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Response to the comments from Reviewer #2 

We are grateful to the reviewer for the constructive and careful review. The 

constructive suggestions have helped improved our manuscript. The reviewer’s 

comments are italicized and our responses immediately follow. 

Reservoirs represent an important but difficult issue for hydrological modelling. This 

paper presents a method for ensemble streamflow forecasting at the hourly timescale 

considering the effects of cascade reservoirs. The method makes use of 

TIGGE-ECMWF meteorological forecasts, CSSPv2 land surface model and LSTM 

deep learning model. Through the case study of a reservoir in China, the method is 

shown to reduce probabilistic and deterministic forecast errors. In general, the paper 

is well-written with results clearly presented. 

There are five comments for further improvements of the paper. 

Response: We would like to thank the reviewer for the positive comments. Please see 

our responses below. 

 

1) First of all, more details on the contribution of this paper can be added. As is 

illustrated in the introduction, the proposed method is built upon the CSSPv2 land 

surface model (Yuan et al., 2018). What are the limitations of the previous model? 

Can the limitations be illustrated through some diagnostic plots? Such analysis would 

make the contribution of this paper more convincing. 

Response: Thanks for your comments. In this study, we combined the newly 

developed CSSPv2 land surface hydrological model with ECMWF meteorological 

forecasts and the LSTM machine learning model to develop a Meteo-Hydro-LSTM 

forecasting framework for flooding forecasts over a cascading reservoir catchment. 

We have clarified in the revised manuscript as follows: 

“In this study, we combine the machine learning with hydrometeorological approach 

for hourly streamflow forecast over a cascade reservoir catchment located in 

southwestern China. We use the meteorological hindcast data from European Centre 

for Medium-Range Weather Forecasts (ECMWF) model that participated in the 
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THORPEX Interactive Grand Global Ensemble (TIGGE) project to drive a newly 

developed high-resolution land surface model, named as the Conjunctive 

Surface-Subsurface Process model version 2 (CSSPv2, Yuan et al., 2018), to provide 

runoff and streamflow forecasts, and correct the forecasts via LSTM model. We aim 

to improving flood forecast over the cascade reservoir catchment by integrating 

meteorological forecast, hydrological modeling and machine learning.”  

 

2) Second, the method is demonstrated for one reservoir. In the meantime, the “study 

area” section illustrates that there are ten cascade reservoirs in the Hongshuihe 

hydropower base. Is it possible to select another 2-3 reservoirs to show the 

robustness of the proposed method? It is noted that the additional case study 

reservoirs can be elsewhere and are not necessarily located in the Hongshuihe 

region. 

Response: Thanks for your suggestions. Our ultimate goal is to develop a forecast 

system that can consider both upstream and downstream reservoirs. However, as the 

first step, we focus on assessing the added value of integrating meteorological 

forecast, hydrological modeling and machine learning in the flood forecasting. We 

have clarified this caveat in the discussion as follows: 

“This study mainly focused on exploring the added values of meteorology-hydrology 

coupled forecast and LSTM forecast in a non-closed catchment, so the forecast 

uncertainty from upstream outflow was ignored by using the observed outflow. In the 

future, the upstream outflow forecast is planned to include, but this requires the 

development of upstream hydrometeorological forecast capability, as well as the 

reservoir regulation forecast that is very challenging. The artificial intelligence (AI) 

techniques are expected to complement the physical model for reservoir regulation 

forecast.” 

 

3) Third, Figure 8 presents an interesting illustration of the time lag between Longtan 

outflow and Yantan inflow. This lag is largely due to the flowing distance between the 

two reservoirs. Meanwhile, the section of methods does not tell how the river flow is 
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considered in the method. Is it performed by routing or hydro-dynamic simulation? 

How are the parameters determined? 

Response: Thanks for your comments. The river flow was calculated by a routing 

model employed the kinetic wave equation as covariance function, which was solved 

via a Newton algorithm. The parameters include slope, river density, roughness, width, 

and depth. These parameters were calibrated to match the hourly observed streamflow 

at Yantan hydrological gauge. We have clarified the routing model as follows: 

“We used a high-resolution elevation database (hereafter referred to as DEM30) for 

sub-grid parameterization and figured out the initial values of these river channel 

parameters. We first extracted the slope angle and the natural river flow path from 

DEM30, and then identified the accurate river network using a drainage area 

threshold of 0.18 km
2
. River density and bed slope values for each 5km grid were 

calculated as: 

        ∑    (1) 

                      (2) 

where rivden is the river density (m/km
2
), bedslp is the river channel bed slope 

(unitless), A is the area of a 5km grid (km
2
), Σl is the total river channel length (m) 

within the grid, β is the slope angle (radian) for each river segment located in the 

grid. 

Other river channel parameters were estimated by empirical formulas (Getirana et al., 

2012; Luo et al., 2017) as follows: 

             
      (3) 

             
      (4) 

                   
      

         
 (5) 

where W, H and n are river width (m), depth (m) and roughness (unitless) for each 

5km grid; Aacc means the upstream drainage area (km
2
); Hmax and Hmin refer to the 

maximum and minimum values of river depth calculated by Eq. (4). 
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Through a trial-and-error procedure, we calibrated these river channel parameters to 

match the simulated streamflow with observed hourly records at Yantan hydrological 

gauge.” 

 

4) Fourth, lead time plays an important part in forecast verification as forecast skill 

tends to decrease with the increase lead time. Meanwhile, the simulations shown in 

Figures 4 and 5 seem to have nothing to do with lead time. Please present some plots 

of ensemble forecasts at different lead times 

Response: Sorry for the confusion we made in the manuscript. The simulations 

shown in Figures 4 and 5 are driven by the observed meteorological forcings in order 

to evaluate the performance of the CSSPv2 land surface hydrological model. They are 

not “real” forecasts. The performance of the ensemble streamflow forecasts are shown 

via CRPS plots in Figure 7. We have clarified in the revised manuscript as follows: 

“Figures 4 and 5 show the results after the calibration of the routing model, where 

CSSPv2 is driven by observed meteorological forcings to provide streamflow 

simulations and compare against observed streamflow at Yantan hydrological gauge.”  

 

5) Fifth, CRPS in Figure 7 exhibits some diurnal circle that can relates to the diurnal 

circle of reservoir inflow/outflow in Figure 8. This result may be due to the setting of 

the LSTM deep learning model. When preparing streamflow data for LSTM, has the 

mean been subtracted? Are alternative settings, e.g., subtracting the mean or not, 

tested for LSTM? 

Response: Thanks for your comments. The results in Figure 7 didn’t include the 

LSTM deep learning model, while they are based on CSSPv2 streamflow forecasts 

driven by TIGGE-ECMWF meteorological forecasts or climatological forecasts (i.e., 

ESP). The diurnal cycle of CRPS is related to the upstream water release from 

Longtan station, and the diurnal cycle of catchment-averaged precipitation. Please see 

Figure 8 and related text. 
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When performing LSTM corrections, we didn’t subtract the mean streamflow, but 

normalized the streamflow data with the maximum and minimum streamflow. Please 

see section 2.2.4 for details. 

 

6)  The location map can be improved by illustrating all the reservoirs in the 

Hongshuihe hydropower base. In addition, the location of the Hongshuihe 

hydropower base in China can be presented by using an inset plot. 

Response: Thanks for the suggestion. We have redrawn Figure 1 as below. 

 

Figure 1. Locations of discharge gauges and rain gauges over the Yantan basin. 

 

7)  In Table 1, please illustrate the year/month range and time step for the 

hydrological dataset. 

Response: Thanks for the suggestion. We have revised as below. 

Table 1. Information of hydrological datasets 
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Dataset Time Range Time step 

Rain Gauge Observation Forcing  2013/1/1 ~ 2017/12/31 Hourly 

Longtan & Yantan Discharge Gauge 

Streamflow data 

2013/1/1 ~ 2017/12/31 Hourly 

Jiazhuan & Luofu Discharge Gauge 

Streamflow data 

2013/4/1 ~ 2017/9/30 Daily 

TIGGE-ECMWF Forecast Forcing 2013/4/1 ~ 2017/9/30 Hourly 
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