al., 2014). An extended model validation of the SM component of mHM forced with onsite precipitation
and local soil maps with soil physical property information on even higher resolution (e.g. BUEK25 or BUEKS50) would help
to further understand current limitations of mHM in modelling SM dynamics and separate the analyses from the limited data
availability at the scale of Germany.

Several other aspects are relevant to further improve SM states’ simulations with mHM on a national scale in Germany
(or larger towards a continental scale). A decisive input that influences hydrological model performance is precipitation (Mo
et al., 2012). Model performance of mHM was related to rain gauge density on a European scale by Rakovec et al. (2016).
While Germany has a very dense meteorological station network, local precipitation can still differ significantly from the
interpolated products. Although, Samaniego et al. (2013) showed that the interpolation results on daily precipitation data
here compared to the high resolution German Weather Service reanalysis product REGNIE (Rauthe et al., 2013) only differ
marginally, the difference of local precipitation from interpolated values is expected to have a large influence on SM dynamics.
Thus, improvements in the interpolated precipitation may result in increased model performance. Additionally, a more precise
estimation of potential evapotranspiration may be achieved by implementing the Penman-Monteith methods.

Finally, we conclude that the resolution of ~1.2x 1.2 km? is currently the best compromise between the need for increased
model resolution (user perspective) and the current data availability and process representation in mHM (scientific perspective).
We emphasise the need for continuous dialogues between stakeholders and the scientific community to improve the underlying

model system alongside the provision of user-tailored drought information.
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Figure A1. Results of mHM multbasin model calibration based on streamflow data from 201 catchments. Left: spatial map of KGE for each

basin. Right: KGE Cumulative density function of setup 200 parameter sets, generated by random sampling of the basins. Bold red marks

the selected parameter set.
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Figure A2. Spearman correlation coefficients of simulated soil moisture by mHM in the GDM-v2-2021 setup versus observed de-
seasonalized soil moisture anomalies for each month as a supplement to Fig. 5 by (a) comparing the locations Hohes Holz and Am Grossen
Bruch equipped with CRNS, SDM and SPM soil moisture measurements and (b) comparing FLUXNET (n=7) and TERENO (n=20) SPM
data.
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Figure A3. Monthly Spearman rank correlation coefficients for 2014 - 2019 between deseasonalized SM anomalies simulated by mHM and
SM observations from CRNS and SDM measurements and between the CRNS and SDM observations for the three locations Am Grossen

Bruch, Hohes Holz and Wiistebach.
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Figure A4. Correlations between simulated daily SM in the upper soil (5-25 cm) and the total soil column (up to 2 m) using model runs
for the time period 1991-2019 keeping the model settings identical (L1 1.2km? resolution, default mHM parameters) except changing soil
dataset BUEK200 versus BUEK1000 (left) and secondly changing landcover dataset CORINE versus GLOBCOVER (right).
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Author contributions. EB., L.S., A H., C.R., M.S., A.M., R. Kumar developed the concept for the manuscript; F.B. conducted simulations,
SM data compilation, data analyses, first manuscript drafts; O.R.,E.B. L.S, R.Kumar, A.M. contributed to develop the GDM-v2-2021 setup;
O.R. calibrated the GDM-v2-2021 setup; R.Kumar., M.S.,0.R.,A.M., A.H., L.S.,S.T. helped to improve the analyses and manuscript; S.M.
and S.T. supported mHM model development and technical maintenance of the GDM; M.S., C.R., R.Kiese, K.S., H.B. provided SM ob-
servation data and helped with interpreting the data/improve the manuscript; S.Z. assisted answering questions related to soil processes and

improve the manuscript.

Competing interests. The authors declare that they have no conflict of interest.

Acknowledgements. This work is partly funded by Helmholtz-Climate-Initiative (HI-CAM) in the Helmholtz Associations Initiative and
Networking Fund. The authors are responsible for the content of this publication. We acknowledge the TERENO community and FLUXNET
community for providing soil moisture observational data. Special acknowledgment goes to Hans-Jorg Vogel (UFZ), René Zahl (UFZ), Chris-
tian Hohmann (GFZ), Ingo Heinrich (GFZ) and Falk Bottcher (DWD) for providing soil moisture observations. We kindly acknowledge the
German Weather Service (DWD), the European Environmental Agency (EEA), the Federal Institute for Geosciences and Natural Resources
(BGR), the Federal Agency for Cartography and Geodesy (BKG), the European Space Agency (ESA), the U.S. Geological Survey (USGS),
the Global Runoff Data Centre (GRDC) as data providers. The scientific results have (in part) been computed at the High-Performance
Computing (HPC) Cluster EVE, a joint effort of both the Helmholtz Centre for Environmental Research - UFZ (http://www.ufz.de/) and the
German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig (http://www.idiv-biodiversity.de/). We would like to thank
the administration and support staft of EVE who keep the system running and support us with our scientific computing needs: Thomas
Schnicke, Ben Langenberg, Guido Schramm, Toni Harzendorf, Tom Strempel and Lisa Schurack from the UFZ, and Christian Krause from
iDiv. We thank Lily-belle Sweet for her help to improve the language of the manuscript. Finally, we want to thank two anonymous reviewers,

the reviewer René Orth and the Editor for their constructive comments, which improved the quality of this study.

33


https://www.doi.org/10.48758/ufz.12541
https://www.doi.org/10.48758/ufz.12534
https://github.com/mhm-ufz
https://doi.org/10.5281/zenodo.5842486
https://ddp.tereno.net/ddp/
https://fluxnet.org/
http://www.ufz.de/
http://www.idiv-biodiversity.de/

530

535

540

545

550

555

560

References

Albergel, C., De Rosnay, P., Balsamo, G., Isaksen, L., and Mufioz-Sabater, J.: Soil moisture analyses at ECMWF: Evaluation using global
ground-based in situ observations, Journal of Hydrometeorology, 13, 1442-1460, https://doi.org/10.1175/JHM-D-11-0107.1, 2012.

Andreasen, M., Jensen, K. H., Desilets, D., Franz, T. E., Zreda, M., Bogena, H. R., and Looms, M. C.: Status and Perspectives on
the Cosmic-Ray Neutron Method for Soil Moisture Estimation and Other Environmental Science Applications, Vadose Zone Jour-
nal, 16, vzj2017.04.0086, https://doi.org/https://doi.org/10.2136/vzj2017.04.0086, https://acsess.onlinelibrary.wiley.com/doi/abs/10.2136/
vzj2017.04.0086, 2017.

Baatz, R., Bogena, H. R., Hendricks Franssen, H., Huisman, J. A., Montzka, C., and Vereecken, H.: An empirical vegetation correction for soil
water content quantification using cosmic ray probes, Water Resources Research, 51, 2030-2046, https://doi.org/10.1002/2014WR016443,
https://onlinelibrary.wiley.com/doi/abs/10.1002/2014WR016443, 2015.

Baatz, R., Hendricks Franssen, H.-J., Han, X., Hoar, T., Bogena, H. R., and Vereecken, H.: Evaluation of a cosmic-ray neu-
tron sensor network for improved land surface model prediction, Hydrology and Earth System Sciences, 21, 2509-2530,
https://doi.org/https://doi.org/10.5194/hess-21-2509-2017, https://hess.copernicus.org/articles/21/2509/2017/, 2017.

Baldocchi, D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running, S., Anthoni, P., Bernhofer, C., Davis, K., Evans, R., Fuentes, J.,
Goldstein, A., Katul, G., Law, B., Lee, X., Malhi, Y., Meyers, T., Munger, W., Oechel, W., U, K. T. P, Pilegaard, K., Schmid, H. P.,
Valentini, R., Verma, S., Vesala, T., Wilson, K., and Wofsy, S.: FLUXNET: A New Tool to Study the Temporal and Spatial Variabil-
ity of Ecosystem-Scale Carbon Dioxide, Water Vapor, and Energy Flux Densities, Bulletin of the American Meteorological Society, 82,
2415-2434, https://doi.org/10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO:;2, https://journals.ametsoc.org/view/journals/bams/82/
11/1520-0477_2001_082_2415_fantts_2_3_co_2.xml, 2001.

Baroni, G., Scheiffele, L., Schron, M., Ingwersen, J., and Oswald, S.: Uncertainty, sensitivity and improvements in soil moisture estimation
with cosmic-ray neutron sensing, Journal of Hydrology, 564, 873-887, https://doi.org/10.1016/j.jhydrol.2018.07.053, https://linkinghub.
elsevier.com/retrieve/pii/S0022169418305675, 2018.

BGR: Digital soil map of Germany 1 : 1,000,000 (BUEK 1000), 1998.

BGR: Hydrogeological map of Germany: 200,000 (HUEK 200), 2009.

BGR: Digital soil map of Germany 1 : 200,000 (BUEK 200) v0.5, 2020.

BKG: Digital Elevation Model (DEM), 2010.

Boergens, E., Giintner, A., Dobslaw, H., and Dahle, C.: Quantifying the Central European Droughts in 2018 and 2019 With GRACE Follow-
On, Geophysical Research Letters, 47, https://doi.org/10.1029/2020GL087285, 2020.

Bogena, H., Herbst, M., Huisman, J., Rosenbaum, U., Weuthen, A., and Vereecken, H.: Potential of Wireless Sensor Networks for Measuring
Soil Water Content Variability, Vadose Zone Journal, 9, 1002-1013, https://doi.org/10.2136/vzj2009.0173, http://doi.wiley.com/10.2136/
vzj2009.0173, 2010.

Bogena, H., Montzka, C., Huisman, J., Graf, A., Schmidt, M., Stockinger, M., von Hebel, C., Hendricks-Franssen, H., van der Kruk, J., Tappe,
W., Liicke, A., Baatz, R., Bol, R., Groh, J., Piitz, T., Jakobi, J., Kunkel, R., Sorg, J., and Vereecken, H.: The TERENO-Rur Hydrological
Observatory: A Multiscale Multi-Compartment Research Platform for the Advancement of Hydrological Science, Vadose Zone Journal,
17, 180055, https://doi.org/10.2136/vzj2018.03.0055, http://doi.wiley.com/10.2136/vzj2018.03.0055, 2018.

Bogena, H. R.: TERENO: German network of terrestrial environmental observatories, Journal of large-scale research facilities JLSREF, 2, 52,

https://doi.org/10.17815/jlsrf-2-98, http://jlsrf.org/index.php/Isf/article/view/98, 2016.

34


https://doi.org/10.1175/JHM-D-11-0107.1
https://doi.org/https://doi.org/10.2136/vzj2017.04.0086
https://acsess.onlinelibrary.wiley.com/doi/abs/10.2136/vzj2017.04.0086
https://acsess.onlinelibrary.wiley.com/doi/abs/10.2136/vzj2017.04.0086
https://acsess.onlinelibrary.wiley.com/doi/abs/10.2136/vzj2017.04.0086
https://doi.org/10.1002/2014WR016443
https://onlinelibrary.wiley.com/doi/abs/10.1002/2014WR016443
https://doi.org/https://doi.org/10.5194/hess-21-2509-2017
https://hess.copernicus.org/articles/21/2509/2017/
https://doi.org/10.1175/1520-0477(2001)082%3C2415:FANTTS%3E2.3.CO;2
https://journals.ametsoc.org/view/journals/bams/82/11/1520-0477_2001_082_2415_fantts_2_3_co_2.xml
https://journals.ametsoc.org/view/journals/bams/82/11/1520-0477_2001_082_2415_fantts_2_3_co_2.xml
https://journals.ametsoc.org/view/journals/bams/82/11/1520-0477_2001_082_2415_fantts_2_3_co_2.xml
https://doi.org/10.1016/j.jhydrol.2018.07.053
https://linkinghub.elsevier.com/retrieve/pii/S0022169418305675
https://linkinghub.elsevier.com/retrieve/pii/S0022169418305675
https://linkinghub.elsevier.com/retrieve/pii/S0022169418305675
https://doi.org/10.1029/2020GL087285
https://doi.org/10.2136/vzj2009.0173
http://doi.wiley.com/10.2136/vzj2009.0173
http://doi.wiley.com/10.2136/vzj2009.0173
http://doi.wiley.com/10.2136/vzj2009.0173
https://doi.org/10.2136/vzj2018.03.0055
http://doi.wiley.com/10.2136/vzj2018.03.0055
https://doi.org/10.17815/jlsrf-2-98
http://jlsrf.org/index.php/lsf/article/view/98

565

570

575

580

585

590

595

Bogena, H. R., Huisman, J. A., Baatz, R., Hendricks Franssen, H.-J., and Vereecken, H.: Accuracy of the cosmic-ray soil water content probe
in humid forest ecosystems: The worst case scenario: Cosmic-Ray Probe in Humid Forested Ecosystems, Water Resources Research, 49,
5778-5791, https://doi.org/10.1002/wrcr.20463, http://doi.wiley.com/10.1002/wrcr.20463, 2013.

Bogena, H. R., Huisman, J. A., Giintner, A., Hiibner, C., Kusche, J., Jonard, F., Vey, S., and Vereecken, H.: Emerging methods for noninvasive
sensing of soil moisture dynamics from field to catchment scale: a review, WIREs Water, 2, 635-647, https://doi.org/10.1002/wat2.1097,
https://onlinelibrary.wiley.com/doi/10.1002/wat2.1097, 2015.

Bogena, H. R., Schron, M., Jakobi, J., Ney, P., Zacharias, S., Andreasen, M., Baatz, R., Boorman, D., Duygu, M. B., Eguibar-Galan, M. A.,
Fersch, B., Franke, T., Geris, J., Gonzdlez Sanchis, M., Kerr, Y., Korf, T., Mengistu, Z., Mialon, A., Nasta, P., Nitychoruk, J., Pisinaras,
V., Rasche, D., Rosolem, R., Said, H., Schattan, P., Zreda, M., Achleitner, S., Albentosa-Herndndez, E., Akyiirek, Z., Blume, T., del
Campo, A., Canone, D., Dimitrova-Petrova, K., Evans, J. G., Ferraris, S., Frances, F., Gisolo, D., Giintner, A., Herrmann, F., Iwema, J.,
Jensen, K. H., Kunstmann, H., Lidén, A., Looms, M. C., Oswald, S., Panagopoulos, A., Patil, A., Power, D., Rebmann, C., Romano, N.,
Scheiftele, L., Seneviratne, S., Weltin, G., and Vereecken, H.: COSMOS-Europe: a European network of cosmic-ray neutron soil moisture
sensors, Earth System Science Data, 14, 1125-1151, https://doi.org/10.5194/essd-14-1125-2022, https://essd.copernicus.org/articles/14/
1125/2022/, 2022.

Cammalleri, C., Micale, F., and Vogt, J.: On the value of combining different modelled soil moisture products for European drought monitor-
ing, Journal of Hydrology, 525, 547-558, https://doi.org/10.1016/j.jhydrol.2015.04.021, http://dx.doi.org/10.1016/j.jhydrol.2015.04.021,
publisher: Elsevier B.V,, 2015.

Chen, L., Huang, J.-G., Ma, Q., Hénninen, H., Rossi, S., Piao, S., and Bergeron, Y.: Spring phenology at different altitudes is be-
coming more uniform under global warming in Europe, Global Change Biology, 24, 3969-3975, https://doi.org/10.1111/gcb.14288,
https://onlinelibrary.wiley.com/doi/10.1111/gcb.14288, 2018.

De Lannoy, G. J. M., Koster, R. D., Reichle, R. H., Mahanama, S. P. P, and Liu, Q.: An updated treatment of soil texture and
associated hydraulic properties in a global land modeling system, Journal of Advances in Modeling Earth Systems, 6, 957-979,
https://doi.org/10.1002/2014MS000330, http://doi.wiley.com/10.1002/2014MS000330, 2014.

Dembélé, M., Ceperley, N., Zwart, S. J., Salvadore, E., Mariethoz, G., and Schaefli, B.: Potential of satellite and reanalysis evapo-
ration datasets for hydrological modelling under various model calibration strategies, Advances in Water Resources, 143, 103 667,
https://doi.org/10.1016/j.advwatres.2020.103667, https://linkinghub.elsevier.com/retrieve/pii/S030917082030230X, 2020.

Desilets, D., Zreda, M., and Ferré, T. P. A.: Nature’s neutron probe: Land surface hydrology at an elusive scale with cosmic rays: NA-
TURE’S NEUTRON PROBE, Water Resources Research, 46, https://doi.org/10.1029/2009WR008726, http://doi.wiley.com/10.1029/
2009WR008726, 2010.

Dimitrova-Petrova, K., Geris, J., Wilkinson, M. E., Rosolem, R., Verrot, L., Lilly, A., and Soulsby, C.: Opportunities and challenges in using
catchment-scale storage estimates from cosmic ray neutron sensors for rainfall-runoff modelling, Journal of Hydrology, 586, 124 878,
https://doi.org/10.1016/j.jhydrol.2020.124878, https://linkinghub.elsevier.com/retrieve/pii/S0022169420303383, 2020.

EEA: CORINE Land Cover 1990, 2000 and 2006, 2009.

ESA: Global Land Cover Map for 2009, http://due.esrin.esa.int/files/Globcover2009_V2.3_Global_.zip, 2009.

Famiglietti, J. S., Ryu, D., Berg, A. A., Rodell, M., and Jackson, T. J.: Field observations of soil moisture variability across scales:
SOIL MOISTURE VARIABILITY ACROSS SCALES, Water Resources Research, 44, https://doi.org/10.1029/2006 WR005804, https:
//onlinelibrary.wiley.com/doi/10.1029/2006 WR005804, 2008.

35


https://doi.org/10.1002/wrcr.20463
http://doi.wiley.com/10.1002/wrcr.20463
https://doi.org/10.1002/wat2.1097
https://onlinelibrary.wiley.com/doi/10.1002/wat2.1097
https://doi.org/10.5194/essd-14-1125-2022
https://essd.copernicus.org/articles/14/1125/2022/
https://essd.copernicus.org/articles/14/1125/2022/
https://essd.copernicus.org/articles/14/1125/2022/
https://doi.org/10.1016/j.jhydrol.2015.04.021
http://dx.doi.org/10.1016/j.jhydrol.2015.04.021
https://doi.org/10.1111/gcb.14288
https://onlinelibrary.wiley.com/doi/10.1111/gcb.14288
https://doi.org/10.1002/2014MS000330
http://doi.wiley.com/10.1002/2014MS000330
https://doi.org/10.1016/j.advwatres.2020.103667
https://linkinghub.elsevier.com/retrieve/pii/S030917082030230X
https://doi.org/10.1029/2009WR008726
http://doi.wiley.com/10.1029/2009WR008726
http://doi.wiley.com/10.1029/2009WR008726
http://doi.wiley.com/10.1029/2009WR008726
https://doi.org/10.1016/j.jhydrol.2020.124878
https://linkinghub.elsevier.com/retrieve/pii/S0022169420303383
http://due.esrin.esa.int/files/Globcover2009_V2.3_Global_.zip
https://doi.org/10.1029/2006WR005804
https://onlinelibrary.wiley.com/doi/10.1029/2006WR005804
https://onlinelibrary.wiley.com/doi/10.1029/2006WR005804
https://onlinelibrary.wiley.com/doi/10.1029/2006WR005804

600

605

610

615

620

625

630

635

Grillakis, M. G.: Increase in severe and extreme soil moisture droughts for Europe under climate change, Science of The Total Environment,
660, 1245-1255, https://doi.org/10.1016/j.scitotenv.2019.01.001, https://linkinghub.elsevier.com/retrieve/pii/S0048969719300014, 2019.

Gupta, H. V., Kling, H., Yilmaz, K. K., and Martinez, G. F.: Decomposition of the mean squared error and NSE performance criteria:
Implications for improving hydrological modelling, Journal of Hydrology, 377, 80-91, https://doi.org/10.1016/j.jhydrol.2009.08.003,
https://www.sciencedirect.com/science/article/pii/S0022169409004843, 2009.

Han, X., Hendricks Franssen, H.-J., Jiménez Bello, M. \., Rosolem, R., Bogena, H., Alzamora, F. M., Chanzy, A., and Vereecken, H.: Simulta-
neous soil moisture and properties estimation for a drip irrigated field by assimilating cosmic-ray neutron intensity, Journal of Hydrology,
539, 611-624, https://doi.org/10.1016/j.jhydrol.2016.05.050, https://linkinghub.elsevier.com/retrieve/pii/S0022169416303171, 2016.

Hargreaves, G. H. and Samani, Z. A.: Reference Crop Evapotranspiration from Temperature, Applied Engineering in Agriculture, 1,
96-99, https://doi.org/10.13031/2013.26773, http://ce.nmsu.edu/$\sim$zsamani/papers/Hargreaves_Samani_85.pdf%5Cnhttp://elibrary.
asabe.org/abstract.asp??JID=3&AID=26773&CID=aeaj1985&v=1&i=2&T=1, 1985.

Hari, V., Rakovec, O., Markonis, Y., Hanel, M., and Kumar, R.: Increased future occurrences of the exceptional 2018-2019 Central
European drought under global warming, Scientific Reports, 10, https://doi.org/10.1038/s41598-020-68872-9, https://doi.org/10.1038/
s41598-020-68872-9, iSBN: 4159802068872 Publisher: Nature Publishing Group UK, 2020.

Hartmann, Jorg and Moosdorf, Nils: Global Lithological Map Database v1.0 (gridded to 0.5° spatial resolution), supplement to: Hartmann,
Jens; Moosdorf, Nils (2012): The new global lithological map database GLiM: A representation of rock properties at the Earth sur-
face. Geochemistry, Geophysics, Geosystems, 13, Q12004, https://doi.org/10.1594/PANGAEA.788537, https://doi.pangaea.de/10.1594/
PANGAEA.788537, type: dataset, 2012.

Itzerott, S., Hohmann, C., Stender, V., Maass, H., Borg, E., Renke, E., Jahncke, D., Berg, M., Conrad, C., and Spengler, D.: TERENO (North-
east), Climate stations of the GFZ German Research Centre for Geoscienes (GFZ), https://doi.org/10.5880/TERENO.GFZ.CL.2018.ALL,
http://dataservices.gfz-potsdam.de/tereno-new/showshort.php?id=escidoc:3508888, type: dataset, 2018a.

Itzerott, S., Hohmann, C., Stender, V., Maass, H., Borg, E., Renke, F., Jahncke, D., Berg, M., Conrad, C., and Spen-
gler, D.: TERENO (Northeast), Soil moisture stations of the GFZ German Research Centre for Geoscienes (GFZ),
https://doi.org/10.5880/TERENO.GFZ.SM.2018.ALL, https://dataservices.gfz-potsdam.de/tereno-new/showshort.php?id=escidoc:
3547898, type: dataset, 2018b.

Iwema, J., Rosolem, R., Rahman, M., Blyth, E., and Wagener, T.: Land surface model performance using cosmic-ray and point-scale soil
moisture measurements for calibration, Hydrology and Earth System Sciences, 21, 2843-2861, https://doi.org/10.5194/hess-21-2843-
2017, https://hess.copernicus.org/articles/21/2843/2017/, 2017.

Kaspar, F., Miiller-Westermeier, G., Penda, E., Michel, H., Zimmermann, K., Kaiser-Weiss, A., and Deutschlédnder, T.: Monitoring of climate
change in Germany — data, products and services of Germany’s National Climate Data Centre, Advances in Science and Research, 10,
99-106, https://doi.org/10.5194/asr-10-99-2013, https://asr.copernicus.org/articles/10/99/2013/, 2013.

Keyantash, J. and Dracup, J.: The Quantification of Drought: An Evaluation of Drought Indices, American Meteorological Society, 2002.

Kiese, R., Fersch, B., Baessler, C., Brosy, C., Butterbach-Bahl, K., Chwala, C., Dannenmann, M., Fu, J., Gasche, R., Grote, R., Jahn, C., Klatt,
J., Kunstmann, H., Mauder, M., Rodiger, T., Smiatek, G., Soltani, M., Steinbrecher, R., Volksch, 1., Werhahn, J., Wolf, B., Zeeman, M., and
Schmid, H.: The TERENO Pre-Alpine Observatory: Integrating Meteorological, Hydrological, and Biogeochemical Measurements and
Modeling, Vadose Zone Journal, 17, 180060, https://doi.org/10.2136/vzj2018.03.0060, http://doi.wiley.com/10.2136/vzj2018.03.0060,
2018.

36


https://doi.org/10.1016/j.scitotenv.2019.01.001
https://linkinghub.elsevier.com/retrieve/pii/S0048969719300014
https://doi.org/10.1016/j.jhydrol.2009.08.003
https://www.sciencedirect.com/science/article/pii/S0022169409004843
https://doi.org/10.1016/j.jhydrol.2016.05.050
https://linkinghub.elsevier.com/retrieve/pii/S0022169416303171
https://doi.org/10.13031/2013.26773
http://ce.nmsu.edu/$\sim $zsamani/papers/Hargreaves_Samani_85.pdf%5Cnhttp://elibrary.asabe.org/abstract.asp??JID=3&AID=26773&CID=aeaj1985&v=1&i=2&T=1
http://ce.nmsu.edu/$\sim $zsamani/papers/Hargreaves_Samani_85.pdf%5Cnhttp://elibrary.asabe.org/abstract.asp??JID=3&AID=26773&CID=aeaj1985&v=1&i=2&T=1
http://ce.nmsu.edu/$\sim $zsamani/papers/Hargreaves_Samani_85.pdf%5Cnhttp://elibrary.asabe.org/abstract.asp??JID=3&AID=26773&CID=aeaj1985&v=1&i=2&T=1
https://doi.org/10.1038/s41598-020-68872-9
https://doi.org/10.1038/s41598-020-68872-9
https://doi.org/10.1038/s41598-020-68872-9
https://doi.org/10.1038/s41598-020-68872-9
https://doi.org/10.1594/PANGAEA.788537
https://doi.pangaea.de/10.1594/PANGAEA.788537
https://doi.pangaea.de/10.1594/PANGAEA.788537
https://doi.pangaea.de/10.1594/PANGAEA.788537
https://doi.org/10.5880/TERENO.GFZ.CL.2018.ALL
http://dataservices.gfz-potsdam.de/tereno-new/showshort.php?id=escidoc:3508888
https://doi.org/10.5880/TERENO.GFZ.SM.2018.ALL
https://dataservices.gfz-potsdam.de/tereno-new/showshort.php?id=escidoc:3547898
https://dataservices.gfz-potsdam.de/tereno-new/showshort.php?id=escidoc:3547898
https://dataservices.gfz-potsdam.de/tereno-new/showshort.php?id=escidoc:3547898
https://doi.org/10.5194/hess-21-2843-2017
https://doi.org/10.5194/hess-21-2843-2017
https://doi.org/10.5194/hess-21-2843-2017
https://hess.copernicus.org/articles/21/2843/2017/
https://doi.org/10.5194/asr-10-99-2013
https://asr.copernicus.org/articles/10/99/2013/
https://doi.org/10.2136/vzj2018.03.0060
http://doi.wiley.com/10.2136/vzj2018.03.0060

640

645

650

655

660

665

670

Koster, R. D., Guo, Z., Yang, R., Dirmeyer, P. A., Mitchell, K., and Puma, M. J.: On the Nature of Soil Moisture in Land Surface Models,
Journal of Climate, 22, 43224335, https://doi.org/10.1175/2009JCLI2832.1, http://journals.ametsoc.org/doi/10.1175/2009JCLI2832.1,
2009.

Koster, R. D., Reichle, R. H., Schubert, S. D., and Mahanama, S. P.: Length Scales of Hydrological Variability as Inferred from SMAP Soil
Moisture Retrievals, Journal of Hydrometeorology, 20, 2129-2146, https://doi.org/10.1175/JHM-D-19-0070.1, http://journals.ametsoc.
org/doi/10.1175/JHM-D-19-0070.1, 2019.

Kumar, R., Samaniego, L., and Attinger, S.: Implications of distributed hydrologic model parameterization on water fluxes at multiple
scales and locations: DISTRIBUTED HYDROLOGIC MODEL PARAMETERIZATIONS, Water Resources Research, 49, 360-379,
https://doi.org/10.1029/2012WRO012195, http://doi.wiley.com/10.1029/2012WR012195, 2013.

Kohli, M., Schron, M., Zreda, M., Schmidt, U., Dietrich, P., and Zacharias, S.: Footprint characteristics revised for field-scale soil moisture
monitoring with cosmic-ray neutrons, Water Resources Research, 51, 5772-5790, https://doi.org/https://doi.org/10.1002/2015WR017169,
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2015WR017169, 2015.

Kohli, M., Weimar, J., Schron, M., Baatz, R., and Schmidt, U.: Soil Moisture and Air Humidity Dependence of the Above-Ground Cosmic-
Ray Neutron Intensity, Frontiers in Water, 2, https://doi.org/10.3389/frwa.2020.544847, https://www.frontiersin.org/articles/10.3389/frwa.
2020.544847/full, 2021.

Livneh, B., Kumar, R., and Samaniego, L.: Influence of soil textural properties on hydrologic fluxes in the Mississippi river basin: Influence
of Soil Textural Properties on Hydrologic Fluxes, Hydrological Processes, 29, 4638—4655, https://doi.org/10.1002/hyp.10601, http://doi.
wiley.com/10.1002/hyp.10601, 2015.

Madruga de Brito, M., Kuhlicke, C., and Marx, A.: Near-real-time drought impact assessment: a text mining approach on the 2018/19
drought in Germany, Environmental Research Letters, 15, 1040a9, https://doi.org/10.1088/1748-9326/aba4ca, https://iopscience.iop.org/
article/10.1088/1748-9326/abadca, 2020.

Marx, A., Kumar, R., Thober, S., Rakovec, O., Wanders, N., Zink, M., Wood, E. F., Pan, M., Sheffield, J., and Samaniego, L.: Climate
change alters low flows in Europe under global warming of 1.5, 2, and 3 °C, Hydrology and Earth System Sciences, 22, 1017-1032,
https://doi.org/10.5194/hess-22-1017-2018, https://hess.copernicus.org/articles/22/1017/2018/, 2018.

Mizukami, N., Clark, M. P,, Newman, A. J., Wood, A. W., Gutmann, E. D., Nijssen, B., Rakovec, O., and Samaniego, L.: Towards seamless
large-domain parameter estimation for hydrologic models: LARGE-DOMAIN MODEL PARAMETERS, Water Resources Research, 53,
8020-8040, https://doi.org/10.1002/2017WR020401, http://doi.wiley.com/10.1002/2017WR020401, 2017.

Mo, K. C., Chen, L.-C., Shukla, S., Bohn, T. J., and Lettenmaier, D. P.: Uncertainties in North American Land Data Assimilation Systems over
the Contiguous United States, Journal of Hydrometeorology, 13, 996—1009, https://doi.org/10.1175/JHM-D-11-0132.1, http://journals.
ametsoc.org/doi/10.1175/JHM-D-11-0132.1, 2012.

O, S., Dutra, E., and Orth, R.: Robustness of Process-Based versus Data-Driven Modeling in Changing Climatic Conditions, Journal
of Hydrometeorology, 21, 1929-1944, https://doi.org/10.1175/JHM-D-20-0072.1, https://journals.ametsoc.org/view/journals/hydr/21/9/
jhmD200072.xml, 2020.

Orth, R., O, S., Zscheischler, J., Mahecha, M. D., and Reichstein, M.: Contrasting biophysical and societal impacts of hydro-meteorological
extremes, Environmental Research Letters, 17, 014 044, https://doi.org/10.1088/1748-9326/ac4139, https://iopscience.iop.org/article/10.
1088/1748-9326/ac4139, 2022.

Pastorello, G., Trotta, C., Canfora, E., Chu, H., Christianson, D., Cheah, Y.-W., Poindexter, C., Chen, J., Elbashandy, A., Humphrey, M.,
Isaac, P., Polidori, D., Reichstein, M., Ribeca, A., van Ingen, C., Vuichard, N., Zhang, L., Amiro, B., Ammann, C., Arain, M. A., Ardd, J.,

37


https://doi.org/10.1175/2009JCLI2832.1
http://journals.ametsoc.org/doi/10.1175/2009JCLI2832.1
https://doi.org/10.1175/JHM-D-19-0070.1
http://journals.ametsoc.org/doi/10.1175/JHM-D-19-0070.1
http://journals.ametsoc.org/doi/10.1175/JHM-D-19-0070.1
http://journals.ametsoc.org/doi/10.1175/JHM-D-19-0070.1
https://doi.org/10.1029/2012WR012195
http://doi.wiley.com/10.1029/2012WR012195
https://doi.org/https://doi.org/10.1002/2015WR017169
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2015WR017169
https://doi.org/10.3389/frwa.2020.544847
https://www.frontiersin.org/articles/10.3389/frwa.2020.544847/full
https://www.frontiersin.org/articles/10.3389/frwa.2020.544847/full
https://www.frontiersin.org/articles/10.3389/frwa.2020.544847/full
https://doi.org/10.1002/hyp.10601
http://doi.wiley.com/10.1002/hyp.10601
http://doi.wiley.com/10.1002/hyp.10601
http://doi.wiley.com/10.1002/hyp.10601
https://doi.org/10.1088/1748-9326/aba4ca
https://iopscience.iop.org/article/10.1088/1748-9326/aba4ca
https://iopscience.iop.org/article/10.1088/1748-9326/aba4ca
https://iopscience.iop.org/article/10.1088/1748-9326/aba4ca
https://doi.org/10.5194/hess-22-1017-2018
https://hess.copernicus.org/articles/22/1017/2018/
https://doi.org/10.1002/2017WR020401
http://doi.wiley.com/10.1002/2017WR020401
https://doi.org/10.1175/JHM-D-11-0132.1
http://journals.ametsoc.org/doi/10.1175/JHM-D-11-0132.1
http://journals.ametsoc.org/doi/10.1175/JHM-D-11-0132.1
http://journals.ametsoc.org/doi/10.1175/JHM-D-11-0132.1
https://doi.org/10.1175/JHM-D-20-0072.1
https://journals.ametsoc.org/view/journals/hydr/21/9/jhmD200072.xml
https://journals.ametsoc.org/view/journals/hydr/21/9/jhmD200072.xml
https://journals.ametsoc.org/view/journals/hydr/21/9/jhmD200072.xml
https://doi.org/10.1088/1748-9326/ac4139
https://iopscience.iop.org/article/10.1088/1748-9326/ac4139
https://iopscience.iop.org/article/10.1088/1748-9326/ac4139
https://iopscience.iop.org/article/10.1088/1748-9326/ac4139

675

680

685

690

695

700

705

710

Arkebauer, T., Arndt, S. K., Arriga, N., Aubinet, M., Aurela, M., Baldocchi, D., Barr, A., Beamesderfer, E., Marchesini, L. B., Bergeron,
0., Beringer, J., Bernhofer, C., Berveiller, D., Billesbach, D., Black, T. A., Blanken, P. D., Bohrer, G., Boike, J., Bolstad, P. V., Bonal, D.,
Bonnefond, J.-M., Bowling, D. R., Bracho, R., Brodeur, J., Briimmer, C., Buchmann, N., Burban, B., Burns, S. P.,, Buysse, P., Cale, P.,
Cavagna, M., Cellier, P., Chen, S., Chini, L., Christensen, T. R., Cleverly, J., Collalti, A., Consalvo, C., Cook, B. D., Cook, D., Coursolle, C.,
Cremonese, E., Curtis, P. S., D’ Andrea, E., da Rocha, H., Dai, X., Davis, K. J., Cinti, B. D., Grandcourt, A. d., Ligne, A. D., De Oliveira,
R. C, Delpierre, N., Desai, A. R., Di Bella, C. M., Tommasi, P. d., Dolman, H., Domingo, F., Dong, G., Dore, S., Duce, P., Dufréne,
E., Dunn, A., Dusek, J., Eamus, D., Eichelmann, U., EIKhidir, H. A. M., Eugster, W., Ewenz, C. M., Ewers, B., Famulari, D., Fares, S.,
Feigenwinter, 1., Feitz, A., Fensholt, R., Filippa, G., Fischer, M., Frank, J., Galvagno, M., Gharun, M., Gianelle, D., Gielen, B., Gioli, B.,
Gitelson, A., Goded, 1., Goeckede, M., Goldstein, A. H., Gough, C. M., Goulden, M. L., Graf, A., Griebel, A., Gruening, C., Griinwald,
T., Hammerle, A., Han, S., Han, X., Hansen, B. U., Hanson, C., Hatakka, J., He, Y., Hehn, M., Heinesch, B., Hinko-Najera, N., Hortnagl,
L., Hutley, L., Ibrom, A., Ikawa, H., Jackowicz-Korczynski, M., Janous, D., Jans, W., Jassal, R., Jiang, S., Kato, T., Khomik, M., Klatt,
J., Knohl, A., Knox, S., Kobayashi, H., Koerber, G., Kolle, O., Kosugi, Y., Kotani, A., Kowalski, A., Kruijt, B., Kurbatova, J., Kutsch,
W. L., Kwon, H., Launiainen, S., Laurila, T., Law, B., Leuning, R., Li, Y., Liddell, M., Limousin, J.-M., Lion, M., Liska, A. J., Lohila,
A., Lépez-Ballesteros, A., Lopez-Blanco, E., Loubet, B., Loustau, D., Lucas-Moffat, A., Liiers, J., Ma, S., Macfarlane, C., Magliulo, V.,
Maier, R., Mammarella, I., Manca, G., Marcolla, B., Margolis, H. A., Marras, S., Massman, W., Mastepanov, M., Matamala, R., Matthes,
J. H., Mazzenga, F., McCaughey, H., McHugh, 1., McMillan, A. M. S., Merbold, L., Meyer, W., Meyers, T., Miller, S. D., Minerbi, S.,
Moderow, U., Monson, R. K., Montagnani, L., Moore, C. E., Moors, E., Moreaux, V., Moureaux, C., Munger, J. W., Nakai, T., Neirynck,
J., Nesic, Z., Nicolini, G., Noormets, A., Northwood, M., Nosetto, M., Nouvellon, Y., Novick, K., Oechel, W., Olesen, J. E., Ourcival,
J.-M., Papuga, S. A., Parmentier, F.-J., Paul-Limoges, E., Pavelka, M., Peichl, M., Pendall, E., Phillips, R. P,, Pilegaard, K., Pirk, N., Posse,
G., Powell, T., Prasse, H., Prober, S. M., Rambal, S., Rannik, \., Raz-Yaseef, N., Rebmann, C., Reed, D., Dios, V. R. d., Restrepo-Coupe,
N., Reverter, B. R., Roland, M., Sabbatini, S., Sachs, T., Saleska, S. R., Sdnchez-Caiiete, E. P., Sanchez-Mejia, Z. M., Schmid, H. P.,
Schmidt, M., Schneider, K., Schrader, F., Schroder, 1., Scott, R. L., Sedldk, P., Serrano-Ortiz, P., Shao, C., Shi, P., Shironya, 1., Siebicke,
L., gigut, L., Silberstein, R., Sirca, C., Spano, D., Steinbrecher, R., Stevens, R. M., Sturtevant, C., Suyker, A., Tagesson, T., Takanashi,
S., Tang, Y., Tapper, N., Thom, J., Tomassucci, M., Tuovinen, J.-P., Urbanski, S., Valentini, R., van der Molen, M., van Gorsel, E., van
Huissteden, K., Varlagin, A., Verfaillie, J., Vesala, T., Vincke, C., Vitale, D., Vygodskaya, N., Walker, J. P., Walter-Shea, E., Wang, H.,
Weber, R., Westermann, S., Wille, C., Wofsy, S., Wohlfahrt, G., Wolf, S., Woodgate, W., Li, Y., Zampedri, R., Zhang, J., Zhou, G., Zona, D.,
Agarwal, D., Biraud, S., Torn, M., and Papale, D.: The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance
data, Scientific Data, 7, 225, https://doi.org/10.1038/s41597-020-0534-3, https://www.nature.com/articles/s41597-020-0534-3, 2020.

Peichl, M., Thober, S., Meyer, V., and Samaniego, L.: The effect of soil moisture anomalies on maize yield in Germany, Natural Hazards

and Earth System Sciences, 18, 889-906, https://doi.org/10.5194/nhess-18-889-2018, https://nhess.copernicus.org/articles/18/889/2018/,
2018.

Peichl, M., Thober, S., Samaniego, L., Hansjiirgens, B., and Marx, A.: Machine-learning methods to assess the effects of a non-linear damage

spectrum taking into account soil moisture on winter wheat yields in Germany, Hydrology and Earth System Sciences, 25, 6523-6545,

https://doi.org/10.5194/hess-25-6523-2021, https://hess.copernicus.org/articles/25/6523/2021/, 2021.

Peng, J., Albergel, C., Balenzano, A., Brocca, L., Cartus, O., Cosh, M. H., Crow, W. T., Dabrowska-Zielinska, K., Dadson, S., Davidson,

M. W.,, de Rosnay, P., Dorigo, W., Gruber, A., Hagemann, S., Hirschi, M., Kerr, Y. H., Lovergine, F., Mahecha, M. D., Marzahn, P.,
Mattia, F., Musial, J. P., Preuschmann, S., Reichle, R. H., Satalino, G., Silgram, M., van Bodegom, P. M., Verhoest, N. E., Wagner, W.,

Walker, J. P., Wegmiiller, U., and Loew, A.: A roadmap for high-resolution satellite soil moisture applications — confronting product

38


https://doi.org/10.1038/s41597-020-0534-3
https://www.nature.com/articles/s41597-020-0534-3
https://doi.org/10.5194/nhess-18-889-2018
https://nhess.copernicus.org/articles/18/889/2018/
https://doi.org/10.5194/hess-25-6523-2021
https://hess.copernicus.org/articles/25/6523/2021/

715

720

725

730

735

740

745

characteristics with user requirements, Remote Sensing of Environment, 252, 112 162, https://doi.org/10.1016/j.rse.2020.112162, https:
/Minkinghub.elsevier.com/retrieve/pii/S0034425720305356, 2021.

Piitz, T., Kiese, R., Wollschliger, U., Groh, J., Rupp, H., Zacharias, S., Priesack, E., Gerke, H. H., Gasche, R., Bens, O., Borg, E., Baessler, C.,
Kaiser, K., Herbrich, M., Munch, J.-C., Sommer, M., Vogel, H.-J., Vanderborght, J., and Vereecken, H.: TERENO-SOILCan: a lysimeter-
network in Germany observing soil processes and plant diversity influenced by climate change, Environmental Earth Sciences, 75, 1242,
https://doi.org/10.1007/s12665-016-6031-5, https://doi.org/10.1007/s12665-016-6031-5, 2016.

Rakovec, O., Kumar, R., Mai, J., Cuntz, M., Thober, S., Zink, M., Attinger, S., Schifer, D., Schrén, M., and Samaniego, L.:
Multiscale and Multivariate Evaluation of Water Fluxes and States over European River Basins, Journal of Hydrometeorology,
https://doi.org/10.1175/JHM-D-15-0054.1, 2016.

Rakovec, O., Mizukami, N., Kumar, R., Newman, A. J., Thober, S., Wood, A. W., Clark, M. P., and Samaniego, L.: Diagnostic Evaluation of
Large-Domain Hydrologic Models Calibrated Across the Contiguous United States, Journal of Geophysical Research: Atmospheres, 124,
13991-14 007, https://doi.org/10.1029/2019JD030767, https://onlinelibrary.wiley.com/doi/10.1029/2019JD030767, 2019.

Rakovec, O., Samaniego, L., Hari, V., Markonis, Y., Moravec, V., Thober, S., Hanel, M., and Kumar, R.: The 2018-2020 Multi- Year Drought
Sets a New Benchmark in Europe, Earth’s Future, 10, https://doi.org/10.1029/2021EF002394, https://onlinelibrary.wiley.com/doi/10.1029/
2021EF002394, 2022.

Rauthe, M., Steiner, H., Riediger, U., Mazurkiewicz, A., and Gratzki, A.: A Central European precipitation climatology — Part
I: Generation and validation of a high-resolution gridded daily data set (HYRAS), Meteorologische Zeitschrift, pp. 235-
256, https://doi.org/10.1127/0941-2948/2013/0436, https://www.schweizerbart.de/papers/metz/detail/22/81060/A_Central_European_
precipitation_climatology_Part_?af=crossref, 2013.

Rosenbaum, U., Bogena, H. R., Herbst, M., Huisman, J. A., Peterson, T. J., Weuthen, A., Western, A. W., and Vereecken, H.: Seasonal and
event dynamics of spatial soil moisture patterns at the small catchment scale: DYNAMICS OF CATCHMENT-SCALE SOIL MOISTURE
PATTERNS, Water Resources Research, 48, https://doi.org/10.1029/2011WRO011518, http://doi.wiley.com/10.1029/2011WRO011518,
2012.

Saha, T. R., Shrestha, P. K., Rakovec, O., Thober, S., and Samaniego, L.: A drought monitoring tool for South Asia, Environmental Research
Letters, 16, 054 014, https://doi.org/10.1088/1748-9326/abf525, https://iopscience.iop.org/article/10.1088/1748-9326/abf525, 2021.

Samaniego, L., Kumar, R., and Attinger, S.: Multiscale parameter regionalization of a grid-based hydrologic model at the mesoscale:
MULTISCALE PARAMETER REGIONALIZATION, Water Resources Research, 46, https://doi.org/10.1029/2008WR007327, http:
//doi.wiley.com/10.1029/2008 WR007327, 2010.

Samaniego, L., Kumar, R., and Zink, M.: Implications of parameter uncertainty on soil moisture drought analysis in Germany, Journal of
Hydrometeorology, 14, 47-68, https://doi.org/10.1175/JHM-D-12-075.1, iSBN: 1525-755X, 2013.

Samaniego, L., Kumar, R., Thober, S., Rakovec, O., Zink, M., Wanders, N., Eisner, S., Miiller Schmied, H., Sutanudjaja, E. H., Warrach-Sagi,
K., and Attinger, S.: Toward seamless hydrologic predictions across spatial scales, Hydrology and Earth System Sciences, 21, 4323-4346,
https://doi.org/https://doi.org/10.5194/hess-21-4323-2017, https://hess.copernicus.org/articles/21/4323/2017/, 2017.

Samaniego, L., Thober, S., Kumar, R., Wanders, N., Rakovec, O., Pan, M., Zink, M., Sheffield, J., Wood, E. F., and Marx, A.: Anthropogenic
warming exacerbates European soil moisture droughts, Nature Climate Change, 8, 421-426, https://doi.org/10.1038/s41558-018-0138-5,
https://www.nature.com/articles/s41558-018-0138-5, 2018.

39


https://doi.org/10.1016/j.rse.2020.112162
https://linkinghub.elsevier.com/retrieve/pii/S0034425720305356
https://linkinghub.elsevier.com/retrieve/pii/S0034425720305356
https://linkinghub.elsevier.com/retrieve/pii/S0034425720305356
https://doi.org/10.1007/s12665-016-6031-5
https://doi.org/10.1007/s12665-016-6031-5
https://doi.org/10.1175/JHM-D-15-0054.1
https://doi.org/10.1029/2019JD030767
https://onlinelibrary.wiley.com/doi/10.1029/2019JD030767
https://doi.org/10.1029/2021EF002394
https://onlinelibrary.wiley.com/doi/10.1029/2021EF002394
https://onlinelibrary.wiley.com/doi/10.1029/2021EF002394
https://onlinelibrary.wiley.com/doi/10.1029/2021EF002394
https://doi.org/10.1127/0941-2948/2013/0436
https://www.schweizerbart.de/papers/metz/detail/22/81060/A_Central_European_precipitation_climatology_Part_?af=crossref
https://www.schweizerbart.de/papers/metz/detail/22/81060/A_Central_European_precipitation_climatology_Part_?af=crossref
https://www.schweizerbart.de/papers/metz/detail/22/81060/A_Central_European_precipitation_climatology_Part_?af=crossref
https://doi.org/10.1029/2011WR011518
http://doi.wiley.com/10.1029/2011WR011518
https://doi.org/10.1088/1748-9326/abf525
https://iopscience.iop.org/article/10.1088/1748-9326/abf525
https://doi.org/10.1029/2008WR007327
http://doi.wiley.com/10.1029/2008WR007327
http://doi.wiley.com/10.1029/2008WR007327
http://doi.wiley.com/10.1029/2008WR007327
https://doi.org/10.1175/JHM-D-12-075.1
https://doi.org/https://doi.org/10.5194/hess-21-4323-2017
https://hess.copernicus.org/articles/21/4323/2017/
https://doi.org/10.1038/s41558-018-0138-5
https://www.nature.com/articles/s41558-018-0138-5

750

755

760

765

770

775

780

785

Schattan, P., Baroni, G., Oswald, S. E., Schober, J., Fey, C., Kormann, C., Huttenlau, M., and Achleitner, S.: Continuous monitoring of snow-
pack dynamics in alpine terrain by aboveground neutron sensing: ALPINE SNOWPACK MONITORING BY CRNS, Water Resources
Research, 53, 3615-3634, https://doi.org/10.1002/2016WR020234, http://doi.wiley.com/10.1002/2016 WR020234, 2017.

Schron, M., Kohli, M., Scheiffele, L., Iwema, J., Bogena, H. R., Lv, L., Martini, E., Baroni, G., Rosolem, R., Weimar, J., Mai, J., Cuntz, M.,
Rebmann, C., Oswald, S. E., Dietrich, P., Schmidt, U., and Zacharias, S.: Improving calibration and validation of cosmic-ray neutron sen-
sors in the light of spatial sensitivity, Hydrology and Earth System Sciences, 21, 5009-5030, https://doi.org/https://doi.org/10.5194/hess-
21-5009-2017, https://hess.copernicus.org/articles/21/5009/2017/, 2017.

Schron, M., Zacharias, S., Womack, G., Kohli, M., Desilets, D., Oswald, S. E., Bumberger, J., Mollenhauer, H., Kogler, S., Remm-
ler, P., Kasner, M., Denk, A., and Dietrich, P.: Intercomparison of cosmic-ray neutron sensors and water balance monitoring in an
urban environment, Geoscientific Instrumentation, Methods and Data Systems, 7, 83-99, https://doi.org/10.5194/gi-7-83-2018, https:
//gi.copernicus.org/articles/7/83/2018/, 2018.

Sepulcre-Canto, G., Horion, S., Singleton, A., Carrao, H., and Vogt, J.: Development of a Combined Drought Indicator to detect agricultural
drought in Europe, Natural Hazards and Earth System Sciences, 12, 3519-3531, https://doi.org/10.5194/nhess-12-3519-2012, https://
nhess.copernicus.org/articles/12/3519/2012/, 2012.

Shuttleworth, J., Rosolem, R., Zreda, M., and Franz, T.: The COsmic-ray Soil Moisture Interaction Code (COSMIC) for use in data assim-
ilation, Hydrology and Earth System Sciences, 17, 3205-3217, https://doi.org/10.5194/hess-17-3205-2013, https://hess.copernicus.org/
articles/17/3205/2013/, 2013.

Svoboda, M., LeComte, D., Hayes, M., Heim, R., Gleason, K., Angel, J., Rippey, B., Tinker, R., Palecki, M., Stooksbury, D.,
Miskus, D., and Stephens, S.: THE DROUGHT MONITOR, Bulletin of the American Meteorological Society, 83, 1181-1190,
https://doi.org/10.1175/1520-0477-83.8.1181, https://journals.ametsoc.org/view/journals/bams/83/8/1520-0477-83_8_1181.xml, 2002.

Thober, S., Kumar, R., Sheffield, J., Mai, J., Schifer, D., and Samaniego, L.: Seasonal Soil Moisture Drought Prediction over Europe Using
the North American Multi-Model Ensemble (NMME), Journal of Hydrometeorology, 16, 2329-2344, https://doi.org/10.1175/JHM-D-15-
0053.1, http://journals.ametsoc.org/doi/10.1175/JHM-D-15-0053.1, 2015.

Tolson, B. A. and Shoemaker, C. A.: Dynamically dimensioned search algorithm for computationally efficient watershed model calibration,
Water Resources Research, 43, https://doi.org/https://doi.org/10.1029/2005WR004723, https://agupubs.onlinelibrary.wiley.com/doi/abs/
10.1029/2005WR004723, 2007.

USGS: Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010), https://doi.org/10.5066/F7J38R2N, https://www.usgs.gov/
centers/eros/science/usgs-eros-archive-digital-elevation- global-multi-resolution- terrain-elevation, type: dataset, 2017.

Vereecken, H., Huisman, J. A., Bogena, H., Vanderborght, J., Vrugt, J. A., and Hopmans, J. W.: On the value of soil mois-
ture measurements in vadose zone hydrology: A review: SOIL MOISTURE AND HYDROLOGY, Water Resources Research, 44,
https://doi.org/10.1029/2008 WR006829, http://doi.wiley.com/10.1029/2008 WR006829, 2008.

Wanders, N., Bierkens, M. F. P, de Jong, S. M., de Roo, A., and Karssenberg, D.: The benefits of using remotely sensed
soil moisture in parameter identification of large-scale hydrological models, Water Resources Research, 50, 6874-6891,
https://doi.org/10.1002/2013WR014639, http://doi.wiley.com/10.1002/2013WR014639, 2014.

Western, A. W., Zhou, S.-L., Grayson, R. B., McMahon, T. A., Bloschl, G., and Wilson, D. J.: Spatial correlation of soil mois-
ture in small catchments and its relationship to dominant spatial hydrological processes, Journal of Hydrology, 286, 113-134,

https://doi.org/10.1016/j.jhydrol.2003.09.014, https://linkinghub.elsevier.com/retrieve/pii/S0022169403003809, 2004.

40


https://doi.org/10.1002/2016WR020234
http://doi.wiley.com/10.1002/2016WR020234
https://doi.org/https://doi.org/10.5194/hess-21-5009-2017
https://doi.org/https://doi.org/10.5194/hess-21-5009-2017
https://doi.org/https://doi.org/10.5194/hess-21-5009-2017
https://hess.copernicus.org/articles/21/5009/2017/
https://doi.org/10.5194/gi-7-83-2018
https://gi.copernicus.org/articles/7/83/2018/
https://gi.copernicus.org/articles/7/83/2018/
https://gi.copernicus.org/articles/7/83/2018/
https://doi.org/10.5194/nhess-12-3519-2012
https://nhess.copernicus.org/articles/12/3519/2012/
https://nhess.copernicus.org/articles/12/3519/2012/
https://nhess.copernicus.org/articles/12/3519/2012/
https://doi.org/10.5194/hess-17-3205-2013
https://hess.copernicus.org/articles/17/3205/2013/
https://hess.copernicus.org/articles/17/3205/2013/
https://hess.copernicus.org/articles/17/3205/2013/
https://doi.org/10.1175/1520-0477-83.8.1181
https://journals.ametsoc.org/view/journals/bams/83/8/1520-0477-83_8_1181.xml
https://doi.org/10.1175/JHM-D-15-0053.1
https://doi.org/10.1175/JHM-D-15-0053.1
https://doi.org/10.1175/JHM-D-15-0053.1
http://journals.ametsoc.org/doi/10.1175/JHM-D-15-0053.1
https://doi.org/https://doi.org/10.1029/2005WR004723
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2005WR004723
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2005WR004723
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2005WR004723
https://doi.org/10.5066/F7J38R2N
https://www.usgs.gov/centers/eros/science/usgs-eros-archive-digital-elevation-global-multi-resolution-terrain-elevation
https://www.usgs.gov/centers/eros/science/usgs-eros-archive-digital-elevation-global-multi-resolution-terrain-elevation
https://www.usgs.gov/centers/eros/science/usgs-eros-archive-digital-elevation-global-multi-resolution-terrain-elevation
https://doi.org/10.1029/2008WR006829
http://doi.wiley.com/10.1029/2008WR006829
https://doi.org/10.1002/2013WR014639
http://doi.wiley.com/10.1002/2013WR014639
https://doi.org/10.1016/j.jhydrol.2003.09.014
https://linkinghub.elsevier.com/retrieve/pii/S0022169403003809

790

795

800

805

Wiekenkamp, 1., Huisman, J. A., Bogena, H. R., and Vereecken, H.: Effects of Deforestation on Water Flow in the Vadose Zone, Water, 12,
35, https://doi.org/10.3390/w12010035, https://www.mdpi.com/2073-4441/12/1/35, 2019.

Xia, Y., Sheffield, J., Ek, M. B., Dong, J., Chaney, N., Wei, H., Meng, J., and Wood, E. E.: Evaluation of multi-model simulated soil moisture in
NLDAS-2, Journal of Hydrology, 512, 107-125, https://doi.org/10.1016/j.jhydrol.2014.02.027, http://dx.doi.org/10.1016/j.jhydrol.2014.
02.027, publisher: Elsevier B.V., 2014.

Zacharias, S. and Wessolek, G.: Excluding Organic Matter Content from Pedotransfer Predictors of Soil Water Retention, Soil Science
Society of America Journal, 71, 43-50, https://doi.org/10.2136/ss5aj2006.0098, http://doi.wiley.com/10.2136/ss5aj2006.0098, 2007.

Zacharias, S., Bogena, H., Samaniego, L., Mauder, M., FuB}, R., Piitz, T., Frenzel, M., Schwank, M., Baessler, C., Butterbach-Bahl, K., Bens,
0., Borg, E., Brauer, A., Dietrich, P., Hajnsek, 1., Helle, G., Kiese, R., Kunstmann, H., Klotz, S., Munch, J. C., Papen, H., Priesack, E.,
Schmid, H. P., Steinbrecher, R., Rosenbaum, U., Teutsch, G., and Vereecken, H.: A Network of Terrestrial Environmental Observatories
in Germany, Vadose Zone Journal, 10, 955-973, https://doi.org/10.2136/vzj2010.0139, http://doi.wiley.com/10.2136/vzj2010.0139, 2011.

Zink, M., Samaniego, L., Kumar, R., Thober, S., Mai, J., Schifer, D., and Marx, A.: The German drought monitor, Environmental Research
Letters, 11, 074 002, https://doi.org/10.1088/1748-9326/11/7/074002, https://iopscience.iop.org/article/10.1088/1748-9326/11/7/074002,
2016.

Zink, M., Kumar, R., Cuntz, M., and Samaniego, L.: A high-resolution dataset of water fluxes and states for Germany accounting for
parametric uncertainty, Hydrology and Earth System Sciences, 21, 1769—1790, https://doi.org/10.5194/hess-21-1769-2017, iSBN: 1607-
7938, 2017.

Zreda, M., Shuttleworth, W. J., Zeng, X., Zweck, C., Desilets, D., Franz, T., and Rosolem, R.: COSMOS: the COsmic-ray Soil Moisture
Observing System, Hydrology and Earth System Sciences, 16, 4079—4099, https://doi.org/https://doi.org/10.5194/hess-16-4079-2012,
https://hess.copernicus.org/articles/16/4079/2012/, 2012.

41


https://doi.org/10.3390/w12010035
https://www.mdpi.com/2073-4441/12/1/35
https://doi.org/10.1016/j.jhydrol.2014.02.027
http://dx.doi.org/10.1016/j.jhydrol.2014.02.027
http://dx.doi.org/10.1016/j.jhydrol.2014.02.027
http://dx.doi.org/10.1016/j.jhydrol.2014.02.027
https://doi.org/10.2136/sssaj2006.0098
http://doi.wiley.com/10.2136/sssaj2006.0098
https://doi.org/10.2136/vzj2010.0139
http://doi.wiley.com/10.2136/vzj2010.0139
https://doi.org/10.1088/1748-9326/11/7/074002
https://iopscience.iop.org/article/10.1088/1748-9326/11/7/074002
https://doi.org/10.5194/hess-21-1769-2017
https://doi.org/https://doi.org/10.5194/hess-16-4079-2012
https://hess.copernicus.org/articles/16/4079/2012/

