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Abstract. Regionalization of hydrological model parameters is key to hydrological predictions in 

ungauged basins. The commonly used multiple linear regression (MLR) method may not be applicable 

in complex and nonlinear relationships between model parameters and watershed properties. Moreover, 15 

most regionalization methods assume lumped parameters for each catchment without considering within-

catchment heterogeneity. Here we incorporated the Penman-Monteith-Leuning (PML) equation into the 

Distributed Time-Variant Gain Model (DTVGM) to improve the mechanistic representation of the 

evapotranspiration (ET) process. We calibrated six key model parameters grid-by-grid across China using 

a multivariable calibration strategy, which incorporates spatiotemporal runoff and evapotranspiration 20 

(ET) datasets (0.25°, monthly) as reference. In addition, we used the gradient boosting machine (GBM), 

a machine learning technique, to portray the dependence of model parameters on soil and terrain attributes 

in four distinct climatic zones across China. We show that the modified DTVGM could reasonably 

estimate the runoff and ET over China using the calibrated parameters, but performed better in humid 

than arid regions for the validation period. The regionalized parameters by the GBM method exhibited 25 

better spatial coherence relative to the calibrated grid-by-grid parameters. In addition, GBM outperformed 

the stepwise MLR method in both parameter regionalization and gridded runoff simulations at national 

scale, though the improvement is not significant pertaining to watershed streamflow validation due to 

most of the watersheds being located in humid regions. We also revealed that the slope, saturated soil 

moisture content, and elevation are the most important explanatory variables to inform model parameters 30 

based on the GBM approach. The machine-learning-based regionalization approach provides an effective 

alternative to deriving hydrological model parameters by usingfrom watershed properties, particularly in 

ungauged regions.  

Keywords: Regionalization; Gradient Boosting Machine; Distributed hydrological model; Soil; Terrain;  
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1 Introduction  

Hydrological modeling can provide quantitative extrapolation or prediction of runoff and water balance 

(Beven, 2011; He et al., 2011), which serves as the basis for water management for human livelihood, 

agriculture, industry, and environment (Hobeichi et al., 2018; Montanari et al., 2013; Parajka et al., 2013; 

Zhang et al., 2020). Hydrological models often require streamflow and/or other observations to calibrate 40 

parameters (Beck et al., 2020). However, it is difficult to parameterize a hydrological model at large scales 

(e.g., from national to global) or remote regions due to the sparse or the lack of observing stations. Under 

such circumstances, attempts have been made to use reanalysis datasets, not the observations, for model 

calibration and validation (Bai et al., 2018; Dembélé et al., 2020; Huang et al., 2020; Immerzeel and 

Droogers, 2008; Zhang et al., 2020). For example, Dembélé et al., (2020) developed a novel multivariate 45 

calibration framework on spatial patterns by combining streamflow with satellite datasets, including 

evapotranspiration (ET), soil moisture, and terrestrial water storage to parameterize a distributed 

hydrological model. Zhang et al., (2020) and Huang et al., (2020) demonstrated encouraging potential in 

the calibration of hydrological models solely against remote sensed ET data (or bias-corrected remote 

sensed data) without the need for observed streamflow data (i.e., the runoff-free calibration approach) to 50 

predict runoff in ungauged basins. The current study attempted to use spatiotemporal ET and runoff data 

for grid-by-grid calibration of a distributed hydrological model.  

Hydrological models generally rely on regionalization methods to tackle the Predictions in Ungauged 

Basins (PUBs) by transferring information from gauged to ungauged catchments (He et al., 2011; Parajka 

et al., 2013; Razavi and Coulibaly, 2013). Regionalization of hydrological parameters generally includes 55 

three categories, similarity-based, regression-based, and hydrological signatures-based (Guo et al., 2021). 

The similarity-based regionalization presumes that the catchments with similar characteristics have the 

same hydrological response, such as the spatial proximity (Oudin et al., 2008; Parajka et al., 2005; Samuel 

et al., 2011; Vandewiele and Elias, 1995), and the physical similarity (Beck et al., 2016; Oudin et al., 

2010; Yang et al., 2018; Zhang and Chiew, 2009). The regression-based method aims to establish the 60 

regression relationship between hydrological parameters and catchment characteristics (e.g., soil, 

topography, and climate variables), which helps to estimate model parameters in ungauged regions 

(Hundecha and Bárdossy, 2004; Livneh and Lettenmaier, 2013; Xu, 1999; Young, 2006). In addition, 
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some researchers have managed to transplant hydrological signatures (runoff depth, runoff ratio, flow 

percentile, flood frequency, baseflow index, flow change rate, etc.) from gauged catchments to ungauged 65 

basins (Castiglioni et al., 2010; Oubeidillah et al., 2014; Yang et al., 2019). 

Among the most utilized regionalization techniques are probably regressions between the model 

parameters and physiographic catchment attributes as they are simple, fast, and intuitive (Bao et al., 2012; 

Heuvelmans et al., 2006; Oudin et al., 2008; Pagliero et al., 2019; Parajka et al., 2005; Razavi and 

Coulibaly, 2013; Young, 2006). Typically, the multiple linear regression (MLR) is widely used to 70 

estimate model parameters (Pagliero et al., 2019; Parajka et al., 2005; Sefton and Howarth, 1998). 

However, there are several limitations for regression approach, including lessfewer representative results 

of linear regression due to multicollinearity in catchment attributes, a high correlation between 

explanatory variables, complex and nonlinear relationships with high nonstationarity between physical 

catchment descriptors and model parameters (Blöschl, 2005; Guo et al., 2021; Kuczera and Mroczkowski, 75 

1998; Pagliero et al., 2019; Yang et al., 2020; Zhang et al., 2018).  

Machine learning techniques provide an alternative to overcome these issues for the linear regression 

approaches. For example, Sun et al., (2014) found that the Gaussian process regression is superior to 

traditional linear regression and artificial neural network models in most cases for probabilistic 

streamflow forecasting in 438 catchments across the United States. Zhang et al., (2018) assessed the 80 

regression tree ensemble approach compared with MLR, log-transformed MLR, and hydrological 

modeling in 605 catchments across Australia, which outperforms the two linear regressions in predicting 

signatures of flow dynamics. Prieto et al., (2019) implemented a machine learning technique, i.e., random 

forests, combined with a Bayesian inference formulated for regionalized principal components of a set of 

flow indices in 92 catchments in northern Spain. Heuvelmans et al., (2006) demonstrated that artificial 85 

neural networks could provide a useful alternative in some cases compared with linear regression, 

especially when we could physically explain the nonlinear relationship between parameters and 

catchment descriptors. 

Here we attempted to estimate parameters as a function of watershed features in ungauged areas using a 

machine learning method, i.e., the gradient boosting machine (GBM) (Friedman, 2001). GBMs are a 90 

family of powerful machine-learning techniques that have achieved considerable success across many 
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domains, such as image classification (Lawrence, 2004), text classification (Natekin and Knoll, 2013), 

pattern recognition (Schütz et al., 2019), motion detection (Bouwman et al., 2020), and ecological and 

environmental issues (Bouwman et al., 2020). The principal idea behind GBM is to consecutively 

construct the new base-learners, which optimally improves prediction in combination with the already 95 

existing ensemble leading to a more accurate estimate of the response variable (Natekin and Knoll, 2013; 

Schütz et al., 2019). We used the MLR to evaluate and compare the effectiveness of GBM for parameter 

regionalization.  

We incorporated the Penman-Monteith-Leuning (PML) equation (Leuning et al., 2008) into the 

Distributed Time-Variant Gain Model (DTVGM) (Wang et al., 2009; Xia et al., 2005) forced with state-100 

of-the-art meteorological data to predict runoff and ET over China. Our specific objectives were to (i) 

explore the capability of GBM for parameter regionalization relative to the traditional MLR method; (ii) 

develop China-wide hydrological parameters that are linked to soil and terrain properties; and (iii) identify 

the critical factors for these hydrological parameters in distinct climatic zones.  

2 Materials and Methods 105 

We ran the China-wide a hydrological model, i.e., Distributed Time-Variant Gain Model with the 

Penman-Monteith-Leuning equation (DTVGM-PML) developed in this study, for country of China in a 

spatially distributed fashionmanner to account for within-catchment heterogeneity, the discrepancy in 

scale, and thus rainfall-runoff behavior between catchments and grid cells (Beck et al., 2020). Figure 1 

presents an overview of this study. We first conducted a multivariable calibration to derive an ensemble 110 

of grid-by-grid parameter maps for regionalization. The multivariable datasets for model calibration and 

validation included a runoff product (Zhang et al., 2014) and an evapotranspiration (ET) dataset (Martens 

et al., 2017). The runoff product (0.25°×0.25°) was derived from the Variable Infiltration Capacity (VIC) 

model where the simulated monthly streamflow matches well with the measurements at the major river 

basins in China (Zhang et al., 2014). We obtained the total runoff depths from the dataset for model 115 

calibration and validation. The ET product used in this study was the 0.25°-resolution Global Land 

Evaporation Amsterdam Model (GLEAM) V3.3a dataset (Martens et al., 2017), which has been 

demonstrated to estimate actual ET with reasonable accuracy in China (Yang et al., 2017). 
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We regionalized model parameters using the MLR and GBM methods in terms of the explanatory 

variables, including topographical and soil characteristics. Finally, we compared the model performance 120 

with parameters from grid-by-grid calibration and regionalization. 

 
Figure 1. Flowchart of parameter calibration, validation, and regionalization. DTVGM-PML: the distributed 

time-variant gain model with the penman-monteith-leuning equation; VIC-R: runoff simulated by the Variable 

Infiltration Capacity (VIC) model; GLEAM-ET: evapotranspiration dataset from the Global Land Evaporation 125 
Amsterdam Model (GLEAM) V3.3a; MLR: stepwise multiple linear regression; GBM: gradient boost machine; 

KGE: Kling-Gupta efficiency; NSE: Nash-Sutcliffe efficiency; PBIAS: percent bias; RMSE: root-mean-square 

error; TSS: Taylor skill score. 

2.1 China-wideApplication of the hydrological model across China   

We developed the DTVGM-PML model (Figure 2) in this study to implement China-wide hydrological 130 

modeling, which coupled the Penman-Monteith-Leuning (PML) equation and the distributed time-variant 

gain model (DTVGM). The DTVGMhydrological modelling across China. The original DTVGM model 

has been successfully applied to many river basins in China (Cai et al., 2014; Ning et al., 2016; Wang et 

al., 2009; Xia et al., 2005; Zeng et al., 2020; Zhan et al., 2013; Zou et al., 2017). We selected the model 
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for its parsimonious model structure with limited free parameters due to the lack of ground-based 135 

measurements (e.g., observed streamflow) for model calibration in many regions of China. A great deal 

of previous studies have highlighted the importance of incorporating the vegetation change information 

into hydrological models to achieve better performance in hydrological simulations (Donohue et al., 2007, 

2010; Gerten, 2013; Ivanov et al., 2008; Lei et al., 2014; Thompson et al., 2011). Additionally, it has been 

demonstrated that coupling the PML equation into hydrological models can improve the hydrological 140 

simulations under vegetation greening conditions (Bai et al., 2018; Li et al., 2009; Zhang et al., 2009; 

Zhou et al., 2013)We. Thus, we replaced the empirical evaporation modelmodule in the DTVGM with 

the PML equation to improve the mechanistic representation of the ET process.. We also coupled a snow 

routine from the HBV (Hydrologiska Byråns Vattenavdelning) model (Seibert and Vis, 2012) and the 

Gash rainfall interception model (van Dijk and Bruijnzeel, 2001) to improve relevant processes in 145 

DTVGM. The DTVGM-PML model ran on a grid-scale, with a spatial resolution of 0.25°×0.25°. The 

gridded runoff simulated by the DTVGM-PML was routed by the Lohmann routing model for specific 

watersheds (Lohmann et al., 1996).  

In the PML equation, we estimated the ratio of soil evaporation to the equilibrium rate (f) using the relative 

soil water storage, W/WM, simulated in the DTVGM. Another key parameter, the maximum stomatal 150 

conductance (gsx), was assigned for each land cover type recommended by Zhang et al., (2017). Other 

insensitive parameters were held constant since ET simulations have no significant accuracy loss (Bai et 

al., 2018; Leuning et al., 2008; Zhang et al., 2008).  

In this study, we calibrated six parameters in the runoff generation process of the DTVGM-PML: two 

parameters (g1, g2) that control the nonlinear surface runoff generation, the subsurface runoff generation 155 

coefficient (ks), the groundwater recharge coefficient (kr) and recession coefficient (kg), and the soil 

moisture storage capacity (WM) (Figure 2). We provided detailed descriptions of the DTVGM-PML in 

the supplementary materials.  
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Figure 2. The model structure of the DTVGM-PML.  160 

2.2 Parameter calibration strategy 

In this study, we performed the 0.25° grid-by-grid calibration by fitting gridded monthly runoff and ET 

data at a national scale (a total of 15640 grid-cells) owing to the limited long-term observed streamflow 

data. The modeling period spanned from 1982–2012 and consisted of 15 years (1998–2012) of the 

calibration period and 16 years (1982–1997) of the validation period. We used the Shuffled Complex 165 

Evolution (SCE-UA) algorithm (Duan et al., 1992, 1994) for model calibration by minimizing a multi-

variable function (see Eq.(1)). The objective function is expressed as the Euclidean distance (denoted by 

F) that combines the Kling-Gupta efficiency (KGE, see Eq. (2)) (Gupta et al., 2009; Kling et al., 2012) 

of monthly runoff (KGER) and ET (KGEET) .). The KGE is a comprehensive criterion to measure the 

agreement between observed and simulated values ranging from −∞ to 1, with an optimal value of 1. 170 

𝐹 = √𝑤1(1 − 𝐾𝐺𝐸𝑅)2 + 𝑤2(1 − 𝐾𝐺𝐸𝐸𝑇)2,  (1) 

𝐾𝐺𝐸 = 1 − √(𝑟 − 1)2 + (𝛽 − 1)2+(𝛾 − 1)2,  (2) 
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where w1, w2 are the weights assigned to runoff and ET evaluation, respectively. In this study, w1, w2 were 

both equal to 1. r is the Pearson correlation coefficient,  denotes the bias term (i.e., a ratio of means), 

and  is the variability term (i.e., a ratio of coefficients of variation). 175 

2.3 Parameter regionalization strategy 

Regionalization techniques generally include two types, such as distance-based (spatial proximity, 

physical similarity) and regression-based methods (He et al., 2011). In this study, we obtained the 0.25° 

gridded parameters of the DTVGM-PML based on a multi-variable calibration, which were then divided 

into four climatic zones over China (see Figure 3, such as humid, semi-humid, semi-arid, and arid region). 180 

For each grid-cell, we estimated the relationship between the calibrated parameters (respond variable) 

and physical properties (explanatory variables, e.g., topographical attributes and soil characteristics, see 

Table 1) by a machine learning technique, the gradient boosting machine (GBM) (Friedman, 2001). For 

comparison of the performance of GBM, we also examined the traditional regression method, the multiple 

linear regression method (MLR) (Heuvelmans et al., 2006; Waseem et al., 2016), for parameter 185 

regionalization as the benchmark. 

The GBM is a powerful machine learning technique to train decision trees in a gradual, additive, and 

sequential manner (Friedman et al., 2000; Friedman, 2001; Natekin and Knoll, 2013). The main idea of 

the GBM is to add new models with respect to the error of the whole ensemble learned so far to the 

ensemble sequentially to boosts its performance iteratively. The final GBM model is a stagewise additive 190 

model of previous individual trees. The GBM has been proven successful across many domains, including 

classification problems (Lawrence, 2004; Xia et al., 2020) and regression problems (Liao et al., 2020; 

Xenochristou et al., 2020; Yan et al., 2019) which is the case for this study.  

The MLR approach is a standard multiple linear regression to relate response variables to the explanatory 

variables in a simple, fast and straightforward manner (Lima et al., 2015; Zhang et al., 2018). And the 195 

stepwise selection of predictors is applied to minimize the possible errors resulting in the best performing 

model and then identify the most influenced physiographical variable (Lima et al., 2015; Shu and Ouarda, 

2012; Waseem et al., 2016). Unlike the GBM method, the MLR can explicitly quantify the relationship 

between explanatory variables and response variables through a regression equation. 
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The GBM and MLR modeling were conducted using the ‘gbm’ and ‘lmStepAIC’ methods, respectively, 200 

with the k-fold cross validation in the R package ‘caret’ (Kuhn et al., 2020). The performing of the k-fold 

cross validation (k=10 in this study) can help to reduce the chances of overfitting, leading to less 

prediction variability and, therefore, improved accuracy (Natekin and Knoll, 2013). First, we considered 

two categories of representative explanatory variables for regression modeling in each grid-cell: (i) 

topographical variables, e.g., elevation (m), and slope (°); (ii) soil variables, e.g., sand content (g/kg), silt 205 

content (g/kg), clay content (g/kg), field capacity, wilting point, residual moisture content, saturated 

moisture content; saturated hydraulic conductivity (cm d-1). Second, we eliminated the grid-cells with 

either KGER or KGEET less than zero, which perform poorly in simulating runoff or ET, and then split 

the remaining grid-cells into four subsets according to the climatic zones. Finally, we trained and 

evaluated the GBM and MLR modeling using the model parameters in each subset and the relevant 210 

explanatory variables. 

2.4 Evaluation criteria  

We used the Root-mean-square error (RMSE) to evaluate the performance of the parameter prediction 

based on the GBM and MLR modeling. A lower RMSE indicates better performance than a higher one. 

We also calculated the Taylor skill score (TSS) (Taylor, 2001) to express a synthetic measure of the 215 

prediction skill of the MLR and GBM modeling for model parameters. The TSS is a numerical summary 

of the Taylor diagram, varying from zero (least skillful) to one (most skillful). The TSS, as a 

comprehensive metric of correlation coefficient, standard deviation, and root mean square error, has been 

widely used in model evaluation (Mohan and Bhaskaran, 2019; Taylor, 2001). As defined in Eq.,. (4), the 

TSS increases monotonically with increasing correlation (R→R0r→r0) for any given variance, and 220 

increases as the modeled variance approaches the observed variance (SDR→1) for any given correlation. 

The Kling-Gupta efficiency (KGE) (Gupta et al., 2009; Kling et al., 2012), Percent Bias (PBIAS) (Gupta 

et al., 1999), and Nash‐Sutcliffe efficiency (NSE) (Nash and Sutcliffe, 1970) were used for the evaluation 

of model simulations based on three parameter sets. The PBIAS varying from −∞ to +∞ measures the 

extent to which the simulated values are overestimated (a positive value) or underestimated (a negative 225 

value) relative to the observed values. The NSE is a widely used evaluation index to assess the predictive 
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skill of hydrological models, which ranges from −∞ to its perfect score, that is, 1. In addition to the KGE 

shown in Eq. (2), other evaluation criteria are formulated as follows: 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑋𝑜𝑏𝑠 − 𝑋𝑠𝑖𝑚𝑋𝑖 − 𝑌𝑖)2𝑛

𝑖=1 ,  (3) 
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𝑛
 , 𝜎𝑌 = √
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𝑛
,  (7) 235 

where Xobs, Xsim are the observed and simulated values, respectively. �̅�𝑜𝑏𝑠 is the average observed value. 

R represents the spatial correlation coefficient between the X, Y are the calibrated parameter and 

regionalized parameter in DTVGM-PML (e.g., the runoff generation parameters, g1 and the calibrated 

parameters,g2), respectively; the subscript i denotes the ith sample of the gridded parameter; �̅�, �̅� are the 

mean values of X and R0 is the maximum correlation attainable (0.999 in this study). SDR is the ratio of 240 

Y, respectively; 𝜎𝑋 , 𝜎𝑌  are the spatial standard deviation of thecalibrated parameter and regionalized 

parameters against that of the calibrated parameters.parameter, respectively; r represents the spatial 

correlation coefficient between X and Y; r0 is the maximum correlation attainable and usually set to 0.999; 

SDR is the ratio of 𝜎𝑋 to 𝜎𝑌; and n is the total number of values for X (and Y). 

𝑃𝐵𝐼𝐴𝑆 =
∑ (𝑌𝑖−𝑋𝑖)𝑛

𝑖=1

∑ 𝑋𝑖
𝑛
𝑖=1

× 100%,  (8) 245 
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𝑁𝑆𝐸 = 1 −
∑ (𝑋𝑖−𝑌𝑖)2𝑛

𝑖=1

∑ (𝑋𝑖−�̅�)2𝑛
𝑖=1

,  (9observations.) 

where X, Y are the observed and simulated values (e.g., observed streamflow and DTVGM-PML 

simulated streamflow), respectively; the subscript i denotes the ith time step (day or month) of 

hydrological variables (i.e., runoff, ET, and streamflow); �̅� is the mean value of X; and n is the total 

number of values for X (and Y).  250 

2.5 Data sources and processing 

Data used in this study consisted of three categories, such as forcing data, attribute data, and evaluation 

data (see Table 1).  

(1) Model forcing data, including the climate forcing data and land surface data, were used for DTVGM-

PML simulation. We used the China meteorological forcing dataset (CMFD) provided by National 255 

Tibetan Plateau Data Center (He et al., 2020; Yang et al., 2010; Yang and He, 2019), which contains 

seven daily variables (see Table 1) with a spatial resolution of 0.1°. The land surface variables used 

here included leaf area index (LAI) and albedo obtained from the 8-day composite 0.05° × 0.05° 

GLASS product in National Earth System Science Data Center. The 8-day composite data were 

interpolated into the daily data using a piecewise cubic Hermite polynomial and then smoothed by 260 

the Savitzky-Golay filtering method (Fang et al., 2008; Li et al., 2009; Ruffin et al., 2008).  

(2) Ten attribute variables were considered, including topographical attributes and soil characteristics. 

The elevation and slope were derived from 90m digital elevation model. The soil data provided by 

Liu et al., (2020) included eight variables summarized in Table 1 at multiple depths 0–5, 5–15, 15–

30, 30–60, 60–100, and 100–200 cm. We transformed multiple-layer soil data into single-layer data 265 

using a weighted average method.  

(3) In addition to the total runoff data from the VIC simulation for China and ET data from the GLEAM 

v3.3a product used for parameter calibration (section 2.2), the evaluation data also included observed 

daily streamflow from 31 representative watersheds (see Figure 3) for streamflow validation over 

China. Table S1 lists the basic information of the 31 hydrological stations. 270 
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Since the DTVGM-PML ran at a daily time step for 1982–2012 with a spatial resolution of 0.25°, all 

spatial data used in this study were resampled to 0.25° consistently.  

Table 1. Model Input for Model Simulation, Training, and Evaluation  

Data type Name Unit Sources 

Forcing data 2 m air temperature K http://data.tpdc.ac.cn 

 Surface air pressure Pa Idem 

 Specific humidity kg kg-1 Idem 

 10 m wind speed  m s-1 Idem 

 Downward shortwave radiation W m-2 Idem 

 Downward longwave radiation W m-2 Idem 

 Precipitation rate mm hr-1 Idem 

 LAI m2 m-2 http://www.geodata.cn 

 Albedo Unitless Idem 

Attribute 

data 

Elevation (elev) m http://srtm.csi.cgiar.org/ 

 Slope (slp) ° Estimated using elevation  

 Sand content (snd) g kg-1 (Liu et al., 2020) 

 Silt content (slt) g kg-1 Idem 

 Clay content (cly) g kg-1 Idem 

 Field capacity (fc) cm3 cm-3 Idem 

 Wilting point (pw) cm3 cm-3 Idem 

 Residual moisture content (thr) cm3 cm-3 Idem 

 Saturated moisture content (ths) cm3 cm-3 Idem 

 Saturated hydraulic 

conductivity (ksat) 

cm d-1 Idem 

Evaluation 

data 

Runoff kg m-2 VIC simulation for China (Zhang et al., 

2014) 

 ET mm 

month-1 

GLEAM v3.3a product 

(https://www.gleam.eu/) 

 Streamflow m3 s-1 China's Hydrological Year Book 

Note. The attribute variable abbreviation is shown in the parenthesis after the variable name.  
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 275 
Figure 3. Location of climatic zones (humid, semi-humid, semi-arid, and arid) and hydrological stations in China. 

3 Results 

3.1 Simulation of DTVGM-PML 

The model calibration set out using reference data (gridded monthly runoff and ET) from the former 16 

years (1982–1997) or the latter 15 years (1998–2012) with the remaining period as the validation period. 280 

The model shows slightly better results when using data from the latter period than the first period for 

calibration (FigureFig. S1), which was probably due to the better data quality in the latter period than in 

the former period. Several previous studies have adopted this strategy, i.e., using data from the latter 

period for model calibration (Mizukami et al., 2017; Newman et al., 2017; Yang et al., 2018). Thus, the 

present study used the calibrated model parameters from the latter period for regionalization. 285 

We also performed the comparison of model performance in hydrological simulation between the original 

DTVGM (without PML) and DTVGM-PML. As shown in Fig. S2, the KGE and PBIAS values of runoff 
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simulation (Fig. S2a, b) by DTVGM were lower than those from DTVGM-PML. The median KGE and 

PBIAS values of ET simulation (Fig. S2c, d) were comparable between the two models. In summary, 

DTVGM-PML can help to improve hydrological simulations relative to DTVGM. Additionally, the 290 

consideration of vegetation dynamics by the PML equation in DTVGM-PML would improve the 

mechanistic understanding of hydrological response under vegetation greening, which is lacking in 

DTVGM. 

Figure 4 presents the spatial patterns of mean annual runoff and ET simulations derived from the 

DTVGM-PML during 1982–2012. Both the mean annual runoff and ET simulations show a decreasing 295 

trend from southeast to northwest China, with the highest values in humid tropical and subtropical regions, 

intermediate values in temperate regions, and lowest values in cold and arid regions. Figure 5 shows the 

model performance of runoff and ET simulations in calibration and validation periods. The median KGE 

and PBIAS values for runoff simulation were 0.78 and 0.8%, respectively, in the calibration period, and 

0.69 and −14.2%, respectively, in the validation period. The corresponding statistical values for ET 300 

simulation were 0.70, −8.2% and 0.68, −13.1%, respectively. Overall, the DTVGM-PML could well 

simulate the monthly runoff and ET over China. 

 
Figure 4. Spatial patterns of mean annual runoff (a) and evapotranspiration (ET) (b) simulations by the DTVGM-

PML during 1982–2012.  305 
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Figure 5. Model performance of runoff (KGE: a, and PBIAS: b) and evapotranspiration (ET) (KGE: c, and 

PBIAS: d) simulations in calibration and validation periods. The boxplot was generated using data from a total 

of 15640 grid cells over China. KGE denotes the Kling-Gupta efficiency. PBIAS denotes the percent bias. 310 

3.2 Regionalization of model parameters  

We evaluated the regionalization model performance in terms of RMSE for six parameters in four climatic 

zones. As shown in Figure 6, GBM appears better in predicting model parameters than MLR because of 

the lower RMSE for all parameters in humid regions. We found consistently better accuracy of GBM in 

semi-humid, semi-arid, and arid areas (Figure S2Fig. S3 to Figure S4Fig. S5). Additionally, the difference 315 

in model performance between GBM and MLR was significant (p-value < 0.05) as per the Kruskal-Wallis 

test (Hollander et al., 2013). Overall, these results suggest that the performance of GBM is significantly 

better than that of MLR for six parameters in four climatic zones. We also calculated the Taylor skill 
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scores (TSS) ofwith the two grid-scale calibrated parameters as the reference parameters to evaluate the 

regionalization models in predicting model parameters across China (Figure S5). There was a significant 320 

improvement of the performance for estimating each parameter at each grid. As shown in Fig. S6, GBM 

obviously outperformed MLR with a higher TSS, suggesting that the GBM-regionalized parameters 

presented a higher spatial agreement with reference parameter values than the MLR in prediction for 

model-generated parameters.  

 325 
Figure 6. Performance evaluation of multiple linear regression (MLR) and gradient boosting machine (GBM) for 

six parameters, (a) g1, (b) g2, (c) ks, (d) kr, (e) kg, (f) WM, in humid region. MLR and GBM denote the multiple 

linear regression with stepwise selection and the gradient boosting machine model. The boxplot is generated from 

the 10 samples in k-fold cross validation. We use the non-parametric Kruskal-Wallis (KW) test to determine the 

significance of difference in the performance between MLR and GBM at a significance level of 0.05. 330 

 

Figure 7 shows the spatial patterns of the three parameter sets derived from calibration and regionalization 

(MLR and GBM). Generally, both MLR and GBM derived parameters exhibited good agreement spatially 

with the calibrated parameters. As the model parameters were related to topography and soil properties, 

the parameters generated by MLR and GBM show exquisite spatial patterns and a much better spatial 335 

coherence than the calibrated parameters. Compared with the MLR generated parameters, the GBM 
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generated parameters presented more consistency with the calibrated parameters in space. For example 

(Figure 7 e1, e2, and e3), the MLR underestimated the parameter kg in part of Western China (nearly 

0.25–0.5) relative to the calibrated parameters (about 0.5–0.8), while the GBM-derived parameters (0.5–

0.75) were more consistent with calibrated values. In summary, the regionalized parameters generated by 340 

the regionalization methods (MLR and GBM) exhibited better spatial coherence relative to the calibrated 

parameters with spatial discontinuities. The GBM derived more accordant parameters with the calibration 

than the MLR.  
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Figure 7. Spatial patterns of model parameters: (a) g1, (b) g2, (c) ks, (d) kr, (e) kg, (f) WM, derived from (1) 345 
calibration (CLB), (2) multiple linear regression (MLR) and (3) gradient boosting machine (GBM.). 
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3.3 Validation of gridded runoff and ET simulations based on parameter regionalization 

To assess the effectiveness of parameter regionalization, we compared the model performance of runoff 

and ET simulations with the regionalized parameter sets (MLR and GBM) to that with the calibrated 

parameters. Figure 8 and Figure 9 present cumulative density function (CDF) plots of KGE values for 350 

runoff and ET simulations in both the calibration (solid lines) and validation (dashed lines) periods over 

four climatic zones. The KGE values were computed based on the DTVGM-PML simulations using three 

parameter sets: (1) grid-by-grid calibration (black lines), (2) MLR generation (blue lines), and (3) GBM 

generation (red lines).  

Regarding the runoff simulation (Figure 8), median KGE values produced by calibrated parameters were 355 

0.783 in humid regions, 0.755 in semi-humid regions, 0.704 in semi-arid regions, and 0.442 in arid regions 

for the validation period.  The median KGE score based on the MLR method was worse by 0.139 averaged 

in four climatic zones than that from simulation using calibrated parameters for the validation period. 

While as shown in Figure 8, all the KGE values in four regions from GBM parameters were superior to 

the MLR parameters. The corresponding difference of KGE was 0.023 relative to the calibration for the 360 

validation period.  

In contrast to runoff simulation, however, the distributions of KGE for ET simulation from the 

regionalized parameters were significantly close to that based on the calibrated parameters in each region 

as shown in Figure S6Fig. S7. The median KGE values from three parameter sets were around 0.68 in 

humid regions, 0.74 in semi-humid regions, 0.72 in semi-arid regions, and 0.53 in arid regions for the 365 

validation period. Overall, the performance of ET simulation from regionalization was comparable to that 

from calibration satisfactorily.  
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Figure 8. Cumulative distribution functions (CDFs) of KGE for runoff simulation based on three parameter sets 

(black lines for calibration (CLB,), blue lines for multiple linear regression (MLR,), red lines for gradient boosting 370 
machine (GBM))) in the validation period over four climatic zones. KGE denotes the Kling-Gupta efficiency.  

 

 

3.4 Validation of watershed streamflow simulations based on parameter regionalization 

To give insight into the performance of streamflow simulations based on parameter regionalization, we 375 

calculated NSE, KGE, and PBIAS at 31 representative watersheds with both daily and monthly 
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streamflow validation (Figure 9). According to the Kruskal-Wallis test, there were insignificant 

differences (p-values <> 0.05) in five criteria based on the three parameter sets. Both MLR and GBM 

performed as well as the calibration with high median scores of NSE and KGE at both daily (NSE was 

nearly 0.64 and KGE was nearly 0.67) and monthly (NSE was nearly 0.84 and KGE was nearly 0.78) 380 

scales and median PBIAS close to zero (around −4.1%). Since the stations were almost located in humid 

and semi-humid regions (28 of 31 in Figure 3), we could expect that the parameters derived from the 

regionalization can reasonably generate monthly streamflow with good agreements to the observations 

(in line with results from Figure 8). We also obtained encouraging results of daily streamflow simulation 

with satisfying accuracy. In terms of the three stations in arid and semi-arid regions, the performance of 385 

MLR was slightly poorer than that of calibration and GBM, as the daily and monthly NSE values, for 

instance, at Tangnaihai station, were 0.494 and 0.586 compared with the corresponding values of 0.675 

and 0.751 for calibration, 0.631 and 0.719 for GBM, respectively.  

 
Figure 9. The model performance statistics of streamflow simulations on 31 hydrological stations based on three 390 
parameter sets. ‘D’ and ‘M’ denote daily and monthly evaluation, respectively.   

3.5 Identification of important factors for model parameters 

We further estimated the relative importance of each explanatory variable based on the GBM model, 

which was determined by averaging the improvement (decrease) in the squared error at each split over all 

trees made by each variable, with a range from 0 (least important) and 100 (most important) (Natekin and 395 

Knoll, 2013; Xia et al., 2020). Figure 10 presents the relative importance of explanatory variables from 

the GBM model for all six parameters in four climatic zones and the margin plots containing the mean 

relative importance for each parameter or each climatic zone.  
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Generally, we found the slope (slp), saturated moisture content (ths), and elevation (elev) were the most 

critical explanatory variables to inform the model parameters (Figure 10g5). Whereas there were several 400 

differences among parameters or regions. In humid and semi-humid regions, the terrain properties, 

including slope and elevation, were likely to determine most model parameters (Figure 10g1 and g2). As 

for semi-arid and arid regions, most parameters primarily depended on the saturated moisture content that 

becomes a constraining factor for runoff generation in dry areas. For the three parameters (g1, g2, and ks) 

that control surface and subsurface runoff generation, the dominant factors were slope and saturated 405 

moisture content (Figure 10a5, b5, and c5). However, the parameters for groundwater recharge (kr) and 

recession (kg) were mainly controlled by the saturated moisture content, followed by elevation (Figure 

10d5 and e5). In terms of the parameter WM, which represents the soil moisture storage capacity, the slope, 

elevation followed by the saturated hydraulic conductivity were more essential predictors than the 

saturated moisture content (Figure 10f5).  410 
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Figure 10. Relative importance of explanatory variables from the gradient boosting machine (GBM) model for 

(a) g1, (b) g2, (c) ks, (d) kr, (e) kg, (f) WM in four climatic zones (1, humid; 2, semi-humid; 3, semi-arid; 4, arid). The 

mean relative importance over four regions for each parameter is shown in the right column (a5-g5). The mean 

relative importance over six parameters for each climatic zone is shown in the bottom row (g1-g5). Explanatory 415 
variables include elev (Elevation), slp (Slope), snd (Sand content), slt (Silt content), cly (Clay content), fc (Field 
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capacity), pw (Wilting point), thr (Residual moisture content), ths (Saturated moisture content), ksat (Saturated 

hydraulic conductivity). 

4 Discussion  

4.1 Performance of calibration and regionalization for DTVGM-PML 420 

Previous studies have established the effectiveness of the multivariate calibration framework for 

hydrological models (Bai et al., 2018; Dembélé et al., 2020; Demirel et al., 2018; Finger et al., 2015; 

Nijzink et al., 2018; Xie et al., 2020). The current study performed a multiple variable calibration strategy 

to calibrate model parameters in each grid against the reference datasets (VIC runoff and GLEAM ET) 

during the 15-year calibration period, followed by an independent model validation against the reference 425 

gridded runoff and ET during the 16-year validation period. We also validated the model using observed 

streamflow at 31 representative hydrological stations in diverse climatic zones. The gridded runoff in 

each watershed was routed to the corresponding hydrological station using consistent routing parameters. 

Despite that the streamflow data are commonly used in the calibration of hydrological models (Dembélé 

et al., (2020), previous studies have explored the potential in model calibration solely against remotely 430 

sensed ET data (without the need for gauged streamflow data) and achieved encouraging results in 

streamflow simulation (Huang et al., 2020; Zhang et al., 2020). The satisfactory performance in model 

validation of streamflow suggests the high reliability of the multivariate calibration strategy used in this 

study.  

Hydrological simulation in arid and semi-arid regions is still challenging (Huang et al., 2016; Wheater et 435 

al., 2007; Yang et al., 2019). There appears better performance in runoff simulations in (semi-) humid 

regions than (semi-) arid regions (Figure 8). Regionalization methods tend to perform more poorly in 

drier regions, which is expected in common modeling practices (Guo et al., 2021; Parajka et al., 2013). 

The results support the general knowledge of runoff prediction in different climatic zones, i.e., it is more 

challenging to achieve good performance in (semi-) arid regions than humid regions. The relatively poor 440 

performance in (semi-) arid regions may be attributed to model structural deficiencies, forcing errors, as 

well as uncertainties in the reference data for calibration. For example, the large-scale hydrological 

models may ignore complex processes, like surface-groundwater interactions and channel losses 
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(Oubeidillah et al., 2014). The quality of forcing data (e.g., precipitation) also influences the performance 

of hydrological models in runoff simulation (Mizukami et al., 2017). Wang et al., (2016) found systematic 445 

overestimates of CMFD precipitation over the Qinghai-Tibetan Plateau. Furthermore, unlike the observed 

streamflow, the reference data, such as runoff and ET data, are not the standard actual observed data. This 

might also explain the better performance in our model validation against observed streamflow at 

watershed scale with regionalized parameters than calibrated parameters. Zhang et al., (2014) suggested 

that the data should be used with caution in western China with significant potential uncertainties in 450 

hydrologic simulation due to the lack of meteorological observations. And issues in arid regions have 

always been a challenge for the VIC model (Oubeidillah et al., 2014; Yang et al., 2019). Yang et al., 

(2017) indicated that the GLEAM ET data showed significantly systematic bias and overestimated the 

eddy covariance ET measurements at forest sites. We argue that these reanalysis datasets are precious for 

large-scale calibration of hydrological models in terms of both spatial and temporal dynamics, though it 455 

will inevitably introduce uncertainties to a certain degree. 

4.2 Prediction of model parameters by machine learning methods 

Given the complex and nonlinear relationships with high nonstationarity between physical catchment 

descriptors and model parameters, it is a daunting challenge to develop a robust method for the 

regionalization of hydrological models (Guo et al., 2021). Machine learning approaches provide a 460 

promising tool, as an alternative to conventional linear regression models, to regionalize hydrological 

model parameters. Machine learning techniques are focused on specific tasks, like classification, 

regression, and have been widely used in many hydrological issues (Adnan et al., 2019; Huntingford et 

al., 2019; Lima et al., 2015; Rajaee et al., 2019; Shen, 2018; Yaseen et al., 2015; Zhang et al., 2018). In 

this study, we built a predictive GBM model for parameter regionalization of DTVGM-PML compared 465 

with an MLR model using the terrain and soil properties as explanatory variables. Overall, the GBM 

outperformed the MLR based on evaluation in three aspects: (i) higher accuracy in reproducing the 

calibrated parameters as indicated by significantly lower RMSE with GBM against MLR (Figure 6) and 

more consistent spatial pattern with calibrated parameter values (Figure 7); (ii) better performance in 

runoff simulations based on parameters generated from GBM than MLR (Figure 8); (iii) comparable 470 
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results of streamflow validation in 31 watersheds based on regionalization and better performance in 

several stations in (semi-) arid region by GBM than MLR (Figure 9). Note that the parameters in ET 

estimation (PML method in DTVGM-PML) were not involved in model calibration. Consequently, the 

performance of ET simulation from regionalization was comparable to that from calibration (Figure 

S6Fig. S7). Taken together, the GBM method, as an ensemble technique, can achieve higher accuracy in 475 

parameter regionalization than MLR (Natekin and Knoll, 2013). 

We noticed that the GBM outperformed the MLR in grid-scale runoff simulations but showed 

insignificant difference in watershed streamflow validation. It is likely due to that (i) the observed 

watershed streamflow data are independent of the girded runoff data in this study, which could lead to 

differential modelling performance in these two datasets; (ii) most of the watersheds (i.e., 28 out of 31) 480 

for streamflow validation are within humid regions, where the difference in performance of grid-scale 

runoff simulations was relatively small, compared with non-humid regions, between regionalized and 

calibrated parameters; and (iii) the flow routing of grid-scale runoff within a watershed may smooth the 

heterogeneity in runoff from multiple spatially distributed grid. We suggest that streamflow from diverse 

watersheds, especially in arid regions, are needed for model validation with parameters derived from 485 

different regionalization approaches. The possible inconsistent results between the evaluation of 

parameter regionalization and the validation of streamflow also imply the necessity of watershed-scale 

streamflow validation following parameter regionalization. 

The proposed GBM method explored the relationship between model parameters and the terrain and soil 

attributes, offering a helpful approach to estimate model parameters for hydrological simulations. It can 490 

also achieve satisfactory accuracy, especially in (semi-) humid regions. This study also motivates further 

investigations including, but not limited to (i) improvement in model structure to better represent 

hydrological mechanisms in complicated underlying surface conditions and changing environment, (ii) 

selection of more physical attributes such as vegetation or climatic factors for regionalization.  

Although the GBM cannot provide an explicit formula that intuitively links the response variable with 495 

explanatory variables like the MLR, it can also estimate response variables based on explanatory 

variables. More importantly, the machine learning-based regionalization methods can identify essential 
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driving factors, which develop a primary appraisal of how important terrain and soil properties are for 

parameters of hydrological models.  

4.3 Important attributes dominating model parameters  500 

The runoff process is primarily controlled by regional climatic regime, vegetation, land use, topography, 

and soils (Dunne and Leopold, 1978; Freeze, 1974; Mizukami et al., 2017; Tarboton, 2003). We used the 

GBM method to predict parameter values by available topographic and soil properties, such as slope, 

elevation, saturated moisture content, saturated hydraulic conductivity, field capacity, soil texture. Our 

findings of variable importance using the GBM model quantitatively indicate that the runoff generation 505 

parameters of DTVGM-PML are majorly controlled by slope, saturated moisture content, and elevation. 

Moreover, the results in different climatic zones show that terrain attributes significantly influence the 

runoff process in relatively humid regions. At the same time, the saturated moisture content becomes a 

limiting factor in drier areas. 

Prior studies have noted the incredible impact of slope on runoff generation (Akbarimehr and Naghdi, 510 

2012; Chaplot and Le Bissonnais, 2003; Garg et al., 2013; Tarboton, 2003). Steeper slopes lead to faster 

drainage in aquifers (Beck et al., 2020; Post and Jakeman, 1996; Zecharias and Brutsaert, 1988). The 

slope seems to be the most critical factor for parameters g1, g2, and ks that control surface and subsurface 

runoff generation. Garg et al., (2013) investigated that the slope affects surface runoff estimation 

significantly for Solani watershed using the modified NRCS-CN (natural resources conservation service 515 

curve number) method. Several reports have shown that storm runoff by subsurface flow requires steep, 

convex slopes and high saturated hydraulic conductivities (Freeze, 1972, 1974; Montgomery and 

Dietrich, 2002). The parameter g1 presents the surface runoff coefficient when the soil water storage 

reaches its maximum value, i.e., W/WM=1, and the parameter g2 is the power of the relative soil water 

storage (W/WM). Steeper slope results in an increase in the value of g1, a decrease in g2 (Figure S5Fig. S8 520 

a1 and b1), and thus leading to an increase in the amount of surface runoff, which supports the previous 

findings that runoff amount increases with increasing slope (Chaplot and Le Bissonnais, 2003; Huang, 

1995).   
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Regarding the groundwater recharge and baseflow, the corresponding parameters (kr and ks) strongly 

depend on the saturated moisture content. The results are consistent with Chiew and Siriwardena, (2005) 525 

who found that the groundwater recharge parameter and baseflow recession parameter of SIMHYD (a 

simplified version of the HYDROLOG) model are highly correlated with plant available water holding 

capacity, a proxy of the soil water storage capacity (Mckenzie et al., 2000). While concerning the soil 

moisture storage capacity, WM, in DTVGM-PML, the saturated moisture content is likely to be less 

important than the slope, elevation, and saturated hydrologic conductivity. Note that WM is different from 530 

the saturated moisture content in soil. The latter is equivalent to effective porosity and is simplified as the 

one-layer value in this study. Whereas the soil moisture state variables in many conceptual hydrological 

models do not act in the same way as in the real world (Zhuo and Han, 2016). The surface slope is 

correlated with soil depth (Tesfa et al., 2009), which strongly influences WM. If the soil depth data, more 

likely to be associated with WM, are available, they should be incorporated in parameter regionalization 535 

to obtain more reliable and intelligible results.  

4.4 Necessity of parameter regionalization 

Hydrologic models often rely on regionalization approaches to transfer information from small to large 

spatial scale (e.g., from gridcell to subbasin, watershed, and regional scale) (Beck et al., 2020; Mizukami 

et al., 2017), and from gauged to ungauged catchments (He et al., 2011; Hrachowitz et al., 2013; Pagliero 540 

et al., 2019; Parajka et al., 2013). In this study, though parameters were calibrated and thus available at 

each gridcell, the parameter values at around 450 gridcells were not reliable owning to poor model 

performance (i.e., KEG < 0) (Knoben et al., 2018; Koskinen et al., 2017; Sutanudjaja et al., 2018). 

Therefore, we only used the calibrated parameters with KGE ≥ 0 (i.e., representing better model 

performance) for regionalization of parameters. The model performance for 53% of these gridcells (with 545 

KGE < 0 prior to regionalization) were improved when we re-ran the model with regionalized parameters. 

Particularly, the KGE values in 37% of the gridcells (with KGE < 0 prior to regionalization) became 

positive, indicating a substantive improvement of the modeling performance.  

Even though the parameters were well calibrated and available at each gridcell, one might think whether 

and which topographic and edaphic properties mediate these hydrological parameters. Our machine 550 
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learning (i.e., GBM) based regionalization of parameters enables to estimate six key hydrological 

parameters using site-specific characteristics. Following the regionalization of parameters, our results of 

variable importance quantitatively indicate that the runoff generation parameters are majorly controlled 

by slope, saturated soil moisture content, and elevation. Moreover, the terrain attributes significantly 

regulate the runoff processes in relatively humid regions, while the saturated soil moisture content 555 

becomes a limiting factor in arid areas. The regionalization of parameters will improve our mechanistic 

understanding of the runoff generation processes and associated key hydrological parameters under 

different topographic and edaphic conditions.   

5 Conclusion 

We conducted parameter regionalization for the China-wide DTVGM-PML model using a machine 560 

learning technique, the gradient boost machine, compared with the traditional multiple linear regression 

method. We show that the GBM model is superior to the MLR in predicting model parameters as a 

function of topographical and soil characteristics due to its significantly lower biases and higher spatial 

agreement for almost all parameters in four distinct climatic zones. The regionalized parameters also 

exhibited better spatial coherence relative to the grid-by-grid calibrated parameters. Regarding the model 565 

validation of streamflow simulations in 31 hydrological stations, MLR- and GBM-generated parameters 

could simulate streamflow as accurately as the results with grid-by-grid calibrated parameters (median 

daily and monthly NSE are 0.65 and 0.84, respectively), with the GBM being preferable to MLR in arid 

regions. This study suggests the watershed-scale streamflow validation following parameter 

regionalization is necessary due to potential inconsistent results between parameter regionalization 570 

evaluation and the streamflow validation. Based on the GBM regionalization results, we found that the 

slope, saturated moisture content, and elevation are the most important explanatory variables to inform 

model parameters. Our results indicate that machine learning techniques can be a useful alternative to the 

conventional regression approach to better predict hydrological model parameters. This is particularly 

significant for hydrological predictions in ungauged basins. The methods developed and insights gained 575 

from this study can also improve the interpretation and prediction of parameters in other large-scale 

hydrological and environmental models. 
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