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Abstract. A popular way to forecast streamflow is to use bias-corrected 19 

meteorological forecast to drive a calibrated hydrological model, but these 20 

hydrometeorological approaches have deficiency over small catchments due to 21 

uncertainty in meteorological forecasts and errors from hydrological models, 22 

especially over catchments that are regulated by dams and reservoirs. For a cascade 23 

reservoir catchment, the discharge of the upstream reservoir contributes to an 24 

important part of the streamflow over the downstream areas, which makes it 25 

tremendously hard to explore the added value of meteorological forecasts. Here, we 26 

integrate the meteorological forecast, land surface hydrological model simulation and 27 

machine learning to forecast hourly streamflow over the Yantan catchment, where the 28 

streamflow is influenced both by the upstream reservoir water release and the 29 

rainfall-runoff processes within the catchment. Evaluation of the hourly streamflow 30 

hindcasts during the rainy seasons of 2013-2017 shows that the hydrometeorological 31 

ensemble forecast approach reduces probabilistic and deterministic forecast errors by 32 

6% as compared with the traditional ensemble streamflow prediction (ESP) approach 33 

during the first 7 days. The deterministic forecast error can be further reduced by 6% 34 

in the first 72 hours when combining the hydrometeorological forecast with the long 35 

short-term memory (LSTM) deep learning method. However, the forecast skill for 36 

LSTM using only historical observations drops sharply after the first 24 hours. This 37 

study implies the potential of improving flood forecast over a cascade reservoir 38 

catchment by integrating meteorological forecast, hydrological modeling and machine 39 

learning. 40 
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1. Introduction 44 

Flood events are the most destructive ones among the natural disasters, causing 45 

huge damages to human society. Reservoirs are massively constructed to regulate 46 

river flows, which has significantly reduced flood risks or damages (Ji et al., 2020). 47 

However, the number and intensity of precipitation extreme events are increasing in 48 

many areas as the global warming continues, thus amplify the potential of flood 49 

hazards (Hao et al., 2013; Shao et al., 2016; Wei et al., 2018; Yuan et al., 2018a; 50 

Wang et al., 2019). Accurate streamflow forecast is thus needed to provide guidelines 51 

for reservoir operations (Robertson et al., 2013), especially when the flood risk is 52 

increasing under global warming.  53 

A common approach of streamflow forecast is to use hydrological models, where 54 

the first attempt could be traced back to 1850s, using simple regression-type 55 

approaches to predict discharge from observed precipitation (Mulvaney, 1850). Since 56 

then, model concepts have been further augmented by designing new data networks, 57 

addressing heterogeneity of hydrological processes, capturing the nonlinear 58 

characteristics of hydrologic system and parameterizing models (Hornberger and 59 

Boyer, 1995; Kirchner, 2006). With the advancements of computer technology and 60 

high-resolution observation, a well-parameterized hydrological model can simulate 61 

streamflow with high accuracy (Kollet et al., 2010; Ye et al., 2014; Graaf et al., 2015; 62 

Yuan et al., 2018b). 63 
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Streamflow simulations from hydrological models heavily rely on 64 

meteorological forcing inputs, especially precipitation, which can be measured at 65 

in-situ gauges or retrieved from satellites and radars. However, for medium-range (2–66 

15 days ahead) streamflow forecasts, precipitation forecast is needed (Hopson et al., 67 

2002). To improve the forecast, ensemble techniques that can give a deterministic 68 

estimate as well as its uncertainty became popular. Ensemble weather forecasting can 69 

be traced back to 1963 when Leith transferred a deterministic forecast into an 70 

ensemble using the Monte-Carlo method to describe the atmospheric uncertainty 71 

(Leith, 1963). In the 1990s, ensemble forecasting was developed into an integral part 72 

of numerical weather prediction, which showed higher skill than the deterministic 73 

forecast even with higher model resolution (Toth et al., 2001). Due to its rapid 74 

development, ensemble weather forecasts and climate predictions are applied to 75 

hydrological forecasting studies by combining with hydrological models (Jasper et al., 76 

2002; Balint et al., 2006; Jaun et al., 2008; Xu et al., 2015; Yuan et al., 2016; Zhu et 77 

al., 2019). Provided with streamflow variability, a reservoir can maintain a reliable 78 

utility from natural streamflow better than provided with a deterministic streamflow 79 

forecast (Zhao et al., 2011). However, the streamflow prediction skill depends on 80 

whether the precipitation forecasts introduced into the hydrological model are skillful 81 

(Alfieri et al., 2013). When assessing the skill of this hydrometeorological forecast 82 

approach, a benchmark is needed. Using ensembles of historical climatology data 83 

(Day, 1985) as meteorological forecast inputs, which is known as ensemble 84 

streamflow prediction (ESP), is often selected as the benchmark approach. 85 
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Evaluations of hydrological forecasts indicated that forecast skill has a close 86 

relationship with catchment size, geographical locations and resolutions (Alfieri et al., 87 

2013; Pappenberger et al., 2015), which means there is a necessity to compare with 88 

the ESP to show the skill of the hydrometeorological forecast approach. 89 

  Although physically based hydrological models are widely used, it is still hard 90 

to apply a hyper-resolution distributed model for streamflow forecasting due to its 91 

demand for observation data, complex model structures and computational resources 92 

requirements for calibration and application (Wood et al., 2011; Kratzert et al., 2018; 93 

Yaseen et al., 2018). In cascade reservoir systems, there are two sources of streamflow, 94 

one is from the rainfall within the interval basin and the other is from the upstream 95 

reservoir discharge. While the rainfall-runoff relationship is well studied, it is 96 

challenging to reproduce the reservoir operating rules in a physical model (Gao et al., 97 

2010; Zhang et al., 2016; Dang et al., 2020).  98 

Machine learning methods can recognize patterns hidden in input data and can 99 

simulate or predict streamflow without explicit descriptions of the underlying physical 100 

processes (Kisi et al., 2007; Adnan et al., 2019). Neural networks are suitable for 101 

streamflow forecasting among machine learning models, some of them can even 102 

outperform physically based hydrological models. For example, Humphrey et al. 103 

(2016) showed that their combined Bayesian artificial neural network with the modèle 104 

du Génie Rural à 4 paramètres Journalier (GR4J)  approach outperforms the GR4J 105 

model in monthly streamflow forecasting. Kratzert et al. (2019) showed that the long 106 
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short-term memory (LSTM)-based approach outperforms a well-calibrated 107 

Sacramento Soil Moisture Accounting Model (SAC-SMA). Yang et al. (2020) used 108 

the geomorphology-based hydrological model (GBHM) combined with traditional 109 

ANN model to simulate daily streamflow, which can provide enough physical 110 

evidence and can run with less observation data. Although neural network models are 111 

criticized with little physical evidence (Abrahart et al., 2012), their potential in 112 

hydrological forecasting is yet to be explored. 113 

In this study, we combine the machine learning with hydrometeorological 114 

approach for hourly streamflow forecast over a cascade reservoir catchment located in 115 

southwestern China. We use the meteorological hindcast data from European Centre 116 

for Medium-Range Weather Forecasts (ECMWF) model that participated in the 117 

THORPEX Interactive Grand Global Ensemble (TIGGE) project to drive a newly 118 

developed high-resolution land surface model, named as the Conjunctive 119 

Surface-Subsurface Process model version 2 (CSSPv2, Yuan et al., 2018b), to provide 120 

runoff and streamflow forecasts, and correct the forecasts via LSTM model. We aim 121 

to improving flood forecast over the  cascade reservoir catchment by integrating 122 

meteorological forecast, hydrological modeling and machine learning. So we strive to 123 

(1) calibrate the hydrological model, (2) bias correct the meteorological forecasts, (3) 124 

evaluate the streamflow forecast skill and (4) test the physical-statistical combined 125 

approach. 126 

2. Study Area, Data, Model and Method 127 
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2.1 Study Area 128 

The Yantan Hydropower Station is in the middle reaches of Hongshui River in 129 

Dahua Yao Autonomous County, Guangxi Province. The Yantan Hydropower Station 130 

is the fifth level in the 10-level development of Hongshuihe hydropower base in 131 

Nanpanjiang River, connected with upstream Longtan Hydropower Station and the 132 

downstream Dahua Hydropower Station. The drainage area between the Longtan 133 

Hydropower Station and Yantan Hydropower Station is 8,900 km
2
. The annual mean 134 

streamflow at Yantan gauge is 55.5 billion m
3
. The river passes through karst 135 

mountain area, with narrow valley, steep slope and scattered cultivated land, and the 136 

average slope is 0.036%. Figure 1 shows the locations of 4 hydrological gauges, with 137 

detailed information listed in Table 1. 138 

2.2 Data and Method 139 

2.2.1 Hydrometeorological observations 140 

There are 97 meteorological observation stations within the catchment (Figure 141 

1). Here, observed hourly 2m-temperature, 10m-wind speed, relative humidity, 142 

accumulated precipitation and surface pressure data were interpolated into a 5km 143 

gridded observation dataset via inverse distance weight method. The hourly surface 144 

downward solar radiation data from China Meteorological Administration Land Data 145 

Assimilation System (CLDAS) was also interpolated into 5km via bilinear 146 

interpolation method. The hourly surface downward thermal radiation (long) was 147 



 9 

estimated by specific humidity, pressure, temperature. This dataset was used to drive 148 

the CSSPv2 land surface hydrological model.  149 

The monthly runoff for each 5km grid was estimated by disaggregating control 150 

streamflow station observations with the ratio of observed grid monthly precipitation 151 

and catchment mean precipitation. The gridded runoff was used to calibrate the 152 

CSSPv2 model at each grid (Yuan et al., 2016), which would generate distributed 153 

model parameters that are different within the catchment to better represent the 154 

heterogeneity of the rainfall-runoff processes. 155 

2.2.2 Ensemble Meteorological hindcast data and ESP hindcasts 156 

The TIGGE dataset consists of ensemble forecast data from 10 global Numerical 157 

Weather Prediction centers started from October 2006, which has been made available 158 

for scientific research, via data archive portals at ECMWF and the Chine 159 

Meteorological Administration (CMA). TIGGE has become a focal point for a range 160 

of research projects, including research on ensemble forecasting, predictability, and 161 

the development of products to improve the prediction of severe weather (Bougeault 162 

et al., 2010). In this paper, TIGGE data from April to September during 2013-2017 163 

from ECMWF were used as meteorological hindcast data. The 3-hourly 164 

meteorological hindcasts for 7-day lead time from 51 ensemble members (including 165 

control forecast) were interpolated into 5km resolution via bilinear interpolation. The 166 

forecast precipitation and temperature were corrected to match the observational 167 

means to remove the biases.  168 
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The ESP was accomplished by applying historical meteorological forcings (Day, 169 

1985). In this paper, the meteorological forcings from the same date as the forecast 170 

start date to the next 9 days of each year (excluding the target year) were selected as 171 

the ESP forcings. Take April 1
st
, 2013 as example, the 7-day observations started from 172 

April 1
st 

to April 10
th

 (i.e., April 1
st
-April 7

th
, April 2

nd
-April 8

th
, …, April 10

th
-April 173 

16
th

) in the year of 2014, 2015, 2016 and 2017 were selected as the forecast ensemble 174 

forcings of the issue date (April 1
st
), with a total of 40 ensemble members. The 175 

detailed information about the raw datasets are listed in Table 2 176 

2.2.3 CSSPv2 streamflow hindcasts 177 

The physical hydrological model used in this paper is the Conjunctive 178 

Surface-Subsurface Process model version 2 (CSSPv2; Yuan et al., 2018). The 179 

CSSPv2 model is a distributed, grid-based land surface hydrological model, which 180 

was developed from the Common Land Model (Dai et al., 2003, 2004), but with better 181 

representations in lateral surface and subsurface hydrological processes and their 182 

interactions. The routing model used here employs the kinetic wave equation as 183 

covariance function, which is solved via a Newton algorithm. A main reason for 184 

adopting this covariance function is that it suits the basin with mountainous terrain. 185 

The CSSPv2 model was successfully used to perform a high-resolution (3 km) land 186 

surface simulation over the Sanjiangyuan region, which is the headwater of major 187 

Chinese rivers (Ji and Yuan, 2018). In this paper, we calibrated CSSPv2 model against 188 

monthly estimated runoff to simulate the natural hydrological processes by using the 189 
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Shuffled Complex Evolution (SCE-UA) approach (Duan et al., 1994). The calibrated 190 

parameters include maximum velocity of baseflow, variable infiltration curve 191 

parameter, fraction of maximum soil moisture where non-linear baseflow occurs and 192 

fraction of maximum velocity of baseflow where non-linear baseflow begins. The 193 

hourly observed streamflow at Yantan hydrological gauge was used to calibrate the 194 

CSSPv2 routing model manually, including slope, river density, roughness, width and 195 

depth. The observed streamflow at Longtan hydrological gauge were added into the 196 

corresponding grid to provide upstream streamflow information. We used a 197 

high-resolution elevation database (hereafter referred to as DEM30) for sub-grid 198 

parameterization and figured out the initial values of these river channel parameters. 199 

We first extracted the slope angle and the natural river flow path from DEM30, and 200 

then identified the accurate river network using a drainage area threshold of 0.18 km
2
. 201 

River density and bed slope values for each 5km grid were calculated as: 202 

        ∑    , (1)  203 

                     , (2)  204 

where rivden is the river density (km/km
2
), bedslp is the river channel bed slope 205 

(unitless), A is the area of a 5km grid (km
2
), ∑   is the total river channel length (m) 206 

within the grid, β is the slope angle (radian) for each river segment located in the grid.  207 

Other river channel parameters were estimated by empirical formulas (Getirana 208 

et al., 2012; Luo et al., 2017) as follows: 209 
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     , (3)  210 

             
     , (4)  211 

                   
      

         
, (5)  212 

where W, H and n are river width (m), depth (m) and roughness (unitless) for each 213 

5km grid; Aacc means the upstream drainage area (km2); Hmax and Hmin refer to the 214 

maximum and minimum values of river depth calculated by Eq. (4). 215 

Through a trial-and-error procedure, we calibrated these river channel parameters 216 

to match the simulated streamflow with observed hourly records at Yantan 217 

hydrological gauge. The simulation results were evaluated by calculating the 218 

Nash-Sutcliffe efficiency (NSE) with corresponding observation data. The 219 

descriptions of the calibrated parameters and their range are listed in Table 3 220 

After calibration, we drove the CSSPv2 model using 5km regridded and 221 

bias-corrected TIGGE-ECMWF forecast forcing during 2013-2017 to provide a set of 222 

7-day hindcasts. Streamflow hindcasts both from the ESP and the hydrometerological 223 

approach (TIGGE-ECMWF/CSSPv2) were corrected by matching monthly mean 224 

streamflow observations to remove the biases, and the hindcast experiments were 225 

termed as ESP-Hydro and Meteo-Hydro (Table 4). Figure 2 shows the procession of 226 

the CSSPv2 hindcasts: the calibrated CSSPv2 model was first driven with observation 227 

dataset to generate initial hydrological conditions (soil moisture, surface water, etc.) 228 

for each forecast issue date, then CSSPv2 model was driven with forecast data 229 
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(TIGGE-ECMWF or ESP) at every forecast issue date with the generated initial 230 

conditions to perform a 7-day hindcast. 231 

2.2.4 LSTM streamflow forecast 232 

LSTM is a type of recurrent neural network model which learns from sequential 233 

data. The input of the LSTM model includes forecast interval streamflow at the 234 

specified forecast step obtained from TIGGE-ECMWF/CSSPv2, historical upstream 235 

streamflow observation, and historical streamflow observation at Yantan hydrological 236 

gauge. The network was trained on sequences of April to September in 2013-2017, 237 

with six historical streamflow observations and one forecast interval streamflow to 238 

predict the total streamflow at each forecast time step (Figure 2). The LSTM was 239 

calibrated through a cross validation method, by leaving the target year out.  240 

Before calibration, all input and output variables were normalized as follows: 241 

 𝐪  
 𝐪 𝐪𝐦𝐢  

 𝐪𝐦 𝐱 𝐪𝐦𝐢  
， (6)  242 

Where 𝐪 , 𝐪 , 𝐪𝐦 𝐱  and 𝐪𝐦𝐢  are the normalized variable, input variable, the 243 

maximum and minimum of the sequence of the variable. The hindcast experiment was 244 

termed as Meteo-Hydro-LSTM (Table 2). In addition, we also tried an LSTM 245 

streamflow forecast approach which only uses 6-hr historical streamflow data as 246 

inputs, and the experiment was termed as LSTM (Table 2). The process of LSTM is 247 

similar to Meteo-Hydro-LSTM but without the forecast interval streamflow, which is 248 

also shown in Figure 2. 249 
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2.3 Evaluation Method 250 

The root-mean squared error (RMSE) was used to evaluate the deterministic 251 

forecast, i.e., the ensemble means of 51 (ECMWF) or 40 (ESP) forecast members. To 252 

evaluate probabilistic forecasts, the Continuous Ranked Probability Score (CRPS) 253 

was calculated as follows: 254 

 𝑪𝑹𝑷𝑺  ∫ [𝑭 𝒚    𝑭𝒐 𝒚 ]
 ∞

 ∞
， (7)  255 

where 256 

 𝑭𝒐 𝒚  {
 , 𝒚 < 𝒐           𝒖  
 , 𝒚 ≥ 𝒐           𝒖  

 (8)  257 

is a cumulative-probability step function that jumps from 0 to 1 at the point where the 258 

forecast variable y equals the observation and 𝑭 𝒚  is a cumulative-probability 259 

distribution curve formed by the forecast ensembles. The CRPS has a negative 260 

orientation (smaller values are better), and it rewards concentration of probability 261 

around the step function located at the observed value (Wilks, 2005). The skill score 262 

for deterministic forecast was calculated as 263 

 𝑺𝑺𝑹 𝑺    
𝑹 𝑺  𝑹 𝑺    

  𝑹 𝑺    
    

𝑹 𝑺 

𝑹 𝑺    
  . (9)  264 

The skill score for probabilistic forecast (CRPSS) could be calculated similarly based 265 

the CRPS. 266 

3. Results 267 

3.1 Evaluation of CSSP calibration 268 
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The employed CSSPv2 model is a fully distributed hydrological model and the 269 

streamflow is calculated through a process of converting gridded rainfall into runoff 270 

and a process of runoff routing. Figure 3 shows the runoff calibration results by 271 

calculating the NSE of monthly runoff simulations compared with observed gridded 272 

monthly runoff. After calibrating the CSSPv2 runoff model, the NSE of all grids are 273 

above 0, which indicates that the runoff simulation results in all grids are more 274 

reliable than the climatology method. In addition, grids distributed in the downstream 275 

region have better NSE than the upstream grids. The NSE values of the grids in the 276 

southern part are greater than 0.5, which accounts for two thirds of the interval basin 277 

area. Higher NSE in the upstream part of Jiazhuan station (Figure 1) is due to more 278 

humid climate (not shown), where hydrological models usually have better 279 

performance over wetter areas. For the downstream areas with less precipitation, the 280 

higher NSE is related to the higher percentage of sand in the soil (not shown). Under 281 

the same meteorological conditions, there is higher hydraulic conductivity with higher 282 

sand content (Wang et al., 2016), and it yields less runoff under infiltration excess, 283 

which is more suitable for the saturation excess-based runoff generation for the 284 

CSSPv2 model (Yuan et al., 2018b). 285 

Figures 4 and 5 show the results after the calibration of the routing model, where 286 

CSSPv2 is driven by observed meteorological forcings to provide streamflow 287 

simulations and compare against observed streamflow at Yantan hydrological gauge. 288 

Figure 4 shows the daily and monthly streamflow simulation results. The monthly 289 

result (Fig. 4f) shows that the simulated streamflow closely follows the observed 290 
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streamflow, and the NSE is 0.96. The daily streamflow simulations during flood 291 

seasons (Figs. 4a-4e) also show a good performance, and the NSE is 0.92. During 292 

June and July in years of 2014, 2015 and 2017, the CSSPv2 model underestimated the 293 

daily streamflow with a maximum of 1104 m
3
/s and an average of 334 m

3
/s (Figs. 4b, 294 

4c, 4e). In years of 2013 and 2016, the difference between observed and simulated 295 

streamflow is relatively small, and the average difference is 96 m
3
/s (Figs. 4a, 4d). 296 

Figure 5 shows the hourly streamflow simulation results for a few flood events. 297 

Figure 5a shows that the CSSPv2 model can accurately simulate the streamflow 298 

response to a rainfall event after a dry period. Figures 5b-5d show that for 299 

instantaneous heavy rainfall events, the CSSPv2 model over-predicted the water loss 300 

during recession period. Figures 5e-5f show that for continuous rainfall events, the 301 

simulated streamflow has a larger fluctuation than observation. The simulated 302 

streamflow is also smoother than observation. Nevertheless, the NSE for the hourly 303 

streamflow simulation is 0.61, which suggests that CSSPv2 has an acceptable 304 

performance at hourly time scale. 305 

3.2 Bias correction of TIGGE-ECMWF meteorological forecasts  306 

The resolution of TIGGE-ECMWF grid data is 0.25° , so the data was 307 

interpolated to 5km grid to drive the CSSPv2 model. We calculated both observations’ 308 

and TIGGE-ECMWF’s yearly average precipitation and temperature, then performed 309 

a bias correction by adding back the difference (for temperature) or multiplying back 310 

the ratio (for temperature) to match the observations’ averages. Figure 6 shows the 311 

correlation coefficient and RMSE of TIGGE-ECMWF precipitation and temperature 312 
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forecasts as compared against observations, either before or after bias correction. The 313 

51-ensemble mean precipitation and temperature (the red dashed lines) shows better 314 

performance than the best ensemble members (the green dashed lines), with an 315 

average RMSE reduction of 3.66 mm/day and average correlation increase of 0.04 for 316 

precipitation, and average RMSE reduction of 0.1K and average correlation increase 317 

of 0.03 for temperature. After bias correction, the 51-ensemble means still perform 318 

better than best ensemble members. Compared with ensemble mean results before 319 

bias correction, the RMSE reduced by 0.23 mm/day for the bias-corrected 320 

precipitation, and reduced by 1K for the bias-corrected surface air temperature. For 321 

the bias-corrected ensemble mean results, the average RMSE and correlation are 14.6 322 

mm/day and 0.44 for precipitation, and 1.25 K and 0.87 for surface air temperature. 323 

3.3 Comparison between ESP-Hydro and Meteo-Hydro streamflow forecast 324 

Figure 7 presents the variations of RMSE and CRPS for ESP-Hydro and 325 

Meteo-Hydro hourly streamflow forecast at Yantan hydrological gauge. For 326 

probabilistic forecast, Figure 7a shows that the CRPS for Meteo-Hydro streamflow 327 

forecast ranges from 165 to 225 m
3
/s while the CRPS for ESP-Hydro streamflow 328 

forecast ranges from 170 to 230 m
3
/s. The Meteo-Hydro approach performs better 329 

than ESP-Hydro with lower CRPS at all lead times, with an average of 6% 330 

improvement in CRPSS (Figure 7c). For deterministic forecast, Figure 7b shows that 331 

the RMSE for Meteo-Hydro streamflow forecast ranges from 250 to 350 m
3
/s, while 332 

the RMSE for ESP-Hydro streamflow forecast ranges from 250 to 390 m
3
/s. The 333 

Meteo-Hydro approach also performs better than ESP-Hydro with lower RMSE at all 334 
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lead times especially after 3 days, with the average reduction of RMSE reaching 6% 335 

(Figure 7d).   336 

Figure 7 also shows that both forecast skills have a similar diurnal cycle, where 337 

RMSE and CRPS reach their peaks around 00UTC and drop to their lows at 06UTC. 338 

Figure 8 shows the diurnal cycle of model employed variables, which are observed 339 

catchment mean rainfall, observed streamflow at Yantan and Longtan hydrological 340 

gauges, to explain the diurnal cycle of ESP-Hydro and Meteo-Hydro forecasting skills. 341 

These three input variables show different diurnal patterns. The observed rainfall 342 

starts to rise at 00UTC and reaches its maximum at 06UTC. The observed streamflow 343 

at Yantan hydrological gauge drops to its minimum at 12UTC and rises to its 344 

maximum at 00UTC. The streamflow from upstream Longtan hydrological gauge 345 

starts to drop at 00UTC and reaches its minimum at 06UTC. After comparing these 346 

diurnal cycles with the cycle of forecast skill, it is found that the forecast skill 347 

decreases when the upstream Longtan outflow starts to decrease, and the precipitation 348 

starts to increase. When the upstream Longtan outflow increases and the precipitation 349 

starts to decrease (after 06UTC), the forecast skill rises. Such information indicates 350 

that the hydrological model performs worse in the case of heavier rainfall event, and 351 

the decrease of upstream outflow may amplify such degradation when the portion of 352 

interval rainfall-runoff increased. 353 

3.4 Meteo-Hydro-LSTM streamflow forecast   354 

 Machine learning methods can recognize patterns hidden in input data and can 355 

simulate or predict streamflow without explicit descriptions of the underlying physical 356 
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processes. Figure 9 shows the RMSE of Meteo-Hydro-LSTM streamflow forecast 357 

using the ensemble mean hydrological forecast as described in the section above, and 358 

the past 6-hour observed streamflow of Yantan hydrological gauge as input. 359 

Compared with Meteo-Hydro and ESP-Hydro approach, applying LSTM model can 360 

further decrease the RMSE within the first 72 hours. The RMSE of 361 

Meteo-Hydro-LSTM approach ranges from 205 to 363 m
3
/s during these three days, 362 

suggesting an average of 6% improvement against Meteo-Hydro approach.  363 

 Figure 9 also shows the RMSE of LSTM streamflow forecast only using the past 364 

6-hour observed streamflow of Yantan hydrological gauge as input. Without using the 365 

physical model forecast, RMSE is improved only when the lead time is less than 1 day. 366 

And the performance of LSTM is far worse than Meteo-Hydro streamflow forecast 367 

when lead time is more than 2 days.  368 

Figure 10 shows several examples of streamflow forecasts by 369 

Meteo-Hydro-LSTM approach and Meteo-Hydro approaches to show the forecast 370 

improvements in details. The Meteo-Hydro-LSTM approach reduced the flood peak 371 

value and the water loss during flood recession period compared with Meteo-Hydro 372 

streamflow forecast approach, which improves the streamflow prediction for most 373 

cases (Figs. 10b-10f). However, when the upstream reservoir’s flood operation is 374 

triggered by continuous heavy rain, the Meteo-Hydro may underpredict the 375 

streamflow. With the LSTM model further decreases the streamflow, the 376 

Meteo-Hydro-LSTM method can end up with worsening the streamflow forecast, 377 
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which means the machine learning method may improve forecasts when trained in 378 

different flood operating situations (Figure 10a).  379 

4. Conclusions 380 

In this study, we developed and evaluated a streamflow forecasting framework 381 

by coupling meteorological forecasts with a land surface hydrological model (CSSPv2) 382 

and a machine learning method (LSTM) over a cascade reservoir catchment using 383 

hindcast data from 2013 to 2017. The monthly observed runoff was used to calibrate 384 

the runoff generation module of the CSSPv2 model grid by grid, and the hourly 385 

observed streamflow at Yantan hydrological gauge was used to calibrate the routing 386 

module of the CSSPv2 model. Then, the bias-corrected TIGGE-ECMWF ensemble 387 

forecasts were used to drive the CSSPv2 for streamflow forecasts, and the LSTM 388 

model was used to correct the streamflow forecasts, resulted in an integrated 389 

meteorological-hydrological-machine learning forecast framework. 390 

With automatic offline calibration of the CSSPv2 model, and the NSE values are 391 

0.96, 0.92 and 0.61 for streamflow simulations at the Yantan gauge at monthly, daily 392 

and hourly time scales, respectively. The bias-corrected ensemble mean 393 

TIGGE-ECMWF forcings which perform the best among all ensemble members, 394 

show average RMSE and correlation of 14.6 mm/day and a 0.44 for precipitation 395 

forecasts, and 1.3 K and 0.87 for surface air temperature forecasts. By comparing with 396 

the hourly observed streamflow, the integrated hydrometeorological forecast approach 397 
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(Meteo-Hydro) increases the probabilistic and deterministic forecast skill against the 398 

initial condition-based approach (ESP-Hydro) by 6%.  399 

Adding LSTM model to the hydrometeorological forecast (Meteo-Hydro-LSTM) 400 

can further reduce the forecast error. Within the first 72 hours, LSTM can improve the 401 

forecast skill with a maximum of 25% and an average of 6%. However, if we do not 402 

use the streamflow predicted by Meteo-Hydro, the error from the LSTM increases 403 

rapidly after 24 hours, and the historical data-based LSTM method performs worse 404 

than the Meteo-Hydro method. Most cascade reservoirs yet cannot forecast 405 

streamflow beyond 6 hours, and the integrated Meteo-Hydro-LSTM approach has 406 

potential to improve the forecasts at long leads. This study mainly focused on 407 

exploring the added values of meteorology-hydrology coupled forecast and LSTM 408 

forecast in a non-closed catchment, so the forecast uncertainty from upstream outflow 409 

was ignored by using the observed outflow. In the future, the upstream outflow 410 

forecast is planned to include, but this requires the development of upstream 411 

hydrometeorological forecast capability, as well as the reservoir regulation forecast 412 

that is very challenging. The artificial intelligence (AI) techniques are expected to 413 

complement the physical model for reservoir regulation forecast.  414 

  415 
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Table 1. Information of hydrological gauges. 582 

Gauge Longitude 

(ºE) 

Latitude 

(ºN) 

Drainage area 

(km
2
) 

Longtan 107.09 25.00 - 

Yantan 107.50 24.11 5950 (orange area in Fig. 1) 

Luofu 107.36 24.90 800 (green area in Fig. 1) 

Jiazhuan 107.12 24.21 2150 (purple area in Fig. 1) 

  583 



 32 

Table 2. Information of hydrological datasets 584 

Dataset Time Range Time step 

Rain Gauge Observation Forcing  2013/1/1 ~ 2017/12/31 Hourly 

Longtan & Yantan Discharge Gauge 

Streamflow data 

2013/1/1 ~ 2017/12/31 Hourly 

Jiazhuan & Luofu Discharge Gauge 

Streamflow data 

2013/4/1 ~ 2017/9/30 Daily 

TIGGE-ECMWF Forecast Forcing 2013/4/1 ~ 2017/9/30 Hourly 

  585 
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Table 3. Descriptions of calibrated parameters 586 

Parameters Range 

Maximum velocity of baseflow (mm/day) 0.00000116 ~ 0.000579 

Fraction of maximum velocity of baseflow where 

non-linear baseflow begins 

0.001 ~ 0.99 

Fraction of maximum soil moisture where 

non-linear baseflow occurs 

0.2 ~ 0.99 

Variable infiltration curve parameter 0.001 ~ 1 

River width (m) 0 ~ 101.16 

River depth (m) 0 ~ 6.46 

River density (km/km
2
) 0.049 ~ 1.03 

River roughness  0.033 ~ 0.05 

River slope  0.015 ~ 0.47 

  587 
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Table 4. Experimental design in this study. 588 

Experiments Description 

ESP-Hydro Using CSSPv2 land surface 

hydrological model driven by 

randomly-sampled historical 

meteorological forcings 

Meteo-Hydro Using CSSPv2 model driven by 

bias-corrected TIGGE-ECMWF 

hindcast meteorological forcings  

Meteo-Hydro-LSTM Using LSTM model to correct 

streamflow from Meteo-Hydro hindcast  

LSTM Using LSTM model to forecast 

streamflow based on observation only 

  589 
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 590 

 591 

 592 

Figure 1. Locations of discharge gauges and rain gauges over the Yantan basin.    593 
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 595 

Figure 2. A diagram for the integrated hydrometeorological and machine learning 596 

streamflow prediction.  597 
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 598 

 599 

Figure 3. Nash-Sutcliff efficiency coefficients for the calibrated grid runoff simulation 600 

from CSSPv2.   601 
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 602 

 603 

Figure 4. Evaluation of streamflow simulations at Yantan gauge. The black and red 604 

lines are observed and simulated streamflow. (a)-(e) are for daily streamflow, and (f) 605 

is for monthly streamflow. The gray bars represent daily (or monthly) precipitation.   606 
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 607 

 608 

Figure 5.  The same as Figure 4, but for the evaluation of hourly streamflow 609 

simulations at Yantan gauge.  610 
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 611 

 612 

 613 

Figure 6. Evaluation of precipitation and temperature hindcasts from 614 

TIGGE-ECMWF. The red and blue lines represent the best and worst results among 51 615 

TIGGE-ECMWF ensemble members respectively, and the green lines represent the 616 

results for the ensemble means of 51 members. Solid and dashed lines represent the 617 

results after and before bias corrections, respectively.  618 
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 619 

 620 

 621 

Figure 7. (a) Continuous Ranked Probability Score (CRPS) and (b) Root Mean 622 

Squared Error (RMSE) for daily streamflow ensemble forecasts at Yantan gauge. (c) 623 

and (d) are the skill score in terms of CRPS and RMSE for Meteo+Hydro, where 624 

ESP+Hydro is used as reference forecast.  625 



 42 

 626 

 627 

 628 

Figure 8. Diurnal cycle of Longtan outflow (m
3
/s; dashed black line), Yantan inflow 629 

(m
3
/s; solid black line) and basin-averaged precipitation (mm/h; blue line).   630 
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 631 

 632 

Figure 9. RMSE (m
3
/s) for hourly streamflow hindcasts from four forecast 633 

approaches. The green line represents the Meteo+Hydro+LSTM forecast, the red line 634 

represents the Meteo+Hydro forecast, the blue line represent the ESP+Hydro forecast, 635 

and the purple line represents the LSTM forecast based on historical streamflow 636 

observation alone.  637 
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 638 

Figure 10. Evaluation of the forecast approaches for a few flooding events. The black 639 

lines are observed streamflow from Yantan hydrological gauge, the blue lines are the 640 

Meteo+Hydro ensemble mean streamflow forecast, and the red lines are the 641 

Meteo+Hydro+LSTM forecast streamflow by using Meteo+Hydro ensemble mean 642 

forecast with LSTM. The gray bars represent hourly precipitation averaged over the 643 

basin. 644 


