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Abstract. Commercial Microwave Links (CMLs) can be used as opportunistic and unconventional rainfall sensors by convert-

ing the received signal level into path-averaged rainfall intensity. Since in meteorology and hydrology the reliable reconstruc-

tion of the rainfall spatial distribution
:::::
spatial

::::::::::
distribution

::
of

::::::
rainfall

:
is still a challenging issue, there is a wide-spread interest in

integrating the precipitation estimates gathered by the ubiquitous CMLs with the conventional rainfall sensors, i.e. rain gauges

(RGs) and weather radars. Here we investigate the potential of a dense CML network , for the estimation of river discharges via5

a semi-distributed hydrological model. The analysis is conducted on Lambro,
::
in

:
a peri-urban catchment

:
,
:::::::
Lambro,

:
located in

northern Italy and covered by 50 links. A two-level comparison is made between CML- and RG-based outcomes, relying on 12

storm/flood events. First, rainfall data are spatially interpolated and assessed in a set of significant points of the catchment area.

Rainfall depth values obtained from CMLs are definitively comparable with direct RG measurements, except for the spells of

persistent light rain, due to
:::::::
probably

:::
due

::
to

:::
the limited sensitivity of CMLs caused by the coarse quantization step of raw power10

data. Moreover, it is showed
:::::
shown that, when changing the type of rainfall input, a new calibration of model parameters is

required. In fact, after the re-calibration of model parameters, CML-driven outputs
:::::
model

:
performances are comparable with

RG-driven ones, confirming that the exploitation of a CML network may lead to benefit in hydrological modelling
::
be

:
a
:::::
great

::::::
support

:::
to

:::::::::::
hydrological

::::::::
modelling

::
in

:::::
those

:::::
areas

::::::
lacking

::
of

::
a

::::
well

:::::::
designed

::::
and

:::::
dense

::::::::
traditional

::::::::::
monitoring

::::::
system.

1 Introduction15

Precipitation is the main downward forcing of the water cycle (Kidd and Huffman, 2011) and consequently one of the most

relevant inputs in hydrological models, which are key tools in early warning systems for flood risk forecasting and mitigation

(EU Water Directors, 2003). However, precipitation exhibits a significant temporal and spatial variation over a catchment area

or region (Dawdy and Bergmann, 1969; Bengtsson, 2011; Parkes et al., 2013) and this is a critical aspect leading to difficulties

in reconstructing a reliable rainfall field. In the past, several studies investigated the effects of spatio-temporal variability of20

rainfall on the hydrological model outputs (e.g., Obled et al., 1994; Bárdossy and Das, 2008; Younger et al., 2009; Arnaud

1



et al., 2011) proving that precipitation inputs have a marked influence on the simulated outflow hydrographs. It is also known

that the reconstruction of rainfall input is more accurate as the number of rainfall measurements increases over a study area

(Chen et al., 2010; Xu et al., 2013), even if there are some .
::::::::
However,

:::::::
because

::
of

:
economic or geographical circumstances that

prevent the presence of
::::::
factors, an adequate density of rainfall sensors

:
is

::::
often

::::
not

::::::
ensured.25

Currently, the most common ground-based technology for rainfall measurement is the rain gauge (RG), which provides

single-point measurements (New et al., 2001). In addition, high-precision ground sensors, namely the disdrometers, provide

size and velocity of hydrometeors (Jaffrain et al., 2011; Cugerone and De Michele, 2015). One of the major problems encoun-

tered when dealing with single-point measurements is to transfer the information in
::
to ungauged sites or to reconstruct the

rainfall field over the catchment of interest. Such estimates can be performed by the use of spatial interpolation techniques.30

Several methods are now available, with different degrees of complexity. They can be either deterministic (e.g., the inverse

distance weighting (IDW) method (Shepard, 1968) and the Thiessen polygon method (Thiessen, 1911)) or stochastic (e.g., the

Kriging technique (Delhomme, 1978) and co-Kriging (Myers, 1984)). However, the outcome of these techniques is proved to

be highly sensitive to the gauge density (Xie et al., 1996). ,
:::::::::
depending

:::
on

::
the

::::::::
temporal

:::::::::
resolution.

::::::::::
Specifically,

:::
the

::::::
shorter

::
is

:::
the

:::::::::
aggregation

:::::
time,

:::
the

::::
more

::::::
critical

::
is

:::
the

::::
rain

:::::
gauge

::::::
density.

:
Alternatively, the rainfall field at ground

::::
level can be indirectly ob-35

tained by weather radars, when available. The radar retrieves the average rainfall intensity across a volume from measurements

of reflectivity through power-law formulas as the one proposed by Marshall and Palmer (1948), see also Raghavan (2013)

for a review .
::

A
::::::

recent
::::::
survey

:
of reflectivity-rainfall intensity formulas

::
is

::
in

:::::::::::::::
Raghavan (2013). Ignaccolo and De Michele

(2020) and Jameson and Kostinski (2002), have argued about the purely statistical nature of the reflectivity-rainfall intensity

formulas, with important consequences about the use of these formulas
:::
their

::::
use where calibration with local data is missing.40

There are in addition other drawbacks associated to
::::
with the use of radar reflectivity, including the problem of spurious echoes,

as ground clutter (Alberoni et al., 2001; Rauber and Nesbitt, 2018), which restrict the use of radars to plain areas and the

fact that the radar reflectivity provides only information about precipitable water.
::::::::
Recently,

:::
the

::::::::::::::
dual-polarization

:::::::
upgrade

:::
on

:::::
radars

:::::::::::::::::::::::::::::::
(Zhang et al., 2019; Chen et al., 2021)

:::
has

:::::
added

::::::::::
information

:::::
about

::::::
shape,

::::::::::
composition,

::::
and

:::::
phase

::
of

:::
the

::::::::::::
hydrometeors.

::::::
Hence,

:::
the

:::::::::
quantitative

:::::::::::
precipitation

:::::::::
estimation

:::::
(QPE)

:::::
could

::::::
greatly

::::::
benefit

:::::
from

::::
such

::::::::::::
advancements.

:
45

Indeed
:::
For

:::
all

::::
these

:::::::
reasons, measuring the spatial distribution of rainfall is still an open issue, which may be tackled through

the integration of the conventional sensors, and/or the complement of new instruments. In this context, the use of opportunistic

rainfall sensorsis rising a great interest nowadays. Among these, there are the ,
::::
such

:::
as Commercial Microwave Links (CMLs),

that
::
has

:::::
raised

:::::::::::
considerable

:::::::
interest.

::::::
CMLs are the point-to-point radio links connecting the base stations of a mobile network

to the core infrastructure. The use of a mesh of microwave links as
:::::::::::
opportunistic rainfall detectors was first proposed by50

Giuli et al. (1991) through simulations; their
::::
firstly

::::::::
proposed

::
by

:::::::::::::::::::::
Atlas and Ulbrich (1977).

::::
The method exploits the relationship

between the rainfall intensity and the attenuation (i.e., the loss of
:::::
signal power) experienced by the electromagnetic wave

along the propagation path from the transmitter to the receiver.
:::::
Later,

:::::::::::::::
Giuli et al. (1991)

:::::
made

:::
use

:::
of

:
a
:::::
mesh

::
of

::::::::::
microwave

::::
links

:::
for

:::
the

:::
2D

::::::::::::
reconstruction

::
of

:::
the

::::::
rainfall

:::::
field,

:::::::
through

:::::::::
simulation.

:
A pioneering experimental campaign was carried out

during the Mantissa project (Rahimi et al., 2003). However, at that time, the need to install ad-hoc microwave links made the55

technique impractical. A few years later, the scenario changed following the boom in
:::::::
dramatic

::::::::
expansion

:::
of cellular telephony.
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The use of the ubiquitous CMLs connecting cellular network base stations
:::
the

::::
base

:::::::
stations

::
of

:::::::
cellular

::::::::
networks

:
was first

proposed by Messer et al. (2006). Their paper triggered many studies that were conducted worldwide to investigate the CMLs’

potential
:::::::
potential

::
of

:::::
CMLs

:
for meteorological and hydrological applications. From a hydrological point of view, CML-based

rainfall products were firstly exploited by Fencl et al. (2013) to improve urban drainage modelling in a small scale (2.33 km2)60

impervious catchment, in Prague (Czech Republic). Later, Brauer et al. (2016) investigated the effects of the use of CML data

in discharge simulations, for a natural low land catchment in the Netherlands, at small scale (6.5 km2). A further study by

Smiatek et al. (2017) used microwave links derived precipitation estimates as rainfall input in a distributed hydrological model

applied to the Ammer basin (Germany), at a larger scale (
:::
with

:::
an

::::
area

::
of

:
609 km2). In this

:
.
::
In

::::
that work, authors employed

the IDW method for interpolation of RG and CML rainfall data on a 100 × 100 m grid. Another case study was carried out65

on an agglomeration of cities (16km2) in
::
16 km2)

::
in
:::
the

:
Czech Republic by Stransky et al. (2018), to check the potential of a

dense CML network for urban drainage management. Pastorek et al. (2019) also assessed the impact of both CML sensitivity

to rainfall and CML position
::::
CML

::::::::::
quantitative

:::::::::::
precipitation

::::::::
estimates

::::::
(QPEs) on urban drainage modelling. Authors found out

that the bias propagated thoughout simulationsis inversely proportional to CML length.
:::
The

:::::::
authors

:::::
found

:::
that

:::
the

:::::::::
sensitivity

::
of

:::::
CMLs

::
is

:::
the

:::::
factor

:::::
which

::::::
mostly

::::::
affects

:::
the

:::::
QPEs

:::
and

:::
that

:::
the

::::
bias

::
on

:::::
QPEs

::::::::::
propagates

:::::::::
throughout

::::::::::::
rainfall-runoff

::::::::::
simulations.70

::::::::
Moreover,

::::
they

:::::::
showed

:::
that

:::
the

:::::::
position

::
of

::::::
CMLs

::::
over

:::
the

:::::::
drainage

::::
area

:::::::
impacts

:::
the

::::::::::::
reconstruction

::
of

:::
the

::::::
runoff

::::::::
dynamic. In

Italy, Roversi et al. (2020) conducted a meteorological analysis
::::::::
validation

::
of
::::

the
:::::
CML

::::::
rainfall

::::::::
estimates

:
in the Po valley in

Emilia Romagna (northern Italy) to assess the accuracy of CML retrieved rainfall rates using data purchased from Vodafone
::
by

:::::::::
comparing

::::
them

::::
with

::::::::
different

::::
data

::::::
sources

::::::
(RGs,

:::
the

:::::
ERG5

:::::::::::::
meteorological

::::
data

:::
set,

::::
and

:::::
radar

::::::::
products). However, still no

one carried out an
:
a hydrological application of CML-based rainfall estimates.75

Here, the analysis aims at investigating and validating the operational potential of a CML networkin a semi-distributed

hydrological model in
:
,
::::::
located

::
in Lombardia (northern Italy),

::::::::
exploited

:::
for

::::::::::
hydrological

::::::::
purposes. Specifically, we figured out

::::::
relying

::
on

::
a
:::::::::::::
semi-distributed

:::::::::::
hydrological

::::::
model,

:::
we

:::::::
assessed

:
whether rainfall data from

:::::::
collected

:::
by a large CML network

made up of 50 links may be exploited
:::
used

:
to provide a reliable reconstruction of the hydrological process

:
in
::
a
::::::::::::
medium-sized

::::
basin

:
and if it is comparable with those achieved with a

:::
well

::::::::
designed RG network. To this aim, we

:::
We

:
investigated a set of80

summer and autumn precipitation events (both convective and stratiform), that occurred over the Lambro catchment during the

years 2019 and 2020. The analysis of events taking place in different seasons allowed us to point out some limits
:::::::::
limitations

of CMLs in detecting specific types of precipitation. In this work we firstly focused on the spatial interpolation of rainfall

observations comparing results from conventional (RGs) and unconventional (CMLs) instruments and their combined use. In

fact, the issue of spatial interpolation is crucial when dealing with point (RGs) or linear measurements (CMLs)
::::::::::::
measurements85

used as input into a semi-distributed hydrological models
:::::
model, especially when the study area is quite large (in the order

of 100 km2 or even larger). Differently from Stransky et al. (2018), we modified
::
We

::::::
relied

::
on

:
the traditional IDW method

to account for CML length in the spatial interpolation. Specifically, in addition to the inverse distance weight, we defined a

further weight, which exponentially decreases with CML length.
:::::::
spatially

:::::::::
interpolate

:::::::::::
precipitation

::::::::::::::::::::
measurements/estimates

::::
from

::::::::::
RGs/CMLs.

:
Secondly, we implemented a semi-distributed rainfall-runoff model using three types of inputs: (1) RG90
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measurements, (2) CML estimates and (3) the combination of RG and CML data. We
:::::
Given

:::
the

:::::::
different

::::::
nature

::
of

:::::::
rainfall

:::::
inputs

:::
we

:::
also

::::::::
assessed

::::
three

::::::::::
calibrations

::
of

::::::
model

:::::::::
parameters.

::::
We

::::
then compared results in terms of river discharge.

The remainder of this paper is structured as follows. In Sec. 2 we present the case study, the features of
::::::::::
experimental

::::::
setup,

:::
and

:::
the

:::::::
features

::
of

:::
the

::::::::
networks

::
of
:

conventional and unconventional sensorsnetworks and the experimental setup. Section 3

includes a description of all methods implemented for the analysis and Sec. 4 reports results including a comparison of rainfall95

spatial interpolation carried out with the different data types and of stream flow simulations against hydrometric measurements.

Discussion and conclusions are given in Sec. 5 and 6, respectively.
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Figure 1.
:::

Case
::::
study

:::
area.

::::
Panel

:
a
:::::

shows
::
the

::::::
Lambro

:::::::
catchment,

:::
the

::::::::
partitioning

:
in
:::

15
:::::::
sub-basins

::::::
(HRUs),

::
and

:::
the

::::::
position

:
of
:::

the
:::::
sensors,

::::
while

::::
panel

::
b

::::
reports

:::
the

:::::
scheme

::
of

:::
HRU

::::::::
interaction

:
in
:::
the

::::::
network.

:::
The

::::
digital

:::::
terrain

::::
model

:::::
(DTM)

::
is

::::
freely

::::::
available

:
at
:::::::::::::::::::::::::::::
https://www.geoportale.regione.lombardia.it.

2 Case study and experimental setup

The case study is
:::
was

::::::
carried

:::
out

::
in

:
the Lambro catchment, a peri-urban catchment ,

:::
and

::
a left side tributary of

::
the

:
Po river,

:::::
shown

:
in Fig. 1.a. It is located north of Milan metropolitan area and covers three different provinces: Como, Lecco, and Monza100
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and Brianza.
:
e
:::::::
Brianza.

::::
The Lambro river, at

:::
the Lesmo river section (in purple in Fig. 1.a), drains an area of 260 km2 which can

be mainly divided in two zones, with different morphology and land use. The northern one is the Prealpine region, where
:::
the

Lambro river rises, at 944 m a.s.l.. The southern one, between Pusiano lake and the outlet section, at 178 m a.s.l., is instead a flat

area subjected to massive urbanization, which results in large impervious surfaces and, consequently, fast runoff processes with

a lag time of few hours.
:::
The

:::::::::
catchment

:::::::
includes

:::
the

::::::::
presence

::
of

:::
two

:::::
lakes:

:::::::
Pusiano

::::
lake

::::::
(which

::
is

:::
the

::::::
biggest

::::
one)

:::
and

:::::::
Alserio105

::::
lake,

::::
both

::::::
located

::
in

:::
the

::::::
middle

::::
part

::
of

:::
the

:::::::::
catchment.

:
According to Köppen (1925) climate classification

:
, the inland northern

portion of Italy belongs to the humid subtropical climate (Cfa). Heavy convective cells characterize the basin, while the highest

monthly rainfall accumulation occurs in spring and autumn. The local meteorological drivers, added to urban sprawl, lead to the

hydrological vulnerability of the region. In order to mitigate hydrological risk in Monza and Milan urban areas (downstream

to our case study), structural works have been carried out along
:::
the Lambro river in past years. Moreover, great efforts have110

been put in the implementation and development of non-structural measures providing support to early warning system (e.g.,

Ravazzani et al., 2016; Masseroni et al., 2017; Lombardi et al., 2018), including a dense monitoring system managed by ARPA

Lombardia (Regional Agency for Environmental Protection). From this, we exploited 10 min resolution rainfall depths and

temperatures respectively from 13 tipping-bucket RGs and eight thermometers (TH
::::
THs), for years 2018, 2019, and for the first

six months of year 2020. In addition, we used 10 min resolution water level measurements of a flow gauge (FG), located at the115

outlet section of the Lambro basin in the municipality of Lesmo. All these meteorological and hydrological data are available at

https://www.arpalombardia.it. A rather dense CML network, owned by Vodafone Italia S.p.A., covers the central and southern

catchment area and its surroundings. In contrast, the northernmost portion of
:::
the Lambro basin is covered by few and unevenly

distributed CMLs, given that it is thinly populated and characterized by higher altitudes. The CMLs available over the area

are 50. The key features of CMLs as rainfall sensors are the operation frequency and the path length. Regrouping the CMLs120

according to the frequency:

1. 5 links are in the frequency range [11.4,13.1] GHz, with length between 3.5 and 8 km;

2. 37 links are in the frequency range [18.8,23.0] GHz, with length between 1 and 8.5 km;

3. 8 links are in the frequency range [38.5,42.6] GHz, with length between 1.4 and 2.2 km.

As showed
:::
We

::::::::::
investigated

:::
12

:::::
storm

::::::
events

::::
and

:::
the

:::::::::
associated

::::::
floods,

:::
in

:::
the

::::::
period

:::::
June

:::::::::
2019–June

:::::
2020.

::::
The

:::::
RG-125

:::
and

::::::::::
CML-based

:::::::::::
precipitation

::::
data

::::
sets,

::::::::::
aggregated

::
at

::::::
hourly

::::
time

:::::
scale,

::::::
cover

:
a
:::::
wide

:::::
range

::
of

:::::
rainy

::::::
events

:::::
from

:::::::
summer

:::::::::::
thunderstorms

::
to
:::::::::::
low-intensity

:::::::
autumn

::::::
events.

::
In

:::::
Table

:
1
:::
we

:::::::
reported

:::::
initial

::::
and

::::
final

::::
date

:::
and

:::::
time,

::::::::::
accumulated

:::::::::::
precipitation

:::::::
averaged

::::
over

:::
13

:::
RG

:::::::::::::
measurements,

:
1
:
h

::::::::
maximum

::::
rain

:::
rate

::::
and

:::::::
observed

:::::
total

::::
flow

:::::::
volume,

:::
for

:::
the

::
12

:::::::
selected

:::::::
events.

:::
We

::::::
defined

::
a

:::::
storm

:::::
event

::
as

:::
the

:::::
time

:::::
lapse

:::::
where

::
at
:::::

least
:::
one

::::
RG,

::::::::
available

:::
on

:::
the

:::::
area,

:::::::
detected

:::::::::::
precipitation

::::
with

::::::::
possible

:::
dry

:::::::
intervals

:::
no

::::::
longer

::::
than

::
5 h

:
.
:::
An

::::
hour

::
is
::::::::::

considered
:::
dry

:::::
when

:::
the

::::::::
detected

::::::
rainfall

:::::
depth

::
is
::::::

lower
::::
than

:
1
:

mm
:::
and

::::
wet130

::::::::
otherwise.

::::
The

:::::::::
beginning

::
of

:::
the

:::::
flood

:::::
event

::
is
:::::::::::::
conventionally

:::
set

::
at

:::
the

::::
hour

:::
in

:::::
which

:::
the

:::::
flow

:::
rate

:::::::::::
experienced

:
a
:::::::

sudden

:::::::
deviation

:::::
from

:::
the

:::::::
average.

:::
The

::::
end

::
is

::::::
instead

:::
set

::::
when

:::
the

::::
flow

::::
rate

::::::
reverts

::
to

:::
the

:::::
initial

::::::::
condition,

::
at
:::
the

::::
end

::
of

:::
the

::::::::
depletion

:::::
curve.

:::::::::
According

::
to

:::
the

:::::::::
maximum

::::::::
observed

:::
rain

:::::
rates,

:::
we

::::::::
classified

::::::
events

::
in

::::
low

::::
rain

:::
rate

:::
and

::::
high

::::
rain

::::
rate,

::::::::
adapting

:::
the
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::::::::::
classification

::::::::
reported

::
in

:::::::::::::::
Met Office (2007)

::
to

:::
our

:::::::
specific

::::
case

:::::
study.

:::
The

::::::
former

:::::
group

::::::::
includes

:::::
storm

:::::
events

::
5,

::
6,

::
7,
::::
and

:::
12,

::
for

::::::
which

:::
the

:::::::::
maximum

:::
rain

::::
rate

::
is

:::::
lower

::::
than

::
15

:
mm h−1,

:::::
while

:::
the

:::::
latter

::::::
covers

:::
the

:::::::::
remaining

:::::
events

::::
with

:::::::::
maximum

::::
rain135

:::
rate

::::::
higher

::::
than

::
15

:
mm h−1

:
.

::
As

::::::
shown

:
in Fig. 1.a, the catchment area is divided into 15 sub-basins, hereinafter referred to as hydrological response

units (HRU
:::::
HRUs), for the sake of implementation of the hydrological model (see Sec. 3.2). In particular, the semi-distributed

model here adopted
::::::
adopted

::::
here requires, as input data, rainfall depths estimated in the HRU centroids. The estimates were

gathered through the IDW technique (see Sec. 3.3) and for each HRU a different number of sensors was exploited,
:::::::::
according140

::
to

:
a
:::::::
defined

::::::::
maximum

:::::::
distance

:::
of

::
10

:
km

::::
from

:::
the

:::::
HRU

:::::::
centroid. Figure 2 shows some features of the rainfall sensors used

for spatial interpolation in each HRU: the number of exploited RGs, CMLs, and their sum, the ratio between CMLs and RGs

number, the mean distance between rainfall sensors and HRU centroids, and the mean length of CMLs. It is
::::::
Please,

:::
note

::::
that

:::
the

:::::::::
CML-HRU

:::::::
centroid

:::::::
distance

::
is

:::::::::
calculated

:::::::::
considering

:::
the

:::::
CML

::::::
middle

:::::
point.

::
It

::
is

:::
also

:
worth to mention that the total number

of available CMLs can be less than the nominal
::::
was

:::
less

::::
than

:
50

::
for

:::::
some

::::::
events due to maintenance or malfunctioningduring145

some events. The numbers in Fig. 2 are hence averaged over all the events. Figure 2.a shows
::::::::
highlights

:
a significant increase

of
:::
the exploited CMLs from HRU 1 to 6. This could be a potential problem leading to more inaccurate estimates, at the stage

of spatial interpolation, for the northern HRUs with respect to the southern ones. On the other hand, the number of RGs has

::::::::
undergoes

:
minor variations from one HRU to another. In Fig. 2.b we can see that the lowest ratios between CMLs and RGs

correspond to HRU from 1 to 5 and the HRU 10. Moreover, Fig. 2.c shows that, considering HRUs from 1 to 9, the mean150

distance between sensors and HRU centroids is always higher when CMLs are considered. The opposite trend, with a single

exception for HRU 12, occurs for HRUs located further downstream. Lastly, the mean CML length, in Fig. 2.d, has a decreasing

trend from upstream to downstream.

We investigated 12 storm events and the associated floods, in the period June 2019–June 2020. The RG- and CML-based

precipitation datasets, aggregated at hourly time scale, cover a wide range of rainy events from summer thunderstorms to155

low-intensity autumn events. In Table 1 we reported initial and final date and time, accumulated precipitation averaged over 13

RG measurements, maximum detected rain rate and observed total flow volume, for the 12 selected events. We defined a storm

event as the time lapse where at least one RG, available on the area, detected precipitation with possible dry intervals no longer

than 5 . A hour is considered dry when the detected rainfall depth is lower than 1 and wet otherwise. The beginning of the

flood event is conventionally set at the hour in which the flow rate experienced a sudden deviation from the average. The end160

is instead set when the flow rate reverts to the initial condition, at the end of the depletion curve. According to the maximum

observed rain rates, we classified events in Low rain rate and High rain rate. The former group includes storm events 5, 6, 7,

and 12, for which the maximum rain rate is lower than 15 , while the latter covers the remaining events with maximum rain

rate higher than 20 .
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Figure 2.
:::

From
:::::

panel
:
a
::
to
::
d:

::::::
number

::
of

::::::
rainfall

::::::
sensors

::::
used

::
for

::::::
spatial

:::::::::
interpolation

::
in
::::

each
:::::
HRU

::::::
centroid,

::::
ratio

:::::::
between

:::
the

::::::
number

::
of

:::
RGs

:::
and

::::::
CMLs,

::::
mean

::::::
distance

:::::::
between

::::::
rainfall

:::::
sensors

:::
and

:::::
HRU

:::::::
centroids,

:::
and

::::
CML

:::::
mean

::::::
lengths.
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Table 1.
:::::

Details
::
of

::
the

:::
12

:::::
events

::::::::
considered.

:::
On

:::
the

::
left

::::
side,

::::
date,

::::
time,

:::::::::
cumulative

::::::::::
precipitation,

:::
and

:
1
::::
hour

::::::::
maximum

:::
rain

:::
rate

:::
for

::
the

:::
12

::::
storm

::::::
events.

::
On

:::
the

::::
right

:::
side,

::::
date,

::::
time,

::::
and

:::
flow

::::::
volume

::
of

:::
the

::::::::::
corresponding

::::
flood

::::::
events.

Case study area. Panel (a) shows the Lambro catchment, the partitioning in 15 sub-basins (HRUs), and the position of the sensors, while

panel (b) reports the scheme of HRU interaction. From panel (a) to (d): number of rainfall sensors used for spatial interpolation in each HRU

centroid, ratio between the number of RGs and CMLs, mean distance between rainfall sensors and HRU centroids, and CML mean lengths.

Details about the 12 events considered. On the left side, date, time, cumulative

precipitation, and maximum rain rate for the 12 storm events. On the right side, date, time, and flow volume of the corresponding flood events.

Storm event Flood event

ID event Date and Time (LT) Cumulative precipitation (mm) Max rain rate (mm h−1) Date and Time (LT) Flow volume (m3 106)

1
22 Jun 2019, 06:00

40.5 37.6
22 Jun 2019, 08:00

0.5
22 Jun 2019, 15:00 22 Jun 2019, 23:00

2
14 Jul 2019, 22:00

63.6 49.0
22 Jun 2019, 08:00

3.0
16 Jul 2019, 03:00 16 Jul 2019, 23:00

3
05 Sep 2019, 01:00

68.7 36.6
05 Sep 2019, 21:00

2.2
09 Sep 2019, 10:00 11 Sep 2019, 23:00

4
18 Oct 2019, 17:00

108.4 35.2
19 Oct 2019, 00:00

8.7
22 Oct 2019, 12:00 24 Oct 2019, 23:00

5
14 Nov 2019, 19:00

34.5 12.6
15 Nov 2019, 04:00

2.9
16 Nov 2019, 17:00 17 Nov 2019, 04:00

6
17 Nov 2019, 01:00

25.6 6.4
17 Nov 2019, 10:00

3.3
17 Nov 2019, 19:00 19 Nov 2019, 03:00

7
18 Nov 2019, 23:00

27.9 4.0
19 Nov 2019, 04:00

5.4
20 Nov 2019, 00:00 21 Nov 2019, 23:00

8
14 May 2020, 20:00

64.2 31.0
14 May 2020, 22:00

4.6
16 May 2020, 07:00 17 May 2020, 02:00

9
03 Jun 2020, 16:00

79.9 24.8
03 Jun 2020, 18:00

4.1
05 Jun 2020, 04:00 05 Jun 2020, 19:00

10
07 Jun 2020, 08:00

42.1 29
07 Jun 2020, 15:00

3.5
08 Jun 2020, 02:00 08 Jun 2020, 19:00

11
08 Jun 2020, 17:00

32.2 22.8
08 Jun 2020, 20:00

3.8
09 Jun 2020, 19:00 10 Jun 2020, 01:00

12
10 Jun 2020, 11:00

16.5 7.4
11 Jun 2020, 02:00

1.0
11 Jun 2020, 07:00 11 Jun 2020, 15:00
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3 Methods165

In this section we firstly present the processing of raw data . Concerning
:::::::
describe

:::
the

:::::::::
algorithms

::
of

::::
data

::::::::::
processing.

:::::
While

:::
for

conventional sensors (RGs, THs, and FG), the data handling merely consists in (1) replacement of missing data or outliers,

(2) resampling, and (3) conversion of hydrometric measurements into discharge values. Data reduction instead allows to

retrieve rainfall intensity from CML-based raw data. Then,
::::::::
procedure

::
is
:::::::
simple,

:
it
::
is

:::
not

:::::::::::::
straigthforward

::
to

::::::
extract

::::::::::
quantitative

::::::
rainfall

::::::::::
information

::::
from

:::::
CML

:::
raw

:::::
data,

:::::
which

:::
are

::::::::
generated

:::
for

:::::::
network

::::::::::
monitoring

::::::::
purposes.

:::::::
Second,

:::
we

::::::
discuss the semi-170

distributed hydrological model and its calibration/validation procedure are exhibited
:::::::::
procedures. Finally, we illustrate methods

exploited for
::
the

:::::::
methods

:::
of spatial interpolation of RG- and CML-based rainfall data.

3.1 Data processing

Conventional sensors (rain gauges, thermometers, and flow gauge)

Raw data from RGs, THs and the FG were firstly processed to correct invalid measurements (missing data and outliers), which175

account for less than 1% in the period January 2018–June 2020. The process is different depending on the type of measurement.

Invalid RG data were replaced interpolating valid observations from the nearby sensors by the IDW algorithm. Invalid TH data,

as well as invalid FG measurements, were instead replaced by a linear interpolation. After data correction, the 10 min raw data

were resampled to hourly time scale. Lastly, water level observations were converted into river discharge measurements by

using the rating curves, validated by the Hydrographic Office of ARPA Lombardia.180

Commercial Microwave Links

The CML raw data , collected by a network monitoring tool are minimum and maximum values of the transmitted and received

power levels (TSL and RSL, respectively) every 15 min.

Microwave links of mobile networks are usually two-ways and provide dual-frequency operation, hence adding a certain

degree of redundancy when it comes to rainfall estimates.
::::

The
:::::
CML

::::
data

:::
set

::::
used

::::
here

:::
has

::::
two

::
to

::::
four

:::::::
channels

::::::::
available

:::
for185

::::
every

::::
link,

::::::
which

::::::
usually

:::::::
permits

::
to

::::
deal

::::
with

::::::
missing

:::
or

:::::
invalid

::::
data

:::::::::
appearing

:::::::::
sometimes

::::
over

:
a
::::::
certain

:::::::
channel. Procedures

for the conversion of RSL into rainfall rate have been detailed by several authors (e.g., Schleiss and Berne, 2010; Fenicia et al., 2012; Overeem et al., 2016)

and are not discussed here extensively. The analysis of CML data in this work
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Schleiss and Berne, 2010; Fenicia et al., 2012; Overeem et al., 2016)

:
.
::
As

:::
the

::::::
format

::
of

:::
the

::::::::
available

:::::
CML

::::
data

:
is
:::
the

:::::
same

::
as

::
in

::::::::::::::::::
Overeem et al. (2016)

:
,
:::
we

::::
built

::::
from

:::
the

:::::::::
procedure

:::::::
outlined

:::::
there.

::::::::::
Specifically,

::::
data

:::::::::
processing went through the following steps(?): (1) identification and removal of outliers and artifacts (i.e.,190

occasional spikes
:
, which are not caused by rain); (2) classification of each 15 min time slot into dry or wet (i.e., rainy) by

thresholding the difference between maximum and minimum RSL values; (3) estimation of the baseline, i.e., the RSL in
::::
RSL

::
in

:::
the absence of rain; (4) calculation of total signal attenuation as the difference between the baseline and the actual RSL;

(5) identification and subtraction of the components of total attenuation not due to rainfall (e.g. wet antenna attenuation); (6)

9



conversion of rain attenuation into average rain rate.
::::::
rainfall

::::::::
intensity.

::::::
Details

::
of

:::
the

:::::
major

::::::::::
processing

::::
steps

:::
are

:::::::::
discussed

::
in195

::
the

:::::::::
following.

:

A few aspects of the above procedure deserve a discussion. First, the available RSL (and TSL)has a coarse
:::::::
Dry/wet

::::::::::
classification

:::
at

:::
step

:::
(2)

::
is
::::::::
required

::
by

::::::::::
subsequent

::::
steps

:::
(3)

::::
and

:::
(5).

:::::
First,

:::
the

:::::
RSL

:
is
::::::::::

thresholded
:::

by
:::
an

:::::::::
hystheresis

:::::::
method

::::::::::::::::::::::
(see Nebuloni et al., 2020b)

:
.
:::::
Then,

::::
each

:::::
CML

::
is

::::
given

::
a
::::
score

:::::
equal

::
to

:::
the

:::::::
product

::
of

:::
the

:::::
binary

::::::::
outcome

::::
(0/1)

::
of

:::::::::::
thresholding

::
by

:::
the

::::::
inverse

::
of

:::
its

::::::::
sensitivity

::
to

:::::::
rainfall,

:::
the

::::
latter

:::::::::
depending

:::
on

:::::
CML

::::::::
frequency

:::
and

::::::
length.

:::::::
Finally,

:
a
:::::
CML

::
is

::::::
flagged

::
as

::::
wet200

:
if
:::
the

::::::::
aggregate

:::::
score

::
of

:::
the

:::::
CML

::::
itself

:::
and

::
of

:::
all

::
its

::::::::
neighbors

:::::::
exceeds

::::
0.5,

::::::::
otherwise

:
it
::
is
::::
dry.

::::
Two

:::::
CMLs

:::
are

::::::::
neighbors

::
if

::::
they

::::
fulfill

::::
any

::
of

:::
the

:::::::::
following

:::::::::
conditions:

:
(1quantization step. That is , the time series of power (in ) have a random zero-mean

error superimposed with rectangular distribution and limiting values equal to ± 12% of the measurement. It descends that it

is impossible to distinguish between rain and quantization-induced noise below a certain rainfallintensity threshold. Figure

3 shows the minimum detectable rainfall intensity without ambiguity as a function of the CML path lengthwith the CML205

frequency as parameter. The square markers correspond to the 50 CMLs in the study area divided in three groups according to

their frequency. Continuous lines are drawn at four reference frequencies as well. Moreover, quantization affects the accuracy

of rainfall intensity estimates. The accuracy of instantaneous measurements (at the 95% confidence level) is within 20% if

the rainfall intensity exceeds
:
)
::::
they

::::
have

::
a
:::::::
terminal

:::
in

::::::::
common,

:::
(2)

::::
their

:::::
paths

::::::::
intersect,

::::
and

:
(3for the link with the most

favorable combination between length and frequency. However, in the worst case, the above accuracy is achieved only if the210

rainfall intensity is above
:
)
::::
their

:::::::
distance

::
is

:::
less

:::::
than

:
a
::::::
defined

:::::::::
maximum

:::::
value.

::::
The

:::::::
baseline

:::
on

::::
step

:::
(3)

:
is
::::::::

obtained
:::::::
through

:
a
::::::::::
windowing

:::::::::
algorithm.

:::
An

:::::::::
N -sample

:::::::
window

::
is

:::::::
centered

::::::
around

:::::
each

::::::
sample

::
of

::::
the

::::
RSL

::::
time

::::::
series.

::
If

:::::::
enough

:::::::
samples

::
in

:::
the

:::::::
window

:::
are

:::
dry,

:::
the

::::::::
baseline

::::
value

:::
in

:::
the

:::::
center

::
of

:::
the

:::::::
window

::
is
:::

the
:::::::

average
:::
of

::::::::
minimum

:::
and

:::::::::
maximum

:::::
RSL.

:::::
Once

::
the

::::::
entire

::::
time

:::::
series

::::
has

::::
been

:::::::::
processed,

:::
the

:::::::
baseline

:::::::
missing

::::::
points

:::
are

::::::::
obtained

::
by

::::::
linear

:::::::::::
interpolation.

::
In

::::
step

::::
(5),

::
it

::
is

:::::::
assumed

:::
that

::::
wet

::::::
antenna

::::::::::
attenuation

::
is

::
the

::::
only

:::::::
relevant

::::::::::
component

::
of

::::
total

::::
path

:::::::::
attenuation

:::
not

:::
due

::
to
:::::
rain.

::::
This

::::::::::
contribution215

:
is
:::::::::

subtracted
:::::
from

::::
total

::::::::::
attenuation

:::::
using

:::
the

::::::
model

::::::::
proposed

::
by

::::::::::::::::::::::
Schleiss and Berne (2010)

:
,
:::::
which

:::::::
predicts

:::
an

::::::::::
exponential

:::::::
increase

::
of

::::::::::
attenuation

:::::
during

::::
the

::::::
wetting

::::::::
transient,

::
a
:::::::
constant

:::::
value

:::::
while

:::::::
raining

:::
and

:::
an

::::::::::
exponential

::::::::
decrease

::::::
during

:::
the

:::::
drying

::::::::
transient.

::::
The

:::::
input

:::::::::
parameters

::
of
::::

the
::::::
model,

:::
that

:::
are

::::
the

:::::::
duration

::
of

:::
the

::::::
initial

:::::::
transient

::::
and

:::
the

::::::::
maximum

:::::
value

:::
of

:::
wet

:::::::
antenna

::::::::::
attenuation,

:::
are

:::
900

:
s

:::
and

:
2
:
dB

:
,
::::::::::
respectively.

:::::
They

:::::
were

:::::::::
determined

::::::::
analyzing

::
a
:::
set

::
of

::::
RSL

:::
and

:::::
TSL

::::
time

:::::
series

:::::::
sampled

::::
every

:
10 . The only way to mitigate quantization effects is to average in time. Minimum detectable rainfall intensity as220

a function of path length for link frequencies of 10, 20, 30 and 40 , assuming a 1 quantization step on RSL. Squares represent

the frequency-length of the 50 available CMLs in the study area.

Second, the s,
::::::
which

::::
were

:::::
made

::::::::
available

::::
over

:
a
:::
few

:::::::
CMLs.

:::
The

:
relationship between rain attenuation per unit path length

γR (dB km−1) and rainfall intensity R (mm h−1) is usually modelled by the following power-law function:

γR = κRα,. (1)225

where the
:::
The

:
coefficients κ and α have been tabulated by the International Telecommunication Union as a function of signal

frequency and polarization (ITU-R P.838-3, 2005). In principle, the γR−R relationship is dependent on the microphysics of

rain as well, hence κ and α should be calibratedprovided ,
::::::::
provided

::::
that the characteristics of precipitation

:::
are known in the
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climatic area where CMLs are deployed. In this work, raindrop size distribution data gathered from disdrometers were used to

calculate the optimum value of κ and α coefficients following the procedure outlined in Luini et al. (2020).230

Third, in
::
In

:
the available CML data format, only the two extreme values of TSL and RSL are saved in every 15 min window.

Therefore, if the average rainfall rate is
:::
has

:
to be estimated, for instance to calculate hourly accumulations, it is necessary to

derive it from the extremes. To this aim, TSL and RSL time series sampled each 10 s were made available for a set of sample

CMLs during
:::::
subset

::
of

::::::
CMLs

::::::
during

::::
some

:::
of the events considered here and processed as shown in ?.

:::::::::::::::::::
Nebuloni et al. (2020a)

:
.
:::::::
Average,

::::
min

::::
and

::::
max

::::::
rainfall

::::
rate

::::::
within

:::
15 min

::::::::
windows

::::
were

:::::::::
calculated

:::::
from

:::
the

::
10

:
s

:::
time

::::::
series

:::
and

:::
the

:::::::::
following235

:::::::
unbiased

::::::::
estimator

::
of

:::
the

:::::::
average

::::::
rainfall

::::
rate

:::
was

:::::::
derived:

:

RMIN−MAX =
1

1.14

RMIN +RMAX

2
.

::::::::::::::::::::::::::::::

(2)

Fourth, it is assumed that
::::
Two

::::::
aspects

::
of

:::
the

::::::
above

::::::::
procedure

:::::::
deserve

:::::
more

:::::::::
discussion.

:::::
First,

:::
the

::::::::
available

::::
RSL

::::::::
sequence

::::
have

:
a
::::::
coarse

::
1 dB

:::::::::
quantization

:::::
step,

:::::
which

::::::::
produces

::
a
:::::::::
zero-mean

:::::::
random

::::
error

:::::
with

:::::::::
rectangular

::::::::::
distribution

::::
and

:::::::
limiting

:::::
values

:::::
equal

:::
to

::
±

:::
0.5

:
dB

::
(±

::::
12%

::::::
when

:::
the

::::::
power

::
is

::::::::
measured

:::
on

::
a
:::::
linear

::::::
scale).

:::
It

::::
turns

::::
out

::::
that

::
it

::
is

:::::::::
impossible

:::
to240

:::::::::
distinguish

:::::::
between

::::
rain

::::
and

::::::::::::::::::
quantization-induced

:::::
noise

::::::
below

:
a
:::::::

certain
::::::
rainfall

::::::::
intensity

:::::::::
threshold.

::::::
Figure

::
3

:::::
shows

::::
the

::::::::
minimum

:::::::::
detectable

::::::
rainfall

::::::::
intensity

::::::
without

:::::::::
ambiguity

::
as

::
a
:::::::
function

:::
of

:::
the

:::::
CML

::::
path

:::::
length

:::::
with

:::
the

:::::
CML

::::::::
frequency

:::
as

::::::::
parameter.

::::
The

::::::
square

:::::::
markers

::::::::::
correspond

::
to

::::
the

::
50

::::::
CMLs

::
in
::::

the
:::::
study

::::
area

:::::::
divided

:::
into

:::::
three

::::::
groups

:::::::::
according

::
to

:::::
their

::::::::
frequency

:::::
band.

:::::::::
Continuous

:::::
lines

:::
are

:::::
drawn

::
at

::::
three

::::::::
reference

::::::::::
frequencies

::
as

:::::
well.

::::::::
Moreover,

:::::::::::
quantization

:::::
affects

:::
the

::::::::
accuracy

::
of

::::::
rainfall

:::::::
intensity

:::::::::
estimates.

:::
The

::::::::
accuracy

::
of

::::::::::::
instantaneous

::::::::::::
measurements

::
(at

:::
the

::::
95%

:::::::::
confidence

:::::
level)

::
is
::::::
within

::::
20%

::
if

:::
the245

::::::
rainfall

:::::::
intensity

:::::::
exceeds

:
3
:
mm h−1

:::
for

:::
the

:::
link

::::
with

:::
the

::::
most

::::::::
favorable

:::::::::::
combination

:::::::
between

:::::
length

::::
and

:::::::::
frequency.

::::::::
However,

::
in

:::
the

:::::
worst

::::
case,

:::
the

:::::
above

::::::::
accuracy

::
is

:::::::
achieved

:::::
only

:
if
:::
the

:::::::
rainfall

:::::::
intensity

::
is

:::::
above

:::
10 mm h−1

:
.
::::
The

::::
only

:::
way

:::
to

:::::::
mitigate

::::::::::
quantization

::::::
effects

::
is

::
to

::::::
average

::
in
:::::
time.

:::::::
Second,

:
it
::

is
::::::::
assumed

:::
that

:::
the

:
rain attenuation measured over a CML of length L, is

L times the attenuation per unit path length in Eq. (1), that is
:::::
which

::::::
implies

::::
that

:
rain is considered uniform along the path.

The effect of the inhomogeneity of precipitation can be relevant as CML paths range from about 1 km to nearly 9 km (Fig.250

3). Some authors proposed to retrieve the spatial distribution of the rainfall field across the measurement area by processing

all the CML data together, for instance through tomographic techniques. In this work, a simpler approach is used. Each CML

is considered independently of the other
:::::
others

:
and the corresponding rainfall measurement is given a weighting coefficient

dependent on CML length
:::
the

:::::::
distance

:::::::
between

:::
its

:::::::
midpoint

::::
and

:::
the

:::::
point

:::::
where

::::::
rainfall

::::
has

::
to

::
be

:::::::::
estimated, as discussed in

Sec. 3.3.
:::
3.3.255

:::::
Please

::::
note

::::
that,

:::::
apart

::::
from

:::
the

::::::
initial

:::::::::
calibration

::
of

:::
the

:::::::
γR−R::::::::::

relationship,
::::::
carried

::::
out

::::::
through

:::::::::::
disdrometer

::::
data,

::::::
CMLs

::
are

::
a
::::
fully

::::::::::
independent

:::::::
network

::
of

:::::::
rainfall

::::::
sensors,

:::
as

::
no

:::::::
external

::::::::::
information

::
is

::::
used.

::
In

:::::
order

::
to

:::::::
validate

:::
the

::::::
rainfall

::::::::
estimates

:::::::
provided

:::
by

::::::
CMLs,

:::
we

::::::::
compared

:::
the

:::::::::::
accumulated

::::::
rainfall

::::::
during

::::
each

::
of

:::
the

:::::
events

::
in
:::::
Table

::
1
::::
with

:::
RG

:::::
direct

:::::::::::::
measurements.

::
To

:::::
carry

:::
out

:
a
::::
fully

::::
fair

::::::::::
comparison,

::
an

::::::
ad-hoc

:::::
array

::
of

::::
RGs

::::::
should

::
be

::::::::
deployed

:::::
along

:::
the

:::::
CML

::::
path.

::::::::
However,

::::
this

:
is
:::::::
seldom

:::::::
feasible.

:::::
Here,

:::::
CMLs

:::
and

::::
RGs

:::
are

:::::::::
associated

::::::::
according

::
to

::::
their

::::::
mutual

::::::::
distance.

::::
Each

:::
RG

::
is

:::::
given

:
a
:::::::
different

::::::
weight

:::::::::
depending260

::
on

::
its

:::::::
position

::::
with

::::::
respect

::
to

::
an

:::::::::
associated

:::::
CML,

::
as

:::::::
follows:

:::
the

:::::
CML

::::
path

:
is
:::::::
divided

:::
into

:::::
short

::::::::
segments,

:::
the

:::::::
distance

:::::::
between

::
the

::::
RG

:::
and

:::::
each

:::::
CML

:::::::
segment

::::::::::::
(approximated

:::
by

::
its

:::::::
midway

::::::
point)

::
is

:::::::::
calculated,

:::
and

:::
all

:::
the

:::::
above

::::::::
distances

:::
are

:::::::::
averaged.
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:::
The

:::::::
number

::::::
coming

:::
out

:::
of

:::
this

:::::::::
calculation

:::::
takes

::::
into

::::::
account

:::
the

:::::::
relative

:::::::
position

::
of

:::
the

:::::
CML

:::
and

::
of

:::
the

::::
RG

::
as

::::
well

::
as

:::::
CML

::::::
length.

:::::::
Finally,

:::
the

:::::::
rainfall

::::::::::
accumulated

:::::
from

:::
the

:::
set

::
of

::::
RGs

:::::::::
associated

::::
with

:
a
:::::

given
:::::
CML

::
is
:::::::::
calculated

:::
by

:::
the

::::
IDW

:::::::
method

::::
using

:::
the

:::::::
average

:::::::::
CML–RG

:::::::
distance.

::::
The

::::::
scatter

:::
plot

:::::::
between

::::::
CML–

::::
and

:::::::::
RG–based

::::::::::
accumulated

::::::
rainfall

::
is
::::::
plotted

:::
in

:::
Fig.

::
4265

::
for

:::
the

:::::
eight

:::::::::::
high-intensity

::::::
(panel

::
a)

:::
and

:::
the

::::
four

:::::::::::
low-intensity

::::::
events

:::::
(panel

:::
b),

::::::::::
respectively.

:::::
Only

::::
RGs

::::::
within

:
5
:
km

:::::::
(average

:::::::
distance)

:::::
from

:
a
:::::
CML

:::
are

::::::::::
considered.

::::::
During

::::::::::::
high-intensity

::::::
events,

:::::
there

::
is

:
a
:::::
good

:::::
match

:::::::
between

:::::
CML

::::
and

:::
RG

:::::::::
estimates,

:::::::
whereas

:::::
CMLs

::::::
exhibit

:::
an

::::::
evident

::::::::::::::
underestimation

:::::
(more

::::
than

:::::
30%

::
on

:::
the

::::::::
average)

::
in

:::
the

::::
case

::
of

:::::::::::
low-intensity

:::::::
events.

::::
This

::::::
pattern

:::
can

::
be

:::::::::
explained

::
by

:::
the

::::
lack

::
of

:::::::::
sensitivity

::
of

::::::
CMLs

::
to

:::
low

:::::::
rainfall

::::::::
intensities

::::
due

::
to

:::::
signal

:::::::::::
quantization.

::
In

:::::::::
Appendix

:
A
:::
we

:::::::
present

:
a
::::::
further

::::
local

:::::::::::
comparison,

:::::::
between

:::::
CML

:::
and

::::::
nearby

::::
RGs

::
on

:::::::
rainfall

::::
time

:::::
series.

:
270

3.2 Hydrological model

We used a semi-distributed rainfall-runoff model, at
::
an hourly time scale. The catchment area is divided into 15 HRUs, which

are considered meteorologically, geologically, and hydrologically homogeneous. The model parameters are hence set at HRU

scale.

The river discharge at time t, Q(t), in HRU’s outlets is calculated as the sum of two main components275

Q(t) =Qs(t) +Qg(t), (3)

where Qs is the contribution given by the surface runoff R∗, i.e., the portion of rainfall rejected by
:::
not

::::::::
infiltrated

::::
into the soil,

an Qg is the groundwater discharge.
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Figure 3.
:::::::
Minimum

:::::::
detectable

:::::
rainfall

::::::
intensity

:
as
:
a
::::::

function
::
of

:::
path

:::::
length

::
for

:::
link

::::::::
frequencies

:
of
:::
10,

::
20,

:::
and

::
40 GHz,

::::::
assuming

::
a
:
1 dB

::::::::
quantization

:::
step

::
on

:::
RSL.

::::::
Squares

::::::
represent

::
the

:::::::
frequency

:::
and

::::
length

::
of

::
the

::
50

::::::
available

:::::
CMLs

::
in

::
the

::::
study

:::
area.
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Figure 4.
::::::::

Accumulated
:::::
rainfall

:::::
during

::
(a)

::::
high

:::
rain

:::
rate

::::
events

:::
and

:::
(b)

::
low

::::
rain

:::
rate

:::::
events:

::::
CMLs

:::::
against

:::::
nearby

::::
RGs.

:::
The

:::
best

::
fit

::
of

:::
data,

:::
the

:::::
±30%

:::::
bounds,

:::
and

::
the

::
45°

:::
line

::
are

::::
shown

::
as
::::
well.

The computation of R∗ (in mm) relies on the SCS-CN method (US Department of Agriculture Soil Conservation Service,

1985):280

R∗ =
(P − Ia)2

P − Ia +S
, (4)

where P
:::::
P ≥ Ia:(in mm) is the rain

:::::
rainfall

:
depth, S (in mm) is the maximum soil potential retention, and Ia (in mm) is the

initial abstraction (calculated as a percentage, 20%, of S). According to USDA-SCS guidelines, the soil moisture condition

antecedent to a storm event is classified depending on the value of the five-day antecedent rainfall. Here, we account for

the actual soil moisture in a dynamical way, as proposed in the AnnAGNPS model (Bingner and Theurer, 2005) and also285

implemented in Ravazzani et al. (2007). In particular, the value of S(t) is updated as a continuous function of the degree of

soil saturation ε(t) (-)

S(t) = SI ·
{

1−
[

ε(t)

ε(t) + exp(WI −WII · ε(t))

]}
, (5)

where the weights WI (-) and WII (-) are defined as follows

WI = ln

[
1

1−SIII/SI
− 1

]
+WII ; (6)290

WII = 2 ·
[
ln

(
0.05

1−SII/SI
− 0.5

)
− ln

(
1

1−SIII/SI
− 1

)]
, (7)
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being
:::::
where SI , SII , SIII :::

are the retention parameters associated with the curve numbers CNI , CNII , and CNIII , respec-

tively. Finally, ε(t) is calculated as

ε(t) =
θ(t)− θres
θsat− θres

, (8)

where θsat (-) is the soil moisture at saturation conditions and θres (-) is the residual soil moisture.295

To calculateQs at time t, the runoff is routed to the HRU’s outlet, representing each HRU as a linear reservoir model (Dooge,

1973):

Qs(t) =

t∫
0

a · r∗(τ) ·A ·T−1lag · exp

(
− t− τ
Tlag

)
dτ, (9)

where a= 10−3 m mm−1 is a conversion factor, r∗ is the surface runoff rate (in mm s−1), A (in m2) is the HRU area, and

Tlag (in s) is the lag time calculated as 0.6 times the concentration time, Tc, for average natural watershed conditions and an300

approximately uniform distribution of runoff according to Mockus (1957) and de Simas (1996). The calculation of Tc, in each

HRU, relies on the formula proposed by Ferro (2006).

The portion I (in mm) of total rainfall that infiltrates in the shallower layer of soil can either be lost by evapotranspiration,

ET (in mm), or by percolation, D (in mm). Potential evapotranspiration (PET ) is here calculated by the Hargreaves and

Samani (1985) equation, which requires temperature data. The actual evapotranspiration (ET ) is computed as a fraction of305

PET following Ravazzani et al. (2015). The water balance equation, referred to the shallower layer of soil with depth z (in

mm) at time t, is formulated as

θ(t) = θ(t− 1) +
I(t− 1)−D(t− 1)−ET (t− 1)

z
, (10)

where θ (-) is the actual soil moisture. D(t) is the drainage flux calculated as

D(t) = c ·Ksat · ε(t)
2+3B

B , (11)310

where c= 3.6 · 106 (in mm s m−1) is a conversion factor, Ksat (in m s−1) is the hydraulic conductivity at saturation, and B is

the Brooks-Corey index (Brooks and Corey, 1964). Finally, Qg(t) = a ·∆T−1 ·D(t) ·A, with ∆T = 3600 s. The interaction

among HRUs is represented by in series or in parallel reservoirs, according to the development of the river network, as exhibited

in Fig. 1.b. CN values were taken from https://www.isprambiente.gov.it while θres, θsat, and B parameters were taken from

Maidment (1993). Ksat and z are instead calibrated, as reported below.315

Calibration and validation of the hydrological model

The hydrological model was calibrated using
:
,
::
as

:::::
input,

:::
the

:
hourly rainfall depths from the RG network in Fig. 1.a. The cho-

sen period for calibration is 1 January 2019–31 December 2019. We carried out a sensitivity analysis on model’s parameters

to identify the most important ones, to be adjusted with calibration, and we selected two of them, namely
:::::
tested

::::::::
different

:::::::::::
combinations

::
of

:::
the

::::
two

:::::::::
parameters,

:
Ksat and z. The initial value of Ksat, for each HRU, was taken from Maidment (1993)320
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. Then, ,
::::

and
:::
we

:::::::
selected

::::
the

:::::::::::
combination

::::::::::
maximizing

:::
the

::::::::::::::::::::::
Nash and Sutcliffe (1970)

::::::::
efficiency

:::::::
(NSE).

::::::::::
Concerning

:
Ksat

parameter was calibrated by applying a multiplicative coefficient. We tested , as multiplicative coefficients, several
::
we

::::::
tested

::
the

::::::
values

:::::::
reported

::
in

:::::::::::::::
Maidment (1993)

::::::::
multiplied

:::
by

::::::
several

:::::::
different powers of 10, {10−2,10−1,100,101,102}. The range of

variation for
:::::::::::::::::::::::
{10−2,10−1,100,101,102}.

:::
The

::::::
values

::
of

::::
Ksat:::::

taken
::::
from

:::
the

::::::::
literature

::
are

::::::::
different

::::::::
depending

:::
on

:::
the

:::
type

::
of

::::
soil

:::::::::::
characterizing

::::
each

::::::
HRU.

::::
With

::::::
regard

::
to zwas instead ,

:::
we

:::::
tested

:::
all

:::
the

:::::
values

::::::
inside

::
the

:::::
range

:
[10 cm, 3 m]. The parameters325

:
,
::::
with

:
a
::
10

:
cm

::::
step.

:::
The

:::::::::
parameter validation was carried out for a total of one year time interval, subdivided into two periods:

the first is
::::
over

:::
two

::::::::::::::
non-consecutive

:::::::::
six-months

:::::::
periods:

:
1 July 2018–31 December 2018 and the second is 1 January 2020–30

June 2020. As model performance metric we selected the Nash and Sutcliffe (1970) efficiency,
::::
The NSE . We identified the

optimum combination of parameters through a trial and error calibration. The chosen parameters provided a NSE of
::::
value

::
is

0.69 for the calibration and of 0.56 for the validation,
:::::::::::
respectively.

::::::
Please

::::
note

:::
that

:::
the

:::::::::
calibrated

:::::::::
parameters

:::::::
provide

:
a
:::::
NSE330

:::::
larger

::::
than

:::
0.5

::
for

:::
the

::::::
overall

::::::::
one-year

::::::::
validation

:::::::
period,

:::::
which

::
is

:::
the

::::::::
minimum

:::::
value

::::::::::::
recommended

::
by

::::::::::::::::::
Moriasi et al. (2007)

::
to

:::::::
consider

:
a
:::::::::
simulation

:::::::
reliable. We recall that the discharge simulation performances are generally considered reliablewhen

NSE> 0.5 (Moriasi et al., 2007).

It is also worth to notice that the calibration and validation steps were particularly troublesome due to the presence of the

Cavo Diotti dam, which artificially regulates the outflow of Pusiano lake during flood events.335

3.3 Spatial interpolation of rainfall data

In the past, various
::::::
Several

:
methodologies have been tested

::::::::
proposed and applied for

::
the

:
spatial interpolation of CML retrieved

rainfall measurements , considering different spatial scales
::::::
rainfall

:::::::::::
measurements

::::::::
retrieved

::::
from

::::::
CMLs (e.g., Fencl et al., 2013;

Overeem et al., 2013; D’Amico et al., 2016; Haese et al., 2017; Chwala and Kunstmann, 2019; Graf et al., 2020; Eshel et al.,

2021). Here, we exploited the simple and robust IDW method (Shepard, 1968) for both RG and CML measurements. However,340

since CMLs measurements are path-averaged we considered CMLs as point sensors collapsed in their midway point but we

used an extra weight only to dump the effect of rainfall inhomogeneity associated to long links.

Following the
::::::::
According

::
to

:::
the

:
IDW method, given n measurements {u(x1), ...,u(xn)} at given points xi, with i= 1, ...,n

the interpolated value u, in x, is calculated as

u(x) =


∑n

i=1w
′
i·u(xi)∑n

i=1w
′
i

if d(xi,x) 6= 0 for all i;

u(xi) if d(xi,x) = 0 for some i,

(12)

with345

w′i =
1

d(xi,x)
γ , (13)

where d(xi,x) is the distance between the measuring point xi and the coordinates of HRU’s centroid x, and γ > 0. The number

of contributing measurements n is the one within a distance dmax from the query point. We identified appropriate values for

the exponent
::
the

::::::::::
appropriate

::::
value

:::
for γ and dmax by an iterative procedure presented herein

:::::::::::
leave-one-out

:::::
cross

::::::::
validation. We
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Figure 5. IDW calibration based on RGs: RMSE between observed and simulated rainfall depths, for different values of γ and dmax.

estimated the precipitation, at each RG point, from the remainder of RGs at
:
a distance smaller than dmax, and calculated the350

Root Mean Square Error (RMSE) between observations and estimates. The process was repeated for several values of γ and

dmax. We set a minimum of 10 for dmax ::::
value

:::::
equal

::
to

:::
10

:::
km, to have at least one neighbour available for every considered

RG. To this aim
:
, we exploited a larger set of 38 RGs (including the 13 RGs in Fig. 1.a) located on a wider area compared

to only the Lambro basin
::
the

:::::::
Lambro

:::::::::
catchment

:
and we used data from January 2018 to June 2020. The resulting RMSE

distribution as a function of dmax and γ is reported in Fig. 5. We observe that the choice of dmax has a rather limited
:::::::
marginal355

effect on the estimates , for
::
if γ ≥ 2. The minimum RMSE is achieved when γ is slightly above 3. We therefore chose γ = 3.

Finally
:::::::
Moreover, we selected dmax = 10 km, which provides the best RMSE when γ = 3.

To spatially interpolate CMLs rain rates, we took into account the CML length. Firstly, we handled CMLs
::::::
handled

:::::
them as

virtual RGs, considering the rain estimate as collapsed in the middle point
::::::::
assuming

:::
the

::::::
rainfall

:::::::::::
measurement

::
is

::::::::
collapsed

::::
into

::
the

::::::::
midpoint of the CML length

::::
path. Again we used IDW , this time with a weight given byw′ multiplied by a length-dependent360

term w′′ being

w′′ = e−β
−1L,

where L is the CML’s length and β−1 the decreasing rate. In fact, the longer is the CML, the higher the probability that rainfall

is unevenly distributed along its length. We chose β = 5, hence for L= 8.6 (maximum CML path length), ω′′ is equal to 0.18,

while for L= 1.1 (minimum path length), ω′′ = 0.80. Finally, as done in the case of RGs, to spatially interpolate CMLs data365

into each HRU centroid, we only considered CMLs whose middle points fall within dmax = 10 from the HRU centroid.
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::::::
method

:::
and

:::
the

:::::
same

:::::
values

:::
of

:
γ
::::
and

::::
dmax:::

as
:::::
above.

:
In addition of considering only RGs, or only CMLs, we accounted for

the integration of RGs and CMLs measurements. In the following, we will refer to this option as CML+RG.

4 Results

The results of this paper are presented in the following two subsections. Sec. 4.1 provides a comparison on
::
of rainfall depths370

interpolated in the HRU centroids, by using data both from conventional and
:::::
either

::::
from

:::::::::::
conventional

::
or opportunistic sensors.

Both accumulated rainfall values and hourly rainfall depths are considered at basin and sub-basin scale, for the 12 events.

We therefore investigate whether there are some critical issues that might help to explain differences in the rainfall-runoff

model outputs. Sec. 4.2 analyzes discharge performances, by comparing RG-, CML-, and RG+CML-driven simulations with

the observed flow rates.375

4.1 Comparison between RG and CML rainfall data in each HRU

Figure 6 shows the scatter plot of the areal-averaged rainfall depths
:::::
rainfall

:
accumulated at the end of each storm event

:
of

:::
the

:::
12

:::::
storm

:::::
events

:::
and

::::::::
averaged

::::
over

:::
the

:::::
entire

::::::::
catchment

::::
area. Yellow markers are CML against RG rainfall depths, while in orange

are CML+RG against RG rainfall depths. The corresponding regression lines indicate a general good agreement between the

two sets of sensors. For all the
::
On

:::
the

:::
one

:::::
hand,

:::
for

:::
all

:::
the Low

:::
low rain rate events (squares), estimates from CMLs (and

:::
and380

::::
from CMLs+RGs ) are lower than those

:::
the

::::
ones from RGs. On the other side, CMLs tend to return higher estimates than RGs

during
::::
hand,

:::::
CML

::::
(and

::::::::::::::::::
CML+RG)-estimates

::
of

:
High

::::
high rain rate events(circles) , even though the trend is not as evident

:
,

::
are

::::
very

::::::
nearly

:::
the

:::::
same

::::
(with

:::::
either

:::::
lower

::::
and

:::::
higher

:::::::
values)

::
to

:::
the

::::::::
RG-based

:::::
ones,

::::
with

:::
the

::::
only

::::::::
exception

::
of

:::::
event

::
3.

:::::
From

:
a
::::
more

:::::::
general

::::::::::
perspective,

:::
the

:::
two

:::::::::
regression

::::
lines

:::::::
indicate

::
a

::::
good

:::::::::
agreement

:::::::
between

:::
the

:::
two

::::
sets

::
of

::::::
sensors.

We further investigated the above behaviour
:::::::
assessed

:::::
CML

::::
and

:::
RG

::::::
rainfall

::::::::
estimates

:
on the hourly time scale and on the385

sub-basin spatial scale by calculating the relative error , ∆E, of CML estimates , with respect to RG ones,
:::::::
assuming

:::
the

:::::
latter

::
as

:::::::::
benchmark,

:
for the hourly rain

::::::
rainfall depths inferred in the 15 HRU centroids. We considered only

:::
The

::::::
relative

:::::
error

:::::
(∆E)

:
is
::::::::
evaluated

:::
as:

:

∆E =
RCML−RRG

RRG
,

::::::::::::::::::

(14)

:::::
where

::::::
RCML:::

and
:::::
RRG:::

are
:::
the

:
1
:::::
hour

::::::
rainfall

::::::
depths

::::::::
estimated

::
in

::::
each

:::::
HRU

:::::::
centroid,

::::::::::
respectively

:::::
from

:::::
CMLs

::::
and

::::
RGs.

::::
For390

::
the

::::::::::
calculation,

:::
we

:::::
only

:::::::::
considered

:
wet hours (rain depth ≥ 1

:::::::
RRG ≥ 1

:
mm for RG estimates in HRU centroids), that are

2061. Figure 7 shows a binned scatter plot (orange circles) of ∆E against RG-based rain depth, taken as the benchmark. The

small circles in cyan are the
::::::
relying

:::
on

:
a
::::
data

:::
set

::
of

:
2061 measured values. The x-axis has been divided into 11 bins. The x

coordinate of each orange circle is the mid point of each bin interval, whereas the y coordinate is
:::::
values.

::::::
Hence,

:::::
when

:::
the

:::::
CML

:::::::
estimate

:::::
yields

:
0
::::
and

:::
the

:::
RG

:::::::
estimate

::
is

::::::
greater

::::
than

:
0
:
(
::::
false

:::::::
negative

:
),
:
the mean of the

::::::
relative

:::::
error

:
is
:::
-1.

::::::
Figure

:
7
:::::
shows

::
a
:::
2D395

::::::::
histogram

::::::::::
representing

:::
the

:::::
count

::
of
::::
rain

:::::
hours

::::::
falling

::
in

:
a
:::::
given

:::::
range

::
of

::::::::::::
RG-estimated

::::::
rainfall

::::::
depths

:::
and

::
in

::
a
:::::
given

:::::
range

::
of

::::::
relative

::::::
errors.

:::
The

:::::::::
increasing

::::::
spread

::
of

:
∆E values calculated over all the cyan circles falling within the bin. Finally, vertical
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bars represent the ±1 standard deviation bounds. For rain depths smaller than about 3 , mean ∆E values are negative (CMLs

estimates lower than RG estimates),
:::
with

:::::::
respect

::
to

:::
the

:::::::
decrease

::
of

:::
the

:::::::::
RG-based

::::::
rainfall

::::::
depths

::
is

:
due to the large numbers

of zeroes in CML rain depths during wet hours (i.e. ∆E =−1). Conversely, for rain rateshigher than 3 , mean ∆E values are400

slightly higher than 0. Indeed, if the rain
::::::
greater

:::::::::
uncertainty

::
of
::::::
CMLs

::
in

::::::::
detecting

:::
low

::::
rain

:::::
rates.

:
If
:::
the

:::::::::
RG-based

::::::
rainfall depth

is smaller than 3 mm, only 30% of ∆E values falls in the range [-0.4, 0.4], whereas if it is larger than 3 mm, the percentage

increases up to nearly 70%.

::::::::
Moreover,

:::
for

:::
the

::::::
lowest

:::::::
rainfall

::::::
depths

::::
there

::::
are

:::::
fewer

:::::::
negative

::::::
values

::
of

::::
∆E

:::
as

:::
we

:::
set

::
to

::::
zero

:::
all

:::
the

:::::
CML

::::
rain

::::
rate

:::::::
estimates

:::::
lower

::::
than

:::
the

:::::::::
sensitivity

::
of

:::
the

:::
link

:::::
itself.

::::
The

::::
high

:::::
count

::::::
related

::
to

::::::::
∆E =−1

::::
and

::::::::
RG-based

::::::
rainfall

::::::
depths

:::
< 5mm405

:
is
::::
due

::
to

:::
the

:::::::::
occurrence

::
of

::::
false

::::::::
negatives

:
.
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Figure 6. Rain
:::::

Rainfall
:
depths, averaged over the catchment area and accumulated at the end of each event

::
of

::
the

:::
12

:::::
events. The

::::::
number

:::
next

::
to

:::
the

::::::
markers

::::
refer

::
to

::
the

:::
ID

::::
event

::::
while

:::
the two different markers, circles and squares, respectively stand for High rain rate

:::
high

::::
rain

:::
rate and Low rain rate

::
low

::::
rain

:::
rate events. The black line represents the 1:1 line of perfect matching between rain

:::::
rainfall

:
depth estimates

from RGs and from CMLs (yellow) or from the combination of RGs and CMLs (orange). Yellow and orange lines are the corresponding

regression lines.
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We therefore focused on the CML hourly wet-dry (see Sec. 2) classification, inferred in HRU centroids, again considering

RG estimates as benchmark. A
:::
We

:::::
recall

:::
that

::::
dry

:::::
hours

:::
are

::::
those

::
in

::::::
which

:::
the

:::::::
detected

::::::
rainfall

:::::
depth

::
is

:::::
lower

::::
than

:
1
::::
mm

::::
and

:::
vice

:::::
versa

:::
for

:::
wet

:::::
hours

::::
(see

::::
also

:::
Sec.

:::
2).

::::::
Figure

:
8
::::::
depicts

::::
box

::::
plots

::
of

:::
the

:::::::::
percentage

:::
of

::::
false

::::::::
negatives

:::
and

::::
false

::::::::
positives

:::
for

:::
low

::::
rain

:::
rate

:::
and

::::
high

::::
rain

::::
rate

::::::
events.

::
In

:::::::
contrast

::
to

:
a
::::
false

::::::::
negative,

::
a false positive occurs when an hourly slot is classified410

as wet by CMLs while it is dry according to RGs, and viceversa for a false negative. Figure 8 depicts a box plot of
:::
and

:::
dry

:::
by

::::
RGs.

::::
The

:::
two

::::
box

::::
plots

:::
on

:::
the

:::
left

::::
were

::::::::
obtained

::::
from

::
a

:::::::::
population

::
of

:::
120

:::::::
samples

:::
(8 false positive

:::
high

::::
rain

::::
rate and

:::::
events

:
x
:::
15

::::::
HRUs),

:::::
while

:::
the

::::
two

:::
on

:::
the

::::
right

::::
were

:::::::::
computed

::::
from

:::
60

:::::::
samples

::
(4

:
false negative

:::
low

::::
rain

::::
rate percent occurrences.

Events have been grouped according to their intensity.
:::::
events

::
x
:::
15

::::::
HRUs).

::::
For

::::::::
example,

:::
the

:::::::::
maximum

:::::::::
percentage

::
of

:::::
false

:::::::
negatives

::
is
:::::
60%,

:::::
which

:::::::::::
corresponds

::
to

::::
HRU

::
2
::::::
during

:::
the

:::
low

::::
rain

:::
rate

::::
event

::
7

::
of

:::::
Table

::
1.

:::::
From

:
a
:::::::
general

::::
point

::
of

:::::
view Low415

:::
low

:
rain rate events clearly exhibit a higher median and a larger dispersion of false negativepercentage than

::::::::
negatives

::::
than

High
::::
high

:
rain rate events, whereas the occurrence of a false positive is relatively rare in both cases. These results confirm the

inability of CMLs in detecting low rain rates, which depends on the quantization error issue discussed in Sec. 3.

Finally, in Fig. 9 we report box plots of ∆E values calculated for rain depths accumulated at the end of the
::::::
rainfall

::::::::::
accumulated

:::
by

::::
each

:::::
HRU

::::
over

::::
each

::
of

:::
the

:
12 events, for each HRU . It does not emerge a general positive or negative trend420

and the median
:::::
event.

::::::
Again,

:::
the

:::::
events

:::
are

:::::::
grouped

:::
in

:::
two

::::::
classes

:::::::::
according

::
to

::::::
rainfall

::::::::
intensity.

::::
The

:::::::::
contrasting

:::::::::
behaviour

:::::::
between

:::
low

::::
rain

::::
rate

:::
and

::::
high

::::
rain

::::
rate

:::::
events

::
is

:::::::
evident.

::
In

:::
the

::::::
former

::::
case,

:
∆E values are inside the range

::
is

::::::
mostly

:::::
much

:::::
lower

::::
than

:
0
::::
and

:
it
::
is

:::::
much

::::::::
scattered.

:::::
Once

:::::
again,

::::
this

:::::
result

:::::::
confirms

::::
that

::::::
during

:::
low

::::
rain

::::
rate

::::::
events,

::::::
CMLs

:::
are

:::
not

::::
able

::
to

:::::::
properly

:::::
detect

:::
the

:::::
lowest

:::::::
rainfall

:::::::::
intensities.

::::::::
Regarding

::::
high

::::
rain

::::
rate

::::::
events,

::::
there

::
is

:::
not

:
a
:::::
clear

:::::
trend.

:::
The

:::::::
median

:::
∆E

::::::
values
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Figure 7. Relative difference ∆E between CML and RG
:::
2D

:::::::
histogram

::
of

:
hourly rain depths against RG rain depths

:::::
rainfall

::::
depth

::::
from

::::
RGs

:::
and

:::
∆E. X-axis

:::
The

:::::
colour

::
of

::::
each

::::::
equally

:::::
spaced

:::
2D

:::
bin

::::::::
represents

::
its

:::::
height,

:::::
which

::
is

::
the

:::::
count

::
of

:::
data

::::::
falling

::
in

::
the

::::
bin.

:::
The

::::
scale

:::
bar

has a logarithmic scale
::
and

:::
the

::::
dark

:::
blue

::::
bins

::::::::
correspond

::
to

:
0
::::::
counts.

:::::
Values

::
of

::::
∆E

::::
equal

::
to

::
-1

:::::::
represent

::::
false

:::::::
negatives.
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Figure 8. Percentage variation of hours subjected to wrong wet-dry classification (false negative or false positive), with respect to High rain

rate
::::
high

:::
rain

::::
rate and Low rain rate

::
low

::::
rain

:::
rate events.

:::
The

:::
box

:::::
plots

:::::
display

:::
the

::::::
median,

:::
the

::::
0.25

::::::
(lower)

:::
and

:::
0.75

::::::
(upper)

::::::::
quantiles,

:::::
outliers

:::::::::
(computed

::::
using

:::
the

:::::::::
interquartile

:::::
range),

:::
and

:::
the

:::::::
minimum

:::
and

::::::::
maximum

:::::
values

::::::::
excluding

:::
any

::::::
outliers.

::
are

::::::
always

::::::
within

:::
the

:::::
range [-0.2,0,2

::::::::
-0.25,0.25] for 12 out of 15 HRUs. Moreover, in all the cases medians are lower than 0.3.425

Negative values of ∆E are mostly observed in HRUs 1, 2, 5, and 11. Such underestimations take place since CMLs, which

have a non-negligible weight in the rainfall spatial interpolation within these HRUs, are the least sensitive to low rain rates. In

particular, the highest differences between RG and CML estimates are associated to HRU 11 where the two major contributing

links are characterized by quite low frequencies (∼ 18–19 ) and have lengths up to 6.3 . We observed that such two CMLs

systematically provide lower estimates, if compared to the closest RGs (analysis not reported here),with greater evidence for430

low rain rates hours
:::
and

::::
their

:::::::::
dispersion

:
is
::::
low

::
as

::::
well.

4.2 Comparison between RG- and CML-driven discharge simulations

In this section, we investigate the matching between RG and CML focusing on discharge simulations at Lesmo river section.

Again, the comparison is carried out for the 12 flood events selected. The model was fed by interpolated rainfall data from
:::
the

::::::::
following,

::::::::
discharge

::::::::::
simulations

::::::::
obtained

::::
from

:::::
three

:::::::
different

::::
data

::::::
inputs

:
(RGs, CMLs , and RGs+CMLs.

:::
and

:::::::::::
CMLs+RGs)435

::
are

::::::::
assessed

:::
and

::::::::
compared

:::::
with

:::::::::::
hydrographic

::::::::::::
measurements

::
at

::::::
Lesmo

::::
river

::::::
section.

:

The output performances were evaluated with three indices: (1) the
:::::::::
well-known

:
Nash–Sutcliffe efficiency ,

:
(NSE), (2) the

relative error on peak discharge , (REP,
:
)
:
and (3) the relative error on flow volume ,

:
(Dv. The formulations of these

:
).

:::
The

:
last

two indices are respectively
::::::
defined

::
as

:::::::
follows:

REP =
Qmaxsim −Qmaxobs

Qmaxobs

; (15)440
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Dv =
Vsim−Vobs

Vobs
, (16)

where Qmaxsim is the simulated peak discharge, Qmaxobs is the observed peak discharge, Vsim is the simulated total flow volume,

and Vobs is the observed total flow volume.

Performances of the 12 discharge simulations, grouped by rainfall data input, are summarized in Fig. 10, through box plots.445

The statistical dispersion (represented by the interquartile range, IQR) of CML-based discharge simulations are larger than

RG-based simulations. The use of CML interpolated data into the rainfall-runoff model seems to produce higher uncertainty,

with respect to RG data. The combined use of RGs and CMLs instead decreases the statistical dispersion of results and leads

to performances closer to those achieved through RG. Generally, CMLs exhibit worse performance than RGs in terms of NSE

and Dv. As for REP, the two set
:::
sets

:
of sensors produce comparable errors of opposite sign, hence their combined use leads450

to an optimum value of the median error (0.06).

Figure 11 shows a

::
To

::::
gain

::
a

::::::
deeper

:::::::::::
understanding

:::
of

:::
the

:::::
model

::::::::::::
performances

:::
on

::::
flow

:::::
peaks,

:::
we

::::::::
produced

::
a scatter plot of observed against

simulated flow peaks . Firstly, it shows
:
in

::::
Fig.

:::
11.

:::
The

::::::
scatter

::::
plot

:::::
firstly

::::::
reveals

:
that the best match between observations and

simulations is not always achieved by RG-based simulations. In fact, for events 1, 3, 5, and 11 the optimum matching is given455

from CML- or CML+RG-based simulations. Moreover, the Low
::
low

:
rain rate events typically result in underestimated peak

flow simulations with respect to the observations, considering either conventional or unconventional sensors, with an exception

for event 5.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
HRU
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-0.5
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High rain rate Low rain rate

Figure 9. Box plots of ∆E
:
in
::::
each

::::
HRU

:
for the 12 storm events grouped by HRU

::::::
(divided

:
in
::::
two

:::::
groups

:::::::
according

::
to
::::::
rainfall

:::::::
intensity).

:::
The

:::::
ranges

::
of

::
the

:::
box

::::
plots

:::
are

::::
those

:::::::
reported

::
in

:::
Fig.

::
8.
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Figure 12 reports model inputs and outputs for event
:::::
events 5 and 2.

::
We

:::::::
selected

:::::
these

:::
two

::::::::
examples

::
as

::::
they

:::
are

:::::::::::
characterized

::
by

:
a
::::::::
different

::::::::::::
meteorological

:::::::::::
configuration

::::
and

:::
lead

::
to

::::::::::
contrasting

:::::
model

::::::::::::
performances. The first event is an autumn stratiform460

event, characterized by low rain intensity. In Fig. 12.a we can see that CML-based estimates in HRUs 1, 2, 5, 8, and 11 are

quite low, with respect to RGs, due to the difficulties of relevant CMLs in detecting light rain, as also highlighted in Fig. 9.
:
.

In contrast, in the southern HRUs 10, 12, 13, 14, and 15, which have much more influence in the generation of river discharge,

CML estimates are higher than RG ones. Finally, Fig. 12.b shows that
::
an

:::::::
example

::::::
where the CML-driven simulation better

represents the observed outflow hydrograph, with respect to the RG-driven simulation. In particular, the best performance is465

gained when both the two types of rainfall sensors are used, and it provides an excellent Dv, equal to 0.03. The most problematic

CMLs are mostly located in
::::::
highest

:::::::::::
discrepancies

:::::::
between

:::::
CML

:::
and

::::
RG

::::::::
estimates

::::::
mostly

::::::
involve

:
the northern portion of the

basin and have less impact in generating discharge. Event 2 is instead a typical intense convective summer event, characterized

by a single rainfall peak. As rain rates are high all over the basin, contrary to event 5, we do not observe lower CML estimates

with respect to RG estimates, for HRU 1, 2, and 5. However, lower values are still present in HRU 11. In general,
:::::::
observe

::
in470

Fig. 12.c reveals a good agreement between RG and CML
:
a
:::::
better

:::::::::
agreement

:::::::
between

:::::
CML

:::
and

:::
RG

:
estimates. River discharge

simulations, reported in Fig. 12.d, are satisfactory, considering all the 3 input data. NSE values obtained respectively from RGs,

CMLs, and RGs+CMLs data are 0.86, 0.77, and 0.80.

As the hydrological model has been calibrated with RG-detected rainfall data, it can be easily guessed
:::::::
assumed that the best

model performances are mostly achieved with RG data as input, as well. In fact, the major drawback of the present work is475
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Figure 10. From panel (a ) to (c), box plots of performance metrics, namely NSE, REP, and Dv, for the 12 selected flood events. The

optimum values correspond to the bold black lines.
:::
The

:::::
ranges

::
of

:::
the

:::
box

::::
plots

::
are

:::::
those

::::::
reported

::
in

:::
Fig.

::
8.
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definitely that
:::::::::::
Unfortunately,

:
we did not rely on a large and real-time

:::
have

::
at
::::

our
:::::::
disposal

::
a

:::::::
database

::
of

:::::
CML

::::::
events

:::::
large

::::::
enough

::
to

:::::
carry

:::
out

::
a CML-based dataset and a calibration similar to that implemented with RG data cannot be carried out

:::::::::
calibration. Nevertheless, we tried to overcome this problem

:
,
:
by recalibrating model parameters, with CML and CML+RG

rainfall estimates as input, relying on the 12 available flood events.
:::
The

:::::
same

::::::::::
event-based

::::::::::
calibration,

::::
was

:::::
hence

:::::::::
conducted

::::
using

::::
RG

::::
data

::
as

:::::::
rainfall

::::::
inputs.

::
In

::::
such

::
a
::::
way

:::
the

::::::::::
comparison

:::
on

::::::::
discharge

::::::::::
simulations

::::
may

:::
be

:::
led

::
in

::
a
:::
fair

:::::::
manner.

:
We480

considered as optimum parameter values
:::::::::
parameters those providing the highest median NSE values. Performance indices,

subdivided by type of rainfall data input and type of calibration, are summarized in Fig. 13 by box plots. Please note that CML-

and CML+RG-based calibration improves
:::::::::
calibrations

::::::::
improve the performance of the model when fed by unconventional

input data. In particular, NSE values are comparable with those
::
the

:::::
ones achieved by the use of RG data with a RG-based

calibration. In fact, median NSE values for RG inputs with RG-based calibration, CML inputs with CML-based calibration,485

and CML+RG inputs with CML+RG-based calibration are 0.34
::::
0.37, 0.35, and 0.38, respectively. For REP values we gen-

erally observe underestimations of
::
the

:
observed peak flow, considering CML- and CML+RG calibration but smaller IQR

:
a

::::::
smaller

::::::::::
interquartile

:::::
range when compared with RG-based calibration. Concerning Dv values, performances for the CML- and

CML+RG-based calibration are quite satisfactory, despite the combination providing the best performance is still RG inputs

with RG-based calibration.490
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Figure 11.
:::::::
Observed

::::
peak

::::
flow

:::::
against

::::::::
simulated

:::
one

::::
from

:::
RG

:::::
(blue),

:::::
CML

:::::::
(yellow),

:::
and

::::::::
CML+RG

:::::::
(orange).

:::
The

:::
two

:::::::
different

:::::::
markers,

:::::
circles

:::
and

::::::
squares,

:::::::::
respectively

:::::
stand

:::
for

:::
high

::::
rain

:::
rate

::
and

::::
low

:::
rain

::::
rate

:::::
events.

::::
Inset

:::::
figure

::::::
reports

:
a
:::::
zoom

::
for

:::::
events

::::
with

::
a

:::
low

::::
peak

:::::::
discharge.
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Figure 12. Observed peak discharge against simulated one
:
In
:::::
panel

:
a
:::
and

:
c,
:::::::::
cumulative

:::::
rainfall

::::
depth

::::::::
estimates from RG(blue), CML(yellow),

and CML+RG (orange). The two different markers, circles
::
for

:::::::::
storm/flood

:::::
events

::
5 and squares

:
2, respectivelystand for High rain rate and

Low rain rate events. Inset figure reports a zoom
:
In
:::::
panel

:
b
:::
and

:
d
:::::::
discharge

::::::::::
observations

:::
and

:::::::::
simulations

::::::
gathered

::
by

:::::
using

::
the

::::
three

:::::::
different

::::
input

::::
data, for

::
the

:::
two

::::
same

:
eventswith a low peak discharge.

In panel (a) and (c), cumulative rain depth estimates from RG, CML, and CML+RG for storm/flood events 5 and 2, respectively. In panel

(b) and (d) discharge observations and simulations gathered by using the three different input data, for the two same events.
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Figure 13. Box plots of the performance indices for the 12 flood events obtained with three different calibration sets (drawn in as many

colours) and with three different input types (on the x-axis).
::
The

::::::
ranges

::
of

::
the

:::
box

::::
plots

:::
are

::::
those

:::::::
reported

:
in
::::

Fig.
::
8.
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5 Discussion

The analysis on
::
of interpolated rainfall data carried out in Sec. 4.1 reveals that CML and RG estimates of accumulated areal-

averaged rainfall depths are comparable. However, two issues emerged.

First, CMLs exhibit a different behaviour depending on event ’s intensity, since their sensitivity varies with length and

frequency. Specifically, they return lower values of rainfall depth and rainfall accumulation in correspondence of Low
:::
low rain495

rate events, both at the basin and
:
.
::::
This

::::::
aspect

:::::::
becomes

:::::::
evident

:::::
either

::
at
::::::::
different

::::::
spatial

:::::
scales

::
(sub-basin scale

:::
and

:::::
basin

:::::
scales)

::::
and

::
at

:::::::
different

::::::::
temporal

:::::
scales

:::::::
(hourly

:::
and

:::::::::::
event-based

::::
time

::::::
scales). In fact, due to a coarse quantization of the raw

data, CMLs are not sensitive to low rain intensity, hence, when the rainfall depth value over a certain lapse of time is required

(in our case 1 h), this limitation may lead to large errors, especially when light rain goes on for a long time. We instead
::::::
Despite

::::
some

::::::::::::
discrepancies

::
in

:::
the

:::::::::
behaviour

::
of

::::::
single

::::::
CMLs

::::
with

::::::
respect

:::
to

::::
their

::::::
nearby

:::::
RGs,

::
as

::::::::::
highlighted

::
in
:::::::::

Appendix
:::
A,

:::
we500

observed a good agreement between CML- and RG-based estimates
::
in

:::::
HRU

::::::::
centroids for high rain rates . The problem of

CML underestimation mainly involves northern HRUs (specifically HRUs 1, 2, 5, and 11), since are covered by less sensitive

CMLs. However, we observed that these underestimations do not strongly impact the river discharge simulations since the

northernmost HRUs influence less the runoff generation in the outlet section.
:::
due

::
to

:
a
:::::::::
mitigation

::::::
effect.

The second issue is the different CML density over the HRUs. It is well known that spatial interpolation methods are sensitive505

to sensors’
:::::
sensor

:
density (Xu et al., 2013), and consequently the relatively large distance of the available CMLs from the HRU

centroids in the most scarcely populated areas (northern HRUs) may lead to loss of reliability of estimated rainfall depths.

However, such an aspect appears to be less relevant when compared with the first one
:
,
::
at

::::
least

:::::
when

::::::
dealing

:::::
with

::::
quite

:::::
large

:::::
HRUs

::::::
(dozen

::
of

:
km2

:
). In fact, a

::::::
careful comparison of Fig. 2 and Fig. 9 does not show an evident correlation between the

mean CMLs-centroids distance and ∆E
:::::
values.510

Last but not least, model performances are influenced by the calibration process of model parameters. Similar model per-

formances, in terms of NSE index, can be achieved with all the three types of input data (RGs, CMLs, and CMLs+RGs) if

the calibration is carried out with the respective data inputs. This means that, after a proper calibration, opportunistic sensors

could be exploited in semi-distributed hydrological models, as well as RGs. In particular we found that, after calibration, the

set RGs+CMLs is the one providing the highest median NSE. However, it is worth to highlight
::::::::::
highlighting

:
that we calibrated515

the parameters on the basis of only 12 flood events. In order to assess a robust calibration and the associated validation, a larger

dataset
:::
data

:::
set

:
of CML-based rainfall events should be processed.

::::::::::
Limitations

::::
and

:::::
future

:::::::::::::
improvements

:::
One

:::
of

::
the

::::::
major

:::::::::
difficulties

::::::::::
encountered

::::::
during

:::::::
analyses

::::
was

:::
the

:::::
small

::::::
amount

::
of

:::::
CML

::::
data,

:::
as

:::
we

:::::
relied

::
on

::::
only

::::
458

:::::
hours

::
of

:::::
CML

:::
raw

::::
data

::::::::
grouped

::
in

::
12

:::::::
events.

:::
On

:::
the

:::::
other

:::::
hand,

:::
the

:::::::
database

:::::
from

::::
RG

::::::::::
observations

::::
was

:::::
much

:::::
more

:::::
wider

::::
and520

::
we

::::::::
disposed

::
of

::::::::
real-time

:::::
data.

:::
An

::::::::
extension

::
of

::::
the

::::::::::
CML-based

::::
data

:::
set

::
of

::::::
events,

::
or

::::::
better

:::
yet,

::
to
:::::

have
::::::
access

::
to

::::::::
real-time

::::
CML

::::
raw

::::
data

::::::
would

::::::::
definitely

:::::
bring

::::
great

:::::::
benefits

::
to
::::

the
::::::
present

:::::
work.

:::::::
Firstly,

:
it
::::::
would

:::::
allow

:::
the

:::::::::::
development

::
of

::
a
:::::
more
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:::::
robust

::::::::
statistical

:::::::
analysis

::
on

::::::::::
storm/flood

::::::
events.

::::::::
Secondly,

::
it
::::::
would

:::::
enable

::
a

:::::
proper

::::::::::
calibration,

:::
and

::
a

::::::::
validation

::
as

:::::
well,

::
of

:::
the

::::::::::
hydrological

::::::
model

:::::
based

::
on

:::::
CML

::::
data

::
as

::::::
rainfall

:::::
input.

:

::
To

:::::::
enhance

::::
this

:::::
work,

:
it
::::::
would

::::
also

::
be

::::::
useful

::
to

:::::
resort

::
to

:::
the

:::::::::::::
implementation

::
of

::
a
::::::::::
CML-driven

:::::::::
distributed

::::::
model,

::::::
which

::
is525

:::::::
expected

::
to

::::::
provide

::
a
::::
more

:::::::
accurate

::::::::::
description

::
of

::
the

::::::
spatial

:::::::::
variability

::
of

::
the

:::::::::::
precipitation

::::
field

::::
with

::::::
respect

::
to

:
a
:::::::::::::
semi-distributed

:::
one.

::
In

:::::
such

:
a
::::
case,

:::
the

:::::
CML

::::::::::::
measurements

:::::
would

::
be

:::::
better

::::::::
exploited

::
by

:::
the

:::
use

::
of

::::::::
advanced

::::::::
methods

::
for

::::::
spatial

::::::::::::
reconstruction

::
of

:::
the

::::::
rainfall

:::::
field.

:::
For

::::::::
instance,

:::::::::
techniques

::::
such

::
as

:::
the

:::::::::::
tomographic

::::::::::::
reconstruction

:::::::::
algorithm

:::::::::::::::::::
(D’Amico et al., 2016)

::
or

:::
the

::::::::
stochastic

::::::::::::
reconstruction

:::::
based

:::
on

:::::::
copulas

::::::::::::::::::::::::::::::::::
(Haese et al., 2017; Salvadori et al., 2007)

:
,
::::
take

::::::::
advantage

:::
of

:::
the

::::
path

:::::::::
integrated

:::::
nature

::
of

:::::
CML

::::::::::::
measurements.

:
530

:
It
::
is

::::
also

:::::
worth

::
to

:::::
notice

::::
that,

::::::::
although

:::
we

::::::
showed

::::
that

:::::
CML

::::::
rainfall

::::
data

:::
can

:::
be

::::::::::
successfully

:::::::::
assimilated

::::
into

:::::::::::
hydrological

::::::
models,

:::::
their

:::::::::
integration

:::
into

::::::::
real-time

::::::::::
operational

::::::::
platforms

::::
(e.g.

:::::
early

:::::::
warning

:::::::
systems)

:::::::
remains

:::::::::::
challenging.

::
A

::::::
number

:::
of

::::::
aspects

::::::
should

::
be

:::
still

::::::::::
considered

::::::::
including:

:

–
::::::::
generation

:::
of

::::
CML

::::
raw

::::
data

::::::
formats

:::::::
suitable

:::
for

::::::
rainfall

::::::::::
estimation;

–
:::::::
real-time

:::::::::
collection

::
of

:::
raw

:::::
data,

:::::
which

::::::
should

::
be

::::::::::
transparent

::
to

:::::::
network

::::::::
operation;

:
535

–
:::
data

:::::::
transfer

::
to

:
a
:::::::
control

:::::
center;

:

–
:::
non

:::::
trivial

::::
data

::::::::
reduction

:::::::
process,

:::::::::
especially

:
if
:::::
large

:::
sets

::
of

::::::
CMLs

:::
are

::::::::
managed.

:

:::
The

:::::
above

::::::::::
mentioned

:::::
issues

:::::::
suggest

:
a
:::::::::
systematic

::::::::::
cooperation

:::::
with

::::::
mobile

::::::::
operators,

:::::
who

:::
are

:::
the

::::::
owners

:::
of

:::::
CML

:::::::
network

:::::::::::
infrastructure.

:

::
Up

::
to
:::::
now,

:::
we

::::::
mainly

::::::::::
investigated

:::
the

::::::::::
exploitation

::
of

::::::::::
CML-based

::::::
rainfall

::::::::
estimates

::::
with

:::
the

:::::::
purpose

::
to

:::
test

::::
their

::::::
impact

:::
on540

::
the

:::::::::::
hydrological

::::::::::
simulations

::
of

::::
river

::::::::
discharge,

::::
with

:::::::
respect

::
to

::
the

::::
use

::
of

:::
RG

::::
data.

::::::::
However,

::::
still

::::::::
important

::::::::::
hydrological

::::::
issues

::::
could

:::
be

::::::::
addressed

:::
by

::::::
dealing

::::
with

:::::
CML

::::
data.

::::
One

::
of

:::
this

::
is

::::::::
definitely

:::
the

:::::::::
modelling

::
of

:::
the

::::
Areal

:::::::::
Reduction

::::::
Factor

::::::
(ARF),

:::
the

:::::
factor

:::::
which

:::::::::
transforms

:
a
:::::
point

::::::
rainfall

:::
for

:
a
:::::
given

:::::::
duration

:::
and

::::::
return

:::::
period

::::
into

:::
the

::::
areal

:::::::
average

::::
value

:::
for

:::
the

:::::
same

:::::::
duration

:::
and

:::::
return

::::::
period

:::::::::::::::::::::::::::::::::::::::::::::::
(Natural Environmental Research Council (NERC), 1975).

::
In

:::
last

::::::::
decades,

::::
great

::::::
efforts

::::
have

::::
been

:::
put

:::
for

:::
the

::::::::
modelling

::
of

:::
the

:::::
ARF

:::::::::::::::::::::
(De Michele et al., 2001),

::::::
useful

::
in

:::
the

::::::
design

::
of

::::::::
hydraulic

::::
and

::::::::::
hydrological

:::::::::::::
infrastructures,

:::
for

:::::
flood545

:::
risk

::::::::::
evaluations,

:::
and

:::::::
rainfall

:::::::
threshold

::::::::::
estimations

::
in

::::
early

:::::::
warning

:::::::
systems

:::::::::::::::::::::::::::::::::::
(e.g., Kim et al., 2019; Biondi et al., 2021).

:::
As

:::
we

::::
dealt

::::
with

:
a
::::::::::::::
semi-distributed

::::::::::
hydrological

::::::
model

::
we

:::::::
needed

::
to

::::::::
transform

::::
point

:::::
(from

::::
RG)

::::
and

:::::
linear

:::::
(from

:::::
CML)

:::::::::::
precipitation

:::::::::::
measurements

::::
into

::::
areal

::::::
values,

::::
over

:::
the

:::::
HRU

:::::
areas.

:::::::::
Therefore,

::::
from

::
a
:::::::
different

::::::::::
perspective,

::::
this

::::
work

:::::
could

::
be

::::
also

::::
seen

::
as

::
a

:::
first

::::
step

::
in

:::::
order

::
to

:::
test

:::
the

::::::::
modelling

:::
of

::::
ARF

:::
by

::::
using

::
a
::::::::::
combination

::
of

:::::::::::
conventional

::::
and

::::::::::::
unconventional

:::::::
sensors.

:

6 Conclusions550

In this work, we assessed the use of CMLs
::::::::::
commercial

:::::::::
microwave

:::::
links

:::::::
(CMLs) as opportunistic rainfall sensors within the

hydrological modelling. We focused on Lambro, a peri-urban catchment, 260 km2 in area, located north of Milan (Italy) and

covered by 50 CMLs that are part of the network owned by a major mobile operator. Lambro’s area is covered by 13 RGs

28



:::
rain

::::::
gauges

::::::
(RGs)

:
as well, which we used both as an independent rainfall dataset

:::
data

:::
set and in combination with CMLs.

We implemented a semi-distributed hydrological model and carried out two types of comparison between CML and RG data.555

First, we considered rainfall data (hourly rainfall depths, the input of the hydrological model, and total accumulations at the

storm end, for a sample of 12 storm events) interpolated at the HRU centroids. Then, we compared river discharge simulations

(model output) from RGs, CMLs and RGs+CMLs against flow measurements.

Concerning the comparison on rainfall data, we found out that high intensity events detected by CMLs are in accordance

with RG measurements. On the other hand we came across a critical aspect, which is the inability of CMLs to detect low560

rain rates, due to the coarse 1 dB quantization step of raw data (i.e. received power levels). The minimum detectable rainfall

intensity depends on the operation frequency of CMLs as well as on their length, and, for the available set of CMLs, it ranges

from 3
:
1
:
mm h−1 to 10 mm h−1. Such a limitation results in the underestimation of rain

:::::
rainfall

:
depths interpolated in the

HRU centroids for low intensity storm events, when compared from RG based
::
to

::::::::
RG-based

:
rainfall data.

The hydrographs simulated by the hydrological model highlight better performances in terms of
::::::::::::
Nash-Sutcliffe

:::::::::
efficiency,565

NSEand
:
,
:::
and

:::
the

::::::
relative

::::
error

:::
on

::::
flow

:::::::
volume, Dvmetrics ,

:
in the case of RGs rather than of CMLs. This result is not surprising

as the model was calibrated using RG data throughout one year data. Nevertheless, satisfactory REP values
:::::
values

::
of

:::::::
relative

::::
error

::
on

:::::
peak

::::::::
discharge,

:::::
REP,

:
are achieved through the use of CML and CML+RG data as inputs into the RG-based calibrated

model. We notably observed that the underestimating behaviour of CMLs during low intensity events does not impact much

discharge simulations, in fact peak discharges simulated from CMLs are not systematically lower than RG-driven simulations.570

This happening since the least sensitive CMLs are located over the norther HRUs.

By calibrating the model with CML data and by using the same as input, it is possible to improve the model performance
:
,

which becomes comparable with the case of RG-calibration and RG-input. Even a slightly better performance can be gathered

with a CML+RG-based calibration and CML+RG data as input.

An extension of the CML-based dataset of events would bring great benefits to the present work. Firstly, it would allow575

the development of a more robust statistical analysis on storm/flood events.Secondly, itwould enable a proper calibration and

validation of the hydrological model based on CML dataas rainfall input.

To enhance this work, it would also be useful to implement a CML-driven distributed model, which is expected to provide

a more accurate description of the spatial variability of the precipitation field with respect to a semi-distributed one. In such

a case, the CML measurements would be better exploited by the use of advanced methods for spatial reconstruction of the580

rainfall field. For instance, techniques as the tomographic reconstruction algorithm (D’Amico et al., 2016) or the stochastic

reconstruction based on copulas (Haese et al., 2017; Salvadori et al., 2007), take advantage of the path integrated nature of

CML measurements.

Finally, it is worth to notice that , although we showed that CML rainfall data can be successfully assimilated into hydrological

models, their integration into real-time operational platforms (e. g. early warning systems)remains challenging. A number of585

aspects should be considered including:

– generation of CML raw data formats suitable for rainfall estimation;
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– real-time collection of raw data, which should be transparent to network operation;

– data transfer to a control centre;

– heavy data reduction process, especially if large sets of CMLs are managed.590

The above mentioned issues suggest a systematic cooperation with mobile operators, who are the owners of CML network

infrastructure.
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Appendix A:
:::::
Local

::::::::::
comparison

::::::::
between

:::::
CML

::::
and

:::
RG

:::::::
rainfall

::::
time

:::::
series

::::::
Rainfall

::::::::
amounts

::::::::
collected

::::
from

::::::
CMLs

:::
and

::::
RGs

:::
are

::::
here

:::::::::
compared

:::::::
through

::
an

:::::::
analysis

::
of

:::
the

::::::::::::
corresponding

::::
time

::::::
series.

:::
To600

:::
this

::::
aim,

:::
we

:::::::
selected

::::
four

:::::
CMLs

::::::
having

::
at

::::
least

::::
one

:::
RG

:::::
within

::
5 km

:
,
::
as

::::
done

:::
for

:::
the

::::::
scatter

::::
plots

::
of

::::
Fig.

:
4
::::
and

:::
we

::::::
plotted

:::
the

:::::
CMLs

:::
and

:::::
RGs

::::
time

:::::
series

::
of

::::::
rainfall

:::::::
intensity

::::
and

:::::::::
cumulative

::::::
rainfall

:::::
depth

::::::
during

:::
the

:::::
storm

:::::
events

::
7,
::
8,
::
9
:::
and

:::
10

::
of

:::::
Table

::
1.

:::::
Please

::::
note

::::
that

::::::
rainfall

::::::::
intensity

::
is

:::::::
obtained

:::::
from

::::::
slightly

::::::::
different

:::::::::
resolution

:::::
times,

:::
i.e.

:::
15

:
min

:::
for

::::::
CMLs

:::
and

:::
10 min

:::
for

::::
RGs,

:::::::::::
respectively.

:::
Fig.

::::
A1

:::::
shows

:::
the

:::::::
results.

:::
The

::::::::::
differences

:::::::
between

:::::::::
individual

::::::
CMLs

:::
and

::::::
nearby

::::
RGs

:::
are

::::
not

:::::::::
surprising,

:::
due

::
to

::::
three

:::::
main

::::::
factors:

:::
(1)

:::
the

::::::::
different

:::::
nature

::
of

:::
the

:::::::
sensors,

:::
(2)

:::
the

::::::
CMLs

::::
were

:::
not

:::::::::
calibrated

::::
using

:::::
other

::::::
rainfall

:::::::
sensors605

::
as

:::::::
weather

::::::
radars,

:::
and

:::
(3)

:::
the

:::::::
relative

:::::::
position

:::::::
between

:::::
CML

::::
and

::::
RG.

:::::
What

::
is

::::::
mostly

:::::::
evident

:::
are

:::
the

:::::::::
differences

::::::::
between

::
the

::::
low

::::::
(event

::
7)

::::
and

:::
the

::::
high

::::::::
intensity

::::::
events

::::::
(events

::
8,
:::

9,
:::
and

::::
10).

:::
In

:::
the

::::::
former

:::::
case,

:::
the

::::::
CMLs

::::
miss

:::::
most

::
of

:::::::
rainfall

::::::::::
occurrences,

:::::::
causing

:
a
:::::
large

:::::::::::::
underestimation

::
of

:::
the

::::::
rainfall

:::::::::::
accumulated

::
at

:::
the

:::
end

::
of

:::
the

::::::
event.

::::::
During

::::
event

::
7,
:::::
RGs

:::::::
detected

:::
rain

:::::::::
intensities

::::
from

::
1
:::
up

::
to

:
6
:
mmh−1.

::::
The

:::
last

:::::
value

::
is

::::::::::::
approximately

:::
the

:::::::::
minimum

::::::::
detectable

::::
rain

::::::::
intensity

:::
for

:::
the

:::::
CML

::::
with

:::::
lowest

::::::::::
frequencies

:::
(in

:::
Fig.

::::::
A1.a).

::::::::
However,

::
it

:
is
::::::

worth
::
to

::::::::
underline

:::
that

::::
such

:::
an

:::::::::::::
underestimating

:::::::::
behaviour

::
is

:::::::::
observable610

:::
not

::::
only

::
for

:::::
short

:::
and

::::::::::::
low-frequency

::::::
CMLs

:::
but

::::
also

::
for

:::
the

:::::
most

:::::::
sensitive

:::::
ones.

::
In

::::
fact,

::::
large

:::::::::::::::
underestimations

:::
are

:::::::
reported

::
in

:::::
panels

::
k,

:
l,
::::
and

:
q
:::::
which

:::
are

::::::
related

::
to

::::
links

::::
with

::::::::
minimum

:::::::::
detectable

:::
rain

::::::::
intensity

::::
equal

::
to
::::
1.6,

:::
1.4,

:::
and

::
1 mmh−1,

:::::::::::
respectively.

::::
This

:::::::::
systematic

:::::::::::::
underestimating

::::::::
behaviour

::::
also

::::::
impact

::::::::
estimates

::
of

:::::::
rainfall

:::::
depths

::
at
:::
the

:::::
basin

::::
and

::::::::
sub-basin

:::::
scale,

::
as

::::::
shown

::
by

::::::
results

::
in

::::
Sec.

:::
4.1.

::::
The

::::
three

::::
high

::::
rain

::::
rate

:::::
events

::::::::
highlight

:::::::
different

::::::::::
behaviours

::::::::
depending

:::
on

:::
the

:::::::::
considered

:::::
CML

:::
and

:::
its
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::::::
relative

:::::::
location

::::::
respect

::
to

:::
the

:::::
RGs.

::::
The

::::
short

::::
and

:::
low

:::::::::
frequency

:::::
CML,

:::::
given

::
in

:::::
panel

::
a,

:::::
shows

:::::
quite

:::::
large

::::::::::
discrepancy

::::
with615

::
its

::::::
nearby

::::
RG,

::::::::
regarding

::
to

:::::
either

:::
the

:::::
peaks

::::::
timing

::
or

:::
the

::::
total

::::::::
observed

:::::::
rainfall

:::::
depth,

::::
and

::::::
reveals

::::
both

:::::::::::::
underestimating

::::
and

::::::::::::
overestimating

:::::::::
behaviours

::::
(see

::::::
panels

:::
c-e

::
of

::::
Fig.

::::
A1).

::::
The

::::::::::::
performances

::
of

:::
the

::::
two

::::::::::::
medium-length

::::
and

::::::::::::::::
medium-frequency

:::::
CMLs

:::::::
(second

::::
row

::::::
panels

::
h-j

::::
and

::::
third

::::
row

::::::
panels

::::
m-o

::
of

::::
Fig.

::::
A1)

:::
are

::
in

::::::
mutual

:::::::::
agreement

::::
and

:::
are

::::::::
definitely

:::::
better

:::::
with

::::::
respect

::
to

:::
the

::::
case

::::::
shown

::
in

:::
the

::::
first

:::
row

::::
(see

::::::
panels

:::
c-e

::
of

::::
Fig.

::::
A1).

::::::::::
Specifically,

::
it
:::
can

:::
be

::::::
noticed

::::
that

::
in

:::::
most

::
of

:::
the

:::::
cases

::::
these

::::
two

::::::
CMLs

::::
well

::::::::
reproduce

::::
the

::::::
highest

:::::
peaks

::::::::
observed

:::
by

:::
the

::::::
closest

:::::
RGs,

:::::
which

::::
are

::::
also

::::
those

:::::::
located

::::
right

::::
next

:::
to620

::::
their

::::::
middle

:::::
point.

:::::::::
However,

::::
they

:::::
show

:::::
some

:::::::::::
discrepancies

::::::
(lower

::::::
values

::::
with

::::::
respect

:::
to

:::::
RGs)

::
as

:::
the

::::
rain

::::
rate

:::::::::
decreases.

::::
This

::::::::
behaviour

::
is

::::::::::
particularly

::::::
evident

:::
in

:::::
panels

::
i
:::
and

::
n,

:::
for

:::::
event

::
9.

:::::::
Finally,

:::
the

:::::::::::::::
highest-frequency

:::::
CML

::::::
(fourth

::::
row

::
in

::::
Fig.

:::
A1)

:::::::
exhibits

:::::::
different

::::::::::::
performances

:::::
during

:::
the

:::::
three

::::
high

::::
rain

::::
rate

:::::
events

::::::
(panels

::::
r-t).

:::
For

::::::::
example,

::
at

::::
odds

::::
with

:::
the

::::::::
previous

:::::
cases,

::
in

:::::
event

:::
10,

:::
the

:::::
CML

:::::
tends

::
to

:::::::::::
overestimate

:::
the

:::::
lowest

::::
rain

:::::
rates,

::::::
leading

:::
to

:
a
:::::
large

::::::::::::
overestimation

:::
(up

::
to
:::::

60%)
:::

of
:::
the

::::::::
cumulated

:::::::
rainfall

:::::
depth.

:::
In

:::
this

:::::
case,

:::
the

::::::::::
differences

:::::::
between

:::::
CML

:::
and

:::::
RGs

:::::
could

::
be

::::
also

::::
due

::
to

:::
the

::::::::::
not-optimal

:::::::
relative625

::::::
location

::::::::
between

:::::
CML

:::
and

:::::
RGs.

:::::::
Results

:::::::
reported

::
in
:::::

Sec.
:::
4.1

:::::
show

:::
that

:::::::::::
interpolating

:::::::
several

:::::
CML

::::
data

::
at

:::::
HRU

::::::::
centroids

:::::::
mitigates

:::
the

::::::::::
inaccuracy

::
of

::::::::
individual

::::::
CMLs

::::
and

::::
leads

::
to

:::::::::
acceptable

::::::::
estimates

:::
of

:::
the

::::
flow

:::::
except

:::
in

:::
the

::::
case

::
of

:::
low

::::::::
intensity

:::::
events

:::
due

::
to
:::::
their

::::::
limited

:::::::::
sensitivity.
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(a) CML: 3.59 km; 11.54 GHz

(f) CML: 5.89 km; 18.98 GHz

(k) CML: 6.32 km; 18.30 GHz

(p) CML: 2.09 km; 38.68 GHz
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Figure A1.
::::::::
Comparison

:::::::
between

:::::
single

::::
CML

:::
and

:::::
nearby

::::
RGs.

::::
Each

::::
row

:::::
shows

::
(1)

:::
the

::::::
location

::::
over

::
the

::::::
Lambro

:::::
basin

::
of

::
the

::::::
selected

:::::
CML

:::
and

::
its

:::::
nearby

::::
RGs,

:::
(2)

::
the

:::::::::
CML-RGs

::::::::
comparison

:::
on

:::
rain

:::
rate

::::
time

:::::
series,

:::
and

::
(3)

:::
the

::::::::
CML-RGs

:::::::::
comparison

::
on

::::::::
cumulated

::::::
rainfall

:::::
depths.
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