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Abstract. Commercial Microwave Links (CMLs) can be used as opportunistic and unconventional rainfall sensors by convert-

ing the received signal level into path-averaged rainfall intensity. Since in meteorology and hydrology the reliable reconstruc-

tion of the spatial distribution of rainfall is still a challenging issue, there is a wide-spread interest in integrating the precipitation

estimates gathered by the ubiquitous CMLs with the conventional rainfall sensors, i.e. rain gauges (RGs) and weather radars.

Here we investigate the potential of a dense CML network for the estimation of river discharges via a semi-distributed hydro-5

logical model. The analysis is conducted in a peri-urban catchment, Lambro, located in northern Italy and covered by 50 links.

A two-level comparison is made between CML- and RG-based outcomes, relying on 12 storm/flood events. First, rainfall data

are spatially interpolated and assessed in a set of significant points of the catchment area. Rainfall depth values obtained from

CMLs are definitively comparable with direct RG measurements, except for the spells of persistent light rain, probably due to

the limited sensitivity of CMLs caused by the coarse quantization step of raw power data. Moreover, it is shown that, when10

changing the type of rainfall input, a new calibration of model parameters is required. In fact, after the re-calibration of model

parameters, CML-driven model performances are comparable with RG-driven ones, confirming that the exploitation of a CML

network may be a great support to hydrological modelling in those areas lacking of a well designed and dense traditional

monitoring system.

1 Introduction15

Precipitation is the main downward forcing of the water cycle (Kidd and Huffman, 2011) and consequently one of the most

relevant inputs in hydrological models, which are key tools in early warning systems for flood risk forecasting and mitigation

(EU Water Directors, 2003). However, precipitation exhibits a significant temporal and spatial variation over a catchment area

or region (Dawdy and Bergmann, 1969; Bengtsson, 2011; Parkes et al., 2013) and this is a critical aspect leading to difficulties

in reconstructing a reliable rainfall field. In the past, several studies investigated the effects of spatio-temporal variability of20

rainfall on the hydrological model outputs (e.g., Obled et al., 1994; Bárdossy and Das, 2008; Younger et al., 2009; Arnaud
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et al., 2011) proving that precipitation inputs have a marked influence on the simulated outflow hydrographs. It is also known

that the reconstruction of rainfall input is more accurate as the number of rainfall measurements increases over a study area

(Chen et al., 2010; Xu et al., 2013). However, because of economic or geographical factors, an adequate density of rainfall

sensors is often not ensured.25

Currently, the most common ground-based technology for rainfall measurement is the rain gauge (RG), which provides

single-point measurements (New et al., 2001). In addition, high-precision ground sensors, namely disdrometers, provide size

and velocity of hydrometeors (Jaffrain et al., 2011; Cugerone and De Michele, 2015). One of the major problems encountered

when dealing with single-point measurements is to transfer the information to ungauged sites or to reconstruct the rainfall field

over the catchment of interest. Such estimates can be performed by the use of spatial interpolation techniques. Several methods30

are now available, with different degrees of complexity. They can be either deterministic (e.g., the inverse distance weighting

(IDW) method (Shepard, 1968) and the Thiessen polygon method (Thiessen, 1911)) or stochastic (e.g., the Kriging technique

(Delhomme, 1978) and co-Kriging (Myers, 1984)). However, the outcome of these techniques is proved to be highly sensitive

to the gauge density (Xie et al., 1996), depending on the temporal resolution. Specifically, the shorter is the aggregation

time, the more critical is the rain gauge density. Alternatively, the rainfall field at ground level can be indirectly obtained35

by weather radars, when available. The radar retrieves the average rainfall intensity across a volume from measurements of

reflectivity through power-law formulas as the one proposed by Marshall and Palmer (1948). A recent survey of reflectivity-

rainfall intensity formulas is in Raghavan (2013). Ignaccolo and De Michele (2020) and Jameson and Kostinski (2002), have

argued about the purely statistical nature of the reflectivity-rainfall intensity formulas, with important consequences about

their use where calibration with local data is missing. There are in addition other drawbacks associated with the use of radar40

reflectivity, including the problem of spurious echoes, as ground clutter (Alberoni et al., 2001; Rauber and Nesbitt, 2018), which

restrict the use of radars to plain areas and the fact that the radar reflectivity provides only information about precipitable water.

Recently, the dual-polarization upgrade on radars (Zhang et al., 2019; Chen et al., 2021) has added information about shape,

composition, and phase of the hydrometeors. Hence, the quantitative precipitation estimation (QPE) could greatly benefit from

such advancements.45

For all these reasons, measuring the spatial distribution of rainfall is still an open issue, which may be tackled through the

integration of conventional sensors, and/or the complement of new instruments. In this context, the use of opportunistic rainfall

sensors, such as Commercial Microwave Links (CMLs), has raised considerable interest. CMLs are the point-to-point radio

links connecting the base stations of a mobile network to the core infrastructure. The use of microwave links as opportunistic

rainfall detectors was firstly proposed by Atlas and Ulbrich (1977). The method exploits the relationship between the rainfall50

intensity and the attenuation (i.e., the loss of signal power) experienced by the electromagnetic wave along the propagation path

from the transmitter to the receiver. Later, Giuli et al. (1991) made use of a mesh of microwave links for the 2D reconstruction

of the rainfall field, through simulation. A pioneering experimental campaign was carried out during the Mantissa project

(Rahimi et al., 2003). However, at that time, the need to install ad-hoc microwave links made the technique impractical. A

few years later, the scenario changed following the dramatic expansion of cellular telephony. The use of the ubiquitous CMLs55

connecting the base stations of cellular networks was first proposed by Messer et al. (2006). Their paper triggered many studies
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that were conducted worldwide to investigate the potential of CMLs for meteorological and hydrological applications. From

a hydrological point of view, CML-based rainfall products were firstly exploited by Fencl et al. (2013) to improve urban

drainage modelling in a small scale (2.33 km2) impervious catchment, in Prague (Czech Republic). Later, Brauer et al. (2016)

investigated the effects of the use of CML data in discharge simulations, for a natural low land catchment in the Netherlands,60

at small scale (6.5 km2). A further study by Smiatek et al. (2017) used microwave links derived precipitation estimates as

rainfall input in a distributed hydrological model applied to the Ammer basin (Germany), with an area of 609 km2. In that

work, authors employed the IDW method for interpolation of RG and CML rainfall data on a 100 × 100 m grid. Another

case study was carried out on an agglomeration of cities (16 km2) in the Czech Republic by Stransky et al. (2018), to check

the potential of a dense CML network for urban drainage management. Pastorek et al. (2019) assessed the impact of CML65

quantitative precipitation estimates (QPEs) on urban drainage modelling. The authors found that the sensitivity of CMLs is the

factor which mostly affects the QPEs and that the bias on QPEs propagates throughout rainfall-runoff simulations. Moreover,

they showed that the position of CMLs over the drainage area impacts the reconstruction of the runoff dynamic. In Italy,

Roversi et al. (2020) conducted a validation of the CML rainfall estimates in the Po valley (northern Italy) by comparing them

with different data sources (RGs, the ERG5 meteorological data set, and radar products). However, still no one carried out a70

hydrological application of CML-based rainfall estimates.

Here, the analysis aims at investigating and validating the potential of a CML network, located in Lombardia (northern Italy),

exploited for hydrological purposes. Specifically, relying on a semi-distributed hydrological model, we assessed whether rain-

fall data collected by a large CML network of 50 links may be used to provide a reliable reconstruction of the hydrological

process in a medium-sized basin and if it is comparable with those achieved with a well designed RG network. We investigated75

a set of summer and autumn precipitation events (both convective and stratiform), that occurred over the Lambro catchment

during the years 2019 and 2020. The analysis of events taking place in different seasons allowed us to point out some lim-

itations of CMLs in detecting specific types of precipitation. In this work we firstly focused on the spatial interpolation of

rainfall observations comparing results from conventional (RGs) and unconventional (CMLs) instruments and their combined

use. In fact, the issue of spatial interpolation is crucial when dealing with point (RGs) or linear (CMLs) measurements used80

as input into a semi-distributed hydrological model, especially when the study area is quite large (in the order of 100 km2

or even larger). We relied on the traditional IDW method to spatially interpolate precipitation measurements/estimates from

RGs/CMLs. Secondly, we implemented a semi-distributed rainfall-runoff model using three types of inputs: (1) RG measure-

ments, (2) CML estimates and (3) the combination of RG and CML data. Given the different nature of rainfall inputs we also

assessed three calibrations of model parameters. We then compared results in terms of river discharge.85

The remainder of this paper is structured as follows. In Sec. 2 we present the case study, the experimental setup, and

the features of the networks of conventional and unconventional sensors. Section 3 includes a description of all methods

implemented for the analysis and Sec. 4 reports results including a comparison of rainfall spatial interpolation carried out with

the different data types and of stream flow simulations against hydrometric measurements. Discussion and conclusions are in

Sec. 5 and 6, respectively.90
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Figure 1. Case study area. Panel a shows the Lambro catchment, the partitioning in 15 sub-basins (HRUs), and the position of the sensors, while panel b

reports the scheme of HRU interaction in the network. The digital terrain model (DTM) is freely available at https://www.geoportale.regione.lombardia.it.

2 Case study and experimental setup

The case study was carried out in the Lambro catchment, a peri-urban catchment and a left side tributary of the Po river,

shown in Fig. 1.a. It is located north of Milan metropolitan area and covers three different provinces: Como, Lecco, and

Monza e Brianza. The Lambro river, at the Lesmo river section (in purple in Fig. 1.a), drains an area of 260 km2 which can

be mainly divided in two zones, with different morphology and land use. The northern one is the Prealpine region, where95

the Lambro river rises, at 944 m a.s.l.. The southern one, between Pusiano lake and the outlet section, at 178 m a.s.l., is

instead a flat area subjected to massive urbanization, which results in large impervious surfaces and, consequently, fast runoff

processes with a lag time of few hours. The catchment includes the presence of two lakes: Pusiano lake (which is the biggest

one) and Alserio lake, both located in the middle part of the catchment. According to Köppen (1925) climate classification,

the inland northern portion of Italy belongs to the humid subtropical climate (Cfa). Heavy convective cells characterize the100

basin, while the highest monthly rainfall accumulation occurs in spring and autumn. The local meteorological drivers, added

to urban sprawl, lead to the hydrological vulnerability of the region. In order to mitigate hydrological risk in Monza and Milan
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urban areas (downstream to our case study), structural works have been carried out along the Lambro river in past years.

Moreover, great efforts have been put in the implementation and development of non-structural measures (e.g., Ravazzani

et al., 2016; Masseroni et al., 2017; Lombardi et al., 2018), including a dense monitoring system managed by ARPA Lombardia105

(Regional Agency for Environmental Protection). From this, we exploited 10 min resolution rainfall depths and temperatures

respectively from 13 tipping-bucket RGs and eight thermometers (THs), for years 2018, 2019, and for the first six months

of year 2020. In addition, we used 10 min resolution water level measurements of a flow gauge (FG), located at the outlet

section of the Lambro basin in the municipality of Lesmo. All these meteorological and hydrological data are available at

https://www.arpalombardia.it. A rather dense CML network, owned by Vodafone Italia S.p.A., covers the central and southern110

catchment area and its surroundings. In contrast, the northernmost portion of the Lambro basin is covered by few and unevenly

distributed CMLs, given that it is thinly populated and characterized by higher altitudes. The CMLs available over the area

are 50. The key features of CMLs as rainfall sensors are the operation frequency and the path length. Regrouping the CMLs

according to the frequency:

1. 5 links are in the frequency range [11.4,13.1] GHz, with length between 3.5 and 8 km;115

2. 37 links are in the frequency range [18.8,23.0] GHz, with length between 1 and 8.5 km;

3. 8 links are in the frequency range [38.5,42.6] GHz, with length between 1.4 and 2.2 km.

We investigated 12 storm events and the associated floods, in the period June 2019–June 2020. The RG- and CML-based

precipitation data sets, aggregated at hourly time scale, cover a wide range of rainy events from summer thunderstorms to

low-intensity autumn events. In Table 1 we reported initial and final date and time, accumulated precipitation averaged over 13120

RG measurements, 1 h maximum rain rate and observed total flow volume, for the 12 selected events. We defined a storm event

as the time lapse where at least one RG, available on the area, detected precipitation with possible dry intervals no longer than

5 h. An hour is considered dry when the detected rainfall depth is lower than 1 mm and wet otherwise. The beginning of the

flood event is conventionally set at the hour in which the flow rate experienced a sudden deviation from the average. The end

is instead set when the flow rate reverts to the initial condition, at the end of the depletion curve. According to the maximum125

observed rain rates, we classified events in low rain rate and high rain rate, adapting the classification reported in Met Office

(2007) to our specific case study. The former group includes storm events 5, 6, 7, and 12, for which the maximum rain rate is

lower than 15 mm h−1, while the latter covers the remaining events with maximum rain rate higher than 15 mm h−1.

As shown in Fig. 1.a, the catchment area is divided into 15 sub-basins, hereinafter referred to as hydrological response units

(HRUs), for the sake of implementation of the hydrological model (see Sec. 3.2). In particular, the semi-distributed model130

adopted here requires, as input data, rainfall depths estimated in the HRU centroids. The estimates were gathered through the

IDW technique (see Sec. 3.3) and for each HRU a different number of sensors was exploited, according to a defined maximum

distance of 10 km from the HRU centroid. Figure 2 shows some features of the rainfall sensors used for spatial interpolation in

each HRU: the number of exploited RGs, CMLs, and their sum, the ratio between CMLs and RGs number, the mean distance

between rainfall sensors and HRU centroids, and the mean length of CMLs. Please, note that the CML-HRU centroid distance135
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is calculated considering the CML middle point. It is also worth to mention that the number of available CMLs was less than

50 for some events due to maintenance or malfunctioning. The numbers in Fig. 2 are hence averaged over all the events. Figure

2.a highlights a significant increase of the exploited CMLs from HRU 1 to 6. This could be a potential problem leading to more

inaccurate estimates, at the stage of spatial interpolation, for the northern HRUs with respect to the southern ones. On the other

hand, the number of RGs undergoes minor variations from one HRU to another. In Fig. 2.b we can see that the lowest ratios140

between CMLs and RGs correspond to HRU from 1 to 5 and the HRU 10. Moreover, Fig. 2.c shows that, considering HRUs

from 1 to 9, the mean distance between sensors and HRU centroids is always higher when CMLs are considered. The opposite

trend, with a single exception for HRU 12, occurs for HRUs located further downstream. Lastly, the mean CML length, in

Fig. 2.d, has a decreasing trend from upstream to downstream.

6



Table 1. Details of the 12 events considered. On the left side, date, time, cumulative precipitation, and 1 hour maximum rain rate for the 12

storm events. On the right side, date, time, and flow volume of the corresponding flood events.

Storm event Flood event

ID event Date and Time (LT) Cumulative precipitation (mm) Max rain rate (mm h−1) Date and Time (LT) Flow volume (m3 106)

1
22 Jun 2019, 06:00

40.5 37.6
22 Jun 2019, 08:00

0.5
22 Jun 2019, 15:00 22 Jun 2019, 23:00

2
14 Jul 2019, 22:00

63.6 49.0
22 Jun 2019, 08:00

3.0
16 Jul 2019, 03:00 16 Jul 2019, 23:00

3
05 Sep 2019, 01:00

68.7 36.6
05 Sep 2019, 21:00

2.2
09 Sep 2019, 10:00 11 Sep 2019, 23:00

4
18 Oct 2019, 17:00

108.4 35.2
19 Oct 2019, 00:00

8.7
22 Oct 2019, 12:00 24 Oct 2019, 23:00

5
14 Nov 2019, 19:00

34.5 12.6
15 Nov 2019, 04:00

2.9
16 Nov 2019, 17:00 17 Nov 2019, 04:00

6
17 Nov 2019, 01:00

25.6 6.4
17 Nov 2019, 10:00

3.3
17 Nov 2019, 19:00 19 Nov 2019, 03:00

7
18 Nov 2019, 23:00

27.9 4.0
19 Nov 2019, 04:00

5.4
20 Nov 2019, 00:00 21 Nov 2019, 23:00

8
14 May 2020, 20:00

64.2 31.0
14 May 2020, 22:00

4.6
16 May 2020, 07:00 17 May 2020, 02:00

9
03 Jun 2020, 16:00

79.9 24.8
03 Jun 2020, 18:00

4.1
05 Jun 2020, 04:00 05 Jun 2020, 19:00

10
07 Jun 2020, 08:00

42.1 29
07 Jun 2020, 15:00

3.5
08 Jun 2020, 02:00 08 Jun 2020, 19:00

11
08 Jun 2020, 17:00

32.2 22.8
08 Jun 2020, 20:00

3.8
09 Jun 2020, 19:00 10 Jun 2020, 01:00

12
10 Jun 2020, 11:00

16.5 7.4
11 Jun 2020, 02:00

1.0
11 Jun 2020, 07:00 11 Jun 2020, 15:00

7



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
HRU

0

10

20

30

40

N
o.

 r
ai

nf
al

l
se

ns
or

s

(a)

RG CML RG+CML

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
HRU

1

2

3

4

R
at

io
C

M
L/

R
G

(b)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
HRU

4

6

8

M
ea

n
di

st
an

ce
 (

km
)

(c)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
HRU

3

4

5

6

M
ea

n 
C

M
L

le
ng

th
 (

km
)

(d)

Figure 2. From panel a to d: number of rainfall sensors used for spatial interpolation in each HRU centroid, ratio between the number of

RGs and CMLs, mean distance between rainfall sensors and HRU centroids, and CML mean lengths.
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3 Methods145

In this section we firstly describe the algorithms of data processing. While for conventional sensors (RGs, THs, and FG),

the procedure is simple, it is not straigthforward to extract quantitative rainfall information from CML raw data, which are

generated for network monitoring purposes. Second, we discuss the semi-distributed hydrological model and its calibra-

tion/validation procedures. Finally, we illustrate the methods of spatial interpolation of RG- and CML-based rainfall data.

3.1 Data processing150

Conventional sensors (rain gauges, thermometers, and flow gauge)

Raw data from RGs, THs and the FG were firstly processed to correct invalid measurements (missing data and outliers), which

account for less than 1% in the period January 2018–June 2020. The process is different depending on the type of measurement.

Invalid RG data were replaced interpolating valid observations from the nearby sensors by the IDW algorithm. Invalid TH data,

as well as invalid FG measurements, were instead replaced by linear interpolation. After data correction, the 10 min raw data155

were resampled to hourly time scale. Lastly, water level observations were converted into river discharge measurements by

using the rating curves, validated by the Hydrographic Office of ARPA Lombardia.

Commercial Microwave Links

CML raw data are minimum and maximum values of the transmitted and received power levels (TSL and RSL, respectively)

every 15 min. Microwave links of mobile networks are usually two-ways and provide dual-frequency operation. The CML160

data set used here has two to four channels available for every link, which usually permits to deal with missing or invalid

data appearing sometimes over a certain channel. Procedures for the conversion of RSL into rainfall rate have been detailed

by several authors (e.g., Schleiss and Berne, 2010; Fenicia et al., 2012; Overeem et al., 2016). As the format of the available

CML data is the same as in Overeem et al. (2016), we built from the procedure outlined there. Specifically, data processing

went through the following steps: (1) identification and removal of outliers and artifacts (i.e., occasional spikes, which are165

not caused by rain); (2) classification of each 15 min time slot into dry or wet (i.e., rainy) by thresholding the difference

between maximum and minimum RSL values; (3) estimation of the baseline, i.e., RSL in the absence of rain; (4) calculation

of total signal attenuation as the difference between the baseline and the actual RSL; (5) identification and subtraction of the

components of total attenuation not due to rainfall (e.g. wet antenna attenuation); (6) conversion of rain attenuation into rainfall

intensity. Details of the major processing steps are discussed in the following.170

Dry/wet classification at step (2) is required by subsequent steps (3) and (5). First, the RSL is thresholded by an hystheresis

method (see Nebuloni et al., 2020b). Then, each CML is given a score equal to the product of the binary outcome (0/1) of

thresholding by the inverse of its sensitivity to rainfall, the latter depending on CML frequency and length. Finally, a CML is

flagged as wet if the aggregate score of the CML itself and of all its neighbors exceeds 0.5, otherwise it is dry. Two CMLs

are neighbors if they fulfill any of the following conditions: (1) they have a terminal in common, (2) their paths intersect, and175
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(3) their distance is less than a defined maximum value. The baseline on step (3) is obtained through a windowing algorithm.

An N -sample window is centered around each sample of the RSL time series. If enough samples in the window are dry, the

baseline value in the center of the window is the average of minimum and maximum RSL. Once the entire time series has

been processed, the baseline missing points are obtained by linear interpolation. In step (5), it is assumed that wet antenna

attenuation is the only relevant component of total path attenuation not due to rain. This contribution is subtracted from total180

attenuation using the model proposed by Schleiss and Berne (2010), which predicts an exponential increase of attenuation

during the wetting transient, a constant value while raining and an exponential decrease during the drying transient. The input

parameters of the model, that are the duration of the initial transient and the maximum value of wet antenna attenuation, are 900

s and 2 dB, respectively. They were determined analyzing a set of RSL and TSL time series sampled every 10 s, which were

made available over a few CMLs. The relationship between rain attenuation per unit path length γR (dB km−1) and rainfall185

intensity R (mm h−1) is usually modelled by the following power-law function:

γR = κRα. (1)

The coefficients κ and α have been tabulated by the International Telecommunication Union as a function of signal frequency

and polarization (ITU-R P.838-3, 2005). In principle, the γR−R relationship is dependent on the microphysics of rain as

well, hence κ and α should be calibrated, provided that the characteristics of precipitation are known in the climatic area190

where CMLs are deployed. In this work, raindrop size distribution data gathered from disdrometers were used to calculate

the optimum value of κ and α coefficients following the procedure outlined in Luini et al. (2020). In the available CML data

format, only the two extreme values of TSL and RSL are saved in every 15 min window. Therefore, if the average rainfall rate

has to be estimated, for instance to calculate hourly accumulations, it is necessary to derive it from the extremes. To this aim,

TSL and RSL time series sampled each 10 s were made available for a subset of CMLs during some of the events considered195

here and processed as shown in Nebuloni et al. (2020a). Average, min and max rainfall rate within 15 min windows were

calculated from the 10 s time series and the following unbiased estimator of the average rainfall rate was derived:

RMIN−MAX =
1

1.14

RMIN +RMAX

2
. (2)

Two aspects of the above procedure deserve more discussion. First, the available RSL sequence have a coarse 1 dB quantiza-

tion step, which produces a zero-mean random error with rectangular distribution and limiting values equal to± 0.5 dB (± 12%200

when the power is measured on a linear scale). It turns out that it is impossible to distinguish between rain and quantization-

induced noise below a certain rainfall intensity threshold. Figure 3 shows the minimum detectable rainfall intensity without

ambiguity as a function of the CML path length with the CML frequency as parameter. The square markers correspond to

the 50 CMLs in the study area divided into three groups according to their frequency band. Continuous lines are drawn at

three reference frequencies as well. Moreover, quantization affects the accuracy of rainfall intensity estimates. The accuracy205

of instantaneous measurements (at the 95% confidence level) is within 20% if the rainfall intensity exceeds 3 mm h−1 for

the link with the most favorable combination between length and frequency. However, in the worst case, the above accuracy

is achieved only if the rainfall intensity is above 10 mm h−1. The only way to mitigate quantization effects is to average in
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time. Second, it is assumed that the rain attenuation measured over a CML of length L, is L times the attenuation per unit path

length in Eq. (1), which implies that rain is considered uniform along the path. The effect of the inhomogeneity of precipitation210

can be relevant as CML paths range from about 1 km to nearly 9 km (Fig. 3). Some authors proposed to retrieve the spatial

distribution of the rainfall field across the measurement area by processing all the CML data together, for instance through

tomographic techniques. In this work, a simpler approach is used. Each CML is considered independently of the others and the

corresponding rainfall measurement is given a weighting coefficient dependent on the distance between its midpoint and the

point where rainfall has to be estimated, as discussed in Sec. 3.3.215

Please note that, apart from the initial calibration of the γR−R relationship, carried out through disdrometer data, CMLs

are a fully independent network of rainfall sensors, as no external information is used. In order to validate the rainfall estimates

provided by CMLs, we compared the accumulated rainfall during each of the events in Table 1 with RG direct measurements.

To carry out a fully fair comparison, an ad-hoc array of RGs should be deployed along the CML path. However, this is seldom

feasible. Here, CMLs and RGs are associated according to their mutual distance. Each RG is given a different weight depending220

on its position with respect to an associated CML, as follows: the CML path is divided into short segments, the distance between

the RG and each CML segment (approximated by its midway point) is calculated, and all the above distances are averaged.

The number coming out of this calculation takes into account the relative position of the CML and of the RG as well as CML

length. Finally, the rainfall accumulated from the set of RGs associated with a given CML is calculated by the IDW method

using the average CML–RG distance. The scatter plot between CML– and RG–based accumulated rainfall is plotted in Fig. 4225

for the eight high-intensity (panel a) and the four low-intensity events (panel b), respectively. Only RGs within 5 km (average

distance) from a CML are considered. During high-intensity events, there is a good match between CML and RG estimates,

whereas CMLs exhibit an evident underestimation (more than 30% on the average) in the case of low-intensity events. This
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pattern can be explained by the lack of sensitivity of CMLs to low rainfall intensities due to signal quantization. In Appendix

A we present a further local comparison, between CML and nearby RGs on rainfall time series.230

3.2 Hydrological model

We used a semi-distributed rainfall-runoff model, at an hourly time scale. The catchment area is divided into 15 HRUs, which

are considered meteorologically, geologically, and hydrologically homogeneous. The model parameters are hence set at HRU

scale.

The river discharge at time t, Q(t), in HRU’s outlets is calculated as the sum of two main components235

Q(t) =Qs(t) +Qg(t), (3)

where Qs is the contribution given by the surface runoff R∗, i.e., the portion of rainfall not infiltrated into the soil, an Qg is the

groundwater discharge.

The computation of R∗ (in mm) relies on the SCS-CN method (US Department of Agriculture Soil Conservation Service,

1985):240

R∗ =
(P − Ia)2

P − Ia +S
, (4)

where P ≥ Ia (in mm) is the rainfall depth, S (in mm) is the maximum soil potential retention, and Ia (in mm) is the initial

abstraction (calculated as a percentage, 20%, of S). According to USDA-SCS guidelines, the soil moisture condition antecedent
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to a storm event is classified depending on the value of the five-day antecedent rainfall. Here, we account for the actual soil

moisture in a dynamical way, as proposed in the AnnAGNPS model (Bingner and Theurer, 2005) and also implemented in245

Ravazzani et al. (2007). In particular, the value of S(t) is updated as a continuous function of the degree of soil saturation ε(t)

(-)

S(t) = SI ·
{

1−
[

ε(t)

ε(t) + exp(WI −WII · ε(t))

]}
, (5)

where the weights WI (-) and WII (-) are defined as follows

WI = ln

[
1

1−SIII/SI
− 1

]
+WII ; (6)250

WII = 2 ·
[
ln

(
0.05

1−SII/SI
− 0.5

)
− ln

(
1

1−SIII/SI
− 1

)]
, (7)

where SI , SII , SIII are the retention parameters associated with the curve numbers CNI , CNII , and CNIII , respectively.

Finally, ε(t) is calculated as

ε(t) =
θ(t)− θres
θsat− θres

, (8)

where θsat (-) is the soil moisture at saturation conditions and θres (-) is the residual soil moisture.255

To calculateQs at time t, the runoff is routed to the HRU’s outlet, representing each HRU as a linear reservoir model (Dooge,

1973):

Qs(t) =

t∫
0

a · r∗(τ) ·A ·T−1lag · exp

(
− t− τ
Tlag

)
dτ, (9)

where a= 10−3 m mm−1 is a conversion factor, r∗ is the surface runoff rate (in mm s−1), A (in m2) is the HRU area, and

Tlag (in s) is the lag time calculated as 0.6 times the concentration time, Tc, for average natural watershed conditions and an260

approximately uniform distribution of runoff according to Mockus (1957) and de Simas (1996). The calculation of Tc, in each

HRU, relies on the formula proposed by Ferro (2006).

The portion I (in mm) of total rainfall that infiltrates in the shallower layer of soil can either be lost by evapotranspiration,

ET (in mm), or by percolation, D (in mm). Potential evapotranspiration (PET ) is here calculated by the Hargreaves and

Samani (1985) equation, which requires temperature data. The actual evapotranspiration (ET ) is computed as a fraction of265

PET following Ravazzani et al. (2015). The water balance equation, referred to the shallower layer of soil with depth z (in

mm) at time t, is formulated as

θ(t) = θ(t− 1) +
I(t− 1)−D(t− 1)−ET (t− 1)

z
, (10)

where θ (-) is the actual soil moisture. D(t) is the drainage flux calculated as

D(t) = c ·Ksat · ε(t)
2+3B

B , (11)270
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where c= 3.6 · 106 (in mm s m−1) is a conversion factor, Ksat (in m s−1) is the hydraulic conductivity at saturation, and B is

the Brooks-Corey index (Brooks and Corey, 1964). Finally, Qg(t) = a ·∆T−1 ·D(t) ·A, with ∆T = 3600 s. The interaction

among HRUs is represented by in series or in parallel reservoirs, according to the development of the river network, as exhibited

in Fig. 1.b. CN values were taken from https://www.isprambiente.gov.it while θres, θsat, and B parameters were taken from

Maidment (1993). Ksat and z are instead calibrated, as reported below.275

Calibration and validation of the hydrological model

The hydrological model was calibrated using, as input, the hourly rainfall depths from the RG network in Fig. 1.a. The chosen

period for calibration is 1 January 2019–31 December 2019. We tested different combinations of the two parameters, Ksat

and z, and we selected the combination maximizing the Nash and Sutcliffe (1970) efficiency (NSE). Concerning Ksat we

tested the values reported in Maidment (1993) multiplied by several different powers of 10, {10−2,10−1,100,101,102}. The280

values of Ksat taken from the literature are different depending on the type of soil characterizing each HRU. With regard to

z, we tested all the values inside the range [10 cm, 3 m], with a 10 cm step. The parameter validation was carried out over

two non-consecutive six-months periods: 1 July 2018–31 December 2018 and 1 January 2020–30 June 2020. The NSE value

is 0.69 for the calibration and 0.56 for the validation, respectively. Please note that the calibrated parameters provide a NSE

larger than 0.5 for the overall one-year validation period, which is the minimum value recommended by Moriasi et al. (2007)285

to consider a simulation reliable.

It is also worth to notice that the calibration and validation steps were particularly troublesome due to the presence of the

Cavo Diotti dam, which artificially regulates the outflow of Pusiano lake during flood events.

3.3 Spatial interpolation of rainfall data

Several methodologies have been proposed and applied for the spatial interpolation of rainfall measurements retrieved from290

CMLs (e.g., Fencl et al., 2013; Overeem et al., 2013; D’Amico et al., 2016; Haese et al., 2017; Chwala and Kunstmann, 2019;

Graf et al., 2020; Eshel et al., 2021). Here, we exploited the simple and robust IDW method (Shepard, 1968) for both RG

and CML measurements. According to the IDW method, given n measurements {u(x1), ...,u(xn)} at given points xi, with

i= 1, ...,n the interpolated value u, in x, is calculated as

u(x) =


∑n

i=1w
′
i·u(xi)∑n

i=1w
′
i

if d(xi,x) 6= 0 for all i;

u(xi) if d(xi,x) = 0 for some i,

(12)

with295

w′i =
1

d(xi,x)
γ , (13)

where d(xi,x) is the distance between the measuring point xi and the coordinates of HRU’s centroid x, and γ > 0. The number

of contributing measurements n is the one within a distance dmax from the query point. We identified the appropriate value
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Figure 5. IDW calibration based on RGs: RMSE between observed and simulated rainfall depths, for different values of γ and dmax.

for γ and dmax by leave-one-out cross validation. We estimated the precipitation, at each RG point, from the remainder of

RGs at a distance smaller than dmax, and calculated the Root Mean Square Error (RMSE) between observations and estimates.300

The process was repeated for several values of γ and dmax. We set a minimum dmax value equal to 10 km, to have at least

one neighbour available for every considered RG. To this aim, we exploited a larger set of 38 RGs (including the 13 RGs in

Fig. 1.a) located on a wider area compared to the Lambro catchment and we used data from January 2018 to June 2020. The

resulting RMSE distribution as a function of dmax and γ is reported in Fig. 5. We observe that the choice of dmax has a rather

marginal effect on the estimates if γ ≥ 2. The minimum RMSE is achieved when γ is slightly above 3. We therefore chose305

γ = 3. Moreover, we selected dmax = 10 km, which provides the best RMSE when γ = 3. To spatially interpolate CMLs rain

rates, we handled them as virtual RGs, assuming the rainfall measurement is collapsed into the midpoint of the CML path.

Again we used IDW method and the same values of γ and dmax as above. In addition of considering only RGs, or only CMLs,

we accounted for the integration of RGs and CMLs measurements. In the following, we will refer to this option as CML+RG.

4 Results310

The results are presented in the following two subsections. Sec. 4.1 provides a comparison of rainfall depths interpolated in

the HRU centroids, by using data either from conventional or opportunistic sensors. Both accumulated rainfall values and

hourly rainfall depths are considered at basin and sub-basin scale, for the 12 events. We therefore investigate whether there

are some critical issues that might help to explain differences in the rainfall-runoff model outputs. Sec. 4.2 analyzes discharge

performances, by comparing RG-, CML-, and RG+CML-driven simulations with the observed flow rates.315
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4.1 Comparison between RG and CML rainfall data in each HRU

Figure 6 shows the scatter plot of the rainfall accumulated at the end of each of the 12 storm events and averaged over the

entire catchment area. Yellow markers are CML against RG rainfall depths, while in orange are CML+RG against RG rainfall

depths. On the one hand, for all the low rain rate events (squares), estimates from CMLs and from CMLs+RGs are lower than

the ones from RGs. On the other hand, CML (and CML+RG)-estimates of high rain rate events, are very nearly the same (with320

either lower and higher values) to the RG-based ones, with the only exception of event 3. From a more general perspective, the

two regression lines indicate a good agreement between the two sets of sensors.
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Figure 6. Rainfall depths, averaged over the catchment area and accumulated at the end of each of the 12 events. The number next to the

markers refer to the ID event while the two different markers, circles and squares, respectively stand for high rain rate and low rain rate

events. The black line represents the 1:1 line of perfect matching between rainfall depth estimates from RGs and from CMLs (yellow) or

from the combination of RGs and CMLs (orange). Yellow and orange lines are the corresponding regression lines.

We further assessed CML and RG rainfall estimates on the hourly time scale and on the sub-basin spatial scale by calculating

the relative error of CML estimates with respect to RG ones, assuming the latter as benchmark, for the hourly rainfall depths
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inferred in the 15 HRU centroids. The relative error (∆E) is evaluated as:325

∆E =
RCML−RRG

RRG
, (14)

where RCML and RRG are the 1 hour rainfall depths estimated in each HRU centroid, respectively from CMLs and RGs. For

the calculation, we only considered wet hours (RRG ≥ 1 mm in HRU centroids), relying on a data set of 2061 values. Hence,

when the CML estimate yields 0 and the RG estimate is greater than 0 (false negative), the relative error is -1. Figure 7 shows a

2D histogram representing the count of rain hours falling in a given range of RG-estimated rainfall depths and in a given range330

of relative errors. The increasing spread of ∆E values with respect to the decrease of the RG-based rainfall depths is due to the

greater uncertainty of CMLs in detecting low rain rates. If the RG-based rainfall depth is smaller than 3 mm, only 30% of ∆E

values falls in the range [-0.4, 0.4], whereas if it is larger than 3 mm, the percentage increases up to nearly 70%. Moreover,

for the lowest rainfall depths there are fewer negative values of ∆E as we set to zero all the CML rain rate estimates lower

than the sensitivity of the link itself. The high count related to ∆E =−1 and RG-based rainfall depths < 5mm is due to the335

occurrence of false negatives.
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Figure 7. 2D histogram of hourly rainfall depth from RGs and ∆E. The colour of each equally spaced 2D bin represents its height, which is

the count of data falling in the bin. The scale bar has a logarithmic scale and the dark blue bins correspond to 0 counts. Values of ∆E equal

to -1 represent false negatives.

We therefore focused on the CML hourly wet-dry classification, inferred in HRU centroids, again considering RG estimates

as benchmark. We recall that dry hours are those in which the detected rainfall depth is lower than 1 mm and vice versa for

wet hours (see also Sec. 2). Figure 8 depicts box plots of the percentage of false negatives and false positives for low rain rate

and high rain rate events. In contrast to a false negative, a false positive occurs when an hourly slot is classified as wet by340

CMLs and dry by RGs. The two box plots on the left were obtained from a population of 120 samples (8 high rain rate events
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Figure 8. Percentage of hours subjected to wrong wet-dry classification (false negative or false positive), with respect to high rain rate and

low rain rate events. The box plots display the median, the 0.25 (lower) and 0.75 (upper) quantiles, outliers (computed using the interquartile

range), and the minimum and maximum values excluding any outliers.

x 15 HRUs), while the two on the right were computed from 60 samples (4 low rain rate events x 15 HRUs). For example,

the maximum percentage of false negatives is 60%, which corresponds to HRU 2 during the low rain rate event 7 of Table 1.

From a general point of view low rain rate events exhibit a higher median and a larger dispersion of false negatives than high

rain rate events, whereas the occurrence of a false positive is relatively rare in both cases. These results confirm the inability345

of CMLs in detecting low rain rates, which depends on the quantization error issue discussed in Sec. 3.

Finally, in Fig. 9 we report box plots of ∆E values calculated for rainfall accumulated by each HRU over each of the 12

event. Again, the events are grouped in two classes according to rainfall intensity. The contrasting behaviour between low rain

rate and high rain rate events is evident. In the former case, ∆E is mostly much lower than 0 and it is much scattered. Once

again, this result confirms that during low rain rate events, CMLs are not able to properly detect the lowest rainfall intensities.350

Regarding high rain rate events, there is not a clear trend. The median ∆E values are always within the range [-0.25,0.25] and

their dispersion is low as well.

4.2 Comparison between RG- and CML-driven discharge simulations

In the following, discharge simulations obtained from three different data inputs (RGs, CMLs and CMLs+RGs) are assessed

and compared with hydrographic measurements at Lesmo river section.355

The output performances were evaluated with three indices: (1) the well-known Nash–Sutcliffe efficiency (NSE), (2) the

relative error on peak discharge (REP) and (3) the relative error on flow volume (Dv). The last two indices are defined as

follows:

REP =
Qmaxsim −Qmaxobs

Qmaxobs

; (15)
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Figure 9. Box plots of ∆E in each HRU for the 12 storm events (divided in two groups according to rainfall intensity). The ranges of the

box plots are those reported in Fig. 8.

360

Dv =
Vsim−Vobs

Vobs
, (16)

where Qmaxsim is the simulated peak discharge, Qmaxobs is the observed peak discharge, Vsim is the simulated total flow volume,

and Vobs is the observed total flow volume.

Performances of the 12 discharge simulations, grouped by rainfall data input, are summarized in Fig. 10, through box plots.

The statistical dispersion (represented by the interquartile range) of CML-based discharge simulations are larger than RG-based365

simulations. The use of CML data into the rainfall-runoff model seems to produce higher uncertainty, with respect to RG data.

The combined use of RGs and CMLs instead decreases the statistical dispersion of results and leads to performances closer to

those achieved through RG. Generally, CMLs exhibit worse performance than RGs in terms of NSE and Dv. As for REP, the

two sets of sensors produce comparable errors of opposite sign, hence their combined use leads to an optimum value of the

median error (0.06).370

To gain a deeper understanding of the model performances on flow peaks, we produced a scatter plot of observed against

simulated flow peaks in Fig. 11. The scatter plot firstly reveals that the best match between observations and simulations is not

always achieved by RG-based simulations. In fact, for events 1, 3, 5, and 11 the optimum matching is given from CML- or

CML+RG-based simulations. Moreover, the low rain rate events typically result in underestimated peak flow simulations with

respect to the observations, considering either conventional or unconventional sensors, with an exception for event 5.375

Figure 12 reports model inputs and outputs for events 5 and 2. We selected these two examples as they are characterized by

a different meteorological configuration and lead to contrasting model performances. The first event is an autumn stratiform

event, characterized by low rain intensity. In Fig. 12.a we can see that CML-based estimates in HRUs 1, 2, 5, 8, and 11 are
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Figure 10. From panel a to c, box plots of performance metrics, namely NSE, REP, and Dv, for the 12 selected flood events. The optimum

values correspond to the bold black lines. The ranges of the box plots are those reported in Fig. 8.

quite low, with respect to RGs, due to the difficulties of CMLs in detecting light rain. In contrast, in the southern HRUs 10,

12, 13, 14, and 15, which have much more influence in the generation of river discharge, CML estimates are higher than RG380

ones. Fig. 12.b shows an example where the CML-driven simulation better represents the observed outflow hydrograph, with

respect to the RG-driven simulation. In particular, the best performance is gained when both the two types of rainfall sensors

are used, and it provides an excellent Dv, equal to 0.03. The highest discrepancies between CML and RG estimates mostly

involve the northern portion of the basin and have less impact in generating discharge. Event 2 is instead a typical intense

convective summer event, characterized by a single rainfall peak. As rain rates are high all over the basin, contrary to event 5,385

we observe in Fig. 12.c a better agreement between CML and RG estimates. River discharge simulations, reported in Fig. 12.d,

are satisfactory, considering all the 3 input data. NSE values obtained respectively from RGs, CMLs, and RGs+CMLs data are

0.86, 0.77, and 0.80.

As the hydrological model has been calibrated with RG-detected rainfall data, it can be assumed that the best model perfor-

mances are mostly achieved with RG data as input, as well. Unfortunately, we did not have at our disposal a database of CML390

events large enough to carry out a CML-based calibration. Nevertheless, we tried to overcome this problem, by recalibrating

model parameters, with CML and CML+RG rainfall estimates as input, relying on the 12 available flood events. The same

event-based calibration, was hence conducted using RG data as rainfall inputs. In such a way the comparison on discharge sim-

ulations may be led in a fair manner. We considered as optimum parameters those providing the highest median NSE values.

Performance indices, subdivided by type of rainfall data input and type of calibration, are summarized in Fig. 13 by box plots.395
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Figure 11. Observed peak flow against simulated one from RG (blue), CML (yellow), and CML+RG (orange). The two different markers,

circles and squares, respectively stand for high rain rate and low rain rate events. Inset figure reports a zoom for events with a low peak

discharge.

Please note that CML- and CML+RG-based calibrations improve the performance of the model when fed by unconventional

input data. In particular, NSE values are comparable with the ones achieved by the use of RG data with a RG-based calibration.

In fact, median NSE values for RG inputs with RG-based calibration, CML inputs with CML-based calibration, and CML+RG

inputs with CML+RG-based calibration are 0.37, 0.35, and 0.38, respectively. For REP values we generally observe under-

estimations of the observed peak flow, considering CML- and CML+RG calibration but a smaller interquartile range when400

compared with RG-based calibration. Concerning Dv values, performances for the CML- and CML+RG-based calibration are

quite satisfactory, despite the combination providing the best performance is still RG inputs with RG-based calibration.
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Figure 12. In panel a and c, cumulative rainfall depth estimates from RG, CML, and CML+RG for storm/flood events 5 and 2, respectively.

In panel b and d discharge observations and simulations gathered by using the three different input data, for the two same events.
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5 Discussion

The analysis of interpolated rainfall data carried out in Sec. 4.1 reveals that CML and RG estimates of accumulated areal-

averaged rainfall depths are comparable. However, two issues emerged.405

First, CMLs exhibit a different behaviour depending on event intensity, since their sensitivity varies with length and fre-

quency. Specifically, they return lower values of rainfall depth and rainfall accumulation in correspondence of low rain rate

events. This aspect becomes evident either at different spatial scales (sub-basin and basin scales) and at different temporal

scales (hourly and event-based time scales). In fact, due to a coarse quantization of the raw data, CMLs are not sensitive to

low rain intensity, hence, when the rainfall depth value over a certain lapse of time is required (in our case 1 h), this limitation410

may lead to large errors, especially when light rain goes on for a long time. Despite some discrepancies in the behaviour of

single CMLs with respect to their nearby RGs, as highlighted in Appendix A, we observed a good agreement between CML-

and RG-based estimates in HRU centroids for high rain rates due to a mitigation effect.

The second issue is the different CML density over the HRUs. It is well known that spatial interpolation methods are sensitive

to sensor density (Xu et al., 2013), and consequently the relatively large distance of the available CMLs from the HRU centroids415

in the most scarcely populated areas (northern HRUs) may lead to loss of reliability of estimated rainfall depths. However, such

an aspect appears to be less relevant when compared with the first one, at least when dealing with quite large HRUs (dozen of

km2). In fact, a careful comparison of Fig. 2 and Fig. 9 does not show an evident correlation between the mean CMLs-centroids

distance and ∆E values.

Last but not least, model performances are influenced by the calibration process of model parameters. Similar model perfor-420

mances, in terms of NSE index, can be achieved with all the three types of input data (RGs, CMLs, and CMLs+RGs) if the

calibration is carried out with the respective data inputs. This means that, after a proper calibration, opportunistic sensors could

be exploited in semi-distributed hydrological models, as well as RGs. In particular we found that, after calibration, the set

RGs+CMLs is the one providing the highest median NSE. However, it is worth highlighting that we calibrated the parameters

on the basis of only 12 flood events. In order to assess a robust calibration and the associated validation, a larger data set of425

CML-based rainfall events should be processed.

Limitations and future improvements

One of the major difficulties encountered during analyses was the small amount of CML data, as we relied on only 458 hours

of CML raw data grouped in 12 events. On the other hand, the database from RG observations was much more wider and

we disposed of real-time data. An extension of the CML-based data set of events, or better yet, to have access to real-time430

CML raw data would definitely bring great benefits to the present work. Firstly, it would allow the development of a more

robust statistical analysis on storm/flood events. Secondly, it would enable a proper calibration, and a validation as well, of the

hydrological model based on CML data as rainfall input.

To enhance this work, it would also be useful to resort to the implementation of a CML-driven distributed model, which

is expected to provide a more accurate description of the spatial variability of the precipitation field with respect to a semi-435
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distributed one. In such a case, the CML measurements would be better exploited by the use of advanced methods for spatial

reconstruction of the rainfall field. For instance, techniques such as the tomographic reconstruction algorithm (D’Amico et al.,

2016) or the stochastic reconstruction based on copulas (Haese et al., 2017; Salvadori et al., 2007), take advantage of the path

integrated nature of CML measurements.

It is also worth to notice that, although we showed that CML rainfall data can be successfully assimilated into hydrological440

models, their integration into real-time operational platforms (e.g. early warning systems) remains challenging. A number of

aspects should be still considered including:

– generation of CML raw data formats suitable for rainfall estimation;

– real-time collection of raw data, which should be transparent to network operation;

– data transfer to a control center;445

– non trivial data reduction process, especially if large sets of CMLs are managed.

The above mentioned issues suggest a systematic cooperation with mobile operators, who are the owners of CML network

infrastructure.

Up to now, we mainly investigated the exploitation of CML-based rainfall estimates with the purpose to test their impact on

the hydrological simulations of river discharge, with respect to the use of RG data. However, still important hydrological issues450

could be addressed by dealing with CML data. One of this is definitely the modelling of the Areal Reduction Factor (ARF), the

factor which transforms a point rainfall for a given duration and return period into the areal average value for the same duration

and return period (Natural Environmental Research Council (NERC), 1975). In last decades, great efforts have been put for the

modelling of the ARF (De Michele et al., 2001), useful in the design of hydraulic and hydrological infrastructures, for flood

risk evaluations, and rainfall threshold estimations in early warning systems (e.g., Kim et al., 2019; Biondi et al., 2021). As we455

dealt with a semi-distributed hydrological model we needed to transform point (from RG) and linear (from CML) precipitation

measurements into areal values, over the HRU areas. Therefore, from a different perspective, this work could be also seen as a

first step in order to test the modelling of ARF by using a combination of conventional and unconventional sensors.

6 Conclusions

In this work, we assessed the use of commercial microwave links (CMLs) as opportunistic rainfall sensors within the hydro-460

logical modelling. We focused on Lambro, a peri-urban catchment, 260 km2 in area, located north of Milan (Italy) and covered

by 50 CMLs that are part of the network owned by a major mobile operator. Lambro’s area is covered by 13 rain gauges

(RGs) as well, which we used both as an independent rainfall data set and in combination with CMLs. We implemented a

semi-distributed hydrological model and carried out two types of comparison between CML and RG data. First, we considered

rainfall data (hourly rainfall depths, the input of the hydrological model, and total accumulations at the storm end, for a sample465

of 12 storm events) interpolated at the HRU centroids. Then, we compared river discharge simulations (model output) from

RGs, CMLs and RGs+CMLs against flow measurements.
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Concerning the comparison on rainfall data, we found out that high intensity events detected by CMLs are in accordance

with RG measurements. On the other hand we came across a critical aspect, which is the inability of CMLs to detect low

rain rates, due to the coarse 1 dB quantization step of raw data (i.e. received power levels). The minimum detectable rainfall470

intensity depends on the operation frequency of CMLs as well as on their length, and, for the available set of CMLs, it ranges

from 1 mm h−1 to 10 mm h−1. Such a limitation results in the underestimation of rainfall depths interpolated in the HRU

centroids for low intensity storm events, when compared to RG-based rainfall data.

The hydrographs simulated by the hydrological model highlight better performances in terms of Nash-Sutcliffe efficiency,

NSE, and the relative error on flow volume, Dv, in the case of RGs rather than of CMLs. This result is not surprising as475

the model was calibrated using RG data throughout one year data. Nevertheless, satisfactory values of relative error on peak

discharge, REP, are achieved through the use of CML and CML+RG data as inputs into the RG-based calibrated model.

By calibrating the model with CML data and by using the same as input, it is possible to improve the model performance,

which becomes comparable with the case of RG-calibration and RG-input. Even a slightly better performance can be gathered

with a CML+RG-based calibration and CML+RG data as input.480
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Appendix A: Local comparison between CML and RG rainfall time series

Rainfall amounts collected from CMLs and RGs are here compared through an analysis of the corresponding time series. To

this aim, we selected four CMLs having at least one RG within 5 km, as done for the scatter plots of Fig. 4 and we plotted the

CMLs and RGs time series of rainfall intensity and cumulative rainfall depth during the storm events 7, 8, 9 and 10 of Table 1.490

Please note that rainfall intensity is obtained from slightly different resolution times, i.e. 15 min for CMLs and 10 min for

RGs, respectively. Fig. A1 shows the results. The differences between individual CMLs and nearby RGs are not surprising,

due to three main factors: (1) the different nature of the sensors, (2) the CMLs were not calibrated using other rainfall sensors

as weather radars, and (3) the relative position between CML and RG. What is mostly evident are the differences between

the low (event 7) and the high intensity events (events 8, 9, and 10). In the former case, the CMLs miss most of rainfall495
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occurrences, causing a large underestimation of the rainfall accumulated at the end of the event. During event 7, RGs detected

rain intensities from 1 up to 6 mmh−1. The last value is approximately the minimum detectable rain intensity for the CML

with lowest frequencies (in Fig. A1.a). However, it is worth to underline that such an underestimating behaviour is observable

not only for short and low-frequency CMLs but also for the most sensitive ones. In fact, large underestimations are reported in

panels k, l, and q which are related to links with minimum detectable rain intensity equal to 1.6, 1.4, and 1 mmh−1, respectively.500

This systematic underestimating behaviour also impact estimates of rainfall depths at the basin and sub-basin scale, as shown

by results in Sec. 4.1. The three high rain rate events highlight different behaviours depending on the considered CML and its

relative location respect to the RGs. The short and low frequency CML, given in panel a, shows quite large discrepancy with

its nearby RG, regarding to either the peaks timing or the total observed rainfall depth, and reveals both underestimating and

overestimating behaviours (see panels c-e of Fig. A1). The performances of the two medium-length and medium-frequency505

CMLs (second row panels h-j and third row panels m-o of Fig. A1) are in mutual agreement and are definitely better with

respect to the case shown in the first row (see panels c-e of Fig. A1). Specifically, it can be noticed that in most of the cases

these two CMLs well reproduce the highest peaks observed by the closest RGs, which are also those located right next to

their middle point. However, they show some discrepancies (lower values with respect to RGs) as the rain rate decreases.

This behaviour is particularly evident in panels i and n, for event 9. Finally, the highest-frequency CML (fourth row in Fig.510

A1) exhibits different performances during the three high rain rate events (panels r-t). For example, at odds with the previous

cases, in event 10, the CML tends to overestimate the lowest rain rates, leading to a large overestimation (up to 60%) of the

cumulated rainfall depth. In this case, the differences between CML and RGs could be also due to the not-optimal relative

location between CML and RGs. Results reported in Sec. 4.1 show that interpolating several CML data at HRU centroids

mitigates the inaccuracy of individual CMLs and leads to acceptable estimates of the flow except in the case of low intensity515

events due to their limited sensitivity.
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(a) CML: 3.59 km; 11.54 GHz

(f) CML: 5.89 km; 18.98 GHz

(k) CML: 6.32 km; 18.30 GHz

(p) CML: 2.09 km; 38.68 GHz

0

2

4

6

R
ai

n 
ra

te
 (

m
m

 h
-1

)

(b) Event 7: 18-20 Nov 2019

1 50 100 145
0

10

20

30

C
um

. r
ai

n 
de

pt
h 

(m
m

)

RG1

CML

1 50 100 150 200
0

50

100

(c) Event 8: 16-14 May 2020

1 50 100 150 200
0

50

100

0

50

100

(d) Event 9: 3-5 Jun 2020

1 50 100 150 200
0

50

100

0

50

100

(e) Event 10: 7-8 Jun 2020

1 50 100
0

50

100

0

2

4

6

R
ai

n 
ra

te
 (

m
m

 h
-1

)

(g)

1 50 100 145
0

10

20

30

C
um

. r
ai

n 
de

pt
h 

(m
m

)

RG1

RG2

RG3

CML

0

10

20

30

40

(h)

1 50 100 150 200
0

50

100

0

20

40

(i)

1 50 100 150 200
0

50

100

150
0

50

100

(j)

1 50 100
0

20

40

0

2

4

6

R
ai

n 
ra

te
 (

m
m

 h
-1

)

(l)

1 50 100 145
0

10

20

30

C
um

. r
ai

n 
de

pt
h 

(m
m

)

RG1

RG2

CML

0

10

20

30

(m)

1 50 100 150 200
0

20

40

60
0

20

40

60

(n)

1 50 100 150 200
0

50

100

0

50

100

(o)

1 50 100
0

10

20

30

40

0

2

4

6

R
ai

n 
ra

te
 (

m
m

 h
-1

)

(q)

1 50 100 145
Hours

0

10

20

30

C
um

. r
ai

n 
de

pt
h 

(m
m

)

RG1

RG2

RG3

CML

0

10

20

30

40

(r)

1 50 100 150 200
Hours

0

20

40

60

80
0

10

20

30

40

(s)

1 50 100 150 200
Hours

0

50

100

150
0

50

100

(t)

1 50 100
Hours

0

20

40

60

Figure A1. Comparison between single CML and nearby RGs. Each row shows (1) the location over the Lambro basin of the selected CML

and its nearby RGs, (2) the CML-RGs comparison on rain rate time series, and (3) the CML-RGs comparison on cumulated rainfall depths.
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