
 

 

Authors’ responses to comments 

Regionalization of hydrological model parameters using gradient 

boosting machine 

Zhihong Song, Jun Xia, Gangsheng Wang, Dunxian She, Chen Hu, Si Hong 

 

We really appreciate the editor’s and anonymous reviewers’ valuable suggestions and 

comments on the manuscript. All suggestions are helpful to improve this manuscript. 

We have addressed the comments point-by-point and revised the manuscript 

accordingly.  

 

Responses to Referee #1’s comments 

The manuscript is interesting and clearly written. I have a single comment; in particular, 

what are the practical reasons for regionalizing the parameters of the hydrological 

model using regression algorithms, given that available data cover uniformly the region 

of the study; therefore, regionalization is not needed in my opinion (parameters are 

already available). 

Response: We sincerely appreciate the referee’s positive comments on the manuscript. 

Our response to the reviewer’s concern on regionalizing the model parameters is as 

follows and has been revised in the discussion part of the manuscript (Sec. 4.4, Page 

29).  

“Hydrologic models often rely on regionalization approaches to transfer 

information from small to large spatial scale (e.g., from gridcell to subbasin, watershed, 

and regional scale) (Beck et al., 2020; Mizukami et al., 2017), and from gauged to 

ungauged catchments (He et al., 2011; Hrachowitz et al., 2013; Pagliero et al., 2019; 

Parajka et al., 2013). 

In this study, though parameters were calibrated and thus available at each gridcell, 



 

 

the parameter values at around 450 gridcells were not reliable owning to poor model 

performance (i.e., KEG < 0) (Knoben et al., 2018; Koskinen et al., 2017; Sutanudjaja 

et al., 2018). Therefore, we only used the calibrated parameters with KGE ≥ 0 (i.e., 

representing better model performance) for regionalization of parameters. The model 

performance for 53% of these gridcells (with KGE < 0 prior to regionalization) were 

improved when we re-ran the model with regionalized parameters. Particularly, the 

KGE values in 37% of the gridcells (with KGE < 0 prior to regionalization) became 

positive, indicating a substantive improvement of the modeling performance.  

Even though the parameters were well calibrated and available at each gridcell, 

one might think whether and which topographic and edaphic properties mediate these 

hydrological parameters. Our machine learning (i.e., GBM) based regionalization of 

parameters enables to estimate six key hydrological parameters using site-specific 

characteristics. Following the regionalization of parameters, our results of variable 

importance quantitatively indicate that the runoff generation parameters are majorly 

controlled by slope, saturated soil moisture content, and elevation. Moreover, the terrain 

attributes significantly regulate the runoff processes in relatively humid regions, while 

the saturated soil moisture content becomes a limiting factor in arid areas. The 

regionalization of parameters will improve our mechanistic understanding of the runoff 

generation processes and associated key hydrological parameters under different 

topographic and edaphic conditions.” 

  



 

 

Responses to Referee #2’s comments 

This discussion paper examines the use of gradient boosting machine learning to model 

the dependency of model parameters and estimate model parameters for four climate 

regions in China. The study also enhances the DTVGM model by incorporating the 

Penman-Monteith-Leuning (PML) equation. The discussion paper is well-presented, 

the study design is nicely conceived, and the results and discussion are presented fairly, 

with references to supporting figures, tables or cited literature, where appropriate.  

I only have minor comments to enhance what is already a high quality manuscript. 

Response: We sincerely appreciate the referee’s positive comments on the manuscript. 

All the comments and suggestions have been replied to below and have been addressed 

in the revision. 

 

(1) In several places, the model is referred to as the “China-wide hydrological model” 

(see L105). This is somewhat confusing. Is this a formal name for the hydrological 

model? If so, I would expect to see a citation after the phrase to reference the use of this 

name. If this is not the formal name, it may be more helpful to say “We ran a 

hydrological model developed by Beck et al (2020), for country of China in a spatially 

distributed…” In Section 2.1, the title could be changed to “Application of the 

hydrological model across China.” 

Response: Thanks for pointing this out! “China-wide hydrological model” is not a 

formal name for the model. We have rewritten the sentence to address this issue: “We 

ran a hydrological model, i.e., Distributed Time-Variant Gain Model with the Penman-

Monteith-Leuning equation (DTVGM-PML) developed in this study, for country of 

China in a spatially distributed manner” [Line 106, Page 5]. We have also changed the 

title of Section 2.1 to “Application of the hydrological model across China”. Other 

corresponding information has been revised [Line 103, Page 5; Line 130, Page 6; Line 

549, Page 30].  



 

 

 

(2) In my reading, there was some confusion about how you were able to compute 

evaluation metrics for all 15,640 grid cells (see Figure 5 for example). If you know the 

“truth” for runoff and ET at every grid cell, then why do you need a regionalization 

model?  

Response: Our response to the reviewer’s concern on regionalizing the model 

parameters is as follows and has been revised in the discussion part of the manuscript 

[Sec. 4.4, Page 29].  

“Hydrologic models often rely on regionalization approaches to transfer 

information from small to large spatial scale (e.g., from gridcell to subbasin, watershed, 

and regional scale) (Beck et al., 2020; Mizukami et al., 2017), and from gauged to 

ungauged catchments (He et al., 2011; Hrachowitz et al., 2013; Pagliero et al., 2019; 

Parajka et al., 2013). 

In this study, though parameters were calibrated and thus available at each gridcell, 

the parameter values at around 450 gridcells were not reliable owning to poor model 

performance (i.e., KEG < 0) (Knoben et al., 2018; Koskinen et al., 2017; Sutanudjaja 

et al., 2018). Therefore, we only used the calibrated parameters with KGE ≥ 0 (i.e., 

representing better model performance) for regionalization of parameters. The model 

performance for 53% of these gridcells (with KGE < 0 prior to regionalization) were 

improved when we re-ran the model with regionalized parameters. Particularly, the 

KGE values in 37% of the gridcells (with KGE < 0 prior to regionalization) became 

positive, indicating a substantive improvement of the modeling performance.  

Even though the parameters were well calibrated and available at each gridcell, one 

might think whether and which topographic and edaphic properties mediate these 

hydrological parameters. Our machine learning (i.e., GBM) based regionalization of 

parameters enables to estimate six key hydrological parameters using site-specific 

characteristics. Following the regionalization of parameters, our results of variable 

importance quantitatively indicate that the runoff generation parameters are majorly 



 

 

controlled by slope, saturated soil moisture content, and elevation. Moreover, the terrain 

attributes significantly regulate the runoff processes in relatively humid regions, while 

the saturated soil moisture content becomes a limiting factor in arid areas. The 

regionalization of parameters will improve our mechanistic understanding of the runoff 

generation processes and associated key hydrological parameters under different 

topographic and edaphic conditions.” 

 

(3) Also in Figure 5, it would be helpful to show the comparison of the model 

performance with and without the PML addition so that one can see in quantifiable 

terms how the addition of the equation improves the calibration and validation 

performance.  

Response: Thanks for the valuable suggestion! We have shown the comparison of 

model performance with and without PML addition in Supplementary Fig. S2 (see Fig. 

R1). We have also added the following text to describe the results: 

“A great deal of previous studies have highlighted the importance of incorporating 

the vegetation change information into hydrological models to achieve better 

performance in hydrological simulations (Donohue et al., 2007, 2010; Gerten, 2013; 

Ivanov et al., 2008; Lei et al., 2014; Thompson et al., 2011). Additionally, it has been 

demonstrated that coupling the PML equation into hydrological models can improve 

the hydrological simulations under vegetation greening conditions (Bai et al., 2018; Li 

et al., 2009; Zhang et al., 2009; Zhou et al., 2013).” [Line 135–140, Page 7] 

“We also performed the comparison of model performance in hydrological 

simulation between the original DTVGM (without PML) and DTVGM-PML. As 

shown in Figure R1, the KGE and PBIAS values of runoff simulation (Fig. R1a, b) by 

DTVGM were lower than those from DTVGM-PML. The median KGE and PBIAS 

values of ET simulation (Fig. R1c, d) were comparable between the two models. In 

summary, DTVGM-PML can help to improve hydrological simulations relative to 

DTVGM. Additionally, the consideration of vegetation dynamics by the PML equation 



 

 

in DTVGM-PML would improve the mechanistic understanding of hydrological 

response under vegetation greening, which is lacking in DTVGM.” [Line 278–285, 

Page 14,15] 

 

Figure R1. Comparison of model performance in runoff (a: KGE, and b: PBIAS) and 

ET (c: KGE, and d: PBIAS) simulation between DTVGM and DTVGM-PML in the 

calibration and validation periods. KGE denotes the Kling-Gupta efficiency. PBIAS 

denotes the percent bias”. 

 

(4) Section 2.4: You provide an excellent description of the evaluation criteria; however, 

in your use of the Taylor skill score, could you clarify how the skill is determined for 

(c) KGE for ET (d) PBIAS for ET

(a) KGE for runoff (b) PBIAS for runoff
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model parameters when you cannot know the true value of the parameters? L207-209 

were somewhat confusing. This could be my lack of familiarity with the TSS, but it 

may be helpful to look over those lines to see if you could improve the explanation 

there.  

Response: Thanks for your comments. We have provided more detailed information of 

the Taylor skill score (TSS) in the revised paper as follows: 

“The Taylor skill score, as a comprehensive metric of correlation coefficient, 

standard deviation, and root mean square error, has been widely used in model 

evaluation (Mohan and Bhaskaran, 2019; Taylor, 2001).” [Line 214–216, Page 10] 
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where X, Y are the calibrated parameter and regionalized parameter in DTVGM-PML 

(e.g., the runoff generation parameters, g1 and g2), respectively; the subscript i denotes 

the ith sample of the gridded parameter;  �̅� , �̅�  are the mean values of X and Y, 

respectively; 𝜎𝑋 , 𝜎𝑌  are the spatial standard deviation of calibrated parameter and 

regionalized parameter, respectively; r represents the spatial correlation coefficient 

between X and Y; r0 is the maximum correlation attainable and usually set to 0.999; 

SDR is the ratio of 𝜎𝑋 to 𝜎𝑌; and n is the total number of values for X (and Y).” [Line 

227–237, Page 11] 

“We also calculated the Taylor skill scores (TSS) with the grid-scale calibrated 

parameters as the reference parameters to evaluate the regionalization model 

performance for estimating each parameter at each grid. As shown in Figure S6 (Fig. 

R2), GBM obviously outperformed MLR with a higher TSS, suggesting that the GBM-

regionalized parameters presented a higher spatial agreement with reference parameter 



 

 

values than the MLR-generated parameters.” [Line 311–315, Page 16,17] 

 

Figure R2. Taylor skill scores (TSS) of each parameter generated from the multiple 

linear regression (MLR) and the gradient boosting machine (GBM). The Taylor skill 

scores were computed using parameters from all grid cells across China.  

 

(5) In the figure captions, some of the acronyms are spelled out, while others are not. It 

may be best to spell out all abbreviated words and their abbreviations in the captions so 

the reader does not have to refer back to the text. 

Response: Thanks for the suggestion. We have modified corresponding Figure captions.  

The figure caption of Fig. 4 “Spatial patterns of mean annual runoff (a) and ET (b) 

simulations by the DTVGM-PML during 1982–2012” has been modified as “Spatial 

patterns of mean annual runoff (a) and evapotranspiration (ET) (b) simulations by the 

DTVGM-PML during 1982–2012.”. 



 

 

The figure caption of Fig. 5 “Model performance of runoff (KGE: a, and PBIAS: 

b) and ET (KGE: c, and PBIAS: d) simulations in calibration and validation periods. 

The boxplot was generated using data from a total of 15640 grid cells over China” has 

been modified as “Model performance of runoff (KGE: a, and PBIAS: b) and 

evapotranspiration (ET) (KGE: c, and PBIAS: d) simulations in calibration and 

validation periods. The boxplot was generated using data from a total of 15640 grid 

cells over China. KGE denotes the Kling-Gupta efficiency. PBIAS denotes the percent 

bias”. 

The figure caption of Fig. 6 has been modified as “Performance evaluation of the 

multiple linear regression (MLR) and the gradient boosting machine (GBM) for six 

parameters, (a) g1, (b) g2, (c) ks, (d) kr, (e) kg, (f) WM, in humid region. MLR and GBM 

denote the multiple linear regression with stepwise selection and the gradient boosting 

machine model. The boxplot is generated from the 10 samples in k-fold cross validation. 

We use the non-parametric Kruskal-Wallis (KW) test to determine the significance of 

difference in the performance between MLR and GBM at a significance level of 0.05”. 

The figure caption of Fig. 7 has been modified as “Spatial patterns of model 

parameters: (a) g1, (b) g2, (c) ks, (d) kr, (e) kg, (f) WM, derived from (1) calibration (CLB), 

(2) multiple linear regression (MLR) and (3) gradient boosting machine (GBM)”. 

The figure caption of Fig. 8 has been modified as “Cumulative distribution 

functions (CDFs) of KGE for runoff simulation based on three parameter sets (black 

lines for calibration (CLB), blue lines for multiple linear regression (MLR), red lines 

for gradient boosting machine (GBM)) in the validation period over four climatic zones. 

KGE denotes the Kling-Gupta efficiency.” 

The figure caption of Fig. 10 has been modified as “Relative importance of 

explanatory variables from the gradient boosting machine (GBM) model for (a) g1, (b) 

g2, (c) ks, (d) kr, (e) kg, (f) WM in four climatic zones (1, humid; 2, semi-humid; 3, semi-

arid; 4, arid). The mean relative importance over four regions for each parameter is 

shown in the right column (a5-g5). The mean relative importance over six parameters 



 

 

for each climatic zone is shown in the bottom row (g1-g5). Explanatory variables 

include elev (Elevation), slp (Slope), snd (Sand content), slt (Silt content), cly (Clay 

content), fc (Field capacity), pw (Wilting point), thr (Residual moisture content), ths 

(Saturated moisture content), ksat (Saturated hydraulic conductivity).” 
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