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Abstract. So far, various studies aimed at decomposing the integrated terrestrial water storage variations observed by 10 

satellite gravimetry (GRACE, GRACE-FO) with the help of large-scale hydrological models. While the results of the storage 

decomposition depend on model structure, little attention has been given to the impact of the way how vegetation is 

represented in these models. Although vegetation structure and activity represent the crucial link between water, carbon and 

energy cycles, their representation in large-scale hydrological models remains a major source of uncertainty. At the same 

time, the increasing availability and quality of Earth observation-based vegetation data provide valuable information with 15 

good prospects for improving model simulations and gaining better insights into the role of vegetation within the global 

water cycle. 

In this study, we use observation-based vegetation information such as vegetation indices and rooting depths for spatializing 

the parameters of a simple global hydrological model to define infiltration, root water uptake and transpiration processes. 

The parameters are further constrained by considering observations of terrestrial water storage anomalies (TWS), soil 20 

moisture, evapotranspiration (ET) and gridded runoff (Q) estimates in a multi-criteria calibration approach. We assess the 

implications of including varying vegetation characteristics on the simulation results, with a particular focus on the 

partitioning between water storage components. To isolate the effect of vegetation, we compare a model experiment in 

which vegetation parameters vary in space and time to a baseline experiment in which all parameters are calibrated as static, 

globally uniform values. 25 

Both experiments show good overall performance, but explicitly including varying vegetation data leads to even better 

performance and more physically plausible parameter values. Largest improvements regarding TWS and ET are seen in 

supply-limited (semi-arid) regions and in the tropics, whereas Q simulations improve mainly in northern latitudes. While the 

total fluxes and storages are similar, accounting for vegetation substantially changes the contributions of different soil water 

storage components to the TWS variations. This suggests an important role of the representation of vegetation in 30 

hydrological models for interpreting TWS variations. Our simulations further indicate a major effect of deeper moisture 

storages and groundwater-soil moisture-vegetation interactions as a key to understanding TWS variations. We highlight the 
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need for further observations to identify the adequate model structure rather than only model parameters for a reasonable 

representation and interpretation of vegetation-water interactions. 

1 Introduction 35 

Since 2002 the Gravity Recovery and Climate Experiment (GRACE) mission has facilitated global monitoring of terrestrial 

water storage (TWS) variations from space – a milestone of global hydrology (Rodell 2004, Famiglietti and Rodell 2013). 

Observed TWS variations from GRACE have since become a cornerstone for diagnosing trends in water resources due to 

climate change or anthropogenic activities (Rodell et al. 2018, Reager et al. 2015, Scanlon et al. 2018, Syed et al. 2009, 

Tapley et al. 2019), as well as for benchmarking and improving global hydrological models (GHMs) (Scanlon et al. 2016, 40 

Döll et al. 2014, Werth et al. 2009, Zhang et al. 2017, Kumar et al. 2016, Eicker et al. 2014). Significant co-variations 

between GRACE TWS and the global land carbon sink (Humphrey et al. 2018) and surface temperatures (Humphrey et al. 

2021) highlight the importance of the water cycle as nexus in the Earth System.  

However, GRACE TWS estimates represent a vertically integrated signal of all water stored in snow, ice, soil, surface and 

groundwater. Thus, understanding processes and mechanisms of TWS variations requires attribution of TWS variations to 45 

individual storage components. Despite advancements in remote sensing, large-scale quantification of these components 

based on observations remains challenging. For example, remote sensing-based estimates of soil moisture only capture 

depths up to 5 cm and do not necessarily reflect the moisture availability in the deeper soil column (Dorigo et al. 2015). 

While these observations can be extrapolated to derive estimates of root zone moisture, either by using statistical 

relationships (Zhuang et al. 2020) or by data assimilation into land surface models (Reichle et al. 2017, Martens et al. 2017), 50 

such products rely on many assumptions. Therefore, GHMs have been necessary to interpret TWS variations in terms of 

contributions by snow, soil moisture, ground or surface water. However, several studies suggested that current state-of-the-

art GHMs cannot reproduce key patterns of observed TWS variations and show partly diverging TWS partitioning (Scanlon 

et al. 2018, Schellekens et al. 2017, Zhang et al. 2017, Kraft et al. 2021). This uncertainty of the available tools to interpret 

TWS variations is clearly a major obstacle for diagnosing and understanding global changes of the water cycle. 55 

To improve model performance and reliability, GHMs are traditionally calibrated against measured discharge time series at 

the outlet of catchments (Müller Schmied et al. 2021, Telteu et al. 2021). However, discharge provides an integrated 

response of an entire catchment with very limited information on the interplay of different processes and spatial 

heterogeneities. In fact, the use of spatio-temporal data, e.g., from remote sensing, for model calibration has been suggested 

(Su et al, 2020). While using spatio-temporal vegetation data, e.g., NDVI, seemed promising for this at the catchment scale 60 

(Ruiz-Perez et al. 2017), many GHMs still have a limited usage of such data in their modelling approach. Some large-scale 

studies have shown clear improvements in model performance when a larger number of observational constraints are used to 

constrain the model parameters, especially when using TWS variations from GRACE (e.g., Lo et al. 2010, Rakovec et al. 

2016, Bai et al. 2018, Mostafaie et al. 2018, Trautmann, 2018). Among them, Trautmann et al. 2018 contributed insights in 



3 

 

the drivers of TWS variations across spatial and temporal scales in northern high latitudes, in particular with respect to 65 

contributions by snow vs liquid water storages. In this study, we follow a similar framework of using multiple observational 

data streams to constrain a simple hydrological model to understand the role of varying vegetation characteristics for the 

partitioning of TWS components at global scale.  

Among liquid water storages, especially the differentiation between soil moisture and groundwater poses a challenge. 

Reflecting on the determinants of rather shallow soil moisture vs deeper groundwater storage variations, it is apparent that 70 

under most conditions the soil moisture state itself is the first order control valve. In particular, it determines the amount of 

water that is available for soil water uptake for evapotranspiration but also for percolation into deeper soil layers and 

consequently recharge into the groundwater storage. The two key processes that shape soil moisture dynamics, infiltration 

and evapotranspiration (ET), are strongly mediated by the presence and properties of vegetation (Wang et al. 2018). For 

example, vegetation promotes infiltration over surface runoff due to larger surface roughness, dampened precipitation 75 

intensities, and more soil macro pores due to rooting and biological activity. In fact, such roles of vegetation in a global 

climate model were already envisioned and evaluated almost 4 decades ago (Rind, 1984). Besides, vegetation alters soil 

properties like soil texture and organic matter content. Such soil properties together with rooting depth control the size of the 

soil moisture reservoir that is available for ET, and how plants respond to drought stress conditions (Baldocchi et al. 2021, 

Yang et al. 2020). Furthermore, deep roots may connect to the groundwater and provide access to the deeper moisture 80 

storages, and thus have wider implications on the hydrological cycle. Rooting depth is species-specific and, in addition, 

determined by the infiltration depth and groundwater table depth, and thus has a high spatial heterogeneity both across the 

globe and at the local scale (Fan et al. 2017). The significance of interactions between vegetation and soil moisture are at the 

heart of ecohydrology (Rodriguez-Iturbe et al. 2001) and have become evident in many theoretical and experimental studies.  

Many studies analyzed effects of water availability on vegetation functioning (Porporato et al. 2004, Reyer et al. 2013, Wang 85 

et al. 2001, Yang et al. 2014), and the effect of changing vegetation cover on ecosystem water consumption (Du et al. 2021). 

While large-scale hydrologic models usually apply simplified and static vegetation characteristics (Quevedo et al. 2008, 

Weiss et al. 2012, Telteu et al. 2021), spatio-temporal variations of vegetation pattern are vital for good predictions of 

available water resources (Andersen et al. 2010). On ecosystem scale, Xu et al. 2016 showed the advantage of accounting for 

different plant hydraulic traits in an ecosystem model. And on a global scale, Weiss et al. 2012, for instance, showed the 90 

positive influence on modelled evaporation when static vegetation characteristics are replaced by monthly LAI estimates in a 

climate model. However, how the representation of vegetation affects global water storages and in particular the partitioning 

of TWS in large-scale hydrological models has received surprisingly little attention so far. 

 

Therefore, the objective of this study is to investigate the effect of vegetation-dependent parameterizations of key 95 

hydrological processes on TWS partitioning at the global scale using a multi-criteria model data fusion approach. The model, 

an expanded version of Trautmann et al. (2018), is a simple conceptual 4-pool water balance model. Model parameters are 

calibrated against TWS variations from GRACE (Wiese, 2015), ET from FLUXCOM (Jung et al. 2019), runoff from GRUN 
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(Ghiggi et al. 2019) and ESA CCI soil moisture (Dorigo et al. 2017). We contrast two experiments which differ only with 

respect to how vegetation-related parameters are defined: 1) a baseline experiment with global uniform parameters, 2) a 100 

vegetation experiment where vegetation parameters vary in space and partly in time. In contrast to the traditional approach of 

spatializing vegetation parameters by plant functional types or land cover classes and keeping this a-priori parameterization 

fixed during model application, we take advantage of continuous information on few key properties that link vegetation and 

hydrological processes: 1) spatially distributed and time-varying active vegetation cover that influences transpiration demand 

and interception storage, 2) spatial pattern of soil water supply for transpiration via roots, and 3) spatially distributed and 105 

time-varying influence of vegetation cover on infiltration and runoff generation. Specifically, we are addressing the 

following questions: 

 

1) Where, when, and by how much are global hydrological simulations improved by spatially distributed and time 

varying vegetation parameters? 110 

2) To what extent does the attribution and interpretation of TWS variations for individual storage components change 

when introducing spatial and temporal variation of vegetation parameters? 

2 Methods 

In the first section we give a general overview on the design of this study. Subsequently, the used model and data streams as 

well as the calibration and evaluation approach are explained in more detail. 115 

2.1 Overview 

To assess the potential effect of including continuous information on vegetation, we compare two model variants that are 

based on the same conceptual structure: 1) a base model with static, globally uniform parameter values (B), and 2) a model 

variant that includes spatially (and temporally) varying vegetation characteristics by defining vegetation parameters as 

function of global data products (VEG). We additionally performed an experiment that discretizes vegetation parameters for 120 

distinct classes of plant functional types, similar to some other GHMs. This PFT experiment is explained and shown in S9. 

Forced with global climate-data, the parameters of each variant are calibrated for a spatial subset against multiple Earth 

observation-based data. In the B experiment, the parameters themselves are calibrated and globally constant parameter 

values are obtained. While the optimized parameters implicitly account for the effect of the nearly ubiquitous presence of 

vegetation, they cannot represent effects of spatially or and temporally varying vegetation properties. In the VEG 125 

experiment, we describe vegetation related parameters as a linear function of spatio-temporal varying vegetation variables, 

i.e., we calibrate scalars representing the slopes of these functions. By calibrating the slope, we include the continuous 

pattern from the data, but scale it to best fit the observational constraints. Hence, vegetation related parameters vary 

explicitly spatially and partly temporally. 
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Once the parameters are calibrated, the simulations for the whole domain (global) are used to evaluate the model 130 

performance at different spatial and temporal scales. To finally delineate the effect of including varying vegetation 

characteristics on the composition of simulated TWS across temporal (mean seasonal, inter-annual) and spatial (local grid 

scale, spatially aggregated) scales, we use the Impact Index as defined by Getirana et al. (2017). 

 

The model is run on daily time steps at a 1°x1° latitude/longitude resolution, focusing on vegetated regions under primarily 135 

natural conditions. To avoid biases of the calibrated model parameters due to processes that are not represented in the model 

structure, we exclude grid cells with > 10% permanent snow and ice cover, > 50% water fraction, > 20% bare land surface 

and > 10% artificial land cover fraction. These grid cells are masked out using the Globland20 fractional landcover v2 (Chen 

et al. 2014). Additionally, we exclude regions with a large human influence, mainly related to groundwater extraction, on the 

trend in GRACE TWS variations (Rodell et al. 2018) (see Fig. 2). The final study area comprises 74% of global land area. 140 

All other data sets used in this study were resampled to the 1°x1° grid and subset to the same grid cells.  

Due to the temporal coverage of forcing data and observational constraints, we calibrate the model for the period 01/2002-

12/2014, while the global-scale model runs and analyses are performed for the period 03/2000-12/2014. Prior to each model 

run, all states are initialized by a 8-year spin-up period. The forcing for the spin-up period is assembled by randomly 

rearranging complete years of the forcing data.  145 

2.2 Model Description 

The conceptual hydrological model is forced by daily precipitation, air temperature and net radiation (Table 1). It includes a 

snow component (see Trautmann et al. (2018)), a 2-layer soil water storage (wSoil), a deep soil water storage (wDeep) and a 

delayed, slow water storage (wSlow). The schematic structure of the model is shown in Fig. 1 and calibration parameters are 

explained in Table 2. 150 

Depending on air temperature (Tair), precipitation (Precip) is partitioned into snow fall (Snow), that accumulates in the snow 

storage (wSnow), and rain fall (Rain), that partly is retained in an interception storage. Interception throughfall together with 

snow melt are partitioned into infiltration and infiltration excess depending on the ratio of actual soil moisture and maximum 

soil water capacity following Bergström 1995:  

 155 

𝐼𝑒𝑥𝑐 = 𝐼𝑖𝑛 . [
∑ 𝑤𝑆𝑜𝑖𝑙(𝑙)

2
𝑙=1

∑ 𝑤𝑆𝑜𝑖𝑙max⁡(𝑙)

2

𝑙=1

]

𝑝𝑏𝑒𝑟𝑔

            (1) 

 

where, Iexc is the infiltration excess, IIn is the incoming water from throughfall and snow melt, wSoil(l) is the soil moisture 

and wSoilmax(l) the maximum soil water capacity of each soil layer l, and pberg is a calibration parameter. While pberg <1 

allocates a small fraction of the incoming water to the soil water pool even if it is nearly empty, pberg >1 allows a large 160 
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fraction of incoming water to infiltrate into the soil when soil saturation is already high, and pberg = 1 describes a linear 

relationship between soil water saturation and the amount of incoming water that infiltrates. 

 

A fraction of the infiltration excess (defined by the global calibration parameter rfSlow) then replenishes a delayed water 

storage (wSlow) that acts as a linear reservoir and generates slow runoff (Qslow). The remaining infiltration excess represents 165 

fast direct runoff (Qfast). Qfast and Qslow together represent total runoff Q, that flows out of the system, i.e., grid cell. 

Infiltrated water is distributed among 2 soil layers following a top-to-bottom approach, where the maximum capacity of the 

first soil layer is prescribed as 4 mm, in order to match the tentative depth of satellite soil moisture observations, while the 

storage capacity of the 2nd soil layer is a calibration parameter (wSoilmax(2)). The 2nd soil layer is connected with a deeper 

water storage (wDeep). The size of wDeep is defined as a multiple of wSoilmax(2) by the calibrated scaling parameter sdeep. 170 

Depending on the moisture gradient between the two storages, water either percolates from the 2nd soil layer to the deeper 

soil, or it rises from the deeper storage into the 2nd soil layer, by scaling to a maximum flux rate (defined by the global 

calibration parameter, fmax ). The deeper storage therefore acts as a storage buffer that linearly discharges further to the 

delayed water storage (wSlow), which also receives part of the infiltration excess.  

Evapotranspiration (ET) is represented by a demand-supply approach that is driven by a potential ET demand following 175 

Priestley-Taylor, and is limited by the available soil moisture supply. ET is partitioned into interception evaporation (EInt), 

bare soil evaporation from the first soil layer (ESoil) and plant transpiration from the two soil layers (ETransp). Interception and 

plant transpiration are only calculated for the vegetated fraction of each grid cell, while bare soil evaporation is limited to the 

non-vegetated fraction of each grid cell. 

While water in wSoil is directly available for ET, wDeep is only indirectly accessible by capillary rise, and the water stored 180 

in wSlow is not plant-accessible. Total water storage is the sum of all water storages, including wSnow, wSoil, wDeep and 

wSlow. Although groundwater and surface water storages are not implemented explicitly, they are effectively included in 

wDeep and wSlow, especially after calibration of associated storage parameters against GRACE TWS. 
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Figure 1 Schematic of the underlying model structure, with blue font denoting forcing data: Precip = precipitation, Tair = air 185 
temperature. Boxes represent states: Eint = interception storage, wSnow = snow water storage, wSoil(1) = upper soil layer, wSoil(2) 

= second soil layer, wDeep = deep water storage, and wSlow = slowly varying water storage. Arrows denote fluxes: Rain = rain fall, 

Snow = snow fall, ESub = sublimation, Qmelt = snow melt, Iin = incoming water from throughfall and snow melt, Iexc = infiltration 

excess, Qfast = fast direct runoff, Qslow = slow runoff, Q = total runoff, EInt = evaporation from interception storage, ESoil = soil 

evaporation, ETransp = plant transpiration, ET = total evpotranspiration, fDeepSoil = flux between wSoil and wDeep (percolation resp. 190 
capillary rise), fDeepSlow = flux from wDeep to wSlow. Bold print highlights model variables that are constrained in the calibration. 

Green highlights show where vegetation influence is included explicitly: [1] the parameter pveg to define each grid cell’s vegetation 

fraction, [2] the parameter wSoilmax(2) that defines the maximum plant available soil water, and [3] the parameter pberg to define the 

infiltration and runoff generation partitioning. 

Table 1 Data used for model forcing, for description of vegetation characteristics and for model calibration. 195 

 Product Space Time Data 

Uncertainty 

Reference 

  Forcing 

Precip GPCP 1dd v1.2 global daily  Huffmann et al. 2000 

Tair CRUNCEP v6 global daily  Vivoy et al. 2015 

Rn CERES Ed4A global daily  Wielicki et al. 1996 

  Vegetation Characteristics 

EVI based on MCD43C1 v6 (MODIS 

daily BDRF), calculated via MODIS 

standard EVI formula 

 daily 

climatology 

 Schaaf & Wang 2015 

RD1 maximum rooting depth  static  Fan et al. 2017 

RD2 effective rooting depth  static  Yang et al. 2016 

RD3 maximum soil water storage capacity  static  Wang-Erlandson et al. 

2016 

RD4 maximum plant available water  static  Tian et al. 2019 
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capacity 

  Calibration 

TWS GRACE mascon RL06 global monthly with product Wiese et al. 2018 

wSoil ESA CCI SM v4.04 (combined 

product) 

~global daily with product Dorigo et al. 2017 

ET FLUXCOM RS ensemble global daily with product Jung et al. 2018 

Q GRUN v1 global monthly ~ 50% Ghiggi et al. 2019 

 

2.3 Vegetation Characteristics 

We include three aspects of vegetation influence on hydrological processes: 1) the specific transpiration demand by 

vegetation, 2) the soil water supply for transpiration via roots, and 3) the influence of vegetation on infiltration and runoff 

generation. These three aspects are controlled by three corresponding model parameters, namely the grid cell’s vegetation 200 

fraction (pveg), the maximum plant available soil water (wSoilmax(2)), and the runoff generation/infiltration coefficient (pberg). 

In the VEG experiment, scalar parameters are used as linear multipliers of observation-based spatio-temporal patterns to 

harvest the information of spatial and temporal patterns from the continuous data products.  

2.3.1 Vegetation Fraction 

The parameter pveg reflects the vegetation cover of each grid cell that influences the grid’s interception storage, transpiration 205 

demand, and partitioning of evapotranspiration components. To describe its spatial and seasonal variations, we include the 

mean seasonal cycle (MSC) of the Enhanced Vegetation Index (EVI). Therefore, pveg at each time step is defined as linear 

function of EVI, where sEVI is the calibrated scaling parameter: 

 

𝑝𝑣𝑒𝑔 = 𝑠𝐸𝑉𝐼⁡ ∙ 𝐸𝑉𝐼            (2) 210 

 

with 0 ≤ pveg ≤ 1. 

 

EVI data is calculated via the MODIS standard formula (Didan & Barreto-Munoz) using the daily BRDF, nadir BRDF 

adjusted reflectance values MCD43C1 v6 (Schaaf &Wang 2015) for the period 01.2001 – 12.2014: 215 

 

𝐸𝑉𝐼 = 2.5  
𝑁𝐼𝑅 −𝑅𝑒𝑑

𝑁𝐼𝑅+6⁡∙𝑅𝑒𝑑 −7.5∙𝐵𝑙𝑢𝑒+1
            (3) 

 

Since the daily EVI time series are not continuous due to noise and missing values during cloudy conditions, snow and 

darkness, the data was pre-processed to be used in the model. For each grid cell, we calculate the median seasonal cycle, fill 220 

long gaps during winter time with a low value, interpolate missing values, and smooth the time series. Therefore, winter is 
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defined as days with negative net radiation and gaps are considered long when 10 consecutive days of EVI data are missing. 

The winter time gaps are filled with the 5th percentile of available winter time data. The remaining missing values are 

linearly interpolated and finally the resulting seasonal cycle is smoothed by a local regression with weighted linear least 

squares and a 1st order polynomial model. 225 

2.3.2 Plant available Soil Water 

In order to determine the soil water supply for transpiration as a function of vegetation, we define the maximum soil water 

capacity of the 2nd soil layer wSoilmax(2) based on rooting depth and soil water storage capacity data. We include the 

maximum rooting depth by Fan et al. (2017) (RD1), effective rooting depth by Yang et al. (2016) (RD2), maximum soil 

water capacity by Wang-Erlandsson et al. (2016) (RD3) and maximum plant accessible water capacity by Tian et al. (2019) 230 

(RD4). Due to our definition of wSoilmax(2) as maximum plant accessible water, all four data are, theoretically, suitable when 

focusing on spatial patterns. Practically, though, they vary in their definition, underlying approaches, spatial coverage and 

derived spatial pattern. The RD1 and RD2 are based on principles of vegetation optimality and plant adaptation, and RD3 

and RD4 are based on a water-balance perspective but using Earth observations and/or data assimilation techniques. 

Therefore, we employ an approach in which we obtain a linear combination of the four products where the weights of each 235 

product are calibrated during the multi-criteria parameter optimization: 

 

𝑤𝑆𝑜𝑖𝑙𝑚𝑎𝑥⁡(2) = ∑ 𝑠𝑅𝐷(𝑑)
4
𝑑=1 ∙ 𝑅𝐷(𝑑)          (4) 

 

where RD(d) is the data from each data stream d and sRD(d) are the corresponding scaling factors that are calibrated. As RD4 240 

from Tian et al. (2019) is only available for arid to moderately humid vegetated land area and excludes tropical forests (Tian 

et al. 2019), resulting gaps in the study area are filled by the calibration parameter wSoilmax(RD4) prior to scaling RD4. 

2.3.3 Runoff/Infiltration Coefficient 

Finally, vegetation structure also affects the infiltration and runoff generation process as it alters the surface and sub-surface 

characteristics. To reflect this influence, we describe the infiltration/runoff parameter pberg (Eq. 1) as linear function of 245 

vegetation fraction pveg: 

 

𝑝𝑏𝑒𝑟𝑔 = 𝑠𝑏𝑒𝑟𝑔 ⁡ ∙ ⁡𝑝𝑣𝑒𝑔            (5) 

 

where sberg is the calibrated scaling parameter. 250 
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2.4 Model Calibration 

In order to keep computational costs low and to avoid overfitting of model parameters, we perform model calibration for a 

subset of 904 (8%) grid cells. Since model parameters are expected to vary much more in space than in time (between years), 

and due to the rather short time period of available constraints, we build two subsets of data for calibration and validation 

data in the spatial domain rather than in time (spatial split sample approach). Calibration grid cells are chosen by a stratified 255 

random sampling method that maintains the overall proportion of different climate and hydrological regimes defined by 

Köppen-Geiger climate regions (Kottek et al. 2006). 

Since this study focuses on the impact of vegetation and in order to keep the number of calibration parameters low, we do 

not optimize snow related parameters and use the optimized snow parameters from Trautmann et al. 2018. This results in a 

total of 11 calibration parameters for the B model and a total of 16 parameters for the VEG model (Table 2). 260 

In order to constrain different aspects of the water cycle, we use a multi-criteria calibration approach similar to Trautmann et 

al. 2018. The parameters of each model variant are simultaneously optimized against multiple observational constraints, 

including monthly TWS anomalies from GRACE (Wiese et al. 2018), ESA CCI soil moisture (Dorigo et al. 2017), 

evapotranspiration estimates from FLUXCOM-RS ensemble (Jung et al. 2019) and gridded runoff from GRUN (Ghiggi et al. 

2019) (Table 1).  265 

When using observational data sets from several sources, it is essential to consider possible inconsistencies between them 

that arise from their respective characteristics and uncertainties (Zeng et al. 2015, Zeng et al. 2020). Therefore, we derived 

the monthly water (im)balance of the observations following a similar approach as Rodell et al. 2015 (see S10). Although we 

did not find major systematic inconsistencies at the global scale, we take into account each data set’s characteristics and 

uncertainties in model calibration via the cost term at the grid cell level. To this end, we only use grid cells and time steps 270 

with available observations, which vary for the different data streams. To retrieve one cost term per observational constraint, 

we concatenate the time series of all grid cells into a single vector for which costs are calculated. The individual cost terms 

are considered to have the full weight of 1, resulting in a total cost value (𝑐𝑜𝑠𝑡𝑡𝑜𝑡𝑎𝑙) as the sum of individual costs. The total 

cost is then minimized during the optimization process using a global search algorithm, the Covariance Matrix Evolutionary 

Strategy (CMAES) algorithm (Hansen and Kern, 2004). 275 

 

𝑐𝑜𝑠𝑡𝑡𝑜𝑡𝑎𝑙 = ∑ 𝑐𝑜𝑠𝑡(𝑑𝑠)⁡𝑛
𝑑𝑠=1           (6) 

 

where, cost(ds) is the cost for each data stream ds. For TWS, ET and Q, the cost terms are based on the weighted Nash 

Sutcliffe Efficiency (Nash and Sutcliffe, 1970), which explicitly considers the observational uncertainty σ:  280 

 

𝑐𝑜𝑠𝑡⁡ = ⁡
∑

(𝑥𝑜𝑏𝑠,𝑖−𝑥𝑚𝑜𝑑,𝑖)
2

𝜎𝑖
𝑛
𝑖=1

∑
(𝑥𝑜𝑏𝑠,𝑖−⁡𝑥𝑜𝑏𝑠)

2

𝜎𝑖

𝑛
𝑖=1

            (7) 
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where xmod,i is the modelled variable, xobs,i is the observed variable, x̅obs is the average of xobs, and σi is the uncertainty of xobs 

of each data point i. The cost criterion reflects the overall fit in terms of variances and biases, with an optimal value of 0 and 285 

a range from 0-∞. 

Owing to the larger uncertainties of Qobs on inter-annual scales (Ghiggi et al. 2019), we only use the monthly mean seasonal 

cycle, while for the other variables, full monthly time series were used. 

To define σ of ETobs, we utilize the median absolute deviation of the FLUXCOM-RS ensemble. For Qobs, we assume an 

average uncertainty of 50% based on values reported in Ghiggi et al. (2019). For TWSobs, the spatially and temporally 290 

varying uncertainty information provided with the GRACE data is used. Besides, the largest monthly values of TWSobs (< -

500 mm and > 500 mm) were masked out to avoid the effect of outliers on optimization results. Note that these outliers 

represent less than 0.5% of the data, and are mainly located in coastal arctic regions, and are, thus, potentially related to land 

and sea-ice and/or leakage from neighboring grid cells over ocean. Before calculating 𝑐𝑜𝑠𝑡𝑇𝑊𝑆 , the monthly means of 

observed and modelled TWS are respectively removed to calculate anomalies over a common time period 01.01.2002–295 

31.12.2012. 

Since remote sensing-based soil moisture only captures the top few centimeters of soil depth, usually about 5 cm, costwSoil is 

calculated based on the modelled soil moisture in the first soil layer. As the combined ESA CCI soil moisture imposes 

absolute values and ranges from GLDAS-Noah (Dorigo et al. 2015), we use Pearson’s correlation coefficient as costwSoil, and 

focus on soil moisture dynamics that is most reflective of the original remote sensing observation. Only estimates from 300 

01.01.2007 onwards are considered, as data before that period are sparse. Further, costwSoil is calculated from the monthly 

averaged values to circumvent the large noise in the daily data. Thereby, only months with observations available for at least 

10 days are considered. Due to snow cover, the temporal coverage of the product decreases with increasing latitude. 

Therefore, to prevent a bias towards northern summer months, we also exclude grid cells that lack more than 40% of 

monthly estimates. After filtering for missing data, monthly surface soil moisture time series for 56% of the total study area 305 

and 51% of the calibration grid cells are available. 

2.5 Model Evaluation and Analysis 

For model evaluation, we contrast the optimized parameter values and their uncertainties. The relative uncertainty in the 

optimized parameter vector is estimated by quantifying each parameter’s standard error according to Omlin and Reichert 

(1999) and Draper and Smith (1981), similar to Trautmann et al. (2018). 310 

 

For each experiment, the optimized parameter sets are used to produce model simulations for the global study area. Their 

performances are then evaluated using Pearson’s correlation coefficient and the uncertainty weighted Nash-Sutcliff 

efficiency (wNSE) for TWS, ET and Q observations (Eq. 8). The performances are evaluated on local (for each grid cell 

individually), regional and on global scales.  315 
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𝑤𝑁𝑆𝐸⁡ = 1 −⁡
∑

(𝑥𝑜𝑏𝑠,𝑖−𝑥𝑚𝑜𝑑,𝑖)
2

𝜎𝑖
𝑛
𝑖=1

∑
(𝑥𝑜𝑏𝑠,𝑖−⁡𝑥𝑜𝑏𝑠)

2

𝜎𝑖

𝑛
𝑖=1

            (8) 

 

For the regional analysis, we derive 5 hydroclimatic regions by performing a cluster analysis using the spatiotemporal 

characteristics of TWS, ET and Q observations, as well as each grid cell’s latitude. By that, each zone is characterized by 320 

similar seasonal dynamics and amplitudes of the water cycle variables, allowing for a better comparison of regional averages 

than e.g., the commonly used Köppen-Geiger regions which lump regions with very different amplitudes and phasing of the 

water cycle variables. The resulting regions are shown in Fig. 2. Region 1 comprises the snow dominated northern latitudes 

(Cold), while region 2 includes the moderate mid latitudes (Temperate). Very humid and mostly tropical regions are 

combined in region 3 (Humid). Region 4 is characterized by a distinct rain season (Sub-humid), while region 5 includes 325 

semi-arid areas in low latitudes (Semi-arid). Although we hereafter use these hydroclimatic cluster regions for model 

evaluation, the same analysis for Köppen-Geiger climate zones is presented in S11 to facilitate comparison with other 

studies. 

 

 330 

Figure 2 Hydroclimatic cluster regions of the study area (R1 - Cold, R2 - Temperate, R3 - Humid, R4 - Sub-humid, R5 - Semi-

arid), and grid cells that have been excluded from this study (w = water fraction >50%, s = permanent snow and ice cover > 10%, 

a = artificial land cover fraction > 10%, b = bare land surface > 20%, hTWS = direct human impact on the trend in GRACE 

TWS). 

 335 

Finally, we assess the contributions of the four water storage components, wSnow, wSoil, wDeep and wSlow, to seasonal and 

inter-annual variations of the total water storage across spatial scales, i.e., the local grid cell, the regional and the global 
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average. To do so, we apply the Impact Index I following Getirana et al. (2017). The metric describes the contribution C of 

each water storage s as the sum of its absolute monthly anomaly: 

 340 

𝐶𝑠 =⁡∑ |𝑠𝑡 −⁡𝑠̅|⁡
𝑛𝑡
𝑡=1            (9) 

 

Where, 𝑠̅ is the average storage of the timesteps t-nt, with nt = 12 for mean seasonal and nt = 178 for inter-annual dynamics. 

The Impact Index 𝐼𝑠 is then defined as the ratio of each water storage component contribution 𝐶𝑠 to the total contributions 

from all storage components: 345 

 

𝐼𝑠 =⁡
𝐶𝑠

∑ 𝐶𝑠
𝑛
𝑠=1

             (10) 

 

The value of Is range from 0-1, with 0 indicating no impact and 1 indicating full control of all variations. 

3 Results 350 

In the following section we first evaluate both calibrated model variants by comparing their calibrated model parameters and 

by comparing modelled TWS, ET and Q against observations at global, regional and local scale. Subsequently, we show the 

contribution of individual storage components to TWS variability for B and VEG on different spatial and temporal scales. 

3.1 Model Evaluation 

3.1.1 Calibrated Parameters 355 

Table 2 summarizes the calibrated parameters and their uncertainties for the B and VEG model experiments. Overall, 

including varying vegetation characteristics leads to more plausible parameter values after calibration, while in B several 

parameters hit their prescribed bounds. Furthermore, very high parameter uncertainties present in B, that indicate poorly 

constrained values, could be strongly reduced in VEG (S3).  

 360 

For B, pveg suggests that on average only 37% of each grid cell are covered with vegetation globally. This low vegetation 

fraction is counteracted by a high αveg value (2.25), which is much higher than commonly used alpha coefficients of the 

Priestley-Taylor equation of around 1.2 (Lu et al. 2005), to yield good performance of modelled ET (Fig. 3). At the same 

time, a very low fraction of the first soil layer is available for soil evaporation, as kSoil hits its lower bound of 10%. Besides, 

the parameters controlling the drainage from deep and slow water storage (dDeep, dSlow) are high, resulting in a fast drainage, 365 

and effectively discard any influence of these water pools.  
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For VEG, the median vegetation fraction is 73%, leading to a more realistic fraction of soil moisture being available for 

evaporation (kSoil = 0.4), which is similar to the modal value of 0.33 reported by McColl et al. (2017), and a more realistic 

αveg value of 0.92, that effectively leads to the median Priestley-Taylor alpha coefficient of 0.81 (S2). In comparison to B, the 

resulting wSoilmax(2) of VEG with a median value of 52 mm is considerably lower. Its spatial pattern mainly originates from 370 

RD3 (Wang-Erlandsson et al. 2016) and RD4 (Tian et al. 2019) data, while RD1 (Fan et al. 2017) contributes only little and 

RD2 (Yang et al. 2016) data is negligible. The resulting spatial patterns of the maximum soil water capacity from the 

combination of all datasets (S2) are yet consistent with those from other estimates and patterns of rooting depth (e.g., Schenk 

and Jackson (2005)). We note here that the soil water capacity data are favoured over the rooting depth data. This agrees 

with Küçük et al. (2020), who suggest that estimating plant storage capacity based on Earth observation data may be more 375 

suitable than those using optimality principles. Related to the limited size of wSoil, calibration enforces a deeper and a slow 

water storage with reasonable depletion parameters (dDeep, dSlow) in order to match observed TWS variations. By that, the 

considerable low wSoilmax(2) parameter is counteracted by refilling wDeep, which indirectly provides plant accessible water 

via capillary rise. Likewise, kTransp, which describes the fraction of the 2nd soil layer that is available for transpiration, is 

relatively high, as a larger fraction of the small soil water storage needs to transpire to match observed ET. Hence, calibrated 380 

kTransp is higher than empirical values of ET decay between 0.02- 0.08, that are based on assuming 1 soil water pool (Teuling 

et al. 2006). 

 

Table 2 Calibrated model parameters, their description, range and calibrated values for experiments B and VEG. Red fonts 

highlight calibrated values at the predefined parameter bounds. 385 

Parameter Description Units Default 

Value 

Range Calibrated Values ± 

Uncertainty (%) 

     B VEG 

Vegetation Fraction 

𝑝𝑣𝑒𝑔  active vegetation fraction of the grid 

cell 

 0.5 0.3 - 1  0.37 ± 0.05   

𝑠𝐸𝑉𝐼  scaling parameter to derive active 

vegetation fraction from EVI data 

 1 0 - 5   3.89 ± 0.05 

Evapotranspiration 

𝑝𝐼𝑛𝑡  interception storage mm 1 0 - 10 1.0 ± 0.08 0.6 ± 0.02 

𝑘𝑆𝑜𝑖𝑙  fraction of 1st soil layer available for 

evaporation 

 0.5 0.1 - 

0.95 

0.1 ± 0.01 0.4 ± 0.08 

𝛼𝑣𝑒𝑔  alpha parameter of the Priestley-Taylor 

equation 

 1 0.2 - 3 2.25 ± 0.15 0.92 ± 0.00 

𝑘𝑇𝑟𝑎𝑛𝑠𝑝 fraction of soil water available for 

transpiration 

 0.02 0 - 1 0.12 ± 0.32 0.48 ± 1.76 

Infiltration/Runoff 

𝑝𝑏𝑒𝑟𝑔  runoff-infiltration coefficient  1.1 0.1 - 5 1.32 ± 0.02   

𝑠𝑏𝑒𝑟𝑔  scaling parameter to derive the runoff-  3 0.1 - 10   3.08 ± 0.02 
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infiltration coefficient from 𝑝𝑣𝑒𝑔 

Soil Moisture 

𝑤𝑆𝑜𝑖𝑙𝑚𝑎𝑥⁡(2) maximum (available) water capacity of 

the 2nd soil layer 

mm 300 10 - 

1000 

752 ± 0.02   

𝑠𝑅𝐷(1) weight to include maximum rooting 

depth by Fan et al. 2017 

 0.05 0 - 5   0.01 ± 0.00 

𝑠𝑅𝐷(2) weight to include effective rooting 

depth by Yang et al. 2016 

 0.05 0 - 5   0.00 ± 0.00 

𝑠𝑅𝐷(3) weight to include maximum soil water 

storage capacity by Wang-Erlandson et 

al. 2016 

 0.05 0 - 5   0.15 ± 0.06 

𝑠𝑅𝐷(4) weight to include plant available water 

capacity by Tian et al. 2019 

 0.05 0 - 5   0.15 ± 0.07 

𝑤𝑆𝑜𝑖𝑙𝑚𝑎𝑥⁡(𝑅𝐷4) maximum (available) water capacity of 

the 2nd soil layer for grids with missing 

estimates in Tian et al. 2019 

mm 50 0 - 

1000 

  145 ± 0.08 

Deep Soil 

𝑠𝑑𝑒𝑒𝑝  scaling parameter to derive the 

maximum deep soil storage from 

𝑤𝑆𝑜𝑖𝑙𝑚𝑎𝑥⁡(2) 

 0.5 0 - 50 9.1 ± 

461317 

5.6 ± 0.21 

𝑓𝑚𝑎𝑥  maximum flux rate between deep soil 

and the 2nd soil layer 

mm 

d-1 

10 0 - 20 1.5 ± 0.00 5.1 ± 0.01 

𝑑𝐷𝑒𝑒𝑝  depletion coefficient from deep soil to 

delayed water storage 

 0.5 0 - 1 1.0 ± 5.61 0.01 ± 0.00 

Delayed Water Storage 

𝑟𝑓𝑆𝑙𝑜𝑤  recharge fraction of infiltration excess 

into delayed water storage 

 0.5 0 - 1 0.78 ± 1.72 0.68 ± 0.01 

𝑑𝑆𝑙𝑜𝑤  depletion coefficient from delayed 

water storage to slow runoff 

 0.01 0 - 1 1.0 ± 2329 0.02 ± 0.03 

 

3.1.2 Model Performance 

Table 3 contrasts the overall model performance metrics for TWS, ET and Q for the two experiments for the calibration 

subset of 8% grid cells (opti) and the entire study domain (global). The metrics are calculated in the same way as during 

optimization, i.e., by concatenation of the time series of all grid cells into a single vector for which statistics are calculated. 390 

In general, the differences between opti and global, as well as between B and VEG are marginal. For VEG, results mainly 

improve for TWS, and slightly for ET. Although the models were only calibrated for the spatial subset in opti, equally good 

or even better performances are obtained when the calibrated parameters are applied over the entire study domain. This 

suggests that the calibration subset was representative of the entire study domain and the calibration did not overfit model 

parameters.  395 
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Among the variables, the best model performances in terms of wNSE and corr is obtained for ET. While the correlation 

between observed and simulated TWS is high, the overall wNSE is relatively low, which mainly results from higher 

uncertainties in TWSobs and a larger variance error, likely originating from grid cells with low observed TWS variance.  

 

Table 3 Overall model performance metrics in terms of weighted Nash-Sutcliff efficiency (wNSE) and Pearson’s correlation 400 
coefficient (corr) of total water storage (TWS), evapotranspiration (ET) and runoff (Q) in B and VEG experiments for the 

calibration subset (opti) and the entire study domain (global). 

 TWS ET Q 

 wNSE corr wNSE corr wNSE (MSC) corr (MSC) 

 opti global opti global opti global opti global opti global opti global 

B 0.33 0.33 0.69 0.69 0.97 0.97 0.90 0.90 0.63 0.63 0.86 0.86 

VEG 0.38 0.41 0.71 0.72 0.98 0.98 0.90 0.91 0.60 0.57 0.85 0.85 

 

 

Similar to the global metrics, the average mean seasonal cycle of different regions shows an equally good or slightly better 405 

performance of VEG compared to B regarding all variables (Fig. 3). At regional scale (Fig. 4), the general pattern of grid-

wise Pearson correlation is similar for both experiments. However, the difference between the correlation coefficients 

highlights an improvement using VEG for a large proportion of grid cells, and regarding all TWS, ET, and Q (indicated by 

brown color).  

 410 

For TWS, the amplitude at the global scale is well-captured, yet with a phase difference of ~1 month in both model variants, 

where both model variants show an earlier timing of peak storage (Fig. 3). The phase shift is also apparent in the Temperate 

and Cold regions, while the seasonal dynamics in Sub-humid and Humid region is captured well, yet with an underestimation 

of the amplitude. Though differences are small, VEG obtains higher correlation except for the Semi-arid region. At local 

scale, correlation with GRACE TWS is lowest in rather semi-arid grid cells (Fig. 4), where TWS variation is low. However, 415 

including spatial patterns of vegetation improves TWS mainly in these (semi-)arid regions. 

Regarding ET, both experiments reproduce seasonal dynamics in all regions quite well, yet tend to underestimate ET in the 

Semi-arid, Sub-humid and Humid regions, especially in months with low ET (Fig. 3). At grid-scale (Fig. 4), correlation of 

ET is very high, except for tropical regions due to low seasonality. Compared to B, VEG improves correlation here, as well 

as in some (semi-)arid regions such as the Sahel zone and the Western US. 420 

In contrast to ET, performance for Q is generally the best in regions with poorer model performance in terms of ET (Semi-

arid, Sub-humid and Humid regions) (Fig. 3), suggesting a trade-off between the two different observation data streams, i.e., 

the inability of matching both observed fluxes simultaneously. Nonetheless, including varying vegetation characteristics 

improves peak runoff in all regions and reduces the underestimation of Q especially in the Cold region. While the 

improvement of Q simulations in Northern latitudes gets even more obvious at grid-scale, B shows higher correlation with 425 

observations in Africa and the Mediterranean (Fig. 4).  
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Figure 3 Global and regional mean seasonal cycles of total water storage (TWS), evapotranspiration (ET) and runoff (Q) for the B 

and VEG experiments compared to the observational constraints by GRACE (TWS), FLUXCOM (ET) and GRUN (Q). 430 
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Figure 4 Grid-wise Pearson’s correlation coefficient for total water storage (TWS), evapotranspiration (ET) and runoff (Q) 

between 1) observations and B, and 2) observations and VEG, as well as differences between 1) and 2) (brown color, i.e., negative 

values, indicate higher correlations for VEG, while purple color, i.e., positive values, indicate better correlation values for B). 

 435 

3.2  Importance of varying Vegetation Properties to TWS Variability 

In this section, we present the influences of vegetation on TWS partitioning into snow (wSnow), plant-accessible soil 

moisture (wSoil), not directly plant-accessible deep soil water (wDeep) and non-plant-accessible slow water storages 

(wSlow) at different spatial and temporal scales. We first focus on mean seasonal dynamics and continue with the 

contribution of each component to inter-annual TWS variability at local grid-cell and regional scales, respectively, before 440 

presenting the analysis at the global scale.  

3.2.1 Local & Regional Scale 

Figure 5 shows the contribution of individual water storages to mean seasonal TWS variations at local grid-scale. For both B 

and VEG, wSnow has the highest impact in Northern latitudes and high altitudes where snow fall occurs regularly. Locally, 

the contribution of liquid water increases gradually with decreasing latitude and, finally, causes all TWS variations South of 445 
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~45° N. Within the liquid water storages, B attributes nearly all variations to directly plant accessible soil moisture wSoil, 

with an average of 76% over all grid cells. While showing a similar pattern of increasing contribution towards lower 

latitudes, the VEG experiment only has an average of 17% contribution from wSoil. Instead, most variations (40%) are due 

to variability in the deeper soil storage, wDeep. Besides, the average impact of slow water storages wSlow (20%) is 

comparable to that of wSnow (22%) in VEG, though it is spatially much more limited to tropical regions, such as the 450 

Amazon basin.  

Mean seasonal dynamics averaged globally and for different regions are shown in Fig. 6. As indicated by the grid-scale 

results, wSnow dominates TWS variations in the northern Cold region (73% in B, resp. 69% in VEG), and plays a 

considerable role in the Temperate region (28% resp. 26%). For the other regions, B attributes nearly all remaining 

variability to wSoil, while in VEG wDeep has the highest Impact Index (59% in Semi-arid, 50% in Sub-humid and 43% in 455 

Humid).  

 

 

Figure 5 Global distribution of the Impact Index I for the contribution of simulated snow (wSnow), soil (wSoil), deep water storage 

(wDeep) and delayed water storage (wSlow) to the mean seasonal cycle of total water storage, for B and VEG. 460 
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Figure 6 Global and regional average mean seasonal cycles of simulated total water storage and its components for B and VEG, 

including the regional Impact Index I for each storage. 

At the inter-annual scales, the impact of wSnow decreases to 10% (B) respectively 12% (VEG) locally (Fig. 7). For most of 465 

the grid cells, all inter-annual TWS variations are caused by wSoil in B. In VEG however, the deeper soil layer wDeep is 

again the most important storage, with an average Impact Index of 53% for all grid cells. The contribution of wSoil and 

wSlow remain more or less the same as those for seasonal TWS variations.  

Average contributions for different regions and globally (S4) show again that, in B, nearly all inter-annual TWS variability is 

caused by wSoil (87-99%). Only in the Cold region, the impact of wSoil decreases to 69% in the favor of wSnow (31%). 470 

Similar to the local scale, in VEG, wDeep explains > 50% of TWS variability in most regions. Only in the Cold region, the 

contribution of wDeep is similar to wSnow (39% vs. 38%). The contribution of wSoil ranges from 9% (Cold) to 19% (Semi-

arid), while the impact of wSlow is between 16-18% in most regions and increases in Sub-humid (24%) and Humid (34%) 

regions.  

 475 

 

Figure 7 Global distribution of the Impact Index I for the contribution of simulated snow (wSnow), soil (wSoil), deep water storage 

(wDeep) and delayed water storage (wSlow) to the inter-annual variability of total water storage, for B and VEG. 
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3.2.2 Global Scale 480 

Finally, Fig. 8 contrasts the impact of water storage components to the total storage, in B and VEG, at the global scale. As 

with the local and regional scales, including varying vegetation characteristics differentiates the composition of global TWS 

variations drastically. In both experiments, wSnow clearly dominates the spatially aggregated mean seasonal cycle with an 

Impact Index of 71% (B) and 61% (VEG). These contributions are considerably higher than the average local Impact Index 

over all grid cells (B 24%, VEG 22%; Fig. 5). As already seen at local scale, liquid water storages dominate the inter-annual 485 

TWS variability, whereby B and VEG differ in the attribution to different components of the liquid water storage. In B, all 

variations other than wSnow originate from wSoil, but wDeep dominates in VEG. Especially at inter-annual scales, wDeep 

accounts for half of all TWS variations. In contrast to B, in VEG, wSoil only has a minor impact of 7% at seasonal and 13% 

at inter-annual scale. Instead, wSlow has a moderate contribution of 11% (mean seasonal) and. 17% (inter-annual). In 

contrast to the mean seasonal dynamics in which the dominating storages are different at local and global scales, the inter-490 

annual dynamics are consistent across scales with the same storage component dominating at both local and global scale 

(Fig. 5,7,8).  

 

 

Figure 8 Impact Index I for the contribution of simulated snow (wSnow), soil (wSoil), deep water storage (wDeep) and delayed 495 
water storage (wSlow) to the global average mean seasonal cycle and inter-annual variability of total water storage, for B and 

VEG. 

4 Discussion 

In order to address the two main research questions of this study, the following section discusses the above shown 

differences between B and VEG, first regarding model performance and finally regarding the modelled partitioning of TWS. 500 
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4.1 Model Performance 

Both experiments show good performance against the observational constraints, and the differences between B and VEG are 

relatively small at the global scale. However, there are systematic improvements for VEG at the regional and local scale, and 

calibrated parameter values for VEG are more realistic and better constrained. This suggests a more realistic representation 

of fluxes and states in VEG overall. Remaining discrepancies compared to observations can be associated with shortcomings 505 

and uncertainties in the observational data, as well as to the processes that are not represented in the rather simple model 

structure.  

 

The differences in the seasonal phase of global TWS in both model experiments mainly originate from the Temperate and 

Cold regions, and such model simulation differences have been reported previously (Döll et al. 2014, Schellekens et al. 510 

2017, Trautmann et al. 2018). One of the potential reasons is the temporary storage of melt water during spring in rivers and 

other surface water bodies, which occurs coherently over large areas in mid-to-high latitudes (Döll et al. 2014, Schellekens et 

al. 2017, Schmidt et al. 2008, Kim et al. 2009), and which delays the storage decay. In this context, also lateral water 

transport may additionally affect the TWS variations in downstream grid cells. Yet, such processes and conditions are 

neither represented in B nor VEG.  515 

Weaker performance of TWS in (semi-) arid regions is likely mainly due to low observed TWS variations and a low signal-

to-noise ratio (Scanlon et al. 2016). Hence, less weight is also given to those grid cells in the cost component during 

calibration due to their small variations. In addition, alteration by human activities like groundwater withdrawal, dams and 

irrigation to overcome the natural water shortage in such regions as North-East China and the American (Mid-)West can be 

regionally large in relative terms. While we aimed to exclude grid cells with large human impact a priori, we cannot 520 

completely exclude the influence of the aforementioned anthropogenic processes that are not explicitly represented in our 

model experiments. It should, however, be noted that the observational EVI data used in the VEG experiment do have an 

imprint of e.g., irrigated agriculture, as the measured surface reflectance includes the higher vegetation activity due to 

irrigation. The better representation of ET in semi-arid regions due to the EVI constraint contributes to the improved 

simulation of TWS variations in the VEG experiment. 525 

While overall ET performance is good, tropical regions show low correlation. These areas are associated with higher 

uncertainties in the FLUXCOM ET estimates (Jung et al. 2019) due to underlying data uncertainties of the eddy covariance 

observations. Those uncertainties are related to poor station coverage and energy balance closure gap, but also to issues of 

the satellite data inputs caused by cloud coverage. Nonetheless, including varying vegetation characteristics data improves 

simulated ET here, suggesting a better representation of the characteristic highly active vegetation compared to other regions 530 

and to global averages. Besides, VEG improves ET mainly in water supply-limited regions for the reasons already presented 

above for improved TWS performance in (semi-) arid regions. 



23 

 

The trade-off between the performances, in particular in terms of the bias of Q and ET, suggests either larger uncertainties in 

one of the data streams for these regions, inconsistencies between the ET and Q constraints from independent sources, and/or 

model structure deficits. A small tendency to a negative water balance in the consistency checks of the observational data for 535 

these regions (S10) implies either underestimation of the precipitation forcing or overestimation of FLUXCOM ET or 

GRUN Q. Global precipitation datasets tend to underestimate precipitation (Trenberth et al. 2007, Contractor et al 2020) due 

to limitations of the satellite retrieval, gauge measurements and, if combined, the combination method (Fekete et al. 2004). 

Validation of the GPCD 1DD data used in this study showed an underestimation of precipitation in complex terrain and 

regionally during spring and autumn, while precipitation in winter time tends to be overestimated (Huffman et al. 2001). 540 

While we accounted for the latter by reducing snow fall (via a scaling parameter that was calibrated in Trautmann et al. 

2018), we don’t consider potential underestimation in the rainfall forcing. Therefore, precipitation forcing may not provide 

sufficient water input for ET and Q in the model to achieve the magnitudes given by the observation-based products. Lastly, 

some deterioration of performance of Q in VEG may originate from deficiencies in the GRUN product itself which was 

generated with climatic drivers only, disregarding information on spatio-temporal variations in vegetation (Ghiggi et al. 545 

2019). 

The improvement of Q in Northern latitudes is associated with the activation of the slow and delayed storage in the VEG 

experiment with spatial varying parameterization of soil water storage capacity. The relatively low storage capacity in these 

regions facilitates more fast saturation excess runoff. In addition, the slow storage represents better the runoff delay in 

surface water and rivers in these regions that results in improvements of low flow during winter as well as the increase of 550 

runoff during spring (Fig. 3). Such delayed runoff also improves the simulation of peak runoff in the Sub-humid and Humid 

regions.  

The remaining deficiencies in model performance, especially in the Cold region, indicate missing processes in the simple 

model structure. Such processes include freeze/thaw dynamics and permafrost (Yu et al. 2020) as well as ice jam in river 

channels that would increase surface water storage and allow high spring flood (Kim et al. 2009). Besides, snow parameters 555 

have been calibrated against remote sensing-based GlobSnow Snow Water Equivalent that is known to saturate for deep 

snow conditions (Luojus et al. 2014) (see Trautmann et al. (2018)). Although the calibration process considered this 

shortcoming, an underestimation of modelled snow accumulation is possible – leading to an underestimation of peak snow 

pack in winter that would result in an underestimation of runoff due to lower snowmelt in spring. 

 560 

While the VEG experiment presented here considers all 3 aspects of vegetation influences on hydrological processes 

explicitly (see section 2.2.1), we also run experiments that include these aspects separately into model calibration (not 

shown). These analyses found that the largest improvement was obtained when including soil water storage capacity as a 

function of rooting depth and storage capacity data, and a rather low impact when considering the runoff/infiltration 

partitioning as a function of vegetation fraction. This highlights the central role of soil water storages and the importance of 565 

adequately describing soil moisture pattern and dynamics in hydrological models. 
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4.2 Contribution to TWS Variability 

Albeit their global coverage, the above presented results agree with the previous regional study that focused on Northern 

mid-to-high latitudes (Trautmann et al. 2018). Similarly, both model experiments show a dominating role of snow 

accumulation and depletion on global seasonal TWS variability, whereas liquid water storages determine inter-annual TWS 570 

variations. At the same time, the contribution of individual storages to TWS variations differ at the local grid-scale compared 

to when they are averaged over a region or globally. The stronger contribution of snow on spatially aggregated signals can 

be explained by the spatial coherence of snow accumulation over larger areas. Liquid water storages, on the other hand, are 

more spatially heterogeneous, with increasing and decreasing dynamics across regions that cancel out and compensate each 

other when spatially aggregated (Trautmann et al. 2018, Jung et al. 2017). In contrast to the mean seasonal dynamics, the 575 

inter-annual Impact Indices of the storage components at the global scale are similar to the average local Impact Indices (Fig. 

7 and Fig. 8). This suggests that at inter-annual time scales, there is no spatially coherent pattern of one single storage 

component that leads to higher accumulated Impact Indices than the local averages. However, while both experiments agree 

in the general pattern of the impact of snow versus liquid water storages, they systematically differ in the allocation of water 

among liquid storage compartments. In B, all variations other than wSnow originate from directly plant accessible soil 580 

moisture, whereas, in VEG, the deeper soil storage wDeep becomes the most important. Therefore, including observation-

based information on vegetation changes the attribution of TWS variations drastically, while the variations of total TWS 

themselves do not change significantly.  

 

Differences in the composition of TWS variability between B and VEG are effectively reflected in the differences of 585 

calibrated parameters. In B, the directly plant accessible soil water storage is larger, due to a higher effective wSoilmax(2), 

while delayed water storages are ‘turned off’ because of increased drainage (dDeep, dSlow), reducing the variations in wDeep 

and wSlow. Although VEG has been calibrated in the same way with the same observational constraints, calibrated model 

parameters differ as the included data on vegetation characteristics provides complementary information on spatial and 

temporal patterns. Therefore, the resulting calibrated parameters can be assumed to be more realistic. For example, they 590 

enable (delayed) longer-term water storage as well as capillary rise from the deeper soil water storage when the directly plant 

accessible storage dries out. Due to this process, TWS variations are mainly controlled by wDeep in VEG. 

In detail, the increased importance of the indirect plant-accessible storage wDeep in VEG can be related to the limited 

maximum soil water capacity wSoilmax(2) that is constrained by rooting depth/soil water capacity data, and to a higher kTransp 

parameter. The smaller wSoil storage increases percolation to wDeep, but the water is still available when needed due to the 595 

capillary rise from wDeep to wSoil.  

Removing capillary flux from wDeep to wSoil in fact increases the contribution of wSoil to seasonal variability, while the 

impact of wDeep remains high on inter-annual scales (S7). While the contribution of capillary rise to total ET is < 20% for 

most grid cells, it becomes more important in arid‐to‐wet transition regions, e.g., sub‐Saharan Sahel, Savannas, northern 
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Australia and the Indian subcontinent (Fig. 9). These are regions with high precipitation seasonality, where vegetation often 600 

grows deep roots to access deep unsaturated zone storage and groundwater during the dry season. The spatial patterns of ET 

supported by capillary rise agree with the findings of Koirala et al. (2014), who applied the physically-based model 

MATSIRO to investigate the effect of capillary flux to hydrological variables. The spatial patterns are also in line with the 

predicted probability of deep rooting by Schenk and Jackson (2005), and are supported by Tian et al. 2019 who found that 

vegetation remains active long into the dry season in Africa, suggesting that soil-deep soil/groundwater interaction plays a 605 

considerable role. Therefore, the spatial pattern of the interactions of wDeep with wSoil in VEG seems reasonable and our 

results indicate that capillary rise appears to be a process of large-scale relevance.  

While defined as ‘fraction of soil water available for transpiration’, kTransp is an effective decay parameter for the depletion of 

wSoil via transpiration processes under water limited conditions. Plausible values derived from eddy covariance observations 

of ET are in the order of 10-3 – 10-1 (Teuling et al. 2006), similar in magnitude to delay coefficients for baseflow. By 610 

calibrating a model against GRACE TWS, it is difficult to decide whether water leaves the system slowly via ET or by Q 

especially during dry down periods. In B, kTransp is much smaller than in VEG and more consistent with expected 

magnitudes, yet other slow depleting storages are effectively ‘turned off’. In contrast, VEG with additional vegetation data, 

simulates an important slow storage that contributes to Q and also to soil moisture via capillary rise, and has a rather high 

calibrated kTransp. To better understand the implications of parameterising supply limited ET decay in the model we 615 

conducted another experiment where we fixed kTransp in VEG to 0.05 (about the median value of empirically derived kTransp 

from Teuling et al. 2006) and optimized all other parameters again. This caused that most TWS variations originate from 

wSoil, but with less improvement in model performance compared to B (S8). Therefore, TWS decomposition is very 

sensitive to parameters controlling ET under water limited conditions. However, VEG and VEG with fixed kTransp 

qualitatively agree in the importance of the slow water storage in Humid regions, which was also shown by Getirana et al. 620 

(2017). Overall, our results imply that the representation of ET under water limited conditions in the models plays a decisive 

role on the simulated partitioning of TWS in soil moisture and slow water pools. 

The large impact of the role of vegetation and of transpiration water supply within the model is also supported by a 

complementary experiment, in which vegetation parameters were discretized for plant functional type classes and calibrated 

with the same multi-criteria approach (S9). 625 

As with the presented model variants, TWS composition simulated with existing large-scale hydrological models differs 

widely (Scanlon et al. 2018, Schellekens et al. 2017, Zhang et al. 2017). For example, PCR-GLOBWB and W3RA attribute 

seasonal TWS variations in the tropics to groundwater, while other models suggest it is mainly caused by soil moisture. 

Those results are largely dependent on model structure and parametrization, which is potentially a challenge when models 

are used to decompose the integrated GRACE TWS signal, and when implications of different processes and interactions are 630 

drawn. For example, Humphrey et al. (2018) analysed how the CO2 growth rate, a proxy for the land carbon balance 

fluctuations, is affected by inter-annual variations in GRACE TWS, assuming that these represent fluctuations in plant 

accessible water that influence the carbon uptake of land ecosystems. In contrast, our study, along with previous reports, 
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show that a significant proportion of the GRACE TWS signal in tropics is not directly plant accessible soil moisture, but 

deeper soil water and slow storage components. The latter comprises surface water storage, whose importance for TWS 635 

variations in tropical regions has been shown by several studies (e.g., Güntner et al. 2007, Getirana et al. 2017). 

Although VEG can be considered more reliable because of more realistic parameter values and better model performance, 

the current study still has some shortcomings. Despite using a multi-criteria calibration, individual component fluxes and 

states may not necessarily be well constrained. To further improve and solidify conclusions, especially on TWS partitioning, 

more constraints, such as deep soil moisture estimates or high-quality observations of surface water are needed. Furthermore, 640 

spatial constraints for defining the depletion of water storages via ET and Q – either with spatial information on the delay 

parameters (kTransp for ET, dSlow for Q), or for their sub fluxes (transpiration or evaporation, baseflow or direct runoff) would 

be beneficial. In this context, runoff characteristics as the baseflow index or the baseflow recession coefficient provided by 

Beck et al. (2015) are potentially useful to define spatial pattern of the slow runoff component. Besides, a GRACE product 

with daily resolution (Eicker et al. 2020) could enable better decomposition and differentiation of fast and slow storages 645 

whose short-term imprints are lumped in the monthly TWS signal. 

 

Figure 9 Total evapotranspiration (ET) of VEG with capillary flux from the deep soil water storage (left), and difference 

compared to a model version without capillary flux in mm (right map) and as percentage difference (right). 

5 Conclusion 650 

In this study, we investigated the effect of varying vegetation characteristics on global hydrological simulations and in 

particular on the partitioning of TWS variations among snow, plant accessible soil moisture, a deep soil water storage, and a 

slowly varying water pool that represents groundwater, surface and near-surface water storage. To do so, we included 

observation-based continuous vegetation information to parameterize the hydrological processes of evapotranspiration, soil 

water storage and runoff generation in a large-scale hydrological model. With the parsimonious model that was constrained 655 

against multiple observations, we highlight the value of observation-based datasets in constraining model parameters of 

global hydrological models, while maintaining simple model formulations to evaluate the influences of vegetation in the 

global hydrological cycle. 

First, we find that using a multi-criteria calibration approach allows for different model variants to perform relatively well 

despite major differences in model parameterization among them. In fact, even without accounting for dynamics and patterns 660 

of vegetation explicitly, the model performance can be interpreted as reasonable, and more so at the global scale. However, 
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including spatial pattern of vegetation further improved the model performance. For example, large improvements were 

found in supply-limited regions, i.e., (semi-) arid regions (TWS and ET) and in tropical regions (ET), and Q simulations both 

globally and regionally in the Northern hemisphere. Undoubtedly, spatio-temporal variations of vegetation characteristics are 

relevant for regional and global hydrological simulations. 665 

Interestingly, we find that the calibrated parameter values are also more reasonable when the model is fed with the 

vegetation information. In particular, parameter interactions and equifinality were reduced even though the same 

observational constraints were used for calibration. 

Lastly, we show how the representation of vegetation can modulate surface and subsurface hydrological process 

representation in the model, changing the spatial-temporal dynamics of individual storage components while maintaining the 670 

same overall response of total hydrological fluxes and storage variations. With or without accounting for varying vegetation 

characteristics explicitly, seasonal storage variations are dominated by snow at the global scale. However, including varying 

vegetation characteristics drastically changes the attribution of TWS variations among soil moisture, deep soil water and 

slow water storages. Without varying vegetation parameters, the soil moisture effectively controls most of the TWS 

variation, but with varying vegetation characteristics the role of deeper and delayed water storage becomes prominent. In 675 

particular, the representation of water limited ET by the interplay of its sensitivity to soil moisture, maximum plant 

accessible water storage capacity, and interactions with deep soil moisture or groundwater seem to play a decisive role for 

TWS partitioning in the simulations. 

In summary, this study highlights the value of including varying vegetation characteristics to further constrain model 

parameters with a parsimonious model structure. The findings further suggest an important role of groundwater-soil 680 

moisture-vegetation interactions for TWS variations. Since the representation of vegetation related processes in global 

hydrological models seems to be a key factor for controlling TWS partitioning, we emphasizes the need for further studies 

and improvements of global water cycle models with respect to the role of vegetation by utilizing observational constraints 

on ecohydrological functioning in multi-criteria model calibration exercises. 
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