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Abstract. A popular way to forecast streamflow is to use bias-corrected 19 

meteorological forecast to drive a calibrated hydrological model, but these 20 

hydrometeorological approaches have deficiency over small catchments due to 21 

uncertainty in meteorological forecasts and errors from hydrological models, 22 

especially over catchments that are regulated by dams and reservoirs. For a cascade 23 

reservoir catchment, the discharge of the upstream reservoir contributes to an 24 

important part of the streamflow over the downstream areas, which makes it 25 

tremendously hard to explore the added value of meteorological forecasts. Here, we 26 

integrate the meteorological forecast, land surface hydrological model simulation and 27 

machine learning to forecast hourly streamflow over the Yantan catchment, where the 28 

streamflow is influenced both by the upstream reservoir water release and the 29 

rainfall-runoff processes within the catchment. Evaluation of the hourly streamflow 30 

hindcasts during the rainy seasons of 2013-2017 shows that the hydrometeorological 31 

ensemble forecast approach reduces probabilistic and deterministic forecast errors by 32 

106% and deterministic forecast error by 6% as compared with the traditional 33 

ensemble streamflow prediction (ESP) approach during the first 7 days. The 34 

deterministic forecast error can be further reduced by 6% in the first 72 hours when 35 

combining the hydrometeorological forecast with the long short-term memory (LSTM) 36 

deep learning method. However, the forecast skill for LSTM using only historical 37 

observations drops sharply after the first 24 hours. This study implies the potential of 38 

improving flood forecast over a cascade reservoir catchment by integrating 39 

meteorological forecast, hydrological modeling and machine learning. 40 
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1. Introduction 44 

Flood events are the most destructive ones among the natural disasters, causing 45 

huge damages to human society. Reservoirs are massively constructed to regulate 46 

river flows, which has significantly reduced flood risks or damages (Ji et al., 2020). 47 

However, the number and intensity of precipitation extreme events are increasing in 48 

many areas as the global warming continues, thus amplify the potential of flood 49 

hazards (Hao et al., 2013; Shao et al., 2016; Wei et al., 2018; Yuan et al., 2018a; 50 

Wang et al., 2019). Accurate streamflow forecast is thus needed to provide guidelines 51 

for reservoir operations (Robertson et al., 2013), especially when the flood risk is 52 

increasing under global warming.  53 

A common approach of streamflow forecast is to use hydrological models, where 54 

the first attempt could be traced back to 1850s, using simple regression-type 55 

approaches to predict discharge from observed precipitation (Mulvaney, 1850). Since 56 

then, model concepts have been further augmented by designing new data networks, 57 

addressing heterogeneity of hydrological processes, capturing the nonlinear 58 

characteristics of hydrologic system and parameterizing models (Hornberger and 59 

Boyer, 1995; Kirchner, 2006). With the advancements of computer technology and 60 

high-resolution observation, a well-parameterized hydrological model can simulate 61 

streamflow with high accuracy (Kollet et al., 2010; Ye et al., 2014; Graaf et al., 2015; 62 

Yuan et al., 2018b). 63 
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Streamflow simulations from hydrological models heavily rely on 64 

meteorological forcing inputs, especially precipitation, which can be measured at 65 

in-situ gauges or retrieved from satellites and radars. However, for medium-range (2–66 

15 days ahead) streamflow forecasts, precipitation forecast is needed (Hopson et al., 67 

2002). To improve the forecast, ensemble techniques that can give a deterministic 68 

estimate as well as its uncertainty became popular. Ensemble weather forecasting can 69 

be traced back to 1963 when Leith transferred a deterministic forecast into an 70 

ensemble using the Monte-Carlo method to describe the atmospheric uncertainty 71 

(Leith, 1963). In the 1990s, ensemble forecasting was developed into an integral part 72 

of numerical weather prediction, which showed higher skill than the deterministic 73 

forecast even with higher model resolution (Toth et al., 2001). Due to its rapid 74 

development, ensemble weather forecasts and climate predictions are applied to 75 

hydrological forecasting studies by combining with hydrological models (Jasper et al., 76 

2002; Balint et al., 2006; Jaun et al., 2008; Xu et al., 2015; Yuan et al., 2016; Zhu et 77 

al., 2019). Provided with streamflow variability, a reservoir can maintain a reliable 78 

utility from natural streamflow better than provided with a deterministic streamflow 79 

forecast (Zhao et al., 2011). However, the streamflow prediction skill depends on 80 

whether the precipitation forecasts introduced into the hydrological model are skillful 81 

(Alfieri et al., 2013). When assessing the skill of this hydrometeorological forecast 82 

approach, a benchmark is needed. Using ensembles of historical climatology data 83 

(Day, 1985) as meteorological forecast inputs, which is known as ensemble 84 

streamflow prediction (ESP), is often selected as the benchmark approach. 85 
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Evaluations of hydrological forecasts indicated that forecast skill has a close 86 

relationship with catchment size, geographical locations and resolutions (Alfieri et al., 87 

2013; Pappenberger et al., 2015), which means there is a necessity to compare with 88 

the ESP to show the skill of the hydrometeorological forecast approach. 89 

  Although physically based hydrological models are widely used, it is still hard 90 

to apply a hyper-resolution distributed model for streamflow forecasting due to its 91 

demand for observation data, complex model structures and computational resources 92 

requirements for calibration and application (Wood et al., 2011; Kratzert et al., 2018; 93 

Yaseen et al., 2018). In cascade reservoir systems, there are two sources of streamflow, 94 

one is from the rainfall within the interval basin and the other is from the upstream 95 

reservoir discharge. While the rainfall-runoff relationship is well studied, it is 96 

challenging to reproduce the reservoir operating rules in a physical model (Gao et al., 97 

2010; Zhang et al., 2016; Dang et al., 2020).  98 

Machine learning methods can recognize patterns hidden in input data and can 99 

simulate or predict streamflow without explicit descriptions of the underlying physical 100 

processes (Kisi et al., 2007; Adnan et al., 2019). Neural networks are suitable for 101 

streamflow forecasting among machine learning models, some of them can even 102 

outperform physically based hydrological models. For example, Humphrey et al. 103 

(2016) showed that their combined Bayesian artificial neural network with the modèle 104 

du Génie Rural à 4 paramètres Journalier (GR4J) model approach outperforms the 105 

GR4J model in monthly streamflow forecasting. Kratzert et al. (2019) showed that the 106 
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long short-term memory (LSTM)-based approach outperforms a well-calibrated 107 

Sacramento Soil Moisture Accounting Model (SAC-SMA). Yang et al. (2020) used 108 

the geomorphology-based hydrological model (GBHM) combined with traditional 109 

ANN model to simulate daily streamflow, which can provide enough physical 110 

evidence and can run with less observation data. Although neural network models are 111 

criticized with little physical evidence (Abrahart et al., 2012), their potential in 112 

hydrological forecasting is yet to be explored. 113 

In this study, we combine the machine learning with hydrometeorological 114 

approach for hourly streamflow forecast over a data-limited cascade reservoir 115 

catchment located in southwestern China. We use the meteorological hindcast data 116 

from European Centre for Medium-Range Weather Forecasts (ECMWF) model that 117 

participated in the THORPEX Interactive Grand Global Ensemble (TIGGE) project to 118 

drive a newly developed high-resolution land surface model, named as the 119 

Conjunctive Surface-Subsurface Process model version 2 (CSSPv2, Yuan et al., 120 

2018b),We use the TIGGE-ECMWF meteorological forecasts to drive a newly 121 

developed CSSPv2 high-resolution land surface model (Yuan et al., 2018) to provide 122 

runoff and streamflow forecasts, and correct the forecasts via LSTM model. We aim 123 

to improving flood forecast over the  cascade reservoir catchment by integrating 124 

meteorological forecast, hydrological modeling and machine learning.and adjust the 125 

results via LSTM model to improve streamflow forecast. We So we strive to (1) 126 

calibrate the hydrological model, (2) bias correct the meteorological forecasts, (3) 127 
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evaluate the streamflow forecast skill and (4) test the physical-statistical combined 128 

approach. 129 

2. Study Area, Data, Model and Method 130 

2.1 Study Area 131 

The Yantan Hydropower Station is in the middle reaches of Hongshui River in 132 

Dahua Yao Autonomous County, Guangxi Province. The Yantan Hydropower Station 133 

is the fifth level in the 10-level development of Hongshuihe hydropower base in 134 

Nanpanjiang River, connected with upstream Longtan Hydropower Station and the 135 

downstream Dahua Hydropower Station. The drainage area between the Longtan 136 

Hydropower Station and Yantan Hydropower Station is 8,900 km
2
. The annual mean 137 

streamflow at Yantan gauge is 55.5 billion m
3
. The river passes through karst 138 

mountain area, with narrow valley, steep slope and scattered cultivated land, and the 139 

average slope is 0.036%. Figure 1 shows the locations of 4 hydrological gauges, with 140 

detailed information listed in Table 1. 141 

2.2 Data and Method 142 

2.2.1 Hydrometeorological observations 143 

There are 97 meteorological observation stations within the catchment (Figure 144 

1). Here, observed hourly 2m-temperature, 10m-wind speed, relative humidity, 145 

accumulated precipitation and surface pressure data were interpolated into a 5km 146 

gridded observation dataset via inverse distance weight method. The hourly surface 147 
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downward solar radiation data from China Meteorological Administration Land Data 148 

Assimilation System (CLDAS) was also interpolated into 5km via bilinear 149 

interpolation method. The hourly surface downward thermal radiation (long) was 150 

estimated by specific humidity, pressure, temperature. This dataset was used to drive 151 

the CSSPv2 land surface hydrological model.  152 

The monthly runoff for each 5km grid was estimated by disaggregating control 153 

streamflow station observations with the ratio of observed grid monthly precipitation 154 

and catchment mean precipitation. The gridded runoff was used to calibrate the 155 

CSSPv2 model at each grid (Yuan et al., 2016)., which would generate distributed 156 

model parameters that are different within the catchment to better represent the 157 

heterogeneity of the rainfall-runoff processes. 158 

2.2.2 Ensemble Meteorological hindcast data and ESP hindcasts 159 

The TIGGE dataset consists of ensemble forecast data from 10 global Numerical 160 

Weather Prediction centers started from October 2006, which has been made available 161 

for scientific research, via data archive portals at ECMWF and the Chine 162 

Meteorological Administration (CMA). TIGGE has become a focal point for a range 163 

of research projects, including research on ensemble forecasting, predictability, and 164 

the development of products to improve the prediction of severe weather (Bougeault 165 

et al., 2010). In this paper, TIGGE data from April to September during 2013-2017 166 

from ECMWF were used as meteorological hindcast data. The 3-hourly 167 

meteorological hindcasts for 7-day lead time from 51 ensemble members (including 168 
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control forecast) were interpolated into 5km resolution via bilinear interpolation. The 169 

forecast precipitation and temperature were corrected to match the observational 170 

means to remove the biases.  171 

The ESP was accomplished by applying historical meteorological forcings (Day, 172 

1985). In this paper, the meteorological forcings from the same date as the forecast 173 

start date to the next 9 days of each year (excluding the target year) were selected as 174 

the ESP forcings. Take April 1
st
, 2013 as example, the 7-day observations started from 175 

April 1
st 

to April 10
th

 (i.e., April 1
st
-April 7

th
, April 2

nd
-April 8

th
, …, April 10

th
-April 176 

16
th

) in the year of 2014, 2015, 2016 and 2017 were selected as the forecast ensemble 177 

forcings of the issue date (April 1
st
), with a total of 40 ensemble members. The 178 

detailed information about the raw datasets are listed in Table 2 179 

2.2.3 CSSPv2 streamflow hindcasts 180 

The physical hydrological model used in this paper is the Conjunctive 181 

Surface-Subsurface Process model version 2 (CSSPv2; Yuan et al., 2018). The 182 

CSSPv2 model is a distributed, grid-based land surface hydrological model, which 183 

was developed from the Common Land Model (Dai et al., 2003, 2004), but with better 184 

representations in lateral surface and subsurface hydrological processes and their 185 

interactions. The routing model used here employs the kinetic wave equation as 186 

covariance function, which is solved via a Newton algorithm. A main reason for 187 

adopting this covariance function is that it suits the basin with mountainous terrain. 188 

The CSSPv2 model was successfully used to perform a high-resolution (3 km) land 189 
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surface simulation over the Sanjiangyuan region, which is the headwater of major 190 

Chinese rivers (Ji and Yuan, 2018). In this paper, we calibrated CSSPv2 model against 191 

monthly estimated runoff to simulate the natural hydrological processes by using the 192 

Shuffled Complex Evolution (SCE-UA) approach (Duan et al., 1994). The calibrated 193 

parameters include maximum velocity of baseflow, variable infiltration curve 194 

parameter, fraction of maximum soil moisture where non-linear baseflow occurs and 195 

fraction of maximum velocity of baseflow where non-linear baseflow begins. The 196 

hourly observed streamflow at Yantan hydrological gauge was used to calibrate the 197 

CSSPv2 routing model manually, including slope, river density, roughness, width and 198 

depth. The observed streamflow at Longtan hydrological gauge were added into the 199 

corresponding grid to provide upstream streamflow information. We used a 200 

high-resolution elevation database (hereafter referred to as DEM30) for sub-grid 201 

parameterization and figured out the initial values of these river channel parameters. 202 

We first extracted the slope angle and the natural river flow path from DEM30, and 203 

then identified the accurate river network using a drainage area threshold of 0.18 km
2
. 204 

River density and bed slope values for each 5km grid were calculated as: 205 

        ∑    , (1)  206 

                     , (2)  207 

where rivden is the river density (km/km
2
), bedslp is the river channel bed slope 208 

(unitless), A is the area of a 5km grid (km
2
), ∑  is the total river channel length (m) 209 

within the grid, β is the slope angle (radian) for each river segment located in the grid.  210 
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Other river channel parameters were estimated by empirical formulas (Getirana 211 

et al., 2012; Luo et al., 2017) as follows: 212 

             
     , (3)  213 

             
     , (4)  214 

                   
      

         
, (5)  215 

where W, H and n are river width (m), depth (m) and roughness (unitless) for each 216 

5km grid; Aacc means the upstream drainage area (km2); Hmax and Hmin refer to the 217 

maximum and minimum values of river depth calculated by Eq. (4). 218 

Through a trial-and-error procedure, we calibrated these river channel parameters 219 

to match the simulated streamflow with observed hourly records at Yantan 220 

hydrological gauge. The simulation results were evaluated by calculating the 221 

Nash-Sutcliffe efficiency (NSE) with corresponding observation data. The 222 

descriptions of the calibrated parameters and their range are listed in Table 3 223 

The simulation results were evaluated by calculating the Nash-Sutcliffe 224 

efficiency (NSE) with corresponding observation data.  225 

After calibration, we drove the CSSPv2 model using 5km regridded and 226 

bias-corrected TIGGE-ECMWF forecast forcing during 2013-2017 to provide a set of 227 

7-day hindcasts (Figure 2). Streamflow hindcasts both from the ESP and the 228 

hydrometerological approach (TIGGE-ECMWF/CSSPv2) were corrected by 229 



 13 

matching monthly mean streamflow observations to remove the biases, and the 230 

hindcast experiments were termed as ESP-Hydro and Meteo-Hydro (Table 42). Figure 231 

2 shows the procession of the CSSPv2 hindcasts: the calibrated CSSPv2 model was 232 

first driven with observation dataset to generate initial hydrological conditions (soil 233 

moisture, surface water, etc.) for each forecast issue date, then CSSPv2 model was 234 

driven with forecast data (TIGGE-ECMWF or ESP) at every forecast issue date with 235 

the generated initial conditions to perform a 7-day hindcast. 236 

2.2.4 LSTM streamflow forecast 237 

LSTM is a type of recurrent neural network model which learns from sequential 238 

data. The input of the LSTM model includes forecast interval streamflow at the 239 

specified forecast step obtained from TIGGE-ECMWF/CSSPv2, historical upstream 240 

streamflow observation, and historical streamflow observation at Yantan hydrological 241 

gauge. The network was trained on sequences of April to September in 2013-2017, 242 

with six historical streamflow observations and one forecast interval streamflow to 243 

predict the total streamflow at each forecast time step (Figure 2). The LSTM was 244 

calibrated through a cross validation method, by leaving the target year out.  245 

Before calibration, all input and output variables were normalized as follows: 246 

 𝐪  
 𝐪 𝐪𝐦𝐢  

 𝐪𝐦 𝐱 𝐪𝐦𝐢  
， (67)  247 

Where 𝐪 , 𝐪 , 𝐪𝐦 𝐱  and 𝐪𝐦𝐢  are the normalized variable, input variable, the 248 

maximum and minimum of the sequence of the variable. The hindcast experiment was 249 
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termed as Meteo-Hydro-LSTM (Table 2). In addition, we also tried an LSTM 250 

streamflow forecast approach which only uses 6-hr historical streamflow data as 251 

inputs, and the experiment was termed as LSTM (Table 2). The process of LSTM is 252 

similar to Meteo-Hydro-LSTM but without the forecast interval streamflow, which is 253 

also shown in Figure 2. 254 

2.3 Evaluation Method 255 

The root-mean squared error (RMSE) was used to evaluate the deterministic 256 

forecast, i.e., the ensemble means of 51 (ECMWF) or 40 (ESP) forecast members. To 257 

evaluate probabilistic forecasts, the Continuous Ranked Probability Score (CRPS) 258 

was calculated as follows: 259 

 𝑪𝑹𝑷𝑺  ∫ [𝑭 𝒚    𝑭𝒐 𝒚 ]
 ∞

 ∞
， (71)  260 

where 261 

 𝑭𝒐 𝒚  {
 , 𝒚 < 𝒐           𝒖  
 , 𝒚 ≥ 𝒐           𝒖  

 (82)  262 

is a cumulative-probability step function that jumps from 0 to 1 at the point where the 263 

forecast variable y equals the observation and 𝑭 𝒚  is a cumulative-probability 264 

distribution curve formed by the forecast ensembles. The CRPS has a negative 265 

orientation (smaller values are better), and it rewards concentration of probability 266 

around the step function located at the observed value (Wilks, 2005). The skill score 267 

for deterministic forecast was calculated as 268 
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 𝑺𝑺𝑹 𝑺    
𝑹 𝑺  𝑹 𝑺    

  𝑹 𝑺    
    

𝑹 𝑺 

𝑹 𝑺    
  . (93)  269 

The skill score for probabilistic forecast (CRPSS) could be calculated similarly based 270 

the CRPS. 271 

3. Results 272 

3.1 Evaluation of CSSP calibration 273 

The employed CSSPv2 model is a fully distributed hydrological model and the 274 

streamflow is calculated through a process of converting gridded rainfall into runoff 275 

and a process of runoff routing. Figure 3 shows the runoff calibration results by 276 

calculating the NSE of monthly runoff simulations compared with observed gridded 277 

monthly runoff. After calibrating the CSSPv2 runoff model, the NSE of all grids are 278 

above 0, which indicates that the runoff simulation results in all grids are more 279 

reliable than the climatology method. In addition, grids distributed in the downstream 280 

region have better NSE than the upstream grids. The NSE values of the grids in the 281 

southern part are greater than 0.5, which accounts for two thirds of the interval basin 282 

area. Higher NSE in the upstream part of Jiazhuan station (Figure 1) is due to more 283 

humid climate (not shown), where hydrological models usually have better 284 

performance over wetter areas. For the downstream areas with less precipitation, the 285 

higher NSE is related to the higher percentage of sand in the soil (not shown). Under 286 

the same meteorological conditions, there is higher hydraulic conductivity with higher 287 

sand content (Wang et al., 2016), and it yields less runoff under infiltration excess, 288 
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which is more suitable for the saturation excess-based runoff generation for the 289 

CSSPv2 model (Yuan et al., 2018b). 290 

Figures 4 and 5 show the results after the calibration of the routing model, where 291 

CSSPv2 is driven by observed meteorological forcings to provide streamflow 292 

simulations and compare againsttime series of CSSPv2-simulated streamflow are 293 

compared against observed streamflow at Yantan hydrological gauge. Figure 4 shows 294 

the daily and monthly streamflow simulation results. The monthly result (Fig. 4f) 295 

shows that the simulated streamflow closely follows the observed streamflow, and the 296 

NSE is 0.96. The daily streamflow simulations during flood seasons (Figs. 4a-4e) also 297 

show a good performance, and the NSE is 0.92. During June and July in years of 2014, 298 

2015 and 2017, the CSSPv2 model underestimated the daily streamflow with a 299 

maximum of 1104 m
3
/s and an average of 334 m

3
/s (Figs. 4b, 4c, 4e). In years of 2013 300 

and 2016, the difference between observed and simulated streamflow is relatively 301 

small, and the average difference is 96 m
3
/s (Figs. 4a, 4d). 302 

Figure 5 shows the hourly streamflow simulation results for a few flood events. 303 

Figure 5a shows that the CSSPv2 model can accurately simulate the streamflow 304 

response to a rainfall event after a dry period. Figures 5b-5d show that for 305 

instantaneous heavy rainfall events, the CSSPv2 model over-predicted the water loss 306 

during recession period. Figures 5e-5f show that for continuous rainfall events, the 307 

simulated streamflow has a larger fluctuation than observation. The simulated 308 

streamflow is also smoother than observation. Nevertheless, the NSE for the hourly 309 
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streamflow simulation is 0.61, which suggests that CSSPv2 has an acceptable 310 

performance at hourly time scale. 311 

3.2 Bias correction of TIGGE-ECMWF meteorological forecasts  312 

The resolution of TIGGE-ECMWF grid data is 0.25° , so the data was 313 

interpolated to 5km grid to drive the CSSPv2 model. We calculated both observations’ 314 

and TIGGE-ECMWF’s yearly average precipitation and temperature, then performed 315 

a bias correction by adding back the difference (for temperature) or multiplying back 316 

the ratio (for temperature) to match the observations’ averages. Figure 6 shows the 317 

correlation coefficient and RMSE of TIGGE-ECMWF precipitation and temperature 318 

forecasts as compared against observations, either before or after bias correction. The 319 

51-ensemble mean precipitation and temperature (the red dashed lines) shows better 320 

performance than the best ensemble members (the green dashed lines), with an 321 

average RMSE reduction of 3.66 mm/day and average correlation increase of 0.04 for 322 

precipitation, and average RMSE reduction of 0.1K and average correlation increase 323 

of 0.03 for temperature. After bias correction, the 51-ensemble means still perform 324 

better than best ensemble members. Compared with ensemble mean results before 325 

bias correction, the RMSE reduced by 0.23 mm/day for the bias-corrected 326 

precipitation, and reduced by 1K for the bias-corrected surface air temperature. For 327 

the bias-corrected ensemble mean results, the average RMSE and correlation are 14.6 328 

mm/day and 0.44 for precipitation, and 1.25 K and 0.87 for surface air temperature. 329 

3.3 Comparison between ESP-Hydro and Meteo-Hydro streamflow forecast 330 

Figure 7 presents the variations of RMSE and CRPS for ESP-Hydro and 331 
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Meteo-Hydro hourly streamflow forecast at Yantan hydrological gauge. For 332 

probabilistic forecast, Figure 7a shows that the CRPS for Meteo-Hydro streamflow 333 

forecast ranges from 160 165 to 230 225 m
3
/s while the CRPS for ESP-Hydro 334 

streamflow forecast ranges from 160 170 to 240230 m
3
/s. The Meteo-Hydro approach 335 

performs better than ESP-Hydro with lower CRPS at all lead times, with an average 336 

of 106% improvement in CRPSS (Figure 7c). For deterministic forecast, Figure 7b 337 

shows that the RMSE for Meteo-Hydro streamflow forecast ranges from 250 to 350 338 

m
3
/s, while the RMSE for ESP-Hydro streamflow forecast ranges from 250 to 390 339 

m
3
/s. The Meteo-Hydro approach also performs better than ESP-Hydro with lower 340 

RMSE at all lead times especially after 3 days, with the average reduction of RMSE 341 

reaching 6% (Figure 7d).   342 

Figure 7 also shows that both forecast skills have a similar diurnal cycle, where 343 

RMSE and CRPS reach their peaks around 00UTC and drop to their lows at 06UTC. 344 

Figure 8 shows the diurnal cycle of model employed variables, which are observed 345 

catchment mean rainfall, observed streamflow at Yantan and Longtan hydrological 346 

gauges, to explain the diurnal cycle of ESP-Hydro and Meteo-Hydro forecasting skills. 347 

These three input variables show different diurnal patterns. The observed rainfall 348 

starts to rise at 00UTC and reaches its maximum at 06UTC. The observed streamflow 349 

at Yantan hydrological gauge drops to its minimum at 12UTC and rises to its 350 

maximum at 00UTC. The streamflow from upstream Longtan hydrological gauge 351 

starts to drop at 00UTC and reaches its minimum at 06UTC. After comparing these 352 

diurnal cycles with the cycle of forecast skill, it is found that the forecast skill 353 
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decreases when the upstream Longtan outflow starts to decrease, and the precipitation 354 

starts to increase. When the upstream Longtan outflow increases and the precipitation 355 

starts to decrease (after 06UTC), the forecast skill rises. Such information indicates 356 

that the hydrological model performs worse in the case of heavier rainfall event, and 357 

the decrease of upstream outflow may amplify such degradation when the portion of 358 

interval rainfall-runoff increased. 359 

3.4 Meteo-Hydro-LSTM streamflow forecast   360 

 Machine learning methods can recognize patterns hidden in input data and can 361 

simulate or predict streamflow without explicit descriptions of the underlying physical 362 

processes. Figure 9 shows the RMSE of Meteo-Hydro-LSTM streamflow forecast 363 

using the ensemble mean hydrological forecast as described in the section above, and 364 

the past 6-hour observed streamflow of Yantan hydrological gauge as input. 365 

Compared with Meteo-Hydro and ESP-Hydro approach, applying LSTM model can 366 

further decrease the RMSE within the first 72 hours. The RMSE of 367 

Meteo-Hydro-LSTM approach ranges from 205 to 363 m
3
/s during these three days, 368 

suggesting an average of 6% improvement against Meteo-Hydro approach.  369 

 Figure 9 also shows the RMSE of LSTM streamflow forecast only using the past 370 

6-hour observed streamflow of Yantan hydrological gauge as input. Without using the 371 

physical model forecast, RMSE is improved only when the lead time is less than 1 day. 372 

And the performance of LSTM is far worse than Meteo-Hydro streamflow forecast 373 

when lead time is more than 2 days.  374 
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Figure 10 shows several examples of streamflow forecasts by 375 

Meteo-Hydro-LSTM approach and Meteo-Hydro approaches to show the forecast 376 

improvements in details. The Meteo-Hydro-LSTM approach reduced the flood peak 377 

value and the water loss during flood recession period compared with Meteo-Hydro 378 

streamflow forecast approach, which improves the streamflow prediction for most 379 

cases (Figs. 10b-10f). However, when the upstream reservoir’s flood operation is 380 

triggered by continuous heavy rain, the Meteo-Hydro may underpredict the 381 

streamflow. With the LSTM model further decreases the streamflow, the 382 

Meteo-Hydro-LSTM method can end up with worsening the streamflow forecast, 383 

which means the machine learning method may improve forecasts when trained in 384 

different flood operating situations (Figure 10a).  385 

4. Conclusions 386 

In this study, we developed and evaluated a streamflow forecasting framework 387 

by coupling meteorological forecasts with a land surface hydrological model (CSSPv2) 388 

and a machine learning method (LSTM) over a cascade reservoir catchment using 389 

hindcast data from 2013 to 2017. The monthly observed runoff was used to calibrate 390 

the runoff generation module of the CSSPv2 model grid by grid, and the hourly 391 

observed streamflow at Yantan hydrological gauge was used to calibrate the routing 392 

module of the CSSPv2 model. Then, the bias-corrected TIGGE-ECMWF ensemble 393 

forecasts were used to drive the CSSPv2 for streamflow forecasts, and the LSTM 394 
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model was used to correct the streamflow forecasts, resulted in an integrated 395 

meteorological-hydrological-machine learning forecast framework. 396 

With automatic offline calibration of the CSSPv2 model, and the NSE values are 397 

0.96, 0.92 and 0.61 for streamflow simulations at the Yantan gauge at monthly, daily 398 

and hourly time scales, respectively. The bias-corrected ensemble mean 399 

TIGGE-ECMWF forcings which perform the best among all ensemble members, 400 

show average RMSE and correlation of 14.6 mm/day and a 0.44 for precipitation 401 

forecasts, and 1.3 K and 0.87 for surface air temperature forecasts. By comparing with 402 

the hourly observed streamflow, the integrated hydrometeorological forecast approach 403 

(Meteo-Hydro) increases the probabilistic and deterministic forecast skill against the 404 

initial condition-based approach (ESP-Hydro) by 106%. (CRPSS) and 6% (RMSE 405 

skill score), respectively. 406 

Adding LSTM model to the hydrometeorological forecast (Meteo-Hydro-LSTM) 407 

can further reduce the forecast error. Within the first 72 hours, LSTM can improve the 408 

forecast skill with a maximum of 25% and an average of 6%. However, if we do not 409 

use the streamflow predicted by Meteo-Hydro, the error from the LSTM increases 410 

rapidly after 24 hours, and the historical data-based LSTM method performs worse 411 

than the Meteo-Hydro method.  412 

Most cascade reservoirs yet cannot forecast streamflow beyond 6 hours, and the 413 

integrated Meteo-Hydro-LSTM approach has potential to improve the forecasts at 414 

long leads. This study mainly focused on exploring the added values of 415 
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meteorology-hydrology coupled forecast and LSTM forecast in a non-closed 416 

catchment, so the forecast uncertainty from upstream outflow was ignored by using 417 

the observed outflow. In the future, the upstream outflow forecast is planned to 418 

include, but this requires the development of upstream hydrometeorological forecast 419 

capability, as well as the reservoir regulation forecast that is very challenging. The 420 

artificial intelligence (AI) techniques are expected to complement the physical model 421 

for reservoir regulation forecast.  422 

  423 
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Table 1. Information of hydrological gauges. 590 

Gauge Longitude 

(ºE) 

Latitude 

(ºN) 

Drainage area 

(km
2
) 

Longtan 107.09 25.00 - 

Yantan 107.50 24.11 5950 (orange area in Fig. 1) 

Luofu 107.36 24.90 800 (green area in Fig. 1) 

Jiazhuan 107.12 24.21 2150 (purple area in Fig. 1) 

  591 
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Table 2. Information of hydrological datasets 592 

Dataset Time Range Time step 

Rain Gauge Observation Forcing  2013/1/1 ~ 2017/12/31 Hourly 

Longtan & Yantan Discharge Gauge 

Streamflow data 

2013/1/1 ~ 2017/12/31 Hourly 

Jiazhuan & Luofu Discharge Gauge 

Streamflow data 

2013/4/1 ~ 2017/9/30 Daily 

TIGGE-ECMWF Forecast Forcing 2013/4/1 ~ 2017/9/30 Hourly 

  593 
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Table 3. Descriptions of calibrated parameters 594 

Parameters Range 

Maximum velocity of baseflow (mm/day) 0.00000116 ~ 0.000579 

Fraction of maximum velocity of baseflow where 

non-linear baseflow begins 

0.001 ~ 0.99 

Fraction of maximum soil moisture where 

non-linear baseflow occurs 

0.2 ~ 0.99 

Variable infiltration curve parameter 0.001 ~ 1 

River width (m) 0 ~ 101.16 

River depth (m) 0 ~ 6.46 

River density (km/km
2
) 0.049 ~ 1.03 

River roughness  0.033 ~ 0.05 

River slope  0.015 ~ 0.47 

  595 
带格式的: 两端对齐, 行距: 2 倍
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Table 42. Experimental design in this study. 596 

Experiments Description 

ESP-Hydro Using CSSPv2 land surface 

hydrological model driven by 

randomly-sampled historical 

meteorological forcings 

Meteo-Hydro Using CSSPv2 model driven by 

bias-corrected TIGGE-ECMWF 

hindcast meteorological forcings  

Meteo-Hydro-LSTM Using LSTM model to correct 

streamflow from Meteo-Hydro hindcast  

LSTM Using LSTM model to forecast 

streamflow based on observation only 

  597 
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 600 

Figure 1. Locations of discharge gauges and rain gauges over the Yantan basin.    601 
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 603 

Figure 2. A diagram for the integrated hydrometeorological and machine learning 604 

streamflow prediction.  605 
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 606 

 607 

Figure 3. Nash-Sutcliff efficiency coefficients for the calibrated grid runoff simulation 608 

from CSSPv2.   609 
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 610 

 611 

Figure 4. Evaluation of streamflow simulations at Yantan gauge. The black and red 612 

lines are observed and simulated streamflow. (a)-(e) are for daily streamflow, and (f) 613 

is for monthly streamflow. The gray bars represent daily (or monthly) precipitation.   614 
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 615 

 616 

Figure 5.  The same as Figure 4, but for the evaluation of hourly streamflow 617 

simulations at Yantan gauge.  618 
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 621 

Figure 6. Evaluation of precipitation and temperature hindcasts from 622 

TIGGE-ECMWF. The red and blue lines represent the best and worst results among 51 623 

TIGGE-ECMWF ensemble members respectively, and the green lines represent the 624 

results for the ensemble means of 51 members. Solid and dashed lines represent the 625 

results after and before bias corrections, respectively.  626 
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 627 

 628 

 629 

Figure 7. (a) Continuous Ranked Probability Score (CRPS) and (b) Root Mean 630 

Squared Error (RMSE) for daily streamflow ensemble forecasts at Yantan gauge. (c) 631 

and (d) are the skill score in terms of CRPS and RMSE for Meteo+Hydro, where 632 

ESP+Hydro is used as reference forecast.  633 
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 634 

 635 

 636 

Figure 8. Diurnal cycle of Longtan outflow (m
3
/s; dashed black line), Yantan inflow 637 

(m
3
/s; solid black line) and basin-averaged precipitation (mm/h; blue line).   638 
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 639 

 640 

Figure 9. RMSE (m
3
/s) for hourly streamflow hindcasts from four forecast 641 

approaches. The green line represents the Meteo+Hydro+LSTM forecast, the red line 642 

represents the Meteo+Hydro forecast, the blue line represent the ESP+Hydro forecast, 643 

and the purple line represents the LSTM forecast based on historical streamflow 644 

observation alone.  645 
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 646 

Figure 10. Evaluation of the forecast approaches for a few flooding events. The black 647 

lines are observed streamflow from Yantan hydrological gauge, the blue lines are the 648 

Meteo+Hydro ensemble mean streamflow forecast, and the red lines are the 649 

Meteo+Hydro+LSTM forecast streamflow by using Meteo+Hydro ensemble mean 650 

forecast with LSTM. The gray bars represent hourly precipitation averaged over the 651 

basin. 652 


