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Response to the comments from Reviewer #1  

We are grateful to the reviewer for the constructive and careful review. We have 

incorporated the comments to the extent possible. The reviewer’s comments are 

italicized and our responses immediately follow. 

 

The authors proposed an integrated ensemble prediction approach based on 

hydrometeorological modeling and machine learning for streamflow forecasting over 

a cascade reservoir catchment. The performance of the prediction with different 

model settings is compared. Results show the potential of the integrated 

hydro-meteorological and machine learning approach. Some comments are provided 

as follows and need to be addressed before the potential publication of this study. 

Response: We would like to thank the reviewer for the positive comments. Please see 

our responses below. 

 

1) Line 114: Please give the full name of CSSPv2 

Response: We have revised as “... a newly developed high-resolution land surface 

model, named as the Conjunctive Surface-Subsurface Process model version 2 

(CSSPv2, Yuan et al., 2018), to provide runoff and streamflow forecasts ...” 

(L119-L120 in the tracked version of the revised manuscript) 

 

2) Lines 145-146: The authors calibrate the model based on the runoff at each grid 

(instead of using the streamflow at the control station). What is the motivation or 

advantage of this model calibration? 

Response: Thanks for your comments. The calibration can be divided into two steps: 

the calibration of parameters for rainfall-runoff generation process for each grid, and 

the calibration of parameters for river routing process for the entire catchment. We 

have clarified the motivation in the revised manuscript as follows: 
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“The gridded runoff was used to calibrate the CSSPv2 model at each grid (Yuan et al., 

2016), which would generate distributed model parameters that are different within 

the catchment to better represent the heterogeneity of the rainfall-runoff processes.” 

(L155-L158) 

The detailed description of model calibration can be found in section 2.2.3.  

 

3) Line 217, equation (2); Here “y>observation” is assigned “1”. In other words, no 

matter how high the simulation is (if higher than the observation), it will result in a 

low CRPS, right? By the way, is this commonly used in previous studies? 

Response: We used the CRPS definition according to Wilks (2005). A low CRPS 

value means the forecast distribution yields a better concentration of probability 

around the step function located at the observed value. If forecast members got 

extremely higher or lower values than the observation, the CRPS will increase 

because [F(y)-Fo(y)]
2
 will increase. The CRPS is widely used in evaluating the 

accuracy of forecasts, and a skill score of CRPS (i.e., CRPSS) is used to compare with 

a benchmark ensemble forecast. 

 

4) Lines 234-235: The simulation is better for the downstream. Is there any specific 

reason for this pattern? 

Response: Thanks for your comments. We have clarified in the revised manuscript as 

follows: 

“Higher NSE in the upstream part of Jiazhuan station (Figure 1) is due to more humid 

climate (not shown), where hydrological models usually have better performance over 

wetter areas. For the downstream areas with less precipitation, the higher NSE is 

related to the higher percentage of sand in the soil (not shown). Under the same 

meteorological conditions, there is higher hydraulic conductivity with higher sand 

content (Wang et al., 2016), and it yields less runoff under infiltration excess, which is 

more suitable for the saturation excess-based runoff generation for the CSSPv2 model 

(Yuan et al., 2018b).” (L283-L290) 

Figures R1 and R2 show the distributions of precipitation and sand percentage. 
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Figure R1. The spatial distribution of average yearly precipitation (mm). 

 

Figure R2. Spatial distribution of sand proportion. 
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5) Lines 276-278 (Figure 7): For the CRPS and RMSE for the lead time of seven 

days, there is a strong cycle in the performance. What is the reason for the strong 

cycle? In addition, from the RMSE, we see low RMSE values for the lead time within 

1-day, and relatively high values after 1-day. However, for the CRPS, such a pattern 

does not exist. In addition, for the lead time beyond 1-day, the variation of CRPS and 

RMSE does not seem to depend on the lead time (prediction performance generally 

degraded for longer lead time, right?). Please clarity. 

Response: Thanks for the comments. The diurnal cycles of CRPS and RMSE are 

associated with the diurnal cycle of upstream water release from Longtan station, and 

the diurnal cycle of catchment-averaged precipitation. Please see Figure 8 and related 

text (L345-L359) 

About the CRPS pattern, we are sorry to inform that there were several mistakes 

during programming. The revised figure has been now portraited as below, which 

looks normal now for both CRPS and RMSE, where the error increases as the forecast 

lead increases. 

 

Figure 7. (a) Continuous Ranked Probability Score (CRPS) and (b) Root Mean 

Squared Error (RMSE) for daily streamflow ensemble forecasts at Yantan gauge. (c) 

and (d) are the skill score in terms of CRPS and RMSE for Meteo+Hydro, where 

ESP+Hydro is used as reference forecast. 



6 
 

 

6) It is hard to read the station name in this figure. Please improve it. 

Response: Thanks for the comment. We have redrawn Figure 1 as follows: 

 

Figure 1. Locations of discharge gauges and rain gauges over the Yantan catchment. 

 

7) Are reservoir data used in the simulation or incorporated in the model? 

Response: The upstream reservoir (Longtan) discharge data was used as model’s 

upstream inputs. We have clarified this caveat in the discussion as follows: 

“This study mainly focused on exploring the added values of meteorology-hydrology 

coupled forecast and LSTM forecast in a non-closed catchment, so the forecast 

uncertainty from upstream outflow was ignored by using the observed outflow. In the 
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future, the upstream outflow forecast is planned to include, but this requires the 

development of upstream hydrometeorological forecast capability, as well as the 

reservoir regulation forecast that is very challenging. The artificial intelligence (AI) 

techniques are expected to complement the physical model for reservoir regulation 

forecast.” (L415-L422) 

 

Reference: 

Wilks, D. S.: Statistical Methods in the Atmospheric Sciences, Volume 91, Second 

Edition International Geophysics, 2005. 

Wang, Y., Fan, J., Cao, L., et al.: Infiltration and Runoff Generation Under Various 

Cropping Patterns in the Red Soil Region of China. Land. Degrad. Dev. 27(1), 83-91. 

https://doi.org/10.1002/ldr.2460, 2016. 

Yuan, X., Ji, P., Wang, L., Liang, X. Z., Yang, K., Ye, A., et al.: High‐resolution 

land surface modeling of hydrological changes over the sanjiangyuan region in the 

eastern tibetan plateau: 1. model development and evaluation. J. Adv. Model Earth 

Syst. https://doi.org/10.1029/2018MS001412, 2018b. 

  

https://doi.org/10.1002/ldr.2460
https://doi.org/10.1029/2018MS001412
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Response to the comments from Reviewer #2 

We are grateful to the reviewer for the constructive and careful review. The 

constructive suggestions have helped improved our manuscript. The reviewer’s 

comments are italicized and our responses immediately follow. 

Reservoirs represent an important but difficult issue for hydrological modelling. This 

paper presents a method for ensemble streamflow forecasting at the hourly timescale 

considering the effects of cascade reservoirs. The method makes use of 

TIGGE-ECMWF meteorological forecasts, CSSPv2 land surface model and LSTM 

deep learning model. Through the case study of a reservoir in China, the method is 

shown to reduce probabilistic and deterministic forecast errors. In general, the paper 

is well-written with results clearly presented. 

There are five comments for further improvements of the paper. 

Response: We would like to thank the reviewer for the positive comments. Please see 

our responses below. 

 

1) First of all, more details on the contribution of this paper can be added. As is 

illustrated in the introduction, the proposed method is built upon the CSSPv2 land 

surface model (Yuan et al., 2018). What are the limitations of the previous model? 

Can the limitations be illustrated through some diagnostic plots? Such analysis would 

make the contribution of this paper more convincing. 

Response: Thanks for your comments. In this study, we combined the newly 

developed CSSPv2 land surface hydrological model with ECMWF meteorological 

forecasts and the LSTM machine learning model to develop a Meteo-Hydro-LSTM 

forecasting framework for flooding forecasts over a cascading reservoir catchment. 

We have clarified in the revised manuscript as follows: 

“In this study, we combine the machine learning with hydrometeorological approach 

for hourly streamflow forecast over a cascade reservoir catchment located in 

southwestern China. We use the meteorological hindcast data from European Centre 

for Medium-Range Weather Forecasts (ECMWF) model that participated in the 
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THORPEX Interactive Grand Global Ensemble (TIGGE) project to drive a newly 

developed high-resolution land surface model, named as the Conjunctive 

Surface-Subsurface Process model version 2 (CSSPv2, Yuan et al., 2018), to provide 

runoff and streamflow forecasts, and correct the forecasts via LSTM model. We aim 

to improving flood forecast over the cascade reservoir catchment by integrating 

meteorological forecast, hydrological modeling and machine learning.” (L114-125 in 

the tracked version of the revised manuscript) 

 

2) Second, the method is demonstrated for one reservoir. In the meantime, the “study 

area” section illustrates that there are ten cascade reservoirs in the Hongshuihe 

hydropower base. Is it possible to select another 2-3 reservoirs to show the 

robustness of the proposed method? It is noted that the additional case study 

reservoirs can be elsewhere and are not necessarily located in the Hongshuihe 

region. 

Response: Thanks for your suggestions. Our ultimate goal is to develop a forecast 

system that can consider both upstream and downstream reservoirs. However, as the 

first step, we focus on assessing the added value of integrating meteorological 

forecast, hydrological modeling and machine learning in the flood forecasting. We 

have clarified this caveat in the discussion as follows: 

“This study mainly focused on exploring the added values of meteorology-hydrology 

coupled forecast and LSTM forecast in a non-closed catchment, so the forecast 

uncertainty from upstream outflow was ignored by using the observed outflow. In the 

future, the upstream outflow forecast is planned to include, but this requires the 

development of upstream hydrometeorological forecast capability, as well as the 

reservoir regulation forecast that is very challenging. The artificial intelligence (AI) 

techniques are expected to complement the physical model for reservoir regulation 

forecast.” (L415-L422) 

 

3) Third, Figure 8 presents an interesting illustration of the time lag between Longtan 

outflow and Yantan inflow. This lag is largely due to the flowing distance between the 
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two reservoirs. Meanwhile, the section of methods does not tell how the river flow is 

considered in the method. Is it performed by routing or hydro-dynamic simulation? 

How are the parameters determined? 

Response: Thanks for your comments. The river flow was calculated by a routing 

model employed the kinetic wave equation as covariance function, which was solved 

via a Newton algorithm (L186-L187). The parameters include slope, river density, 

roughness, width, and depth (L198-L199). These parameters were calibrated to match 

the hourly observed streamflow at Yantan hydrological gauge. We have clarified the 

routing model as follows: 

“We used a high-resolution elevation database (hereafter referred to as DEM30) for 

sub-grid parameterization and figured out the initial values of these river channel 

parameters. We first extracted the slope angle and the natural river flow path from 

DEM30, and then identified the accurate river network using a drainage area 

threshold of 0.18 km
2
. River density and bed slope values for each 5km grid were 

calculated as: 

        ∑    (1) 

                      (2) 

where rivden is the river density (km/km
2
), bedslp is the river channel bed slope 

(unitless), A is the area of a 5km grid (km
2
), Σl is the total river channel length (m) 

within the grid, β is the slope angle (radian) for each river segment located in the 

grid. 

Other river channel parameters were estimated by empirical formulas (Getirana et al., 

2012; Luo et al., 2017) as follows: 

             
      (3) 

             
      (4) 

                   
      

         
 (5) 

where W, H and n are river width (m), depth (m) and roughness (unitless) for each 

5km grid; Aacc means the upstream drainage area (km
2
); Hmax and Hmin refer to the 

maximum and minimum values of river depth calculated by Eq. (4). 
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Through a trial-and-error procedure, we calibrated these river channel parameters to 

match the simulated streamflow with observed hourly records at Yantan hydrological 

gauge.” (L200-L221) 

 

4) Fourth, lead time plays an important part in forecast verification as forecast skill 

tends to decrease with the increase lead time. Meanwhile, the simulations shown in 

Figures 4 and 5 seem to have nothing to do with lead time. Please present some plots 

of ensemble forecasts at different lead times 

Response: Sorry for the confusion we made in the manuscript. The simulations 

shown in Figures 4 and 5 are driven by the observed meteorological forcings in order 

to evaluate the performance of the CSSPv2 land surface hydrological model. They are 

not “real” forecasts. The performance of the ensemble streamflow forecasts are shown 

via CRPS plots in Figure 7. We have clarified in the revised manuscript as follows: 

“Figures 4 and 5 show the results after the calibration of the routing model, where 

CSSPv2 is driven by observed meteorological forcings to provide streamflow 

simulations and compare against observed streamflow at Yantan hydrological gauge.” 

(L291-293) 

 

5) Fifth, CRPS in Figure 7 exhibits some diurnal circle that can relates to the diurnal 

circle of reservoir inflow/outflow in Figure 8. This result may be due to the setting of 

the LSTM deep learning model. When preparing streamflow data for LSTM, has the 

mean been subtracted? Are alternative settings, e.g., subtracting the mean or not, 

tested for LSTM? 

Response: Thanks for your comments. The results in Figure 7 didn’t include the 

LSTM deep learning model, while they are based on CSSPv2 streamflow forecasts 

driven by TIGGE-ECMWF meteorological forecasts or climatological forecasts (i.e., 

ESP). The diurnal cycle of CRPS is related to the upstream water release from 

Longtan station, and the diurnal cycle of catchment-averaged precipitation. Please see 

Figure 8 and related text (L345-L359). 
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When performing LSTM corrections, we didn’t subtract the mean streamflow, but 

normalized the streamflow data with the maximum and minimum streamflow. Please 

see section 2.2.4 for details. 

 

6)  The location map can be improved by illustrating all the reservoirs in the 

Hongshuihe hydropower base. In addition, the location of the Hongshuihe 

hydropower base in China can be presented by using an inset plot. 

Response: Thanks for the suggestion. We have redrawn Figure 1 as below. 

 

Figure 1. Locations of discharge gauges and rain gauges over the Yantan basin. 

 

7)  In Table 1, please illustrate the year/month range and time step for the 

hydrological dataset. 

Response: Thanks for the suggestion. We have revised as below. 

Table 1. Information of hydrological datasets 
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Dataset Time Range Time step 

Rain Gauge Observation Forcing  2013/1/1 ~ 2017/12/31 Hourly 

Longtan & Yantan Discharge Gauge 

Streamflow data 

2013/1/1 ~ 2017/12/31 Hourly 

Jiazhuan & Luofu Discharge Gauge 

Streamflow data 

2013/4/1 ~ 2017/9/30 Daily 

TIGGE-ECMWF Forecast Forcing 2013/4/1 ~ 2017/9/30 Hourly 

 

References: 

Getirana, A. C. V., Boone, A., Yamazaki, D., Decharme, B., Papa, F., and Mognard, 

N.: The Hydrological Modeling and Analysis Platform (HyMAP): Evaluation in the 

Amazon Basin, J. Hydrometeorol., 13, 1641–1665, 

https://doi.org/10.1175/JHM-D-12-021.1, 2012. 

Luo, X., Li, H. Y., Ruby, L. L., Tesfa, T. K., Augusto, G., & Fabrice, P., et al.: 

Modeling surface water dynamics in the amazon basin using mosart-inundation v1.0: 

impacts of geomorphological parameters and river flow representation. Geosci. Model. 

Dev., 10(3), 1-42. https://doi.org/10.5194/gmd-10-1233-2017 , 2017. 

 

  

https://doi.org/10.1175/JHM-D-12-021.1
https://doi.org/10.5194/gmd-10-1233-2017
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Response to the comments from Reviewer #3  

We are grateful to the reviewer for the constructive and careful review. We have 

incorporated the comments to the extent possible. The reviewer’s comments are 

italicized and our responses immediately follow. 

The manuscript "Ensemble streamflow forecasting over a cascade reservoir 

catchment with integrated hydrometeorological modeling and machine learning" 

integrate the meteorological forecast, land surface hydrological model simulation and 

machine learning to forecast hourly streamflow over the Yantan catchment, and the 

results show that the flood forecast has been significantly improved. This work is very 

meaningful and the paper has been well-written. I therefore recommend this paper 

resubmitted after minor revisions. My comments are listed as follows: 

Response: We would like to thank the reviewer for the positive comments. Please see 

our responses below. 

 

1) The number of ESP members is 40, while the number of members used from 

TIGGE-ECMWF is 51, which is not the same as ESP, Will the evaluation results over 

predicted due to the number of members used from TIGGE is larger? 

Response: Thanks for your comments. First, the meteorological forcings from the 

same date as the hindcast start date to the next 9 days of each year (excluding the 

target year) were selected as the ESP forcing in this study. Although more members 

could be added to ESP, it will increase the overlap between different hindcasts due to 

limited historical samples. Second, larger sample of ESP means that more days far 

from the start date would be included, which may degrade the performance of ESP. 

Third, 40 members should be comparable to 51 members given the short hindcast 

periods. 
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2) The upstream basin streamflow are used as CSSPv2 model inputs to provide the 

upstream inflow information. In the hindcast experiments, the upstream outflow 

inputs used are forecasts or observations? When lacking upstream outflow prediction, 

how does the system operate? 

Response: Thanks for your comments. In the hindcast experiments, the upstream 

outflow inputs used as inputs are observations to exclude the forecast uncertainty 

from upstream streamflow for the evaluation of the meteo-hydro-LSTM forecasting 

system. In the real-time forecasting system, we may use the upstream outflow from 

the previous day or the LSTM forecasts. We have clarified this caveat in the 

discussion as follows: 

“This study mainly focused on exploring the added values of meteorology-hydrology 

coupled forecast and LSTM forecast in a non-closed catchment, so the forecast 

uncertainty from upstream outflow was ignored by using the observed outflow. In the 

future, the upstream outflow forecast is planned to include, but this requires the 

development of upstream hydrometeorological forecast capability, as well as the 

reservoir regulation forecast that is very challenging. The artificial intelligence (AI) 

techniques are expected to complement the physical model for reservoir regulation 

forecast.” (L415-L422 in the tracked version of the revised manuscript) 

 

3) Is it possible to forecast the rainfall-streamflow using meteorological forcing from 

a closed watershed controlled by the Yantan station and correct it by LSTM instead? 

Response: Thanks for your comments. Yes, it is possible. But besides meteorological 

forecasts, the reservoir regulations should be incorporated or predicted, which is very 

challenging due to limited data and human interventions. Moreover, the motivation of 

this study is mentioned in the abstract as follows: 

“For a cascade reservoir catchment, the discharge of the upstream reservoir 

contributes to an important part of the streamflow over the downstream areas, which 

makes it tremendously hard to explore the added value of meteorological forecasts. 

Here, we integrate the meteorological forecast, land surface hydrological model 

simulation and machine learning to forecast hourly streamflow over the Yantan 
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catchment, where the streamflow is influenced both by the upstream reservoir water 

release and the rainfall-runoff processes within the catchment.” 

As a first step, here we evaluate the performance of this meteo-hydro-LSTM coupled 

system. Future studies would incorporate upstream forecasts through a 

physical-statistical hybrid approach. 

 

4) The upstream inputs are also essential to this forecast system, hope to see some 

evaluation about this element. 

Response: The upstream inputs used in this system are observations, please see our 

response to your comment #2. 

 

5) The calibration results evaluated by NSE shows a worse result in the upstream 

grids than downstream ones. Is it possible to improve the calibration results by 

increasing the Iteration times set in the SCE-UA methods? 

Response: Thanks for your comments. We have clarified in the revised manuscript as 

follows: 

“Higher NSE in the upstream part of Jiazhuan station (Figure 1) is due to more humid 

climate (not shown), where hydrological models usually have better performance over 

wetter areas. For the downstream areas with less precipitation, the higher NSE is 

related to the higher percentage of sand in the soil (not shown). Under the same 

meteorological conditions, there is higher hydraulic conductivity with higher sand 

content (Wang et al., 2016), and it yields less runoff under infiltration excess, which is 

more suitable for the saturation excess-based runoff generation for the CSSPv2 model 

(Yuan et al., 2018b).” (L283-L290) 

Figures R1 and R2 show the distributions of precipitation and sand percentage. 

According to Figure R3, most grids reach its best performance within 2000 iteration 

times. 
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Figure R1. The spatial distribution of average yearly precipitation (mm). 

 

Figure R2. Spatial distribution of sand proportion. 
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Figure R3. Iteration times when best performance occurred. 

 

Reference: 

Wang, Y., Fan, J., Cao, L., et al.: Infiltration and Runoff Generation Under Various 

Cropping Patterns in the Red Soil Region of China. Land. Degrad. Dev. 27(1), 83-91. 

https://doi.org/10.1002/ldr.2460, 2016. 

Yuan, X., Ji, P., Wang, L., Liang, X. Z., Yang, K., Ye, A., et al.: High‐resolution 

land surface modeling of hydrological changes over the sanjiangyuan region in the 

eastern tibetan plateau: 1. model development and evaluation. J. Adv. Model Earth 

Syst. https://doi.org/10.1029/2018MS001412, 2018b. 

 

  

https://doi.org/10.1002/ldr.2460
https://doi.org/10.1029/2018MS001412
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Response to the comments from Reviewer #4  

We are grateful to the reviewer for the constructive and careful review. We have 

incorporated the comments to the extent possible. The reviewer’s comments are 

italicized and our responses immediately follow. 

This is an interesting manuscript that is well structured and presented. The topic is 

worthy of publication in HESS. However, before publication please address the 

following comments. 

Response: We would like to thank the reviewer for the positive comments. Please see 

our responses below. 

 

1) Line 201: What is the full name of GR4J? Please check throughout (e.g., TIGGE, 

ECMWF, CMA, SCE-UA). 

Response: Thanks for your comments. We have now provided the full names as 

follows: 

“For example, Humphrey et al. (2016) showed that their combined Bayesian artificial 

neural network with the modèle du Génie Rural à 4 paramètres Journalier (GR4J) 

approach outperforms the GR4J model in monthly streamflow forecasting.” 

(L104-L105 in the tracked version of the revised manuscript). 

“We use the meteorological hindcast data from European Centre for Medium-Range 

Weather Forecasts (ECMWF) model that participated in the THORPEX Interactive 

Grand Global Ensemble (TIGGE) project to drive a newly developed high-resolution 

land surface model, named as the Conjunctive Surface-Subsurface Process model 

version 2 (CSSPv2, Yuan et al., 2018b), to provide runoff and streamflow forecasts, 

and correct the forecasts via LSTM model.” (L116-L123). 

“… China Meteorological Administration (CMA).” (L162-L163). 

“In this paper, we calibrated CSSPv2 model against monthly estimated runoff to 

simulate the natural hydrological processes by using the Shuffled Complex Evolution 

(SCE-UA) approach (Duan et al., 1994).” (L191-L193). 
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2) Lines 179-182: Please list the values or ranges of the calibrated parameters in a 

table. 

Response: Thanks for your suggestion. We have made a new table as follows: 

Table 2. Descriptions of calibrated parameters 

Parameters Range 

Maximum velocity of baseflow (mm/day) 0.00000116 ~ 0.000579 

Fraction of maximum velocity of baseflow where 

non-linear baseflow begins 

0.001 ~ 0.99 

Fraction of maximum soil moisture where 

non-linear baseflow occurs 

0.2 ~ 0.99 

Variable infiltration curve parameter 0.001 ~ 1 

River width (m) 0 ~ 101.16 

River depth (m) 0 ~ 6.46 

River density (km/km
2
) 0.049 ~ 1.03 

River roughness  0.033 ~ 0.05 

River slope  0.015 ~ 0.47 

 

3) Line 189: How to perform the bias correction of the TIGGE-ECMWF forecast 

forcing 

Response: Thanks for your comments. We have clarified as follows: 

“The resolution of TIGGE-ECMWF grid data is 0.25°, so the data was interpolated to 

5km grid to drive the CSSPv2 model. We calculated both observations’ and 

TIGGE-ECMWF’s yearly average precipitation and temperature then performed a 

bias correction by adding back the difference (for temperature) or multiplying back 

the ratio (for temperature) to match the observations’ averages.” (L314-L317) 

 

4) Line 190: Please give a detailed description of the workflow in Fig. 2. 

Response: Thanks for your comments. We have revised the manuscript as follows: 
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“Figure 2 shows the procedure of hindcasts: the calibrated CSSPv2 model was first 

driven with observation dataset to generate initial hydrological conditions (soil 

moisture, surface water, etc.) for each forecast issue date, then CSSPv2 model was 

driven with forecast data (TIGGE-ECMWF or ESP) at every forecast issue date with 

the generated initial conditions to perform a 7-day hindcast.” (L231-L236) 

“The network was trained on sequences of April to September in 2013-2017, with six 

historical streamflow observations and one forecast interval streamflow to predict the 

total streamflow at each forecast time step (Figure 2).” (L242-L244) 

“In addition, we also tried a LSTM streamflow forecast approach which only uses 

6-hour historical streamflow data as inputs, and the experiment was termed as LSTM 

(Table 2). The process of LSTM is similar to Meteo-Hydro-LSTM but without the 

forecast interval streamflow, which is also shown in Figure 2.” (L250-L254) 

 

5) Line 204: Please check the equation number 

Response: The equation number has been checked and revised. 

 

6) Line 205: Please clarify the input and output variables here. 

Response: We have clarified them as follows: 

“where   ,  ,      and      are the normalized variable, input variable, the 

maximum and minimum of the sequence of the variable.” (L248) 

 

7) Lines 215: The meaning of the F(y) in Eq. 1 is not clear. Also for ref in Eq. 2. 

Please clarify the meaning of the variables in each equation. 

Response: We have revised as follows: 

“The Continuous Ranked Probability Score (CRPS) was calculated as follows: 

 𝑪𝑹𝑷𝑺  ∫ [𝑭 𝒚    𝑭𝒐 𝒚 ]
𝟐∞

−∞
， (7)  

where 
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 𝑭𝒐 𝒚  {
 , 𝒚 < 𝒐𝒃𝒔𝒆𝒓𝒗𝒆𝒅 𝒗𝒂𝒍𝒖𝒆 
𝟏, 𝒚 ≥ 𝒐𝒃𝒔𝒆𝒓𝒗𝒆𝒅 𝒗𝒂𝒍𝒖𝒆 

 (8)  

is a cumulative-probability step function that jumps from 0 to 1 at the point where the 

forecast variable y equals the observation, and 𝑭 𝒚  is a cumulative-probability 

distribution curve formed by the forecast ensembles.” (L258-L265) 

 

8) Line 291: Is the diurnal cycle in Fig. 8 the climatology averaged result? If so, 

please give the ranges to indicate the uncertainty. It also looks a bit strange that the 

rainfall reaches its maximum in the early morning rather than the afternoon in 

summer. Please clarify. 

Response: The time shown in the figure is the universal time. According to Beijing 

time zone (GMT+8:00), the rainfall reaches its peak at the afternoon, we have 

modified the figure and revised the descriptions as follows: 

 

Figure 8. Diurnal cycles of Longtan outflow (m
3
/s; dashed black line), Yantan inflow 

(m
3
/s; solid black line) and basin-averaged precipitation (mm/h; blue line), as well as 

their ranges. The time shown in this figure is universal time. 

 

9) Lines 298-301: Why would the combination of heavy rainfall and the decrease of 

upstream flow make the hydrological model performance worse? Does the model 

consider the reservoir? 
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Response: In this study, we used observed upstream streamflow as inputs while the 

ensemble meteorological forecasts as forcings. When the upstream flow decreases and 

rainfall increase, the upstream control on downstream flow decreases, and the 

influence of interval flow resulted from the meteorology-hydrology forecasts rises. 

And the uncertainty from meteorological forecasts would propagate to the 

hydrological forecasts more obviously. This highlights the importance of both the 

upstream outflow and the accuracy of meteorological forecasts within the catchment. 

 

10) Line 328: Please add some implications of this work and as well as its 

deficiencies that need to be improved in the last section. 

Response: Thanks for your comments. We have added the implications and 

deficiencies as follows: 

“Most cascade reservoirs yet cannot forecast streamflow beyond 6 hours, and the 

integrated Meteo-Hydro-LSTM approach has potential to improve the forecasts at 

long leads. This study mainly focused on exploring the added values of 

meteorology-hydrology coupled forecast and LSTM forecast in a non-closed 

catchment, so the forecast uncertainty from upstream outflow was ignored by using 

the observed outflow. In the future, the upstream outflow forecast is planned to 

include, but this requires the development of upstream hydrometeorological forecast 

facility, as well as the reservoir regulation forecast that is very challenging. The 

artificial intelligence (AI) techniques are expected to complement the physical model 

for reservoir regulation.” (L413-L422) 

 

11) Add the units in Figs. 6 and 7. 

Response: Revised as suggested. 
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Figure 6. Evaluation of precipitation and temperature hindcasts from 

TIGGE-ECMWF. The red and blue lines represent the best and worst results among 

51 TIGGE-ECMWF ensemble members respectively, and the green lines represent 

the results for the ensemble means of 51 members. Solid and dashed lines represent 

the results after and before bias corrections, respectively. 
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Figure 7. (a) Continuous Ranked Probability Score (CRPS) and (b) Root Mean 

Squared Error (RMSE) for daily streamflow ensemble forecasts at Yantan gauge. (c) 

and (d) are the skill score in terms of CRPS and RMSE for Meteo+Hydro, where 

ESP+Hydro is used as reference forecast. 


