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Response to the Reviewers

Original reviewer comments are in italics, authors’ response is in bold.

Anonymous Referee #2:
Review of “High-resolution drought simulations and comparison to soil moisture
observations in Germany” This manuscripts analyses the relationship between soil
moisture observations and estimations by models in Germany with focus on drought
monitoring. The manuscript is well written and organised. Nevertheless, I would
like to include some caveats related to the limitations of the validation approach and
the usefulness of the new high spatial resolution data base in order to assess drought
severity. I include specific details related to these issues (and others) below (numbers
refer to the specific lines of the manuscript):

Authors’ response #1: We thank the Reviewer for the assessments of our
work. We paid detailed attention to all comments and we have addressed
all of them below accordingly.

11- What is “vegetation period”? Is maybe “vegetative active period”?

Authors’ response #2: We agree to the suggestion and will change terms
in the manuscript.

Table 1- I would like to ask for a technical question. Do you think if the quality of the
globcover map is sufficient for the modelling. How is considered the uncertainty of
land cover information in the model? I find very high detail of information related to
the improvement of the soil maps, map I have the impression that the land cover data
is not considered so carefully and it can be strongly relevant to model soil moisture
given different water consumption by ecosystem types (even at the scale of species),
the role of root structure, root depth, etc.

Authors’ response #3: The hydrological simulations of German drought
monitor operate at the nation-wide scale with large-scale available infor-
mation. One of the research questions was to evaluate whether it possible
to provide higher resolved information at a satisfying quality.
The increase of model resolution in the second version of the drought
monitor was motivated both by the release of a new German-wide soil
map [1] and increased user need to higher resolution simulations as exten-
sively described in the main manuscript. This resulted in ≈ 1.2×1.2 km2

model resolution in the GDM-v2-2021 setup as a compromise between
scientific/model perspective (limited by data availability and process rep-
resentation) and stakeholder/user perspective (see also conclusion lines
438-441). Changes in landuse data (also the change of geology data and
projection to WGS-84) in the new drought monitor version (GDM-v2-
2021) on the other hand were driven by current efforts increasing the
applicability and comparability of mHM to regions other than Germany
and outside Europe. Change in these landuse datasets have minor im-
plications compared to the change in the soil dataset. Currently, mHM
takes relatively raw landuse classes. Species specific landcover is currently
not accounted for. The difference in the resolution of GLOBCOVER and
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CORINE landuse dataset are in sub grid scale that influences the sub-
grid variability (GLOBCOVER resolution: 300 meters, CORINE < 100
m). Differences between the land cover datasets reduce if the land cover
data is aggregated to the spatial resolution of the model. For example, at
the spatial resolution of 1.2km, over 85 % of the grid cells both datasets
agree on the dominant landcover. This shows that differences stem from
differences at high spatial resolution and do not have a large impact on
the simulation.
We will include these aspects in the main manuscript to point out the
limitations of the study. We propose to add the following sentence in the
main manuscript in line 147: “The changes in landuse and geology dataset
can influence the simulations, yet play a minor role for the soil moisture
simulations compared to the change in the soil dataset because changes
of landuse data are in subgrid scale (resolution GLOBCOVER 300m,
CORINE <100m) and no direct feedback of from saturated "groundwa-
ter" storage to soil moisture storage is implemented in mHM.”

150- I find very few information related to the meteorological data. There is not
information on the number of stations used for each variable, the quality of the
data, quality control processes, data gap filling, temporal homogeneity, etc., but also
information related to the quality of resulting gridded data (e.g., cross-validation
statistics would be useful). Meteorological data can be also an important source of
uncertainty in the model outputs. . .

Authors’ response #4: The meteorological input station data that is used
for interpolation is provided by the German Weather Service (DWD)
through the Climate Data Center (ftp://opendata.dwd.de/climate_environment/
CDC/). It is subject to extensive quality controls [2]. Additionally, quality
controls are implemented in the preprocessing steps of the interpolation
routine e.g. checking plausible variable range. In [5] describing the mHM
simulations underlying the GDM version 1, the interpolation method for
interpolating the meteorological data is described and validated in detail.
Different approaches to calculate theoretical semi-variograms were tested
and evaluated. A cross-validation (Jackknife method) was performed to
test the ability of the External Drift Kriging (EDK) to estimate mete-
orological variables at the measurement locations. According to [5] the
average and the standard deviation for the different errors assessments
over all stations were 0.01 and 0.15 mm d−1 for the bias, 0.64 and 5.60%
for the relative bias, 0.93 and 0.03 for the Pearson correlation coefficient,
and 1.75 and 0.48mm d−1 for the root mean square error. Additionally, a
comparison of the EDK interpolations conducted by [5] to the REGNIE
gridded precipitation data [4] provided by DWD showed satisfactory re-
sults with spatially averaged bias of the daily fields of 0 with a standard
deviation of 0.11 mmd−1 within the period 1951–2010.

151-154- What about uncertainty of the Hargreaves-Samani equation to estimate Po-
tential Evapotranspiration? It is widely known that temperature based methods show
uncertainties related to physically based models like the Penman-Monteith equation.
For example, wind speed and relative humidity may have large importance on PET,
even more in non-stationary scenarios charecterised by decreased relative humidity
over land and wind speed reduction.
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Authors’ response #5: The actual ET is the important water balance
component being the reduction term of the potential Evaporation. Com-
parisons of actual ET estimated with mHM were conducted in [5] com-
paring to remote sensing data (MODIS) and FLUXNET towers and by
[3] over Europe using in situ observations and a gridded product from
FLUXNET showing a good overall fit.
We certainly agree on the superiority of Penman-Monteith methods to
estimate PET at the field scale if high quality field-scale data is avail-
able. The conclusion in Line 436 refers to this comment stating that “we
may achieve a more precise estimation of potential evapotranspiration
through implementing the Penman-Monteith methods.”. Regionalized es-
timates of physical based PET are still however largely limited by spatial
data availability in terms of number of measurement stations and tempo-
ral data availability in terms of record lengths. No reliable high quality
daily gridded estimates for both wind and global radiation are currently
available for full time period (1950-2020) to allow Penman-Monteith ET
estimation at the spatial modelling scales used in the study. A longer
simulation time period is prioritized for the German Drought Monitor
to obtain a long statistical database for the SMI estimation instead of
cutting the simulation period.

172- Figure 1 > Figure 2. 231-235- The validation procedure is exclusively based
on correlations. Nevertheless, if the main purpose of the manuscript is related to
drought monitoring, I think more relevant to assess model outputs during periods of
water deficits. For example, it would be useful to check the capability of models to
identify duration and magnitude of the dry periods. High correlation could mask a
poor goodness between observations and models during dry periods. I would suggest to
include statistics focusing on the drought periods in addition to the non-parametric
correlations.

Authors’ response #6: The soil moisture index (SMI) is estimated for
every grid cell and every day of the year. Hence, the number of data
points to estimate the histogram and percentiles to classify drought is
equal to the number of years with observational data. Due to the lim-
ited observational data time series lengths, it is not possible to estimate
drought characteristics as intensities and duration. Therefore, we decided
to use the time span 1951-2015 initially in setting up the first version of
the drought monitor to ensure statistical stability of the system. Due
to these limitations, we came up with our study design: comparison of
observed and simulated soil moisture in a first step and comparison of
simulated drought intensities in the following step between the two model
setups. The correlation statistics are calculated on deseasonalized anoma-
lies that removes the seasonal mean cycle. From a mathematical point of
view, having a constant bias between the observations and the simulated
soil moisture would have no effect on the drought classification. The per-
centile based approach of the SMI would remove the bias.

170-210- The length of the observation series is not indicated in this section. This
information is relevant to assess robustness of the relationship between observations
and models. Have the series the same length? How is this considered in the as-
sessment of the signification of the relationships? I think this issue is affecting the
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validation of the results over the entire section 3.1 since the length of the series affect
the degrees of freedom of the correlation analysis. I see in table 3 that the length of
the series is between 2 and 5 years, which is too low to provide a robust validation
of the model outputs.

Authors’ response #7: We generally agree that longer observational time
series would support a more robust validation. Nevertheless, in our study
we compiled the best possible observational soil moisture data base on the
national scale for Germany. We suggest to describe the time series lengths
more clearly in the manuscript by adding following sentence “Time series
lengths of the observations are between 2.8 and 17.8 years with a median
(mean) of 6.5 (6.7) years.”
In order to investigate the consequences of different time series lengths,
Figure R1 shows correlations against the length of time series. No sys-
tematic relation between correlations and the time series length can be
detected.
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Figure R1: Correlations for the soil moisture observations against simulations (GDM-
v2-2021 setup, 0-25cm depth) dependent of number of years of observations.
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Figures 6 and 7. Under my opinion, I do not think that this information is providing
an useful output to determine the goodness of providing additional spatial resolution
to assess drought severity. Large scale statistics are aggregating the information, be-
ing normal that both databases at 4km and 1 km of spatial resolution provide similar
results. I think the relevant information of the 1 km modelling approach is not the
general large spatial pattern but the local differences that could emerge given higher
spatial resolution. This is something interesting to be analysed (e.g. using spatial
statistics: the variance between grid cells, the differences between areas characterised
by diversity of land cover/soil characteristics) to determine if higher spatial reso-
lution is providing relevant information for drought monitoring and management.
Observing Figures 6 and 7 I would say that the higher spatial resolution is really not
needed as it basically identifies the same patterns that 4 km grids.

Authors’ response #8: Thank you very much for the suggestions to in-
clude spatial statistics to show the regional differences between the model
setups.
Drought intensities that are shown in Fig. 6 and 7. can reach a maximum
value of 0.2. Fig 7 shows that in the absolute differences up to 0.1 occur
between both drought monitor versions on the grid scale. This clearly
shows a large impact of the new study setup on simulated drought char-
acteristics.
Following the reviewers suggestions, we conducted an additional analysis
that complement the analysis of the drought clusters. In Figure R2 the
variance between grid cells for drought intensities during vegetation ac-
tive period are shown as semi-variograms. In general, the spatial variance
is larger in the total soil than top soil. The GDM-v2-2021 setup shows
a general larger spatial variance between grid cells in the top soil and
larger increase with distance (see Figure R2 a)). The spatial variance in
the total soil is lower at smaller distances in the GDM-v1-2016 setup, but
slightly higher at larger distances. Figure R2 b) showing semi-variance
normalized by distance (and log scaled x-axis to to improve visibility
of smaller distances) demonstrates that in the GDM-v2-2021 setup the
distance-normalized variance of drought intensities is increased especially
at small spatial scale in both the top and total soil, indicating larger local
differences in response to drought intensities. We suggest to include Fig-
ure R2 in the main manuscript in section 3.2 and add a paragraph based
on the findings above..
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Figure R2: Empirical semi-variograms for drought intensities during vegetation ac-
tive period in upper Soil for GDM-v1-2016 and GDM-v2-2021 setup. The bin size
was set to 5 km (nearest larger even km bin size relative to the GDM-v2-2016
modelling resolution). The len scale and nugget of the fitted exponential theoretical
semi-variograms are noted in the legend. In Subplot b) the y and x axis are log
scaled.
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