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Author’s response to Referee #1 

First of all, we would like to express our appreciation for the time and effort that Referee #1 has put into the 

review of this manuscript. We thank the reviewer for the suggestions on further literature and on including a 

traditional PFT experiment. The comments and suggestions will help to improve the clarity and quality of this 

manuscript. 

Major Comments 

1)   The current manuscript only used two numerical experiments. One with and another without vegetation. And 

highlight that the VEG is different than the current approach of using plant functional types or land cover 

classes. Nevertheless, the comparison between the VEG and the ‘traditional approach’ is not presented. This 

reviewer suggest the authors to add simulation results of the traditional approach. As such, the add-value of 

using dynamic vegetation can be demonstrated more clearly. 

AC: This is indeed a valid point that we missed to emphasize in the manuscript. Based on the suggestion, we have 

not only clarified it in the text, but additionally performed a PFT experiment in which we define and calibrate the 

vegetation-dependent parameters for different plant-functional type (PFT) classes separately and then analyze 

model performance and TWS composition in comparison to the B and VEG experiments. The results show that 

the larger number of parameters (due to different sets for different PFT) does not lead to sizable improvements 

of model performance, but instead increases parameter uncertainty possibly due to overparameterization. In 

terms of TWS composition, we see substantial differences in the PFT experiment compared to B and VEG, which 

underlines our conclusions that the representation of vegetation in GHMs is critical for interpreting TWS 

variations. 

Based on the GSWP2 land cover classification (Dirmeyer et al. 2006), we consider 12 PFT classes (Fig. 1), for which 

we define individual values of wSoilmax(2) (maximum available water capacity of the 2nd soil layer) and sberg (scaling 

parameter to derive the runoff/infiltration coefficient). Since state-of-the-art global hydrological models (GHMs) 

usually include seasonal dynamics of leaf area index (LAI) to calculate, e.g., transpiration, we decided to keep the 

definition of the active vegetation fraction as a function of seasonal EVI data as in the VEG experiment. Instead, 

we focus on wSoilmax(2) because GHMs usually apply a PFT specific rooting depth, and on sberg because this is similar 

to the runoff coefficient γ which is tuned in some GHMs (e.g., the WaterGAP model (Müller Schmied et al. 2021)).  

Considering these 12 PFT classes increases the number of calibration parameters from 12 (in B) and 16 (in VEG) 

to 34 (in PFT). Analysis of parameter uncertainty shows high uncertainties for a set of parameters common with 

B, while optimized parameter values are between those of B and VEG (Table 1). Additionally, and unlike B and 

VEG, PFT has high uncertainty of wSoilmax(2) for all PFT classes, and high correlation between each PFT’s wSoilmax(2) and 

sberg (Fig. 2). High uncertainty of wSoilmax(2) is an indication that having one wSoilmax(2) per PFT may not explain the 

within-PFT variability. On the other hand, high correlation between each PFT’s wSoilmax(2) and sberg is systematic, as 

both parameters are based on the same spatial distribution of PFT classes - and highlights an advantage of the 

VEG experiment, in which both are based on independent data sets.  
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In terms of model performance, Fig. 3 shows a partial improvement for wTWS and ET in the PFT experiment. 

Especially in the Humid and Sub-humid regions, wTWS simulation in PFT matches GRACE observations better. 

They include tropical regions, where data for maximum plant available water capacity by Tian et al. 2019 (RD4), 

which got the largest weight in the VEG experiment, is not available. Note that we filled the missing values for 

tropical regions with the same wSoilmax(RD4) value as in the Northern latitudes. Better performance in the PFT 

experiment suggests a shortcoming of the vegetation implementation in VEG, where at least 2 different wSoilmax(RD4) 

fill values seem necessary for different climate regions. In contrast to wTWS and ET, PFT performance of Q is 

poorer than in B and VEG, with a clear underestimation of the seasonal variability. To consider model 

performance in relation to the number of calibration parameters, we calculated the Akaike information criterion 

(AIC). Since low values of AIC indicate better performance compared to the other experiments, PFT only performs 

superior regarding ET, while the increased number of model parameters isn’t advantageous regarding wTWS and 

Q simulations. Also, note that the increased number of model parameters comes at an additional computational 

cost. 

Further, changing the representation of vegetation changes the simulated TWS composition (Fig. 4-6), as the 

contribution to TWS variability differs between experiments. In PFT, among the liquid water storages wSoil 

contributes most to mean seasonal TWS variability, with Impact Index values between those of B and VEG (Fig. 

4, Fig. 6). Compared to VEG, wSlow is in general less important in PFT, while wDeep has a less impact on mean 

seasonal TWS, but it’s contribution to inter-annual TWS variability increases.  

All in all, this analysis underlines that including continuous fields of vegetation parameters is preferable than the 

‘traditional’ PFT-based approaches of defining parameters for distinct PFT classes (and their calibration) - in terms 

of model calibration and the uncertainty of calibrated model parameters, but also regarding model performance 

in relation to the number of model parameters. Further we could highlight that the representation of vegetation 

in hydrological models is crucial for the partitioning of simulated TWS.  

We will include this analysis in detail in the supplement of the revised manuscript, and include the major findings 

in the discussion of the main text. 

 

Figure 1: Classes of plant functional type used in the PFT experiment. (Sea (PFT0); Ice=Continental Ice (PFT1); BEF=Broadleaf Evergreen 
Forest (PFT2); BDF=Broadleaf Deciduous Forest & Woodland (PFT3); MixedF=Mixed Coniferous & Broadleaf Deciduous Forest & 
Woodland (PFT4); CF= Coniferous Forest & Woodland (PFT5); DF=High Latitude Deciduous Forest & Woodland (PFT6); WGrass= 
Wooded C4 Grassland (PFT7); Shrubs=Shrubs & Bare Ground (PFT8); Tundra (PFT9); Cult=Cultivation (PFT10); Desert (PFT11)).  
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Table 1: Calibrated parameter values and their uncertainty for B, VEG and PFT. Red font indicates a calibrated parameter that hits the 

parameter bounds, and red background indicates parameter uncertainty ≥ 20%. 

parameter calibrated values ± uncertainty 
 B VEG PFT 

vegetation fraction 

pveg 0.37 ± 0.05     

sEVI  3.89 ± 0.05 3.75 ± 0.03 

evapotranspiration 

pint 1 ± 0.08 0.6 ± 0.02 0.71 ± 0.02 

kSoil 0.1 ± 0.01 0.4 ± 0.08 0.27 ± 0.04 

αveg 2.25 ± 0.15 0.92 ± 0.00 0.87 ± 0 

kTransp 0.12 ± 0.32 0.48 ± 1.76 0.5 ± 4.32 

deep soil 

sDeep 9.1 ± 461317 5.6 ± 0.21 8.48 ± 0.24 

fmax 1.5 ± 0.00 5.1 ± 0.01 11.77 ± 0.02 

dDeep 1 ± 5.61 0.01 ± 0.00 0.03 ± 0 

delayed water storage 

rfSlow 0.78 ± 1.72 0.68 ± 0.01 0.62 ± 0.05 

dSlow 1 ± 2329 0.02 ± 0.03 0.03 ± 0.19 

infiltration/runoff 

pberg 1.32 ± 0.02     

sberg   3.08 ± 0.02   

sberg_PFT0     3.7 ± 0.45 

sberg_PFT1     3.11 ± 0.32 

sberg_PFT2     1.87 ± 0.01 

sberg_PFT3     2.57 ± 0.09 

sberg_PFT4     2.04 ± 0.03 

sberg_PFT5     4.31 ± 0.05 

sberg_PFT6     0.5 ± 0.01 

sberg_PFT7     2.9 ± 0.03 

sberg_PFT8     0.48 ± 0.01 

sberg_PFT9     0.69 ± 0.01 

sberg_PFT10     1.36 ±0.01 

sberg_PFT11     2.5 ± 0.11 

soil moisture 

wSoilmax(2) 752 ± 0.02     

sRD(1)   0.01 ± 0.00   

sRD(2)   0 ± 0.00   

sRD(3)   0.15 ± 0.06   

sRD(4)   0.15 ± 0.07   

wSoilmax(RD4)   145 ± 0.08   

wSoilmax_PFT0     1.57 ± 8.94 

wSoilmax_PFT1     0.78 ± 10.23 

wSoilmax_PFT2     1.01 ± 0.41 

wSoilmax_PFT3     1.27 ± 1.42 

wSoilmax_PFT4     0.5 ± 0.5 

wSoilmax_PFT5     0.54 ± 0.32 

wSoilmax_PFT6     0.85 ± 2.53 

wSoilmax_PFT7     01.01 ± 0.57 

wSoilmax_PFT8     1.45 ± 2.72 

wSoilmax_PFT9     0.56 ± 1.07 

wSoilmax_PFT10     0.39 ± 0.2 

wSoilmax_PFT11     0.7 ± 3.23 
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Figure 2: Correlation of calibrated parameters for the PFT experiment. Shown are only correlation coefficients |r|≥0.5.  

 

 

Figure 3: Global and regional mean seasonal cycles of total water storage (wTWS), evapotranspiration (ET) and runoff (Q) for the B, 

VEG and PFT experiments compared to the observational constraints by GRACE (wTWS), FLUXCOM (ET) and GRUN (Q). For each, the 

Pearson correlation (r²) and Akaike information criterion (AIC) are calculated to compare model performance in terms of seasonal 

dynamics and of mean standard error in relation to the number of calibration parameters.   
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Figure 4: Global distribution of the Impact Index, I, for the contribution of simulated snow (wSnow), soil (wSoil), deep water storage 

(wDeep) and delayed water storage (wSlow) to the mean seasonal cycle of total water storage, for B, VEG and PFT.  

 

 

Figure 5: Global distribution of the Impact Index, I, for the contribution of simulated snow (wSnow), soil (wSoil), deep water storage 

(wDeep) and delayed water storage (wSlow) to the inter-annual variability of total water storage, for B, VEG and PFT.  
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Figure 6: Impact Index, I, for the contribution of simulated snow (wSnow), soil (wSoil), deep water storage (wDeep) and delayed water 

storage (wSlow) to the global average mean seasonal cycle and inter-annual variability of total water storage, for B, VEG and PFT. 

 

2)   It is to note that some studies (see below and some literatures mentioned in the attachment) have dealt with 

the impact of dynamic vegetation on land surface processes, land-atmosphere interactions, etc. please help 

to discuss your novelty vs. what has been done. 

 Weiss, M., van den Hurk, B., Haarsma, R. et al. Impact of vegetation variability on potential predictability 

and skill of EC-Earth simulations. Clim Dyn 39, 2733–2746 (2012). https://doi.org/10.1007/s00382-012-

1572-0 

 BO Christoffersen, N Restrepo-Coupe, MA Arain …, Mechanisms of water supply and vegetation demand 

govern the seasonality and magnitude of evapotranspiration in Amazonia and Cerrado, Agricultural and 

Forest meteorology, 2014 https://doi.org/10.1016/j.agrformet.2014.02.008 

 Weiss, M., Miller, P. A., van den Hurk, B. J. J. M., van Noije, T., Åž tefÄƒ nescu, S., Haarsma, R., van Ulft, L. 

H., Hazeleger, W., Le Sager, P., Smith, B., & Schurgers, G. (2014). Contribution of Dynamic Vegetation 

Phenology to Decadal Climate Predictability, Journal of Climate, 27(22), 8563-8577. 

Also, this reviewer felt that the background/literature review part could be enhanced by citing some similar 

studies on using spatial information for model calibration, for example, those below. 

 Ruiz-Pérez, G., Koch, J., Manfreda, S., Caylor, K., and Francés, F.: Calibration of a parsimonious distributed 

ecohydrological daily model in a data-scarce basin by exclusively using the spatio-temporal variation of 

NDVI, Hydrol. Earth Syst. Sci., 21, 6235–6251, https://doi.org/10.5194/hess-21-6235-2017, 2017. 

 Su, Z., Zeng, Y., Romano, N., Manfreda, S., Francés, F., Ben Dor, E., ... Mannaerts, C. (2020). An integrative 

information aqueduct to close the gaps between satellite observation of water cycle and local 

sustainable management of water resources. Water, 12(5), 1-36. [1495]. 

https://doi.org/10.3390/w12051495 
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AC: We thank the Referee for a comprehensive suggestion on literature that helps to improve the background 

and clarify the motivation of our study. Following the suggestions, we will definitely include the references and 

adapt the introduction of the manuscript as follows: 

[...The significance of interactions between vegetation and soil moisture are at the heart of ecohydrology 

(Rodriguez-Iturbe et al., 2001) and have become evident in many theoretical and experimental studies...] 

Many studies analyzed effects of water availability on vegetation functioning (Porporato et al., 2004; 

Reyer et al., 2013; Wang et al., 2001; Yang et al., 2014), and the effect of changing vegetation cover on 

ecosystem water consumption (Du et al. 2021). While large-scale hydrologic models usually apply 

simplified and static vegetation characteristics (Quevedo et al. 2008, Weiss et al. 2012, Telteu et al. 

2021), spatio-temporal variations of vegetation pattern are vital for good predictions of available water 

resources (Andersen et al. 2008).  On ecosystem scale, Xu et al. 2016 showed the advantage of 

accounting for different plant hydraulic traits in an ecosystem model. And on a global scale, e.g., Weiss 

et al. 2012 showed the positive influence on modelled evaporation when replacing static vegetation 

characteristics by monthly LAI estimates in a climate model.  

However, how the representation of vegetation affects global water storages and in particular the 

partitioning of TWS in large-scale hydrological models has received little attention so far.  

[...] 

Regarding the suggested literature on model calibration, we will include the suggested references and adapt the 

introduction in the revised manuscript as follows: 

[...] This uncertainty of the available tools to interpret TWS variations is clearly a major obstacle for 

diagnosing and understanding global changes of the water cycle, which is increased by differing model 

structures and grown complexity of existing GHMs. 

To improve model performance and reliability, hydrological models are traditionally calibrated against 

measured discharge time series at the outlet of catchments (Müller Schmied et al. 2021). However, 

discharge provides an integrated response of the catchment but not explicit evaluation of within-basin 

spatial heterogeneities. Therefore, the use of spatio-temporal data, e.g., from remote sensing, for model 

calibration has been suggested (Su et al, 2020). In fact, while a potential of using spatio-temporal data, 

of e.g., NDVI, could be shown at the catchment scale (Ruiz-Perez et al. 2017), many GHMs still have a 

limited usage of such data to calibrate model parameters. The most common approaches are still limited 

to tuning runoff-dependent model parameters against discharge observations of large catchments 

(Telteu et al. 2021).  Some large-scale studies have shown clear improvements in model performance 

when a larger number of observational constraints are used to constrain the model parameters, 

especially when using terrestrial water storage variations from GRACE (e.g., Lo et al. 2010, Rakovec et al. 

2016, Bai et al. 2018, Mostafaie et al. 2018, Trautmann, 2018). Among them, Trautmann et al. 2018 

…contributed important insights in the drivers of TWS variations across spatial and temporal scales in 

northern high latitudes, [...] 
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3)   One major concern of this reviewer is that the use of various products for model calibration are not necessarily 

consistent. At least, the consistency issue should be checked and discussed before their use here. Sometimes, 

certain bias-correction might be needed to make various products consistent, before using them with the 

multi-criteria calibration approach. This reviewer also noticed that the author discussed a bit this in the 

discussion. Nevertheless, it is not fully clear how the inconsistency between different products will impact the 

output of the multi-criteria calibration. 

AC: The Referee is right, inconsistency between the observational constraints is always an issue regardless of 

their usage in observation-based synthesis or as a data stream for model calibration. We would like to emphasize 

that this has been, at least partially, considered in the study. For example, we include the uncertainty of each 

data stream and focus on the most important and reliable patterns of each data stream in model calibration. For 

instance, we consider only the mean seasonal cycle of GRUN runoff due to its larger uncertainties reported on 

inter-annual scales (Ghiggi et al. 2019). Likewise, we focus on soil moisture dynamics instead of absolute values 

by using the Pearson’ correlation coefficient as calibration criterion and further trim the considered soil moisture 

data. 

Nevertheless, following the Referee’s suggestion, we further assess possible inconsistencies between the 

different data products. Similar to the suggested study by Rodell et al. 2015 (see minor comment 9), we 

calculated the monthly water (im)balance, WB, from the observations for the period 01/2004-11/2010 (the time 

period in which none of the observation data has missing monthly values):  

 

WB = PGPCP1DD - ETFLUXCOM - QGRUN - dSGRACE       Eq. (AC1) 

 

with ideally WB = 0.  

Fig. 7 shows the average monthly water imbalance scaled by each grid’s average monthly precipitation PGPCP1DD. 

While regionally large differences exist, the global mean and median are around 0. The global mean value of 

- 0.05 corresponds to a water balance residual of ~ 5% of precipitation - which is similar to the global residual of 

4.3 % of precipitation reported in Rodell et al. 2014. Also temporally, the global average (Fig. 8) varies around 0, 

suggesting no major systematic inconsistency at the global scale, yet with a small imbalance with a tendency to 

negative values. This suggests that more water leaves the system than comes in when looking at the 

observational data. In comparison, there’s obviously no imbalance when water balance is calculated with 

simulations from B and VEG, as they are based on water balance assumptions - which represents the major 

advantage of using models instead of observational based data from different sources. 

We also calculated each variable in Eq. (AC1) by solving the water balance with the other observed components 

and compared the resulting water-balance-derived variable with the actual observed one. Differences between 

both indicate inconsistencies between a particular observed variable and the remaining observational variables. 

For ET, Q and wTWS, we additionally plot the modelled fluxes and storage changes from B and VEG to evaluate 

the effect of observational inconsistencies on model simulations (Fig. 8). The modelled fluxes are smoother and 

closer to the observations than the same estimate of the variable from the water balance. Therefore, we find 

that the model allows to potentially bridge the inconsistencies between the different data products. However, 

for dS, B and VEG show a time shift compared to the observed storage change, that isn’t reflected in dS calculated 

from P, ET and Q observations. Accordingly, this underlines that the phase lag between observed and modelled 
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TWS variations is not caused by data inconsistencies, but rather related to the potential deficiencies in the model 

structure, as already discussed in the manuscript. 

Fig. 9 compares the residuals of observed and simulated flux/storage change (mod-obs), and the ones of 

observed and water-balance derived variables (WB-obs). Large residuals between observed and water-balance 

derived variables point again to data inconsistencies of an observed variable with the remaining ones. When the 

residuals WB-obs and mod-obs in a region agree, it implies that the multi-criteria calibration approach prevents 

overfitting of the model(s) to an observed variable that is inconsistent with the remaining observed variables. 

Therefore, the model performance in these regions might be relatively poor against the inconsistent data stream, 

which is in fact a desirable behavior in the model calibration (e.g., ET in the Semi-arid region and dS in Temperate 

and Humid region).  

When the residuals of mod-obs are considerably smaller than WB-obs, the model fits an observed variable well 

although it is inconsistent with the remaining observed variables (e.g., Q and dS in the Semi-arid region). Further, 

when the residuals of mod-obs are large but WB-obs doesn’t indicate data inconsistencies, it points to issues 

related to model structure and parameter identifiability (e.g., Q in the Cold region, where the model(s) lacks the 

representation of permafrost, freeze/thaw dynamics and ice jam in rivers). 

 

We will include these findings in the discussion of the revised manuscript and include the presented results in 

the supplement.  

 

Figure 7: Mean water imbalance scaled by mean precipitation.  
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Figure 8: Global average time series of the water imbalance calculated from the observations (top row), and of water balance variables 

calculated from the other observations by resolving the water balance equations (from obs) vs the observed variable (obs) vs the 

simulated variable of the B and VEG simulations.  
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Figure 9: Global and regional mean seasonal cycle of the difference between observations and simulations from B and VEG, as well as 

difference between observed variable and the variable calculated via the water balance from the other observations, for ET, Q and dS. 

 

Minor Comments 

1) Line 46: It is worthwhile to mention that there are satellite-based root zone soil moisture products, using either 

data assimilation approach or analytical relationships between surface SM and root zone SM. 

  Reichle, R. H. , De Lannoy, G. J. M. , Liu, Q. , Ardizzone, J. V. , Colliander, A. , Conaty, A., Crow, W. , Jackson, 

T. J. , Jones, L. A. , Kimball, J. S. , Koster, R. D. , Mahanama, S. P. , Smith, E. B. , Berg, A. , Bircher, S. , Bosch, 

D. , Caldwell, T. G. , Cosh, M. , Holifield Collins, C. D. , Jensen, K. H. & 17 others, 2017, Assessment of the 

SMAP Level-4 Surface and Root-Zone Soil Moisture Product Using In Situ Measurements, Journal of 

hydrometeorology. 18, 10, p. 2621-2645 

 Zhuang, R., Zeng, Y., Manfreda, S., & Su, Z. (2020). Quantifying long-term land surface and root zone soil 

moisture over Tibetan Plateau. Remote sensing, 12(3), 1-20. [509]. https://doi.org/10.3390/rs12030509 

 AC: We agree with the Referee and will include the suggested references in the introduction as follows: 

[...remote sensing-based estimates of soil moisture only capture depths up to 5 cm and do not necessarily 

reflect the moisture availability in the deeper soil column (Dorigo et al., 2015)]  

While these observations can be extrapolated to derive estimates of root zone moisture, either by using 

statistical relationships (Zhuang et al. 2020) or by data assimilation into land surface models (Reichle et 

al. 2017, Martens et al. 2017), such products rely on the applied model. 

[Therefore, GHMs are necessary to interpret TWS variations…] 
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2) Line 74: This reviewer think this is not under-studied. For example, see below refs. 

 Xu, X. T., Medvigy, D., Powers, J. S., Becknell, J. M. & Guan, K. Y. Diversity in plant hydraulic traits explains 

seasonal and inter-annual variations of vegetation dynamics in seasonally dry tropical forests. New 

Phytologist 212, 80-95, doi:10.1111/nph.14009 (2016) 

 Du, L., Zeng, Y., Ma, L., Qiao, C., Wu, H., Su, Z. and Bao, G.: Effects of anthropogenic revegetation on the 

water and carbon cycles of a desert steppe ecosystem, Agric. For. Meteorol., 300, 108339, 

doi:10.1016/j.agrformet.2021.108339, 2021 

[... the inverse pathway of how vegetation properties influence dynamics of water pools and the 

partitioning of TWS in large scale models has received surprisingly little attention. …] 

AC: The authors thank the Referee for highlighting these studies. We agree that the formulation of this sentence 

was not appropriate. We adjust the paragraph and will clarify that we refer to global studies as written in the 

author's response to major comment 2).  

 

3) Line 83: why not add one more experiment to reflect the current/traditional approach in most of ESMs? 

AC: This is a very good suggestion. We have performed an experiment that is much more comparable to the 

traditional approach. Please refer to the detailed response in major comment 1). 

 

4) Line 96: This is very short section of 'method'. 

AC: The referee is correct. The section numbering got mixed up. As Referee #3 also suggested, it should be 

2. Methods, 2.1. Overview and then continue with 2.3 Model Description. We will correct the section numbering 

accordingly. 

5) Line 126: This reviewer believes this part of model description can be summarized with a paragraph with key 

characteristics, and then put the rest of detailed description to the appendix. 

AC: We agree that the model description is quite long and detailed and summarizing it would improve the flow. 

However, we think that some of the equations, especially those that are ‘changed’ in the VEG experiment, are 

better suited in the main text, as they help to explain the model’s behavior and to clarify the differences between 

(contributions of) water storages. We, therefore, will shorten the model description and only include the major 

equations in the revision. The revised model description section would read as follows: 

2.3 Model Description 

The conceptual hydrological model is forced by daily precipitation, air temperature and net radiation 

(Table 1). It includes a snow component (see Trautmann et al. (2018)), a 2-layer soil water storage (wSoil), 

a deep soil water storage (wDeep) and a delayed, slow water storage (wSlow). The schematic structure 

of the model is shown in Fig. 1 and calibration parameters are explained in Table 2. 

Depending on air temperature (Tair), precipitation (Precip) is partitioned into snow fall (Snow), that 

accumulates in the snow storage (wSnow), and rainfall (Rain), that partly is retained in an interception 
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storage. Interception throughfall together with snow melt are distributed among soil through infiltration 

and infiltration excess depending on the ratio of actual soil moisture and maximum soil water capacity 

following Bergström 1995:  

 

𝐼𝑒𝑥𝑐 = 𝐼𝑖𝑛 . [
∑ 𝑤𝑆𝑜𝑖𝑙(𝑙)2
𝑙=1

∑ 𝑤𝑆𝑜𝑖𝑙max⁡(𝑙)

2

𝑙=1

]

𝑝𝑏𝑒𝑟𝑔

         (1) 

 

where, Iexc is the infiltration excess, IIn is the incoming water from throughfall and snow melt, wSoil(l) is the 

soil moisture and wSoilmax(l) the maximum soil water capacity of each soil layer l, and pberg is a global 

calibration parameter. 

Part of the infiltration excess then replenishes a delayed water storage (wSlow), that acts as a linear 

reservoir and generates slow runoff (Qslow). The remaining infiltration excess represents fast direct runoff 

(Qfast).  Qfast and Qslow together represent total runoff Q, that flows out of the system, i.e., grid cell. 

Infiltrated water is distributed among 2 soil layers following a top-to-bottom approach, where the 

maximum capacity of the first soil layer is prescribed as 4 mm, in order to match the tentative depth of 

satellite soil moisture observations, while the storage capacity of the 2nd soil layer is a calibration 

parameter (wSoilmax(2)). The 2nd soil layer is connected with a deeper water storage (wDeep). The size of 

wDeep is defined as a multiple of wSoilmax(2) by the calibrated scaling parameter sdeep. Depending on the 

moisture gradient between the two storages, water either percolates from the 2nd soil layer to the 

deeper soil, or it rises from the deeper storage into the 2nd soil layer, limited to a maximum flux rate. 

The deeper storage therefore acts as a storage buffer that linearly discharges further to the delayed 

water storage (wSlow). The wSlow, which also receives part of the infiltration excess, is thus 

representative of all delayed storage components.  

Evapotranspiration (ET) is represented by a demand-supply approach that is driven by a potential ET 

demand following Priestley-Taylor, and is limited by the available soil moisture supply. The ET is 

partitioned into interception evaporation (EInt), bare soil evaporation from the first soil layer (ESoil) and 

plant transpiration from the two soil layers (ETransp). Interception and plant transpiration are only calculated 

for the vegetated fraction of each grid cell, while bare soil evaporation is limited to the non-vegetated 

fraction of each grid. 

While water in wSoil is directly available for ET, wDeep is only indirectly accessible by capillary rise, and 

the water stored in wSlow is not plant-accessible. Total water storage is the sum of all water storages, 

including wSnow, wSoil, wDeep and wSlow. Although groundwater and surface water storages are not 

implemented explicitly, they are effectively included in wDeep and wSlow, especially after calibration of 

associated storage parameters against GRACE TWS. 

 

6) Line 202: this could be another subsection, and not necessarily under the section of 'model description'. 

AC: Thank you for the suggestion. We put 2.2.1 Including Vegetation characteristics as a subsection of 2.2 Model 

Description, because it describes the (VEG) model as well. Referee #3 made a similar suggestion. In order to 
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reduce the large numbers of sections and subsections, we will follow the suggestion and separate the sections 

2.2 Model Description and 2.3 Including Vegetation characteristics. 

 7) Line 207: Do you know the below literature? 

 Ruiz-Pérez, G., Koch, J., Manfreda, S., Caylor, K., and Francés, F.: Calibration of a parsimonious distributed 

ecohydrological daily model in a data-scarce basin by exclusively using the spatio-temporal variation of 

NDVI, Hydrol. Earth Syst. Sci., 21, 6235–6251, https://doi.org/10.5194/hess-21-6235-2017, 2017. 

AC: This is a good point and we thank the Referee for suggesting this reference.  We will include it in the 

introduction as also suggested in major comment 2) above. 

8) Line 257: it is not clear how the p_berg is used to partition infiltration/runoff. 

AC: pberg is the runoff/infiltration coefficient that partitions incoming water, e.g., from throughfall and snow melt, 

into infiltration and infiltration excess (i.e., land surface runoff) based on the relative saturation of soil moisture, 

as shown in Eq. (1) of the manuscript. For a given maximum soil water capacity, pberg = 1 means a linear relation 

between soil water saturation and the amount of incoming water that runs off: if the soil water pool is empty, 

most of the water infiltrates, whereas there is more infiltration excess when the soil is relatively saturated (see 

Fig. 10). Due to the exponential formulation of Eq. (1), pberg <1 allocates a higher fraction of the incoming water to 

infiltration excess even if the soil water pool is nearly empty. On the contrary, pberg >1 allows a large fraction of 

incoming water to infiltrate into the soil water pool when soil saturation is already high. 

  

Figure 10: Relationship between relative soil saturation (wSoil/smax) and the fraction of infiltration excess (Qoverflow/WBP) as 

defined by different values of pberg. Infiltration is then calculated as WBP-Qoverflow (WBP = Water Balance Pool, i.e. incoming water 

from rain fall and snow melt; Qoverflow = infiltration excess). 
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9)  Line 273: It is not clear how consistent they are with each other, before using these observations as constraints. 

This reviewer think the consistency issue (see below refs.) among different products needs to be addressed 

before the use of them to constrain other models. At least, some discussions should be focused on this 

perspective. Also, please help to discuss how different products can affect your results, discussions, and 

conclusions. 

 Zeng Y., Z. Su, J.-C. Calvet, T. Manninen, E. Swinnen, J. Schulz, R. Roebeling, P. Poli, D. Tan, A.Riihelä, C.-

M. Tanis, A.-N. Arslan, A. Obregon, A. Kaiser-Weiss, V. John, W. Timmermans, J.Timmermans, F. Kaspar, 

H. Gregow, A.-L. Barbu, D. Fairbairn, E. Gelati, C. Meurey, (2015) Analysis of current validation practices 

in Europe for space-based Climate Data Records of Essential Climate Variables, International Journal of 

Applied Earth Observations and Geoinformation, Vol 42, pp: 150-161, DOI: 0.1016/j.jag.2015.06.006 

 Zeng Yijian, Zhongbo Su, Iakovos Barmpadimos, Adriaan Perrels, Paul Poli, K. Folkert Boersma, Anna Frey, 

Xiaogang Ma, Karianne de Bruin, Hasse Goosen, Viju John, Rob Roebeling, Joerg Schulz, Wim 

Timmermans, 2019, Towards a Traceable Climate Service: Assessment of Quality and Usability of 

Essential Climate Variables, Remote sensing, 11(10), 1-28. [1186]. https://doi.org/10.3390/rs11101186 

There are also a study below indicating how to evaluate water cycle products consistently: 

 Rodell, M., Beaudoing, H. K., L’Ecuyer, T. S., Olson, W. S., Famiglietti, J. S., Houser, P. R., Adler, R., 

Bosilovich, M. G., Clayson, C. A., Chambers, D., Clark, E., Fetzer, E. J., Gao, X., Gu, G., Hilburn, K., Huffman, 

G. J., Lettenmaier, D. P., Liu, W. T., Robertson, F. R., Schlosser, C. A., Sheffield, J. and Wood, E. F.: The 

observed state of the water cycle in the early twenty-first century, J. Clim., 28(21), 8289–8318, 

doi:10.1175/JCLI-D-14-00555.1, 2015. 

AC: We thank the Referee for raising a very important issue and suggesting suitable literature. As described in 

the response to major comment 3), we have considered the potential inconsistency issue, and provided an 

additional analysis based on the methodology from Rodell et al. 2015. In addition, in the revised manuscript, we 

will highlight the need to consider individual uncertainties and (processing) characteristics of each data set when 

interpreting the data by including the following paragraph: 

[...] The parameters of each model variant are simultaneously optimized against multiple observational 

constraints, including monthly TWS anomalies from GRACE (Wiese et al. 2018), ESA CCI Soil Moisture 

(Dorigo et al., 2017), evapotranspiration estimates from FLUXCOM-RS ensemble (Jung et al., 2019) and 

gridded runoff from GRUN (Ghiggi et al., 2019) (Table 1) [..] 

When using observational data sets from varying sources, it is essential to take into account the data’s 

characteristics and uncertainties (Zeng et al. 2015, Zeng et al. 2020). Therefore, we calculate a cost term 

for each of the observational constraints, that considers the data’s specific strengths and uncertainties, 

[…] 

10)  Line 311: There are several thresholds used to 'trim down' the study area for calibration. It would be nice to 

show all these percentages in one common map. 

AC: We thank the Referee for this suggestion and agree that such a map would improve clarity on which grid 

cells were considered in the analysis and contributed to the results. Accordingly, we modified Figure 2 of the 

https://doi.org/10.3390/rs11101186
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manuscript by indicating cells that have not been included according to the different criteria explained in the 

figure caption (see Fig. 11). 

 

Figure 11: Hydroclimatic cluster regions of the study area (R1 - Cold, R2 - Temperate, R3 - Humid, R4 - Sub-humid, R5 - Semi-arid), and 

grid cells that have been excluded from this study (w = water fraction >50%; s = permanent snow and ice cover > 10%; a = artificial land 

cover fraction > 10%; b = bare land surface > 20%; hTWS = direct human impact on the trend in GRACE TWS). 

 

11)  Line 371: mode ? 

AC: Here we refer to the modal value of the fraction of soil moisture that’s available for evaporation, as reported 

in McColl et al. 2017. We thank the referee for pointing to this unclear expression. To improve the clarity, we will 

replace ‘mode’ by ‘modal value’ in the revised manuscript. 

  

 12) Line 381: Although it is understandable that the discussion linked to rooting depth is limited to the model 

structure, it is still worthwhile to discuss the combined control of precipitation and groundwater depth on 

rooting depth in various climate zones. See below ref: 

 Hydrologic regulation of plant rooting depth Ying Fan, Gonzalo Miguez-Macho, Esteban G. Jobbágy, 

Robert B. Jackson, Carlos Otero-Casal Proceedings of the National Academy of Sciences Oct 2017, 114 

(40) 10572-10577; DOI: 10.1073/pnas.1712381114 

AC: We thank the Referee for this suggestion and will include the combined control on rooting depth in the 

introduction as follows: 

[...] For example, vegetation promotes infiltration over surface runoff due to larger surface roughness, 

dampened precipitation intensities, more soil macro pores due to rooting and biological activity. In fact, 

such roles of vegetation in a global climate model were already envisioned and evaluated almost 4 

decades ago (Rind, 1984).  
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Besides, vegetation alters soil properties like soil texture and organic matter content. Such soil properties 

together with the plant’s rooting depth control the size of the soil moisture reservoir that is available for 

ET, and how plants respond to drought stress conditions (Baldocchi et al., 2021;Yang et al., 2020). 

However, roots not only determine water supply for transpiration, but deep roots connect groundwater 

and provide access to the deeper moisture storages, influence the land-atmosphere interactions and 

thus have wider implications on the hydrological cycle. Rooting depth on the other hand is not only 

species-specific, but also determined by the precipitation infiltration and groundwater table depth 

depending on the topographic position, and presents a very large spatial heterogeneity not only across 

the globe, but locally as well (Fan et al. 2017). 

The significance of interactions between vegetation and soil moisture are at the heart of ecohydrology 

(Rodriguez-Iturbe et al., 2001). [...] 

13) Line 410: Fig.2 = Fig. 3? 

AC: Thanks for pointing out the reference to the wrong figure. We will change accordingly. 

  

14) Line 427: what do you mean trade-off here? Please clarify. 

[“… suggesting a trade-off between the two different observation data streams. …”] 

AC: The calibrated model achieves either good regional performance regarding ET or regarding Q, but it cannot 

match both data streams equally well. This can be interpreted as a trade-off where a gain cannot be achieved in 

one without a corresponding loss on the other. On the one hand, this may indicate inconsistencies between the 

data streams and/or larger uncertainty in one of the data streams for a given region. On the other hand, it may 

indicate that relevant processes are missing in the model representation, and thus not allowing for both variables 

to improve at the same time. In either case, the trade-offs point to disagreements between observed and 

modelled fluxes that cannot be solved by model calibration alone. 

We will rephrase the sentence clearly in the discussion in the context of inconsistency between the calibration 

data. 

  

15) Line 527: Please explain why so? and provide a citation? 

[“… It should, however, be noted that the observational EVI data used in the VEG experiment do have an 

imprint (of the effects) of irrigated agriculture in terms…”] 

AC: The EVI data is calculated from surface reflectance that are measured by remote sensing. By that, they 

represent a snapshot of the surface conditions at a given time, and show vegetation activity independent of 

whether it is enabled by natural or anthropogenic water supply. So, although no explicit information about 

irrigation has been provided, the increase in vegetation activity due to irrigation is measured by variations in EVI. 

We will modify the sentence in revision to clarify this point as follows: 
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 [...] 

It should, however, be noted that the observational EVI data used in the VEG experiment do have an 

imprint of the effects of irrigated agriculture, as the measured surface reflectance also include the 

increase of vegetation activity due to irrigation. The related better representation of ET may be 

associated  

[... with an improved simulation of wTWS variations in such regions in the VEG experiments.] 

16)  Line 537: what do you mean here? please clarify and make it explicitly. 

[“…the bias regarding either ET or Q, may relate to shortcomings in the precipitation forcing that doesn’t 

provide sufficient input to support both outgoing water fluxes …”] 

AC: This sentence also relates to comment 15). Here we additionally suggest that the bias regarding either one 

of the outgoing fluxes relates to the model’s inability to allocate water to both water fluxes while maintaining 

the water balance. We attribute this to potential bias in precipitation which would not provide sufficient water. 

It is well known that global precipitation datasets are potentially affected by underestimation of precipitation 

(Trenberth et al. 2007, Contractor et al. 2020). Those limitations relate to the satellite measurements (sensor 

sensitivity to different precipitation types, retrieval methods, discontinuous nature of observations), gauge 

measurements (gauge network density, instrument sensitivity, local influences, wind/wetting/evaporation 

errors) and, if combined, from the combination method (Fekete et al. 2004). In this study, we use GPCP 1DD 

precipitation data that combines satellite infrared and microwave measurements that were scaled to ensure 

consistency with monthly gauge-based datasets. Validation of GPCP 1DD showed an underestimation of 

precipitation in complex terrain and regionally during spring and autumn, while precipitation in winter time tends 

to be overestimated (Huffman et al. 2001). While we account for the latter by reducing snowfall (via a scaling 

parameter that was calibrated in Trautmann et al. 2018), we don’t consider potential underestimation. 

Additionally, while monthly estimates are robust, daily precipitation values rely on assumptions in the temporal 

distribution of rainfall at sub-monthly time scales (Huffman et al. 2001, Herold et al. 2016), which influences 

simulated daily fluxes and feedbacks within the model that might lead to effects on the monthly time scale. 

We will include the description in the revised manuscript accordingly. 

17)  Line 547: there are some latest studies on this perspective: 

 Yu, L., Zeng, Y., & Su, Z. (2020). Understanding the mass, momentum, and energy transfer in the frozen 

soil with three levels of model complexities. Hydrology and Earth System Sciences, 24(10), 4813-4830. 

https://doi.org/10.5194/hess-24-4813-2020 

 Yu, L., Fatichi, S., Zeng, Y., and Su, Z.: The role of vadose zone physics in the ecohydrological response of 

a Tibetan meadow to freeze–thaw cycles, The Cryosphere, 14, 4653–4673, https://doi.org/10.5194/tc-

14-4653-2020, 2020 

 [... The remaining deficiencies in model performance, especially in the Cold region, indicate missing 

processes in the simple model structure. Such processes include freeze/thaw dynamics, permafrost and 

ice jam in river channels that would increase surface water storage and allow high spring flood. …] 
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AC: Thank you for suggesting these studies on the role of vadose zone physics representation on simulated 

ecohydrological responses. We will include the references in the revised manuscript.  

18) Line 678: remove last sentence 

[… Besides, this study motivates further multi-model experiments to understand the need and potential 

of existing and novel observational constraints to increase the identifiability not only regarding model 

parameters, but also of model structure. …] 

AC: The sentence will be removed.  

19) Line 687: Why not make it open on GitHub? 

AC: We agree with the Referee’s suggestion and are currently archiving and sorting the code and data used for 

this analysis. In the revised manuscript, we will include a public link to access the code and data. 

 


