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Abstract. Water management in sub-Saharan African river basins is challenged by uncertain future climatic, social and eco-

nomical patterns, potentially causing diverging water demands and availability, as well as by multi-stakeholder dynamics,

resulting in evolving conflicts and tradeoffs. In such contexts, a better understanding of the sensitivity of water management

to the different sources of uncertainty can support policy makers in identifying robust water supply policies balancing opti-

mality and low vulnerability against likely adverse future conditions. This paper contributes an integrated decision-analytic5

framework combining optimization, robustness, sensitivity and uncertainty analysis to retrieve the main sources of vulnerabil-

ity to optimal and robust reservoir operating policies across multi-dimensional objective spaces. We demonstrate our approach

onto the lower Umbeluzi river basin, Mozambique, an archetypal example of sub-Saharan river basin, where surface water

scarcity compounded by substantial climatic variability, uncontrolled urbanization rate, and agricultural expansion are ham-

pering the Pequenos Lipompos dam ability of supplying the agricultural, energy and urban sectors. We adopt an Evolutionary10

Multi-Objective Direct Policy Search optimization approach for designing optimal operating policies, whose robustness against

social, agricultural, infrastructural and climatic uncertainties is assessed via robustness analysis. We then implement the GLUE

and PAWN uncertainty and sensitivity analysis methods for disentangling the main challenges to the sustainability of the op-

erating policies and quantifying their impacts on the urban, agricultural and energy sectors. Numerical results highlight the

importance of robustness analysis when dealing with uncertain scenarios, with optimal-non robust reservoir operating policies15

largely dominated by robust control strategies across all stakeholders. Furthermore, while robust policies are usually vulner-

able only to hydrological perturbations and are able to sustain the majority of population growth and agricultural expansion

scenarios, non-robust policies are sensitive also to social and agricultural changes, and require structural interventions to ensure

stable supply.

1 Introduction20

The availability of freshwater is a limiting factor to food production, energy generation, and industrial consumption around

the globe (Hermoso, 2017; Zampieri et al., 2018). Investing in new infrastructure is still the predominant option to expand

storing and conveying capacity, particularly in sub-Saharan Africa and South-east Asia that have the larger untapped potential

(Fields et al., 2009). Yet, this hard path water solution is evoking contentious debates for the considerable environmental and
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social costs of damming rivers (Moran et al., 2018), to a point that efficient operation of existing infrastructure, rather than25

planning new ones, is becoming critical to balance tradeoffs between supply and demand (Gleick and Palaniappan, 2010).

In sub-Saharan Africa, more than 2000 dams have been built and over 200 are currently under construction to enhance food

security and increase hydropower production (Kibret et al., 2016). However, projected change in climate, population growth

and agricultural patterns will likely challenge the ability of existing and planned dams to produce the level of benefits that

triggered the investment for their construction (Giuliani et al., 2016b). Understanding the impact of those uncertainty sources30

on reservoir operation is therefore key for developing robust operating policies that support policy makers towards sustainable

river basin management.

An archetypal example of a highly regulated, fast evolving South-saharan hydrosystem is the Lower Umbeluzi river basin,

Mozambique. About 45 km upstream of its delta in Maputo bay, the river flows in the Barragem de Pequenos Lipompos

reservoir, which is operated to balance hydropower production, urban supply to the two million inhabitants of Maputo province,35

and irrigation supply of the 3600 ha of agricultural districts, mostly growing tropical fruits and sugarcane. A still ongoing five-

year long drought has boosted crop prices by about 50%, hindering food access to a population currently growing at rate of

0.6% per year and exacerbating conflicts among the urban, agricultural and energy sectors. Droogers et al. (2014) estimated a

further annual increase of 2% in the urban population and of 2% in irrigated area for the coming decades, while a projected

10% climate-change induced reduction in precipitations seriously endangers the existing fragile equilibrium among sectors.40

To cope with the expected growth in water scarcity, the World Bank is funding the Greater Maputo Water Supply Expansion

Project: a sequence of infrastructural interventions aimed at supplying the city of Maputo with an additional inflow from the

Sabie river basin. Started in 2013, the project is expected to be completed in the following years. The uncertain evolution of

climatic, agricultural, infrastructural and social patterns in the area calls for assisting policy makers in: (1) the development of

robust reservoir operating policies; (2) a deep understanding of the main sources of vulnerability challenging the sustainability45

of water supply strategies; and (3) a quantitative assessment of the impact of such uncertainty sources across the agricultural,

the energy and the urban sectors.

To do so, we implement an integrated decision-analytic framework combining optimization, robustness, sensitivity and

uncertainty analysis with the threefold objectives of (1) designing operating policies that integrate optimality with low vulnera-

bility against likely adverse future conditions; (2) retrieving the main sources of vulnerability to water infrastructure operation50

across a multidimensional objective space; and (3) identifying the evolution in the system drivers which causes a policy to

become unsustainable.

The framework is composed of an optimization routine based on Evolutionary Multi-Objective Direct Policy Search (EMODPS)

to design optimal control policies, whose robustness against deeply uncertain (i.e. with unknown probability of occurrence)

climate, socio-economic and infrastructural scenarios is then tested by means of robustness analysis. To discover the main55

uncertainty sources and apportion their specific impact on the hydrological system, we employ the Generalized Likelihood Un-

certainty Estimation (GLUE, Beven and Binley 1992) and the PAWN density-based sensitivity analysis (SA) method (Pianosi

and Wagener, 2015), respectively.
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The main sources of uncertainty we consider are: the projected increase in water demand following urbanization (population

uncertainty) and irrigation development (agricultural uncertainty) in the area; the magnitude of streamflow depletion due to60

climate change (climatic uncertainty); and the completion date of the greater Maputo water supply expansion project (infras-

tructural uncertainty). The proposed methodology builds upon recent studies in the field of many-objective reservoir operation

(Giuliani et al., 2016b; Denaro et al., 2017; Giuliani et al., 2019; Zaniolo et al., 2018, 2019) and of multi-objective robust

decision making (Giudici et al., 2020; Herman et al., 2015), by employing SA to investigate the role of uncertain exogenous

drivers in shaping the effectiveness of optimal control policies across multiple, competing sectors. So far. even though it has65

been recognized that optimal planning and control methods should employ SA to identify water resources system vulnerabil-

ities to both structural and parametric uncertainties (Herman et al., 2019), only few studies developed quantitative analyses to

support water resource planning (e.g. Herman et al., 2015; Trindade et al., 2017, 2019; Groves et al., 2019). To the best of the

authors knowledge, the only application coupling SA with reservoir operation and control problems is represented by Quinn

et al. (2019), where SA was employed with the aim of understanding how optimized nonlinear control policies use endogenous70

information (reservoir state) to prescribe releases in a multi-reservoir multi-objective context. Our framework complements the

findings by Quinn et al. (2019) by investigating the role of uncertain exogenous drivers in shaping the effectiveness of optimal

operating policies to sustain the agricultural, urban and energy sectors.

2 Study Area Description

2.1 The Umbeluzi river basin75

The Umbeluzi river flows across three countries (South Africa, Swaziland, and Mozambique), draining an area of about 5400

km2 (Fig 1a) before discharging in the Indian Ocean through the Espirito Santo Estuary south of Maputo. (Juizo and Hjorth,

2009). The hydroclimatic regime is subtropical, with hot and wet summers from November to May, followed by dry, warm

winters from June to October (Figures 2a and 2b). The average annual streamflow in the lower Umbeluzi (regulated through

the Mnjoli Dam in Eswatini, in the upstream part of the river basin) is of about 220 Mm3 (corresponding to 7 m3s−1)80

and, following the hydroclimatic pattern, is unevenly partitioned through seasons, with 78% of the total discharge occurring

in summer (171 Mm3, corresponding to 9.3 m3s−1) and the remaining 22% in winter (49 Mm3, 3.75 m3s−1). As far as

the inter-annual variability is concerned, the Umbeluzi river basin is characterized by frequent prolonged droughts, with the

average inflow reduced to only 119 and 100 Mm3 in 2007 and 2015, respectively. Excluding the year 2000, where a terrible

flood hit Mozambique causing about 800 fatalities, the wettest year among those on record (2006-2016) was 2010, when the85

total discharge volume reached about 360 Mm3.

About 40 km upstream of the Estuary, the river flows into the Pequenos Libombos Dam (BPL). The dam has a storage

capacity (including 10.2 Mm3 of inactive storage) of 382 Mm3. BPL was constructed in 1987 with the goal of supplying

water to the metropolitan area of Greater Maputo (including the municipalities of Maputo, Matola and Boane), especially

during winter, when the system is often exposed to droughts. Other operation targets include hydropower generation and90

irrigation supply, both upstream and downstream the reservoir. Upstream irrigation districts extend for about 2500 ha, and
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Irrigation Districts 
(Upstream)

Figure 1. (a) Study Area. (b) Topological map of the system.

have an yearly water demand of 22.8Mm3 (Figure 2c). They abstract water directly from the reservoir to grow mainly tropical

fruits (mango and bananas). Water is discharged from the dam into a power plant with a capacity of 1.8 MW. After flowing

through the turbine, reservoir releases serve both urban and irrigation (bananas and sugarcane) demands, which are estimated

around 80 and 11.5 Mm3y−1 (Figure 2c), respectively. To preserve ecosystem sustainability, a minimum flow constraint95

corresponding to 15% of the cyclostationary monthly inflow is imposed in the estuary. A summary of the main hydroclimatic

patterns across seasons, including aggregated values of water demands by sectors, is provided in Table 1.

Table 1. Summary of the main hydroclimatic variables and water demand sources aggregated by sector

Total [Mm3] Summer [Mm3] Winter [Mm3]

Inflow 220 171 49

Upstream Irrigation 22.8 12.1 10.7

Downstream Irrigation 11.5 6.1 5.4

Environment 33 25.65 7.35

Urban 80 46.6 33.4
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Figure 2. Ciclostationary average of the main hydroclimatic variables computed over a 10-days moving window. (a) Precipitation and

streamflow; (b) temperature; (c) downstream irrigation demand; and (d) upstream irrigation demand. The shaded areas represent the 10-90th

interquantile range for each variable.

Recently, a remarkable decrease in rainfall frequency and intensity has caused the reservoir storage to drop up to less than

one fifth of its maximum capacity, forcing local authorities to suspend distribution for irrigation in 2016 (Macauhub, 2016)

in order to ensure continuity in urban supply. This dry pattern is expected to be further exacerbated by climate change in the100

coming years, with an estimated precipitation decrease of about 10% and a temperature increase of 3◦C (Droogers et al., 2014).

To mitigate the effect of frequent and prolonged drought episodes hitting southern Mozambique, the World Bank have

recently financed the Greater Maputo Water Supply Expansion project (GMWSEP, Miguel (2019)). The project consists in

a set of infrastructural interventions, mainly constituted by a water treatment plant downstream the Corumana dam, in the

adjacent Sabie river basin, and by a 95 km pipeline connecting Corumana with the city of Maputo, ensuring an additional105

water supply capacity of qC of 1.8 m3s−1 (about 70% of the current urban water demand). The GMWSEP is expected to play

a key role not only in mitigating drought effects but also in sustaining the rapidly increasing population of Maputo.
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2.2 Umbeluzi model

We model the Umbeluzi river system (Fig. 1b) using a combination of conceptual and empirical models assuming a daily time

step for both physical processes and decisions. The BPL dynamics are described by the mass balance equation of the water110

volume st stored in the reservoir, i.e.

st+1 = st + et+1− rt+1 (1)

where et+1 is net inflow to the reservoir in the interval [t; t + 1] (i.e., inflow minus evaporation and seepage losses) and

rt+1 is the volume released in the same interval. This is further decomposed into rdt+1 and rupt+1, representing the downstream

releases for hydropower production, urban and irrigation supply, and the upstream pumping to the upstream irrigation districts,115

respectively. The actual releases rdt+1 = f1(st,u
d
t ,u

up
t ,et+1, t) and rupt+1 = f2(st,u

up
t ,u

d
t ,et+1, t) are formulated according to

the nonlinear, stochastic relations f1(·) and f2(·) between rupt+1, rdt+1 and the release decisions uupt and udt (Piccardi and

Soncini-Sessa, 1991). The latter are in fact constrained by physical constraints (i.e. spillway activation and inactive storage

threshold) within a discretionary operating space by the maximum and minimum feasible release function (see Soncini-Sessa

et al. 2007 for more details). In particular, the minimum release function constrains the release to zero in case the available120

volume in the reservoir st equals the inactive storage (10.2Mm3s−1), while the maximum hydraulic outflow rMAX
t+1 (including

both upstream and downstream releases) can be formulated as follows:

rMAX
t+1 = 4.6(ht− 15.25)0.5 (2)

Such constraints, in turn, implies interdependence among the release decisions, so that the total release never exceeds the

feasible release. We assume here feedback operating rules, parametric in ζ, where decisions are conditioned upon the current125

system conditions i.e.

uupt = f(t,It, ζ) (3a)

udt = g(t,It, ζ) (3b)

where It represents the information upon which the policy is based. The analytical expression for the functions f and g depends130

upon the optimization problem formulation, and it is provided in section 3.2.2.

The aggregated downstream irrigation supply is modelled by means of a diversion dam, represented mathematically with an

empirical exponential function (Celeste and Billib, 2009) parametric in α and β of the form:

uit+1 =


min

(
W d
t ·
(
rdt+1

α

)β
, rdt+1

)
if rdt+1 ≤ α

min
(
rdt+1,W

d
t

)
else

(4)

where W d
t is the aggregated downstream irrigation demand (Figure 2d). Equation 4 defines the fraction of releases to be135

diverted for irrigation purposes as inversely proportional to α, and exponentially growing with respect to β. It follows that,
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according to the values assumed by such parameters, urban supply could (as it occurs, for example in case of α > rdt+1 or for

β > 1 when α
rdt+1

<1) or could not (α < rdt+1) be placed in the foreground with respect to irrigation. Even though this does not

correspond to the actual operating rule of the diversion dam (which systematically prioritizes urban supply in case of water

scarcity conditions), this study aims at exploring the whole irrigation-urban supply tradeoff. Therefore, equation 4 is set such140

that also solutions that favour irrigation could be discovered.

The periodic sequence of the control laws (over a period of 365 days) described in equations 3 and 4 constitutes the control

policy πθ, where θ = |ζ,α,β| represents the vector of the control policy parameters.

The diversion rules allow hedging the water abstractions to account for downstream users (i.e. the city of Maputo), and the

actual diverted flows rit+1 are constrained by the the environmental flow requirement in the Espirito Santo Bay qet as follows.145

rit+1 = min
(
uit+1,

(
rdt+1− qet

)+
, qmax

)
(5)

where qmax is the maximum diversion channel capacity.

Finally, the amount of water to be diverted for urban supply to the city of Maputo rwt+1 is computed as:

rwt+1 = min
((
rdt+1− rit+1− qet

)+
,Ww

t

)
(6)

where Ww
t is the urban demand.150

The data necessary for the implementation of the analysis for the time-period December 2016-January 2006 were provided

by The Administracão Regional de Ãgua (ARA) Sul, which is the water agency responsible for river basin management in

southern Mozambique (including the Umbeluzi).

3 Methods and Tools

3.1 Integrated Decision-Analytic Framework155

The integrated decision-analytic framework we adopted is represented in Figure 3. The approach is composed by three main

blocks: optimization (O), robustness (R), and sensitivity-uncertainty (SU).

Block O is responsible for generating operating policies which are optimal under historical conditions. Block R extracts

the optimal policies that are also robust against future changes in climate (climatic uncertainty), irrigation demand (irriga-

tion demand uncertainty), infrastructures (infrastructural uncertainty), and urban demand (population uncertainty); block SU160

bridges robust policies (RP) with the operating objectives variability in response to uncertain input realizations, and allows the

identification of the main sources of vulnerability for the hydrosystem.

The three blocks are interconnected as follows: first, to explore tradeoffs among stakeholders under the historical climatic,

agricultural, infrastructural and urban demand drivers value (i.e., the baseline), we define the operating objectives, and run a

multi-objective evolutionary algorithm to identify the optimal operating policies via optimization-based simulation. Then, we165

assess their robustness with respect to the future evolution of the drivers by perturbing the baseline across all the four (climatic,
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agricultural, infrastructural and population) uncertainty dimensions to generate the states of the world (SOWs). We then re-

simulate the system iteratively perturbed by the SOWs for each of the optimal operating policies identified via optimization and

compute the worst objective function values. The robust policy for each stakeholder is subsequently identified as that yielding

the best performances in the worst condition (minimax robustness metric). To disentangle the sources of vulnerability for RP,170

we implemented an uncertainty and sensitivity analysis framework. In particular, uncertainty analysis is employed to quantify

the objective function variability in response to the uncertain future evolution of the system’s drivers. Here, following the well

known definition of behavioral parameters (Beven and Binley, 1992; Montanari, 2005), we identify the behavioral system

perturbations as those SOWs satisfying predefined performance requirements, i.e. those yielding acceptable objective function

values. Sensitivity analysis is responsible for determining the relative contribution of each individual uncertainty source in175

shaping the objective space and for ranking them across policies and objectives by means of a sensitivity index.

OPTIMIZATION
Optimal operating policies under historical conditions

Steps:
Operating objectives
Multi-objective evolutionary algorithm (EMODPS)
Output:
Optimal operating policies

ROBUSTNESS
Robust policies under deep uncertainty

Steps:
Uncertainty characterization
States of the world
System re-simulation
Robustness metric
Output:
States of the world
Robust policies

SENSITIVITY AND UNCERTAINTY
Sources of vulnerability and behavioral perturbations

Steps:
Uncertainty analysis (GLUE)
Sensitivity analysis (PAWN)
Output:
Behavioral system perturbations
Sensitivity index
Sources of vulnerabilities

Figure 3. The integrated decision-analytic framework adopted in this study. Bold characters identify the output of a certain block, entering

in the subsequent.

Further details about each block in Figure 3 are provided in the following sections.
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3.2 Optimization

3.2.1 Operating Objectives

We model the stakeholdes affected by the operation of the BPL dam through the following four utility functions:180

1. Upstream irrigation deficit JIU , expressed as the square difference between water supply and demand (to be minimized):

JIU =
1

Ny

N∑
t=1

(
bt
(
Wup
t − r

up
t+1

)+)2

(7)

Where N (days) is the simulation horizon, Ny are the number of years in the simulation horizon, and bt is a weight

representing higher losses when the deficit occurs during the growing season. Wup
t and rupt+1 are the irrigation demand185

and the amount of water pumped from the reservoir to upstream irrigation, respectively. The quadratic water supply

deficit has been a traditional formulation in reservoir operations since the work by Hashimoto et al. (1982). The square

of the irrigation deficit accounts in fact for crop vulnerability by penalizing higher shortages, which are more likely to

compromise the crop growth, with respect to more frequent but smaller shortages, which are less dangerous to the crops.

2. Downstream irrigation deficit JID defined similarly as in equation 7 (to be minimized):190

JID =
1

Ny

N∑
t=1

(
bt
(
W d
t − rit+1

)+)2

(8)

where W d
t and rit+1 are the irrigation demand and the reservoir releases diverted for downstream irrigation, respectively.

3. Urban deficit for the city of Maputo JUD, computed as the difference between urban supply and demand (to be mini-

mized):

JUD =
1

Ny

N∑
t=1

max
((
Ww
t − rwt+1− qCt

)
,0
)

(9)195

where Ww
t , rwt+1 and qCt are the urban demand, the reservoir release diverted for urban supply and the additional inflow

from Corumana, respectively.

4. Hydropower production in the BPL power plant JHP (to be maximized):

JHP =
1

Ny

N∑
t=1

HPt (10a)

where HPt is the hydropower production [MWh] on day t , defined as:200

HPt = ηgγwhtr
d
t+1 · 10−6 (10b)

where η is the turbine efficiency (70%), g = 9.81 m/s2 is the gravitational acceleration, γw = 1000 kg/m3 is the water

density, ht is the net hydraulic head and rdt is the turbined flow.
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3.2.2 EMODPS

The optimal operating policies under the baseline are designed using Evolutionary Multi-Objective Direct Policy Search205

(EMODPS) (Giuliani et al., 2016b). EMODPS is a simulation-based optimization approach, which has been recently demon-

strated (Giuliani et al., 2016b) to successfully overcome the major limitations associated with traditional Stochastic Dynamic

Programming (i.e. curses of dimensionality, modelling and multiple objectives) and derivatives. It is constituted by three main

modules: (1) direct policy search (DPS); (2) nonlinear approximating networks; and (3) multiobjective evolutionary algorithms

(MOEA).210

DPS is employed to explore the parameter space θ = |ζ,α,β| of the system operating policy πθ that optimizes the expected

long term cost, i.e.:

π∗θ = argmin
θ

(Jθ) (11a)

where:

Jθ = |JIU ,JID,JUD,−JHP | (11b)215

subject to equations 1 to 6

where finding π∗θ means finding: (1) the optimal parameters ζ∗ ∈ Z of the BPL reservoir operating policy; and (2) the

optimal parameters [α∗,β∗] ∈Θirr for the regulation of the irrigation diversion canal. The parameters are intended optimal

with respect to the objectives Jθ. The reservoir operating policy is selected such that policy inputs It can provide information

feedback for the upstream and downstream release decisions uupt (It),u
d
t (It). In this study, it is represented with a nonlinear220

approximating network of the Gaussian radial basis function family (RBFs), which are known for their generalization ability

and robust performances in validation (Giuliani et al., 2016b; Quinn et al., 2019).

Mathematically, the operating policy can be expressed as:

u
k=|up,d|
t =

n∑
i=1

wki exp

− m∑
j=1

(
I(t),j − ci,j

bi,j

)2
 . (12)

Where n is the number of RBFs, wki is the weight of each RBF, m is the number of inputs, and c and b are the center and radii225

of the RBF. The reservoir operating policy parameter vector is therefore constituted as: ζ = [wki , ci,j , bi,j ], and the number of

parameters nζ to be found is n(2m+ k).

The input vector It = |et,st,sin(2πt/365), cos(2πt/365)| includes the previous day inflow to the reservoir et, the storage

in the reservoir st and time t, which is here represented by a combination of sine and cosine functions: sin(2πt/365) and

cos(2πt/365).230

Following Giuliani et al. (2016a), the number n of RBFs is set tom+k+1 = 7. In addition to those of the reservoir operating

policy, also the two parameters α and β of the power law employed to approximate the diversion dam (as in equation 4) needs

to be optimized. Following the above, the dimension of the parameter space equals n(2m+ k) + 2 = 72.
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In order to explore the parameter space and discover optimal values, we employ Multi-Objective Evolutionary Algorithms.

The term evolutionary refers to the natural randomized mating, selection, and mutation processes that are mimed by the235

algorithms to evolve a Pareto-approximate set of solutions (Deb, 2001; Coello et al., 2007). MOEAs have proved to successfully

deal with complex multiobjective optimization problems, including water reservoir operations (Maier et al., 2014). In this

study, we employ the self-adaptive Borg MOEA (Hadka and Reed, 2013), which has been shown to guarantee high robustness

in solving a variety of multiobjective problems when compared to other MOEAs (Salazar et al., 2016).

3.3 Robustness240

We perform a robustness analysis with the aim of evaluating the robustness of the various operating policies identified via

EMODPS over an ensemble of future realizations of the climatic, agricultural, infrastructural and urban demand drivers. Ac-

cording to Herman et al. (2015), a robustness analysis is usually carried out by performing the following sequential steps: (1)

generation of alternative policies; (2) sampling of possible future scenarios and; (3) computation of robustness metric via sys-

tem re-simulation. Table 3 provides a conceptualization of the three aforementioned steps tailored upon this study, following245

the well known XLRM framework (Lempert, 2003). In the framework, X are the exogenous uncertainty sources; L (of lever)

are the different alternative water management strategies (i.e., the policies identified via optimization) to be explored; M (of

measure) refers to the performance metrics used to rank the desirability of the different policies (L) in the face of the exoge-

nous uncertainties (X); and, finally, R refer to ‘relationships in the system’ (i.e., the model), which define how the exogenous

uncertainties (X), policies (L) as well as outcomes (M) are tied together and relate to each other (Ciullo et al., 2019).250

Table 2. Conceptualization of the robustness analysis implemented in this study.

Uncertain Factors [X] Policies [L]

Climate Optimal operating policies found via optimization

Irrigation demand

Additional inflow from Corumana dam

Urban water demand

Relationship [R] Performance Metrics [M]

Umbeluzi model minimax robustness metric

In other words, the alternative operating policies are those identified via optimization, while the generation of future scenarios

is performed by perturbing historical trajectories assuming independent uniform distribution for the perturbation multipliers

(Pianosi and Wagener, 2016). The multiplier range is either defined by a-priory expert knowledge of the system or based on

experimental results. Climatic, agricultural, infrastructural and population scenarios are then combined to generate a set of

uncertain states of the world. Then, the Umbeluzi model is used to re-simulate the system for each policy across all the SOWs.255

Each simulation produces a performance metric, used to assess the robustness of each policy. Among the robustness metrics
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available in the literature (for a review see McPhail et al., 2018), we select minimax, a metrics that identifies the solution

providing the best performance assuming the realization of the worst conditions.

More details on the formulation of states of the world and on the robustness metrics are provided below.

3.3.1 Formulation of the States of the World260

We divide the future sources of uncertainty into four categories: (1) climatic, (2) agricultural, (3) infrastructural and (4) social.

They are driven by uncertainty in (1) streamflow, (2) irrigation demand, (3) additional inflow from Corumana dam, and (4)

population growth rate, and are here characterized as follows:

1. Climatic uncertainty: We generate high resolution scenarios of rainfall and temperature for the Umbeluzi river basin

to the year 2100 by the quantile-quantile mapping (QQ-Mapping) downscaling procedure. We apply QQ-Mapping to265

coarse resolution data from three different Regional Circulation Models (ICHEC RCA4, ICHEC RACMO and ICHEC

HIRHAM5, developed by the Swedish Meteorological and Hydrological Institute, the Royal Netherlands Meteorological

Institute, and the Danish Meteorological institute), simulated over three distinct representative concentration pathways:

the RCP 2.6, RCP 4.5 and RCP 8.5 (Field, 2014). We use the resulting nine precipitation and temperature trajectories

to force an HBV model (Lindström et al., 1997) validated over the control period, generating nine inflow trajectories.270

We then use the minimum (0.05) and the maximum (0.4) of the projected percentage inflow decrease as the feasibility

set boundary of an uniform distribution, from which we extracted K = 10000 inflow multipliers in the interval [0.6,

0.95] using simple random sampling. As a result, the historical inflow (which includes both dry and wet hydrological

conditions) is decreased in the different scenarios by as much as 40% (as the product between the historical trajectories

and the multipliers). Such methodological procedure for the generation of the states of the world is often referred to as the275

delta method (Brown et al., 2012), and has been widely used in the literature (see for example Bertoni et al. 2019). One

of its main drawbacks is not being able to account for a seasonal shift in the hydrological regime which would naturally

follow a change in the hydroclimatic patterns. However, the 110000 (10000 multiplier perturbations of the 11 years of

historical data) hydrological years upon which the system is simulated provide a states of the world discretization grid

which is dense enough to consider both the extremes and the intermediate scenarios over which the robustness of the280

various operating policies is computed.

2. Irrigation demand uncertainty: Droogers et al. (2014) estimated the expansion in irrigated area in the study site to

be up to 25%. For the irrigation demand trajectories we, therefore, assume a constant irrigation multiplier, drawing K

samples from an uniform distribution over [1, 1.25] using simple random sampling. As a results, K irrigation demand

scenarios are generated as the product between each multiplier and the historical irrigation demand time series.285

3. Additional inflow from Corumana dam uncertainty: The World Bank is currently financing the Greater Maputo Water

supply Expansion project, which started in 2013 and is still under development. The project is compounded of a water

treatment plant downstream the Corumana dam, and by a 95 km pipeline connecting Corumana with the city of Maputo,

ensuring an additional water supply of 1.8m3s−1. The completion day cd of the project is treated as a stochastic variable,
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for which K samples are drawn from a uniform discrete distribution in the interval [0, H], where H = eleven years (i.e.,290

the simulation horizon for an individual SOW). As a result,K additional inflow from Corumana scenarios are generated.

In each scenario, the inflow from Corumana on a day t is computed as:

qCt =

1.8 if t≥ cd

0 else
(13)

4. Urban water demand uncertainty growth for the city of Maputo to be up to 2% per year. Urban demand multipliers are

therefore assumed here to be constant every year, and a sample of sizeK is extracted from an uniform distribution within295

the range [1, 1.02]. Therefore, the urban demand trajectory in a certain scenario can be computed as the exponential

increment of the historical urban demand.

As a result,K = 10000 deeply uncertain SOWs embedding inflow, irrigation demand, additional inflow from Corumana and

urban demand scenarios are generated. Eeach of the K set could be seen as a vector composed by four parameters (i.e., one

multiplier for each uncertainty source), sampled from their uniform distribution. The set Ξ including all the states of the world300

where the operating policies are evaluated is generated with a Latin Hypercube Sampling (LHS) across the four dimension of

the uncertainty sources, with a sample size Nu = 5000 (cardinality of Ξ).

Table 3 provides a summary of the descriptive statistics of the SOWs aggregated by uncertainty source, including the driest

and wettest year, as well as the maximum and minimum water demand, and the maximum and minimum yearly inflow from

Corumana.

Table 3. Statistical extremes of the SOWs, aggregated by uncertainty source

Streamflow [Mm3y−1]

Current value 220

Driest year 60

Wettest year 342

Upstream irrigation [Mm3y−1]

Current value 22.8

Minimum demand 22.8

Maximum demand 28.5

Downstream irrigation [Mm3y−1]

Current value 11.5

Minimum demand 11.5

Maximum demand 14.4

Urban demand [Mm3y−1]

Current value 80

Minimum demand 80

Maximum demand 98

Inflow from Corumana [Mm3y−1]

Current value 0

Minimum demand 0

Maximum demand 56

305

13



3.3.2 Robustness metric

To select the most robust alternative for each of the stakeholders, we used the minimax robustness metric. The computation

of the metric requires Nu simulations, one for each SOW χ ∈ Ξ.

Theminimax identifies, among the optimal control policies π∗ designed via EMPODPS, the most robust alternative πr ∈ π∗

as the one attaining the best performance in the worst among the SOWs:310

πr = argmin
π∗

(
max
χ∈Ξ

J(π∗,χ)

)
(14)

This metric, usually associated with a high risk aversion attitude, selects the alternative assuming that the worst future condi-

tions will be realized (Wald, 1950).

3.4 Sensitivity and Uncertainty

In many hydrological applications, sensitivity and uncertainty analysis are often closely related, to the point that certain UA315

techniques, as scenario discovery (SD) and factor mapping (FM) could be assumed as SA methods. Yet, while UA is used for

quantifying the uncertainty in the output, SA is typically adopted to apportioning output uncertainty to the different uncertainty

sources (or input factors) (Saltelli et al., 2008). Following this line of thought, one could use FM or scenario SD to determine

which uncertain input combination might cause robust policies to perform poorly. Those techniques usually classify the (un-

certain) input samples as behavioural or non-behavioural, depending on whether the response variable (in this application:320

the objective function) exhibits a certain pattern or not. In our study the distinction between behavioural and non-behavioural

perturbations is performed through the GLUE uncertainty analysis, which has been indeed developed starting from some of

the basic ideas of Regional SA and factor mapping; while the PAWN SA method Pianosi et al. (2016) was used to identify the

major sources of vulnerability. Despite their many similarities, the two techniques often offer a valuable complement to each

other, with SA providing valuable extra insights to UA on the identification of the most relevant uncertainty sources.325

3.4.1 GLUE

We perform the quantification of the output variability in response to the four uncertainty sources considered in the paper by

employing the GLUE method. In particular, GLUE allows for determining which SOW result in optimal robust policies that

yield unacceptable results. The implementation of GLUE encompasses several steps, most of which are already included within

either the robustness or the sensitivity analysis.330

A brief summary is provided below:

1. Generation of the States of the World: as described above, SOWs are obtained in this study by near-random sampling

of the perturbed time series of inflow, irrigation demand, infrastructure and population.

2. Specification of the objective function: this function is defined in this study as each of the four objectives which

constitutes the four-dimensional objective function in Equation 11b.335
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3. Definition of the threshold values for the behavioral system perturbation set: here, the threshold value is defined

for each operating policy as the 5th percentile of all the objective function realizations, after simulating the system for

Nu SOWs. The behavioral perturbations are defined as the multiplier values keeping the objective function below the

threshold.

From a computational perspective the GLUE algorithm requires, for a certain robust operating policy, to re-simulate the system340

for each χ ∈ Ξ (i.e.: for each of the states of the world generated during robustness analysis). At every simulation, the value

of the objective function is computed and stored. Upon completing this step, an empirical cumulative distribution function is

fit to each of the four objective function’s dimensions (i.e.: the operating objectives). Then, the algorithm checks whether a

state of the world leads or not to an objective value below a certain threshold (which in this study is set as the 5th percentile

of the objective CDF). In the former case, the SOW (and the system perturbation set the SOW is constituted by) is classified345

as behavioral, in the latter as non-behavioral. Considering the expected adverse effect which most of the uncertain future

realization of the external system drivers might have on water availability and demands, the choice of the 5th percentile as a

threshold value is representative of the stakeholder desire to stay as close as possible to the historical performance.

3.4.2 PAWN

To identify the main sources of vulnerability across robust policies, we use the PAWN sensitivity analysis (Pianosi and Wagener,350

2015). PAWN is a distribution-based method, and its choice lies in its applicability to nonlinear models (Amaranto et al., 2020),

and its independency from the type of output distributions (for example, symmetric, multimodal or highly skewed). In addition,

several studies (Zadeh et al., 2017; Pianosi and Wagener, 2018) have shown the capacity of PAWN to provide stable results for

relatively low sample sizes.

In PAWN, the sensitivity of the output y (in this specific case, the objective function value) to variations of an input xi355

(climate, agriculture, infrastructure and population) is measured as the distance between the unconditional and conditional

empirical cumulative distribution (CDF) of y. The distance between distributions is measured by the Kolmogorov-Smirnov

statistics, computed as follows:

KS(xi) = max
y
|Fy(y)−Fy|xi

(y)| (15)

where Fy(y) is the empirical unconditional distribution of y, and F(y|xi)(y) is the empirical conditional distribution of y360

when the i−th input is kept fixed at the nominal value xi. Considering the dependence of KS on the nominal value, the PAWN

method considers KS statistics over a prescribed number of nomimal values and then computes the sensitivity index as follows:

Si = max
xi=x̄

(1)
i ,...,x̄

(nc)
i

[KS(xi)] (16)

Where x̄(1)
i , . . . , x̄

(nc)
i are nc randomly sampled values for the fixed input xi. By definition, all the KS(xi) values, and conse-365

quently the sensitivity indices Si, vary in the range [0, 1]. The closer the unconditional distribution Fy(y) is to the conditional

ones F(y|xi)(y), the smaller the KS(xi) values and, therefore, the smaller the sensitivity of y to xi, and vice versa.
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Operatively, Fy(y) is computed for a certain policy by iteratively simulating the system for Nu SOWs, generating therefore

Nu realizations of each objective upon which the empirical CDFs are constructed (Figure 4). The computation of F(y|xi)(y) re-

quiresNc SOWs simulations for each of the nc nominal value of xi (as shown in Figure 4 for xi = inflow). The unconditional370

empirical CDF for each uncertainty source is therefore estimated upon (nc ·Nc) system realizations.

Considering M uncertainty sources, the total number of system evaluations required for implementing PAWN for a single

policy is therefore Nu + (M ·nc ·Nc), where Nu and Nc are the number of SOWs used for the unconditional and conditional

distributions, respectively, while nc is the number of nominal value for the uncertainty sources.

In this study, we fixed Nu, Nc and nc to 5000, 2000 and 12. The decision is based on the observation of the uncertainty375

bounds in the sensitivity index obtained by 100 bootstraps of the input-output realizations upon which it is computed.

Inflow Agricultural Demand Corumana Inflow Urban Demand
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Figure 4. PAWN conceptual framework, unconditional objective function distribution in black and conditional objective function distribution

in red.
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4 Results and Discussion

4.1 Optimization: Multiobjective Tradeoffs

The Pareto-optimal policies obtained by solving the optimization problem defined in equation 11 are reported in Figure 5.

We run the optimization on the baseline: i.e. the historical hydrological (∆ inflow = 0), agricultural (∆ irrigated area = 0),380

infrastructural (no external supply) and social (population growth = 0) conditions. Each line is a different policy, each axes

represents an optimization objective, and the crossing point identifies the objective value derived from the implementation of

a certain policy (normalized between minimum and maximum), and to be minimized. The ideal solution is a horizontal line

intersecting all four axes at their bottom. The extent of the conflicts is proportional to the slope of the lines connecting two

adjacent axis. The colour of the lines represent the most robust policy for each stakeholder, and will be discussed more in385

details later.
5. Numerical results

5.1 Optimization: Multi-objective tradeoffs

Downstream Irrigation Upstream Irrigation Urban Hydropower Not RobustRobustness Best:

Figure 5. Policy performance across sectors under the baseline scenario. IU = upstream irrigation; HP = hydropower; UD = urban deficit, ID

= irrigation downstream

.
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Not surprisingly, the most conflicting objectives under the baseline scenarios are hydropower and upstream irrigation, since

the latter is the only stakeholder that cannot benefit of the dam releases from hydropower generation, and subtracts a potential

source of release for energy production by pumping out of the reservoir to satisfy crop requirements. The combined urban and

irrigation demand downstream is about 50% the turbine maximum capacity in the power plant, and can therefore be satisfied390

by hydropower releases.

Compromise solutions between upstream irrigation, urban and downstream irrigation can be achieved at the expenses of

hydropower (as can be seen by the purple line in Figure 5), with a 10% reduction in energy production leading to a near-zero

deficit for all the other stakeholders.

395

4.2 Robustness: Probabilistic Tradeoffs

Figure 6a presents the most robust (MR) solutions for each stakeholder (defined as those performing best in the worst system

configuration) under deeply uncertain scenarios, along with where such solution would fall when ranked for other stakeholders.

The red line identifies a generic non robust (NR) policy, which generates the 90th percentile in the overall robustness ranking.

Even though historically NR led to objective values close to those of the most robust solution for upstream irrigation (RIU,400

green lines in Figures 5 and 6), it experiences a dramatic performance degradation under deep uncertainty, highlighting the

importance of robustness analysis in a multi-objective decision making framework for the discovery of optimal solutions with

low vulnerability against the uncertainties in their forcing realization.

Furthermore, while in historical condition the robust solution for irrigation downstream (RID) and for the city of Maputo

(RUD) produce substantially the same urban deficit (Figure 5), RID provides much higher objective value under deep uncer-405

tainty. Following the opposite line of thought, it is also evident how the historical conflicts between the two stakeholders are

exacerbated under deep uncertainty, and RUD becomes one of the worst (94th out of 100 policies) to adopt for downstream

irrigation. A possible explanation lies in the way the diversion dam is operated in water scarcity conditions (occurring mainly

under deep uncertainty). RID, by fulfilling 99% of crop water demand, prioritizes irrigation and increases the urban deficit.

RUD instead systematically ensures urban water supply to the city of Maputo generating irrigation deficit even in historical410

conditions.

The cumulative distributions of performance under deep uncertainty represented in Figure 6b, along with those found through

multi-objective optimization (gray lines), confirm that: (1) NR policy, being on the right side of each box, systematically offers

poor performances in all objectives; (2) deep uncertainty might generate disputes among downstream irrigation and the city

of Maputo, with one of the highest irrigation deficits produced by RUD (Figure 6b1); and (3) the existing conflicts between415

upstream irrigation and hydropower are exacerbated by both water scarcity and increase in irrigation demand (Figure 6b2).

The almost straight vertical purple line at the top left corner in Figure 6b1 also evidences how downstream irrigation is

overall the stakeholder less vulnerable to deep uncertain scenarios. This is also observable by the high density of grey policies

close to the zero-deficit even in the worst scenario. In addition, about 80% of the optimal policies still ensure an irrigation

deficit value within the historical deficit range (0, 102 (m3s−1)2Y −1)420
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5. Numerical results

12

5.2 Robustness: Probabilistic tradeo�s

Which optimal solutions are also robust against climatic and 
socio - economic changes?

a b
1 2

3 4

Figure 6. (a) Ranking the best solution according to each stakeholder, along with where these solutions fall when ranked according to other

stakeholders. (b) Cumulative distributions functions for the four objectives using the most robust alternative per each stakeholder. The red

line represent a non-robust solution.

By observing the cloud of gray CDF’s, one could notice how some of the operating policies do not monotonically increase

towards higher objective values, but instead shows sudden discontinuities. Such discontinuities are probably due to the real-

ization of states of the world causing the reservoir level to reach the lower limit of the discretionary operating space. In other

words, the variation in the external forcings (most likely a decrease in inflow) is such that, for certain NR operating policies, the

reservoir level triggers a zero-release condition for a certain time-period. The absence of releases is reflected in the objective425

value, which suddenly increases due to no supply availability to cover the water demand.

Finally, the objective function of RHP shown in Figure 6b4 rapidly increases even for smaller system perturbations, making

hydropower the most vulnerable sector to deep uncertainties. The possible explanation is twofold: the hydropower sector has

the higher water consumption, and is solely dependent on inflow. Both conditions makes it particularly sensitive to adverse hy-

droclimatic scenarios, while the latter further exacerbate its sector vulnerability due to the absence of favourable infrastructural430

measures to mitigate water scarcity impact.
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4.3 Sensitivity and Uncertainty

To allow a comparative discussion on how different SOW realizations unevenly shape the vulnerability of different control

policies, we select the most and the least robust among the operational alternatives described above for each sector, and analyze

the corresponding sensitivities and uncertainties. As mentioned before, hydropower solely depends on inflow, and exhibits the435

same qualitative behavior for all the operating policies. For this reason, results for this sector are not further discussed here.

Figures 7a and 7b represent a scatterplot of the downstream irrigation objective in correspondence with its relative forcing

perturbation for RID (most robust alternative for downstream irrigation) and RUD (least robust alternative among those per-

forming best for at least one stakeholder), respectively. Colours identify, for a specific policy, those SOWs whose realization

causes the objective function to assume values below the fifth percentile (defined as the threshold values for the behavioral440

perturbation set). The robustness of RID against uncertain future condition is highlighted by the zero deficit produced in more

than four thousands out of five thousands input realizations, and by the irrigation deficit below 1 (m3s−1)2Y −1 in the remain-

ing (Figure 7a). Furthermore, inflow represents the only influential factor for this control policy (as can be seen in Figure 7a1).

In particular, irrigation deficit is produced only when the streamflow multiplier falls below 0.65. This practically means that,

for any future climatic conditions generating streamflow reduction below to 35%, RID is able to ensure water supply no matter445

the expansion (among those embedded in the SOWs) in irrigated area.

Figures 7c and 7d show the value of the downstream irrigation sensitivity index (SI) to the uncertainty sources. The average

value of the SI is represented by a black horizontal line, while the coloured box describes the 10-90 inter-quantile range

derived by 100 bootstraps of the input-output realizations over which the SI is computed. The near-zero sensitivity values to

agricultural, infrastructural and population uncertainties seem to confirm the above discussion on the robustness of RID (Figure450

7c). When adopting RUD, instead, an irrigation deficit is generated as soon as any inflow perturbation occurs, and the objective

function value (which increases up to 140 (m3s−1)2Y −1) is also shaped by the expansion in irrigated area (Figure 7b), with

sensitivity values to agricultural expansion up to 0.42 (Figure 7d). From a practical perspective, the main difference between

RID and RUD stands in how an expansion in irrigated area might be perceived: as an opportunity in the first case, and as a

potential source of conflicts in the latter.455

As far as the urban deficit is concerned, the increase in the objective value during the 2010 drought (Figures 8a3 and 8b3)

highlights the pivotal role of the Greater Maputo Water Supply Project for ensuring continuity of supply. However, when RUD

is adopted, urban deficit stabilizes around 80 m3s−1Y −1 immediately after the event, and remains constant even if the project

is not completed by the end of the simulation horizon. In other words, if the infrastructure is built before the drought, little or

no deficit is generated. Otherwise, the system recovers from the event, and afterwards urban water demand is fulfilled no matter460

the construction time and the population growth. The opposite is true for NR, where deficit keeps growing, also augmented by

the increase in water demand caused by population growth. This is also evident from the increased sensitivity to infrastructure

and population, with SI values reaching values up to 0.83 and 0.32, respectively (Figure 8d). The comparison between RUD

and NR suggests that the structural intervention in the former case is a fundamental action to undertake in order to cope with
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Figure 7. Behavioural perturbations (a-b) and sensitivity index (c-d) for the robust upstream irrigation (purple) and robust urban deficit (blue)

policies.
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extreme hydrological scenarios, while in the latter it becomes pillar for the everyday operation of the system, especially when465

population growth increases the water demand in the metropolitan area of Greater Maputo.

�� �� � � �� �� � �
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Figure 8. Behavioural perturbations (a-b) and sensitivity index (c-d) for the robust urban deficit (blue) and non robust (red) policies.

Finally, upstream irrigation experiences a sudden increase in irrigation deficit as soon as inflow decreases and irrigation

demand grows (Figures 9a and 9b). Unlike downstream irrigation districts, the upstream agricultural sector, not being able to

’re-use’ water from other sectors, is less flexible to a change in the external drivers, and therefore less robust to their uncertain

realizations. However, when comparing RUI (Figure 9a) and RHP (Figure 9b), it is evident that irrigation deficit grows unevenly470

among policies: it is dramatically high (over 500 (m3s−1)2Y −1) in the latter, and substantially lower in the former.
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The higher sensitivity (SI > 0.9) of upstream irrigation deficit to agricultural expansion occurring when RHP is adopted (Fig-

ure 9d) seems to identify a systematic pattern in the comparison among most and least robust policies. For all the stakeholders

analyzed, the latter have not just been consistently vulnerable to inflow decrease, but also to the other non-hydroclimatic sys-

tem perturbations. In other words: (1) infrastructural interventions become a must, as reflected by the increased urban deficit475

when the GMWSEP is not built (Figure 8b3); (2) population growth exerts a non-negligible pressure on the water system, and

contributes towards increasing urban deficit (Figure 8d); and (3) agricultural expansion is consistently limited by lack of water

availability (Figures 9b and 9d). The opposite is true for RP: in spite of being (as expected) vulnerable to a decrease in inflow

(even if lower in magnitude with respect to NR policies), they rely on new infrastructure only in emergency conditions, and are

able to sustain increases both in terms of population and irrigated area.480

5 Conclusions

In this study, we implement an integrated decision-analytic framework combining optimization, robustness, sensitivity and

uncertainty analysis to better understand the major sources of uncertainty for water supply strategies in the lower Umbeluzi

river, Mozambique. Results provide important insights on the robustness and vulnerability of reservoir operation to exogenous

perturbations in managing multiple, conflicting objectives.485

In particular, the main findings of this paper are:

– Optimal reservoir operating policies exploring similar tradeoffs in current conditions might lead to substantially different

results under deeply uncertain scenarios. Specifically, the non-robust optimal solution presented in this study was largely

dominated by 90% of the operating policies across all objectives once the system is perturbed.

– In water scarcity conditions, some new (i.e. non detected under historical conditions) tradeoffs between downstream490

irrigation and the urban supply suddenly emerge. In fact, while it is possible to explore operating policies ensuring max-

imum satisfaction for both stakeholders in current conditions, the two stakeholders are found in systematic competition,

with the most robust policy for Greater Maputo being in the 95th percentile (96th out of hundred) when ranked for

downstream irrigation.

– Overall, downstream irrigation appeared to be the least vulnerable stakeholder, with about 60% of control policies en-495

suring an objective value in the worst possible condition lower than the maximum computed by forcing the system with

the historical trajectories.

– Robust policy for downstream irrigation ensures sustaining agricultural production with near-zero deficit for the majority

of the agricultural water demand scenarios considered in this study. The only source of vulnerability in this case would

be a streamflow reduction, which however produces only a marginal deficit increase even in the worst condition. The500

opposite holds true when choosing the less robust policy, with objective values suddenly increasing even for small

perturbations in streamflow and irrigation demand.
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Figure 9. Behavioural perturbations (a-b) and sensitivity index (c-d) for the robust upstream irrigation (green) and robust hydropower

(yellow) policies.

– As expected, hydropower production resulted to be solely dependent on inflow realizations. Furthermore, it was the least

robust sector among those considered, with fast decrease in objective function values as soon as the system is perturbed.

– The implementation of the greater Maputo water supply expansion project appears to be vital for sustaining urban water505

supply. However, while its role can be envisioned solely as ’drought mitigator’ when adopting robust policies (even for

maximum population growth rates), it becomes essential to mitigate day to day deficits for non-robust solutions.

– Overall, it is possible to conclude that robust policies are usually vulnerable only to hydrological perturbations and

are able to sustain the majority of population growth and agricultural expansion scenarios. Moreover, infrastructural
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interventions become crucial only in extreme drought conditions. On the contrary, non-robust policies are sensitive also510

to social and agricultural changes, and require structural interventions to ensure stable supply.

From a methodological and computational perspective, the proposed decision analytic framework could be easily applied to

any type of water system. However, in this study it is customized for the BPL river basin, and so are the conclusions and dis-

cussions thereof. Therefore, a possible future research path could be directed towards testing the proposed methodology across

a range of hydro systems, in order to assess how stakeholder’s tradeoffs, policy robustness and vulnerabilities are shaped by515

inherently different water availability and demand trajectories. The aforementioned results in terms of UA and SA are specif-

ically tailored upon the parametric input perturbation set employed to generate the SOWs. Even though each perturbation set

can be well documented from the literature, unexpected changes in one of the exogenous factor (i.e., higher population growth

or lower streamflow availability) could shape the behavior of the system, altering therefore the extent to which a certain policy

is vulnerable to each uncertainty source. One of the main limitations of this study is the assumption of independence among520

the distributions used for the generation of the historical trajectories multipliers which constitute the foundation for developing

the states of the world. Even though such assumption allows to explore the full range of variability of the exogenous drivers

of the system, and has been successfully applied in recent hydrological applications (see for example Pianosi and Wagener

2016 and Amaranto et al. 2020), a study entangling the covariance among the uncertainty sources could provide further in-

sights on the robustness of each operating policy, and can tailor the sensitivity analysis on a more reliable set of perturbations.525

It is therefore a recommendation for a future research exercise. In this study, the sources of vulnerability and the uncertain

output realizations of the optimal water supply strategies are investigated only for robust policies. Therefore, RA and SA are

sequential methodological steps rather than being interdependent. Future research could be developed towards implementing

SA methods that establish feedback loops with RA, in order to enhance the robustness of operating policies against uncertain

exogenous factors. Furthermore, robust policies are selected here according to the minimax robustness metric. minimax, by530

identifying the best alternative in the worst possible input realization, encompasses a risk-adverse behavior of the decision

maker. However, other criteria are available in the literature (see Giudici et al. 2020 for a review), each of them representing

a different level of risk perception and its associated definition of robust operating policy. For a more comprehensive analysis,

one could include additional robustness metrics in the experimental setup, and evaluate how the choice of the metric shapes the

selection of robust policy and the identification of the sources of vulnerability thereof. A possible architecture in this regard535

can be found in Herman et al. (2015), where four different robustness definition are considered, and robust planning decisions

are developed accordingly.
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This research was supported by Politecnico di Milano within the project BOA_MA_NHÃ, Maputo!. Finally, the authors thank Davide Danilo

Chiarelli and Maria Cristina Rulli for providing irrigation demand data.

26

https://github.com/mxgiuliani00/ClimateScenarioAnalysisToolbox/tree/master/QuantileMapping/gridded_data
https://github.com/mxgiuliani00/ClimateScenarioAnalysisToolbox/tree/master/QuantileMapping/gridded_data
https://github.com/alessandroamaranto/Moz_SA


References550

Amaranto, A., Pianosi, F., Solomatine, D., Corzo, G., and Munoz-Arriola, F.: Sensitivity analysis of data-driven groundwater forecasts to

hydroclimatic controls in irrigated croplands, Journal of Hydrology, p. 124957, 2020.

Bertoni, F., Castelletti, A., Giuliani, M., and Reed, P.: Discovering Dependencies, Trade-offs, and Robustness in Joint Dam Design and

Operation: An Ex-post Assessment of the Kariba Dam, Earth’s Future, 7, 1367–1390, 2019.

Beven, K. and Binley, A.: The future of distributed models: model calibration and uncertainty prediction, Hydrological processes, 6, 279–298,555

1992.

Brown, C., Ghile, Y., Laverty, M., and Li, K.: Decision scaling: Linking bottom-up vulnerability analysis with climate projections in the

water sector, Water Resources Research, 48, 2012.

Celeste, A. B. and Billib, M.: Evaluation of stochastic reservoir operation optimization models, Advances in Water Resources, 32, 1429–

1443, 2009.560

Ciullo, A., De Bruijn, K. M., Kwakkel, J. H., and Klijn, F.: Systemic flood risk management: The challenge of accounting for hydraulic

interactions, Water, 11, 2530, 2019.

Coello, C. A. C., Lamont, G. B., Van Veldhuizen, D. A., et al.: Evolutionary algorithms for solving multi-objective problems, vol. 5, Springer,

2007.

Deb, K.: Multi-objective optimization using evolutionary algorithms, vol. 16, John Wiley & Sons, 2001.565

Denaro, S., Anghileri, D., Giuliani, M., and Castelletti, A.: Informing the operations of water reservoirs over multiple temporal scales by

direct use of hydro-meteorological data, Advances in water resources, 103, 51–63, 2017.

Droogers, P., de Boer, F., and Terink, W.: Water Allocation Models for the Umbeluzi River Basin, Mozambique, Report Future Water, pp.

1–132, 2014.

Field, C. B.: Climate change 2014–Impacts, adaptation and vulnerability: Regional aspects, Cambridge University Press, 2014.570

Fields, D., Odegard, L., French, L., and Revell, G.: Directions in hydropower: scaling up for development, Tech. rep., The World Bank, 2009.

Giudici, F., Castelletti, A., Giuliani, M., and Maier, H. R.: An active learning approach for identifying the smallest subset of informative

scenarios for robust planning under deep uncertainty, Environmental Modelling & Software, p. 104681, 2020.

Giuliani, M., Anghileri, D., Castelletti, A., Vu, P. N., and Soncini-Sessa, R.: Large storage operations under climate change: expanding

uncertainties and evolving tradeoffs, Environmental Research Letters, 11, 035 009, 2016a.575

Giuliani, M., Castelletti, A., Pianosi, F., Mason, E., and Reed, P. M.: Curses, tradeoffs, and scalable management: Advancing evolutionary

multiobjective direct policy search to improve water reservoir operations, Journal of Water Resources Planning and Management, 142,

04015 050, 2016b.

Giuliani, M., Zaniolo, M., Castelletti, A., Davoli, G., and Block, P.: Detecting the state of the climate system via artificial intelligence to

improve seasonal forecasts and inform reservoir operations, Water Resources Research, 2019.580

Gleick, P. H. and Palaniappan, M.: Peak water limits to freshwater withdrawal and use, Proceedings of the National Academy of Sciences,

107, 11 155–11 162, 2010.

Groves, D. G., Molina-Perez, E., Bloom, E., and Fischbach, J. R.: Robust decision making (RDM): application to water planning and climate

policy, in: Decision Making under Deep Uncertainty, pp. 135–163, Springer, Cham, 2019.

Hadka, D. and Reed, P.: Borg: An auto-adaptive many-objective evolutionary computing framework, Evolutionary computation, 21, 231–259,585

2013.

27



Hashimoto, T., Stedinger, J. R., and Loucks, D. P.: Reliability, resiliency, and vulnerability criteria for water resource system performance

evaluation, Water resources research, 18, 14–20, 1982.

Herman, J. D., Reed, P. M., Zeff, H. B., and Characklis, G. W.: How should robustness be defined for water systems planning under change?,

Journal of Water Resources Planning and Management, 141, 04015 012, 2015.590

Herman, J. D., Quinn, J. D., Steinschneider, S., Giuliani, M., and Fletcher, S.: Climate adaptation as a control problem: Review and perspec-

tives on dynamic water resources planning under uncertainty, Water Resources Research, p. e24389, 2019.

Hermoso, V.: Freshwater ecosystems could become the biggest losers of the Paris Agreement, Global change biology, 23, 3433–3436, 2017.

Juizo, D. and Hjorth, P.: Application of a district management approach to Southern African river basin systems: the case of the Umbeluzi,

Incomati and Maputo river basins, Water policy, 11, 719–730, 2009.595

Kibret, S., Lautze, J., McCartney, M., Nhamo, L., and Wilson, G. G.: Malaria and large dams in sub-Saharan Africa: future impacts in a

changing climate, Malaria journal, 15, 448, 2016.

Lempert, R. J.: Shaping the next one hundred years: new methods for quantitative, long-term policy analysis, 2003.

Lindström, G., Johansson, B., Persson, M., Gardelin, M., and Bergström, S.: Development and test of the distributed HBV-96 hydrological

model, Journal of hydrology, 201, 272–288, 1997.600

Macauhub: Pequenos Libombos dam, Mozambique suspends distribution of water to agriculture, Macauhub, https://Macauhub.com.mo/

2016/12/15/pequenos-libombos-dam-mozambique-suspends-distribution-of-water-to-agriculture/, 2016.

Maier, H. R., Kapelan, Z., Kasprzyk, J., Kollat, J., Matott, L. S., Cunha, M. C., Dandy, G. C., Gibbs, M. S., Keedwell, E., Marchi, A.,

et al.: Evolutionary algorithms and other metaheuristics in water resources: Current status, research challenges and future directions,

Environmental Modelling & Software, 62, 271–299, 2014.605

McPhail, C., Maier, H., Kwakkel, J., Giuliani, M., Castelletti, A., and Westra, S.: Robustness metrics: How are they calculated, when should

they be used and why do they give different results?, Earth’s Future, 6, 169–191, 2018.

Miguel, M.: Mozambique-AFRICA-P125120-Greater Maputo Water Supply Expansion Project-Procurement Plan, Tech. rep., The World

Bank, 2019.

Montanari, A.: Large sample behaviors of the generalized likelihood uncertainty estimation (GLUE) in assessing the uncertainty of rainfall-610

runoff simulations, Water resources research, 41, 2005.

Moran, E. F., Lopez, M. C., Moore, N., Müller, N., and Hyndman, D. W.: Sustainable hydropower in the 21st century, Proceedings of the

National Academy of Sciences, 115, 11 891–11 898, 2018.

Pianosi, F. and Wagener, T.: A simple and efficient method for global sensitivity analysis based on cumulative distribution functions, Envi-

ronmental Modelling & Software, 67, 1–11, 2015.615

Pianosi, F. and Wagener, T.: Understanding the time-varying importance of different uncertainty sources in hydrological modelling using

global sensitivity analysis, Hydrological Processes, 30, 3991–4003, 2016.

Pianosi, F. and Wagener, T.: Distribution-based sensitivity analysis from a generic input-output sample, Environmental Modelling & Soft-

ware, 108, 197–207, 2018.

Pianosi, F., Beven, K., Freer, J., Hall, J. W., Rougier, J., Stephenson, D. B., and Wagener, T.: Sensitivity analysis of environmental models:620

A systematic review with practical workflow, Environmental Modelling & Software, 79, 214–232, 2016.

Piccardi, C. and Soncini-Sessa, R.: Stochastic dynamic programming for reservoir optimal control: dense discretization and inflow correlation

assumption made possible by parallel computing, Water Resources Research, 27, 729–741, 1991.

28

https://Macauhub.com.mo/2016/12/15/pequenos-libombos-dam-mozambique-suspends-distribution-of-water-to-agriculture/
https://Macauhub.com.mo/2016/12/15/pequenos-libombos-dam-mozambique-suspends-distribution-of-water-to-agriculture/
https://Macauhub.com.mo/2016/12/15/pequenos-libombos-dam-mozambique-suspends-distribution-of-water-to-agriculture/


Quinn, J. D., Reed, P. M., Giuliani, M., and Castelletti, A.: What Is Controlling Our Control Rules? Opening the Black Box of Multireservoir

Operating Policies Using Time-Varying Sensitivity Analysis, Water Resources Research, 55, 5962–5984, 2019.625

Salazar, J. Z., Reed, P. M., Herman, J. D., Giuliani, M., and Castelletti, A.: A diagnostic assessment of evolutionary algorithms for multi-

objective surface water reservoir control, Advances in water resources, 92, 172–185, 2016.

Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M., and Tarantola, S.: Global sensitivity analysis: the

primer, John Wiley & Sons, 2008.

Soncini-Sessa, R., Weber, E., and Castelletti, A.: Integrated and participatory water resources management-theory, Elsevier, 2007.630

Trindade, B., Reed, P., Herman, J., Zeff, H., and Characklis, G.: Reducing regional drought vulnerabilities and multi-city robustness conflicts

using many-objective optimization under deep uncertainty, Advances in Water Resources, 104, 195–209, 2017.

Trindade, B., Reed, P., and Characklis, G.: Deeply uncertain pathways: Integrated multi-city regional water supply infrastructure investment

and portfolio management, Advances in Water Resources, 134, 103 442, 2019.

Wald, A.: Statistical Decision Functions, John Wiley and Sons, New York, 1950.635

Zadeh, F. K., Nossent, J., Sarrazin, F., Pianosi, F., van Griensven, A., Wagener, T., and Bauwens, W.: Comparison of variance-based and

moment-independent global sensitivity analysis approaches by application to the SWAT model, Environmental Modelling & Software,

91, 210–222, 2017.

Zampieri, M., Carmona Garcia, G., Dentener, F., Gumma, M. K., Salamon, P., Seguini, L., and Toreti, A.: Surface freshwater limitation

explains worst rice production anomaly in India in 2002, Remote Sensing, 10, 244, 2018.640

Zaniolo, M., Giuliani, M., Castelletti, A. F., and Pulido-Velazquez, M.: Automatic design of basin-specific drought indexes for highly regu-

lated water systems, Hydrology and Earth System Sciences, 22, 2409–2424, 2018.

Zaniolo, M., Giuliani, M., and Castelletti, A.: Data-driven modeling and control of droughts, IFAC-PapersOnLine, 52, 54–60, 2019.

29


