
R2_0 
This paper investigates the use of downscaling model to forecast green roofs performance in the context of 

climate change. It uses a downscaling approach based on multiplicative cascades. The topic is interesting and 

relevant for the community. However, I would not recommend to publish this paper in its current state and 

suggest major revisions. Indeed, it requires significant clarifications on the downscaling model. Indeed, its 

presentation is hard to follow and should be more detailed. 

Thank you for your valuable comments. The original orientation of the paper was on 

developing downscaling model in order to apply them to GI models. That was the reason why 

the methodology was not fully detailed on the MRC model development. However, in the light 

of your comments, the authors agree that the methodology could be further detailed: i) by 

careful edits in the method section, and ii) by providing supplementary material such as model 

details. Please also note that one of the reasons why the python codes where not shared in 

the first version of the manuscript is because we plan to release it as a python package and 

making it available and stable does require more work than a direct code sharing. 

R2_1 
It notably seems that different distributions of weights are used according to the cascade step suggesting they 

are not scale invariant. 

Indeed, the distribution is not scale invariant: the probability to get a weight equal to zero 

depends on time-scale (and possibly depth and temperature depending on the model). The 

non-zero weights follow a truncated normal distribution in which the sigma parameter 

depends on time-scale. In order to improve the manuscript, two main aspects will be 

developed: i) clarification in the method section, ii) details of the models (functions and 

structure) together with the python codes or a pseudo code corresponding to the models. 

R2_3 
The calibration process of the numerous parameters (up to 19!) needs to be explained. 

The calibration procedure will be clarified. Please note that this procedure is a methodology 

for model development. For a wider use of the model, another methodology would be more 

appropriate: a more formal approach could be applied. It consists in different steps: see word 

file attached. The number of parameters, despite appearing high, is in fact still quite low 

compared to other micro-canonical cascades from 12 to 36 in total (Bürger et al., 2019) up to 

from 6 to 224 per disaggregation step (Müller-Thomy, 2020). The reason for that large number 

of parameters is that often a parameter set has to be estimated for each cascade steps. 

Similarly to Bürger et al., (2019), our models include timescale as a dependency, therefore 

there is a single (bigger) parameter set instead of a parameter set per cascade step. 

The main idea of our calibration method is to first (step 1) calibrate for each time-scale, with 

moving window of depth and temperature. (Step 2) The timescale dependency is added by 

calibrating the parameter of step 1 depending on time-scale. The timescale dependency 

prevents for having a number of parameters at each cascade level which would lower the 

robustness of the model and reduce the number of parameters.  

Taking the example of the MCDTS, without the time scale dependency, given 8 cascade step 

and 5 parameter per cascade step, there would be a total of 40 parameters. With the timescale 

dependency there is a total of 18 parameters. The model is them more flexible since it allows 

to use variable time-scale input data. The robustness of the model also improved using this 

procedure since for small time-scale the parameters are often noisy. See details below: 



A1 Fit the proportion of zero-weight depending on time-scale to a function by non-linear 
least square. 

A2 Given a time-scale Fit the proportion of zero-weight depending on depth to a function 
by non-linear least square. Fit the parameters depending on time-scale to a function 
by non-linear least square. 

A3 Given a time-scale, given a window of temperature, fit the proportion of zero-weight 
depending on depth to a function by non-linear least square.  
Given a time-scale, fit the parameter depending on temperature to a gaussian 
function. 
Fit the parameters depending on time-scale to a function by non-linear least square. 

B Fit the distribution of non-zero weight to a truncated normal distribution on [0,0.5] 
with mu = 0.5 by fitting to the standard deviation of the sample. 

C Fit a function to the proportion of high weight on the side of the highest neighbour. 

 

Model Calibration steps 

MC A1, B 

MCS A1, B, C 

MCD A2, B 

MCDS A2, B, C 

MCDT A3, B 

MCDTS A3, B, C 

 

R2_4 
Please also clarify that what is called “observed data” for the various figures is actually simulations with observed 

rainfall. Am I correct? 

Exactly, it is simulation based on observed fine resolution time-series. It will be clarified. 

 

R2_5 
- l. 40-44: It should clearly be stated that canonical cascades ensure conservation on average only while micro-

canonical ones ensure exact conservation of intensity at each step. 

It will be clarified. 

R2_6 
- l. 54: should MC be MRC? In general, the use of numerous abbreviations does not really help the reader. I would 

suggest limiting their use to words really often used in the paper. 

Yes, MC refer to the first model developed in this study. The abbreviation will be reviewed and 

a table for abbreviation will be provided according to the suggestions of the first reviewer. 

Abbrev. Meaning Change made Reason 
GI Green infrastructure - - 
MRC Multiplicative Random Cascade - - 
IDF curves Intensity Duration Frequency curves - - 
NVE Norwegian Water Resources and Energy 

Directorate 
- - 

MET Norwegian Meteorological institute - - 
S Temporal coherence indicator at time-step 𝑖 and 

time-scale 2𝑗 
𝑆𝑖,2𝑗 Avoid confusion 

d Depth at time-step 𝑖 and time-scale 2𝑗 𝑑𝑖,2𝑗 Avoid confusion 



w minimum weight at time-step step 𝑖 and time-scale 
2𝑗 from aggregation of time-step {2𝑖, 2𝑖 + 1} at 
time-scale 𝑗 

𝑤𝑖,2𝑗  Avoid confusion 

    
S   - 
𝑀𝐶 MRC model with only timeScale dependence 𝑀𝑅𝐶𝑆 - 
𝑀𝐶𝑆 MRC model with timeScale dependence and 

Stochastic 2-Element Permutation 
𝑀𝑅𝐶𝑆−𝑆𝐸𝑃 - 

𝑀𝐶𝐷 MRC model with timeScale and depth/Intensity 
dependence 

𝑀𝑅𝐶𝑆𝐼 - 

𝑀𝐶𝐷𝑆 MRC model with timeScale, depth/Intensity 
dependence and Stochastic 2-Element Permutation 

𝑀𝑅𝐶𝑆𝐼−𝑆𝐸𝑃 - 

𝑀𝐶𝐷𝑇 MRC model with timeScale, depth/Intensity and 
Temperature dependence 

𝑀𝑅𝐶𝑆𝐼𝑇 - 

𝑀𝐶𝐷𝑇𝑆 MRC model with timeScale, depth/Intensity, 
Temperature dependence, and Stochastic 2-
Element Permutation 

𝑀𝑅𝐶𝑆𝐼𝑇−𝑆𝐸𝑃 - 

PET Potential EvapoTranspiration - - 
AET Actual EvapoTranspiration - - 
SMEF Soil Moisture Evaluation Function Removed Used once 
E-Green roof Extensive green roof - - 
D-Green roof Detention based extensive green roof - - 
WC_i Water content in the roof at time i Not in table Equation variable 
P_i Precipitation depth at time i Not in table Equation variable 
Q_i Discharge released by the roof at time i Not in table Equation variable 
T_mean Mean daily temperature Not in table Equation variable 
C Calibrated factor accounting for Crop factor and 

maximum storage capacity 
Not in table Equation variable 

S_K Smoothing factor Not in table Equation variable 
K Conductivity slope Not in table Equation variable 
WC_K Starting delay Not in table Equation variable 
DREAM DiffeRential Evolution Adaptative Metropolis Not in table Used once 
RCP8.5 Representative Concentration Pathway scenario 

with an 8.5 W/m2 radiative forcing in 2100 
- - 

NSE Nash Sutcliffe Efficiency - - 
VM Variational Method - - 

Figure 1: Review example of the different abbreviations 

 

R2_7 
- Section 2.2.1: I think there is a need to be more specific, notably for the reader not specialist. Index i and j 

should be consistent between equations 1 – 2 and Fig. 1. Please also clarify the range of possible values (if “i” 

refers to a time step then it belongs to 1… 2^n where n is the cascade step and j * 2^n = total duration?). Eq. 2: 

S is said to measure a proportion while it has only 3 possible values. Please clarify. 

We will clarify and be more consistent in the naming. "i" will refer to a time step and j a time-

scale in minute. The first step of the cascade n=0 allow to go from2j=1440 minute to j = 720 

minutes. You can see below a formal version of figure 1. The improved version will include 

those aspect together to a better readability for non expert reader. 

 

 



 

Figure 2:  Formal version of figure 1 in the first version of the manuscript. 

 

R2_8 
- Section 2.2.2: Please clarify how the fitting of the models was done. Is the probability distribution used the same 

at all cascade steps (only for P(W=0) if I understand well table 2)? Was a scaling break identified in the data? 

What would be the consequences of such break? l. 101: “all included 5”, may be say all included the use of eq. 5 

to help the reader. Please explain how the depth or temperature dependency was included. It would also be 

needed to clarify in Table 2 to what refer the parameters mentioned. 

About the fitting description, please see reply to R2_3. The distributions and functions depend 

on the time-scale, it is therefore different at each cascade step. In practice the parameters for 

the distribution vary more at small time-scale than (approx. lower than 45 min time-scale) as 

it can be seen in the manuscript on figure 3.a. The consequence of such a break is that it is 

relevant to add time-scale dependency since a priori, given 2 different time-scales the 

distribution is not the same. 

It will be clarified both in the text and together with supplementary material and details on 

the model (R2_1). Table 2 was corrected due to wrong version leading to confusion (see 

below).  



 

 

Figure 3: Current table with wrong column alignment (top) table with alignment correction (bottom) 

The table 2 will be reviewed to clarify that all process involves a time-scale dependency. 

The detail of the different models (including functions) will be provided in appendix. 

R2_9 
- l. 144-145: why limiting to lag-1? 

In the manuscript the authors made the choice of applying a lag-1 autocorrelation at each step 

of the cascade. The main reason is that, at fine resolution, the autocorrelation might be 

influenced by the rain gauge resolution. The computational time is also shorter. Informally, 

the lag-1 at 90 min includes information relative to lag 2 or lag 3 at 45 min resolution, the 

same principle can be applied for all timesteps. 

Since the autocorrelation is often computed for other lags (Müller-Thomy, 2020), we will 

further investigate other lag times and if relevant include it in the main text, or in an appendix.  

R2_10 
- l. 152-153: how do you define “small”, “major” and “extreme” events? 

We defined “small”, “major” and “extreme” with common threshold for roofs and locations. 

In order to qualify different operating mode of the roofs and different climates while being 

common for all locations in order to facilitate the comparison, we had to set a compromise: 

1 L/s/ha, 10 L/s/ha and 100 L/s/ha. Since one of the indicators is exceedance frequency, a 

common frequency could not be chosen as threshold.  

We will clarify the choice in the method section. 

R2_11 
- Section 3.2: How to you interpret physically the differences of behaviour in Fig. 3.a? Is the shape of Fig. 3.b the 

same for other time scales? How was the fitting of the model done from this analysis? 



In this context the shape in figure 3.a. cannot be linked to a physical behaviour but to the 

properties of the datasets. Those properties in the datasets can be linked both to a data 

collection problematic or to a physical property. In general, this curve is linked to the 

probability to have a long continuous evenly distributed event or a shorter event. The shape 

for figure 3b is the same for other timesteps, t=48 was chosen as an example since the effect 

is visual a support the explanation. The conceptualization of the Temperature dependent 

models was based on this analysis. cf. R2_3 for fitting. A figure will be provided in appendix 

(cf. R1_18: fig 3a for all locations and fig 3 (b) for other locations and another time-scale).  

R2_12 
- l. 212-213 and comments on Fig. 4. c and d. Why is the discharge considered to be only slightly underestimated 

while the observations do not fall in the 5-95% percentile? 

The discharge looks are qualified as slightly underestimated because the distance between 

the distributions is small. The log axis was used here to track visually the magnitude to this 

underestimation. The reason for the use of log axis is that the exceedance frequency we are 

interested in are rarely occurring. That is also the reason why a Kolmogorov Smirnov test is 

not relevant here: we are interested in reliable metrics for rare occurrences. 

In practice, those survival distributions are used to estimate the time above threshold. And 

from a practitioner point of view, the authors think that accounting for natural variability with 

a window of time is more relevant than looking at a single point estimate from a full time 

series since the duration associated to discharge exceedance frequency can vary from year to 

year, especially because of the rare occurrence of extreme events.  

The figure 5 shows in 3 different thresholds that, while accounting for natural variability on 

the flow duration curve, the results from this method are close enough to inform on the 

magnitude of runoff occurrence. We will provide statistical distance (and possibly provide a 

Q-Q plot in appendix) to support this analysis. Showing the range of this 3 year-window from 

both observed and simulated data was initially excluded to favour readability of figure 4. 

We will rework the paragraph to introduce this definition of good estimate earlier in order to 

clarify those aspects. We will also consider a way to add this information into the graphs 4. 

R2_13 
- l. 216-218 and fig 4.e: the discrepancies between models and observations for the lag-1 autocorrelation should 

be discussed more. 

The MC led to poor lag-1 autocorrelation depending on time-scale because the depth is not 

taken into account when splitting the data. therefore, a high depth will be split in 2 in the same 

way as a small depth. It directly influences the lag-1 autocorrelation. About the MCDS and 

MCDTS, it is possible to improve the lag-1 autocorrelation. However, since the Rainfall 

continuity indicator does not take into account the depth of neighbouring approach, it was 

not possible to improve further the quality of the autocorrelation. See (Müller-Thomy, 2020) 

for other possibilities in improving autocorrelation (excluded to not increase further the 

number of parameter) 

R2_14 
- l. 235-238: I have trouble to find the figures mentioned in Fig. 5. 

The results are indeed not easy to read on this because of the large amount of data and 

variable. The current example refers to Bergen [1st column], major events (i.e., 10 L/s/ha) [2nd 



row], and D-green roof [right part of the subplot]. Moreover, this example is not the easier 

to read. Therefore, we will: i) carefully review the explanation linked to figure 5, 7 A1 and A2; 

ii) we will choose a clearer example. E.g., Bergen [1st column], small event [1st row] E-green 

roof [middle of the subplot] predicted between 30 to 45 days per year above threshold with 

simulation based on observed data. With MCS we predicted 18 to 20 day / year: it is a bad 

estimate (according to definition l. 235).  With the MCDS we predicted 35 to 37 day/year: it is 

a good estimate. We will also consider changing the scale to a log scale in order to make the 

results more easily readable (see comment below). 

R2_15 
- Fig. 5: last row (extreme events). May be the vertical scale could be split to enable a zoom on the lower part 

which concentrate most of the information which is not visible now. 

This figure was originally made in order to include the results from one location for each of 

the climate investigated and each of the events defined which made it challenging to include 

all. We will try both your suggestion and the use of a log axis (since the magnitude of the 

estimates matters especially). 

R2_16 
- Fig. 6: “observed data” is not visible in the graphs 

It will be fixed. 

R2_17 
- Section 3.5: without explaining everything, I believe that some details the variational approach are needed for 

the non-specialist reader. How do authors interpret the fact that the differences between the two approaches 

are much more pronounced extensive roofs than the detention-based ones? 

More details will be provided. Section 2.4 will be renamed “Evaluation of the downscaling 

models”, and the use of the variational method will be added. It consists, given an IDF curve, 

in using as an estimate the constant duration rainfall leading to the worst-case scenarios. In 

our case, in terms of peak discharge. 

The authors are not sure what the reviewer means by the 2 approaches: current climate vs 

future climate or downscaling based vs VM? For both cases, the difference between the 

approaches can be explained by the properties of the roofs (which is also the reason why they 

were selected). The D-green roof has a higher detention capacity which results in a very 

narrow distribution. However, as it can be seen with 10-year RP future, once this capacity is 

overcome (i.e., the layer saturated), it leads to much higher runoff and therefore a more 

spread distribution of performance. The E-green roof has a simple setup, it led more easily to 

high runoff and therefore it has a large range of performance even for lower return period 

events. However, increasing the return period shifts the range but does not increase the range 

as much as the E-green roof. 
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