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Abstract. This paper reports on the methodology developed for a new hydraulic interpretation of flowmeter logs, allowing a 10 

better characterization of continental hydrological basins. In the course of a flowmeter log, different flow stretches are 

established mostly corresponding to permeable layers (aquifers), among which there are other stretches mainly corresponding 

to less permeable layers (aquitards). In such hydrological basins of sufficient thickness, these flow stretches may not have the 

same hydraulic head. This fact brings about the need for a new hydraulic interpretation that provides the actual distribution of 

horizontal permeability throughout the aquifer at depth. The modified hydraulic interpretation developed in this study focuses 15 

on the differences of the effective pressure gradient (considered as the difference between the hydraulic head in the well and 

the hydraulic head of each stretch) experienced by the different flow stretches along the well, due to the existence of different 

hydraulic heads. The methodology has been developed starting from a water well located in a multilayered aquifer within the 

so-named Madrid Basin (the NW part of the continental basin of the Tajo River), located in the centre of the Iberian Peninsula. 

In this well, a step-drawdown pumping test was conducted, in which the pumping rate versus drawdown and the specific 20 

capacity versus drawdown showed discrepancies with Darcian behaviour and an exponent of the Jacob equation of less than 

1. Flowmeter logs were then recorded for different discharge rates and pump depths; the resulting water input from deeper 

permeable layers did not appear to show the expected relation with respect to drawdown. With the proposed methodology the 

results comply with the expected linearity and the cited discrepancies are solved. 

1 Introduction 25 

One of the most interesting hydrogeological aspects of well pumping tests is that their results not only allow to estimate the 

permeability and transmissivity obtained in the well but can also be used to infer the behaviour of the aquifer when the 

lithological distribution of the basin in its location is known. In the case of step-drawdown pumping tests, this inference is 

generally known when the characteristic curves of the test show a conventional evolution, i.e., when the drawdown versus the 

extraction rate curve shows an increasing slope and the specific capacity decreases with drawdown. This is the case when, 30 
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inside the well, in the near-wellbore zone or in the aquifer, head losses occur, whether linear or polynomial, whose effects are 

well recognised in step-drawdown pumping test curves (Helweg, 1994; Kawecki, 1995; Mathias and Todman, 2010). 

These models provide an accurate representation of the aquifer behaviour for any pumping time. Among other results, Mathias 

and Todman (2010) found that the best fit was achieved by using a non-linear behaviour coefficient that can be different for 

each step, obtaining its values by means of an analytical formula derived to relate this coefficient to the Forchheimer parameter. 35 

When the drawdown versus the extraction rate curve presents an increasing slope (as in the case of the step-drawdown test 

from Clark (1977)), there are different hydrogeological explanations. However, when the slope decreases and the specific 

capacity versus the drawdown increases, i.e., when the hydric behaviour improves with increasing flow rate (as in the last two 

stages of the step-drawdown test from Van Tonder et al., 2001), the only explanation known to date is that the well is not 

properly developed. In the following text, when such results occur, they are referred to as anomalous cases. 40 

In step-drawdown pumping tests, there is no unified criterion for the duration that each step should have. Thus, in contrast to 

the values used for the characteristic curves of these tests in some studies (Shapiro et al., 1998; Karami and Younger, 2002), 

in this study, it is considered that the steps must be performed for sufficiently long periods to have reached quasi-steady states. 

These states have been reached when the temporal variation of the drawdown is less than 1% of the total drawdown for each 

step. This criterion has been adopted by considering its equivalence with the criterion established by Zha et al. (2017) on the 45 

temporal derivative of drawdown for quasi-steady state conditions and by considering the validity of assimilating the 

drawdown in the well to the average behaviour of the different levels in a multilayer aquifer. 

A situation that is not often considered in studies on great continental basins that are hundreds of metres deep is that the diverse 

permeable layers crossed by water wells can have different hydraulic heads. If this difference exists, then the permeability 

value determined for each permeable layer is incorrect, leading to an error in the estimation of the flow rate provided by each 50 

layer and causing a very important deviation in aquifer modelling. Although this possibility has been cited in several 

publications (Molz, 1994; Crowder, 2002; Le Borgne, 2006), no methodology has been published to quantify its effects in 

water wells in large continental detrital basins.  

Paillet (1998) showed the results of two flowmeter logs obtained with a heat-pulse flowmeter (lower limit of ~0.1 l/min and 

upper limit of ~20.0 l/min) in Waupun (Wisconsin, USA). These flowmeter logs were measured under ambient and injection 55 

conditions at about 4 l/min, and analyzed for pumping or injection rates typically 1-5 l/min. We think  that the relationship 

used to estimate the transmissivity Tk of each fracture k, starting from the flow into the borehole qk is: 𝑞𝑞𝑘𝑘𝑏𝑏 − 𝑞𝑞𝑘𝑘𝑎𝑎 =

2𝜋𝜋𝑇𝑇𝑘𝑘(𝑤𝑤𝑎𝑎 − 𝑤𝑤𝑏𝑏) · 𝑙𝑙𝑛𝑛(𝑅𝑅0/𝑟𝑟𝑤𝑤) where a and b address the ambient and stressed conditions respectively, wa,b are the water levels 

in the borehole for these condictions, R0 is the distance to the "outer edges" of the fracture, and rW is the borehole radius. This 

relationship does not depend on the unknown value of the far-field head in the aquifer Hk. Later, in Paillet (2000) ∑𝑇𝑇𝑘𝑘 · 𝐻𝐻𝑘𝑘 =60 

𝑤𝑤𝑎𝑎 · ∑𝑇𝑇𝑘𝑘 is used to determine Tk. In this work was stated that: “the results of high capacity tests, where the effects of ambient 

hydraulic-head differences would not be significant”, hydraulic head values (4.54, 4.91, 4.91 and 4.91 m below ground level) 

are presented for the four productive stretches in one of the boreholes analyzed, although the process followed is not reflected 

in this paper. In Paillet (2000) the hydraulic head estimates (cm above open hole water level) in the same borehole (+28, -11, 
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-11, and -11 cm above open hole water level) are shown. Based on this methodology, Day-Lewis et al. (2011) presented a 65 

computer program for flow-log analysis of single holes applicable up to 10 levels, in which the hydraulic head of each zone is 

determined by minimizing the differences between the flow rates obtained and those of the model, and between borehole's 

water level and far-field heads. 

This communication presents the possibilities of the flowmeter log to provide a hydrogeological explanation of the described 

anomalous cases. Flowmeter logging is conventionally used to determine variations in the flow velocity along a well casing, 70 

allowing water inputs at different depths that contribute to the total discharge rate to be computed. These quantities are used 

to estimate changes in hydraulic characteristics with depth, thereby improving the management and rational exploitation of 

aquifers. In addition to this conventional purpose, a method has been developed in this work that uses flowmeter logs to provide 

information regarding different hydraulic heads in a multilayer basin. Moreover, determining these different hydraulic heads 

allows hydraulic reinterpretation that explains the abovementioned anomalous behaviours of the pumping test results. 75 

To use flowmeter logs, a thorough pre-processing of results is necessary, without which the water inflow values determined 

in each filter can have very high errors and in turn allow an accurate determination of the head loss inside the well. Although 

different types of sensors have been used in well logging tools, spinner flowmeters are the most widely used in assessing the 

productivity of wells. Díaz-Curiel et al. (2020) proposed a complete reformulation for processing spinner flowmeter logs. 

Another aspect related to the reliability of the flowmeter log results is the variability caused by differences in the near-wellbore 80 

or skin zone in the different layers of the well, for whose solution this work proposes the establishment of ‘flow stretches’. In 

this work, the term ‘flow stretch’ is primarily used for differentiate sets of screens that corresponding to more permeable units 

(aquifers) among which there are other stretches (aquitards) mainly corresponding to less permeable units. We have chosen to 

use the term stretch to avoid controversy with other terms such as "units" which have a different hydrogeological meaning. 

Despite its origin, in this study, the term stretch is used both to designate the flow stretches in the well, as well as the sets of 85 

layers to which they correspond. These stretches are obtained from a zonation process of the flowmeter log established by 

Díaz-Curiel et al. (1997), and it starts by generating a flow curve interpolated between water inputs. This curve is transformed 

into a smooth curve with constant depth increments. To obtain the depth values at which the limits between stretches are 

located, first, the inflection points of the smooth curve are calculated, and then the average values between those limits are 

determined. Finally, the upper and lower limits of each stretch of minimum values (the impermeable stretches) are 90 

approximated to each other so that the average variance within each permeable stretch is minimal. These stretches show some 

parallelism with zonation relative to the average grain sizes shown in Díaz-Curiel et al. (1995), which spatial extension is 

addressed in the discussion section. The use of the flow stretches allows the differences between screens within each stretch 

to be ignored, and their influence is not evaluated in this work because the average hydraulic conductivity of each flow stretch 

compensates for them. 95 

Regarding the hydraulic interpretation of flowmeter logs, its main advantage lies in the fact that different permeable layers 

that the well crosses may have different hydraulic properties. These cannot be drawn from the results of a conventional 

pumping test without using packers. The differences are quantified by water inputs through screens corresponding to each 
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layer and its thickness. In wells with a high technical control budget, the hydraulic characteristics of the different permeable 

layers can be achieved by using packers. However, despite the high cost of this technique in deep wells, the results do not have 100 

to match those obtained during operations with no packers on the pump. The main reason for this difference is that at higher 

pumping rates, there is significant vertical flow through the gravel pack surrounding the screen (Boman et al., 1997). For 

example, for a well drilled to 44.5 cm and cased with a 39.2 cm filtering pipe (annulus space ~1400 cm2) with a 2-3 mm gravel 

pack, the flow through it is larger than the water inflow through an isolated screen of 320 cm (area of ~80 000 cm2) located in 

front of sands whose permeability is one hundred lower. By isolating each layer, the static and dynamic water levels may be 105 

different from those presented in the well when all permeable layers are connected (‘dynamic level’ refers to the well water 

level when it reaches a quasi-steady state for a given pumping rate). The influence of pump depth is not analysed in this study, 

considering that it only affects the flowmeter logs mainly for measurements in front of the screens close to the pump and that 

the initial study depths are rather below the pump depth. 

To achieve hydraulic interpretation from flowmeter logs, most authors (Molz et al., 1989; Rehfeldt et al., 1992; Ruud and 110 

Kabala, 1996; Zlotnik and Zurbuchen, 2003a; Barahona-Palomo, et al. 2011; Riva et al., 2012) start from the basis that 

hydraulic conductivity values for each permeable layer (from each screen) are proportional to the hydraulic conductivity of 

the entire well up to a multiplying constant. In these studies, the hydraulic conductivity is obtained from measurements by a 

nearby piezometer during pumping tests using the Theis equation (1935) between the discharge of a well and the water level 

drawdown a short distance from the well (Theis, 1963). That proportionality is a function of the ratio between the water input 115 

at each screen and the pumping rate and the ratio between the thickness of each screen and the saturated thickness of the 

aquifer. In mathematical form, the hydraulic conductivity value of the permeable layer j is given by Kj= (ΔQj /QP)·(Δzj /b)·KP, 

(Kabala, 1994), where Qj is the water input at layer j, QP is the extraction rate of the well, b is the aquifer thickness and KP is 

the hydraulic conductivity of the entire well. Among the different thicknesses in the literature, saturated thickness (Molz et al., 

1989; Li et al., 2008), aquifer thickness (Clemo and Barrash, 2003; Riva et al., 2012) and screened casing thickness (Barahona-120 

Palomo et al., 2011; Gueting et al., 2017) used to calculate the hydraulic conductivity of an entire well, the saturated thickness 

is employed in this work. 

Unlike the previous procedure, this study follows the less common methodology established by Rehfeldt et al. (1989) starting 

from the Thiem equation (1906). Although there are contradictory opinions on the validity of this equation, some more recent 

studies consider that it is still applicable for determining the hydraulic characteristics of the well (Zlotnik and Zurbuchen, 125 

2003b; Schneider and Attinger, 2008; Day-Lewis et al., 2011; Houben, 2015). Rehfeldt et al. (1989) stated that a unique radius 

of influence R0 value (the distance for which the produced drawdown in the aquifer water table is nil) allows the direct 

determination of the hydraulic characteristics of different permeable layers. Following the proposal in Rehfeldt et al. (1989), 

variation in the radius of influence can be neglected because it is included in the logarithm; therefore, its variation affects the 

hydraulic conductivity computation by less than 10% for all permeable media in a given aquifer. This statement assumes that, 130 

for a certain type of aquifer, its radius of influence varies only a few hundred metres around a mean value of approximately 

one thousand metres (Villanueva and Iglesias 1984). 
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For these reasons, the goal of this work is to investigate the causes of anomalies in the characteristic curves of pumping tests 

and to develop a methodology that improves the estimation of the hydraulic parameters in multilayered aquifers. Considering 

that the hydraulic conductivity (k) of the permeable layers should remain the same at different pumping rates, this advance is 135 

based on the fact that the hydraulic head of successive permeable stretches can be different, as already proposed by Bennett 

and Patten (1960). Although different hydraulic heads are acceptable to determine the hydraulic properties of fractured aquifers 

(Hess, 1986; Paillet, 2000; Lane, 2002), this is not conventionally taken into account in multilayered aquifers.  

This methodology has been applied to a 475 m deep borehole drilled in a multilayer detrital aquifer located in the centre of the 

Iberian Peninsula (Madrid Basin). A step-drawdown pumping test was conducted in this well, showing discrepancies with 140 

Darcian behaviour and simultaneously with the non-Darcian coefficients of the Jacob equation. The relation between pumping 

rates and well drawdown in the step-drawdown pumping test as a whole did not show the expected behaviour for the type of 

aquifer considered. Moreover, the pump characteristic curves that were obtained do not correspond to any aquifer type. This 

difference results from the fact that the pumping rate increases with drawdown that has a power greater than 1 and that the 

specific obtained capacity increases with drawdown. A flowmeter log was collected, and the hydraulic interpretation is 145 

presented in this study, showing that the activation of the deepest aquifer stretches is the cause of this hydraulic behaviour, as 

explained throughout this study. 

These results allow the avoidance of the possibly hazardous effects derived from intensive exploitation. As shown in this work, 

dangerously high arsenic contents occur in the deepest aquifer stretches in the Madrid Basin (López-Vera, 2003). Since the 

studied well is part of the official network of the Madrid city water supply, it is imperative to limit the spread of this pollutant. 150 

As demonstrated by the hydraulic reinterpretation proposed in this paper, this aquifer undergoes strong activation when very 

high drawdown is applied, producing a sudden increase in its water inputs. This information is key to managing the exploitation 

network. 

2 Theoretical background 

2.1 Estimating the hydraulic parameters 155 

To determine the hydraulic conductivity K of the aquifer obtained through the entire well and each permeable layer, the Thiem 

solution (1906) is used, which is presented by Eq. (1) as a function of the radius of influence R0: 

𝐾𝐾 =
𝑄𝑄

2 · π · 𝑏𝑏 · 𝑑𝑑
ln
𝑅𝑅0
𝑟𝑟w

,                                                    (1) 

where Q is the extraction rate, b is the aquifer thickness, d is the drawdown in the well, and rw is the well radius. 

The main drawback to this procedure, which is mentioned by Kruseman and Ridder (1970), is the influence of local well 160 

factors on the drawdown values. Excluding friction along the pipe (which depends on depth), the different local well factors 

that modify the obtained hydraulic conductivity of the permeable layers are 1) the reduction in the cross-sectional area of the 
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well due to the submersible pump; 2) the entrance loss caused by flow through the screen slots; 3) the head loss due to the 

gravel pack; and 4) the head loss caused by the disturbed zone around the well (referred to as the skin effect) (Hufschmied 

1986; Rehfeldt et al. 1989). Some of these factors have been considered in detail regarding flowmeter logs (Ruud and Kabala, 165 

1997; Ruud and Kabala, 1999). In this work, these factors are not considered because they do not justify an increase or decrease 

in the hydraulic conductivity with depth; thus, although any of the four factors may have locally different values, their influence 

on the hydraulic conductivity obtained at each permeable level is constant for any flow. 

As established by Rehfeldt et al. (1989), the hydraulic conductivity of each permeable layer is given by Eq. (2): 

𝐾𝐾𝑗𝑗 =
𝑞𝑞𝑗𝑗

2 · 𝜋𝜋 · Δ𝑧𝑧𝑗𝑗 · 𝑑𝑑
ln
𝑅𝑅0
𝑟𝑟w

,                                                (2) 170 

where qj is the water input produced in each screen and Δzj is the thickness of each screen. Equation (2) has been applied in 

various studies (Xiang 1995; Oberlander and Russell, 2006), but in this work, it is applied to well flow stretches. 

2.2 Step-drawdown pumping test 

In this type of pumping test, the hydraulic behaviour of the well is analysed through the characteristic relationship 

d=A·Q+B·Q 2 (Jacob 1947) or, in a more general form (Rorabaugh, 1953), as shown in Eq. (3): 175 

𝑑𝑑 = 𝐴𝐴 · 𝑄𝑄 + 𝐵𝐵 · 𝑄𝑄𝑝𝑝,                                                          (3) 

where Q denotes the consecutive values of the extraction rate in each step, d is the corresponding stabilized drawdown (i.e., 

when its increase is negligible for an increase in the pumping time), A is a constant that depends on transmissivity, and B and 

p are fitting constants to the resulting data from the pumping test, where p is greater than 1 (Todd 1980). The second term 

represents the apparent divergence from the linearity expected by Darcy's law (Darcy 1856), which is addressed in the Sect. 5. 180 

This is generally attributed to an increase in head loss due to turbulence as the pumping rate increases. It is also coherent when 

the dynamic level exceeds the depth of the upper aquifer layers, reducing the specific capacity. Although some authors consider 

that the Jacob equation (Eq. (3)) can be improved, there are still authors who continue to use it (see Mathias and Todman, 

2010). 

The conventional interpretation of step-drawdown pumping tests begins with the fact that drawdown for different pumping 185 

rates is caused by either the general or extensive characteristics of the aquifer. In this way, confined, semiconfined and 

unconfined aquifers are distinguished, whose curves, pumping rate versus drawdown and specific capacity versus drawdown, 

are different in each case (Figure 1). 
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Figure 1. Characteristic curves (adapted from Villanueva and Iglesias 1984), where Aj, Bj and pj are the Jacob equation coefficients. 190 
1) Confined aquifer without head losses in the well. 2) Free aquifer without head losses in the well. 3) Aquifer with nonlinear head 
losses. 4) Anomalous curve due to, following conventional criteria, poorly collected data or changing characteristics in an aquifer 
with pumping time. 

2.3 Flowmeter data processing method 

The need for an exhaustive treatment of the flowmeter logs arose initially to avoid doubts on observed anomalies in the 195 

characteristic curves of the step-drawdown test could stem from the reliability of the flowmeter log results. Thus, it had to be 

shown that such effects were not due to head losses along the well. In addition, considering that the flow velocity used in the 

Darcy-Weisbach equation is raised to a power of two, the differences between the head losses resulting from considering the 

actual flow velocity instead of the velocity directly measured by the sonde is greatly amplified. 

This exhaustive process of the flowmeter logs will be done according to the laws of pipe hydraulics using the methodology 200 

developed by Díaz-Curiel et al. (2020). To obtain the flow velocity at each depth, <V(z)>, a conventional iterative process is 

used. It begins by taking the measured velocity Vmeas at a given depth as the initial flow velocity and the initial Reynolds 

number Reini according to its definition, that is, Re= ρ·<V>·D/μ, where ρ is the water density, D the well diameter and μ the 

dynamic viscosity. Then, a relationship τ(Re) that provides the flow turbulence exponent τ as a function of the Reynolds 

number is applied. Knowing the turbulence exponent and the normalized radius rD of the sonde (the ratio of the sonde distance 205 

to the well axis with respect to the well radius), a velocity law must be applied; this law is the ratio between the velocity at the 

normalized distance V(rD) and the maximum velocity in the well axis Vmax; this allows this maximum value to be obtained. 

Then, using the relationship for the velocity factor Fvel(τ), defined as the ratio between Vmax and the flow velocity <V>, the 

first flow velocity is obtained with the corresponding Reynolds number Reini, which is closer to the actual value. Applying 

τ(Re), V(rD), and Fvel (τ), a new Re value Rek is obtained (k being the iteration index of the convergence algorithm). This 210 

process is repeated until a given convergence criterion cCR is reached, following the flow chart in Fig. 2 (adapted from Díaz-

Curiel et al., 2020), to obtain Re(z). 
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Figure 2. Flowchart of flowmeter log processing. 

The cited relationships are shown in Eqs. (4-6): 215 

𝜏𝜏(Re): 𝜏𝜏 =
(Re/2490)9.994 + 1

0.2 · (Re/2490)9.9 + 1
                             (4) 

𝑉𝑉(𝑟𝑟𝐷𝐷): 
𝑉𝑉(𝑟𝑟D)
𝑉𝑉max

= �1 − 𝑟𝑟D
𝜏𝜏+2

𝜏𝜏+0.5� �
1/𝜏𝜏

                        (5) 

Fvel(𝜏𝜏): Fvel =
〈𝑉𝑉〉
𝑉𝑉max

=
𝜏𝜏 + 0.5
𝜏𝜏 + 2

                                     (6) 

In these equations, the influence of temperature is not considered because viscosity is practically homogeneous along the well 

due to water circulation during pumping. 220 

Once the Reynolds number at each depth is known, the head loss can be obtained by the Darcy-Weisbach equation (Darcy 

1857; Weisbach 1845), given by Δh= f·(ℓ/D)·(<V>2/2g), where g is the gravity acceleration (m·s−2), <V> is the average flow 

velocity (m·s-1), D is inner diameter of the well (m), ℓ is the length of each considered pipe element (m), and f  the friction 

factor (dimensionless) for smooth pipes given by Eq. (7): 

𝑓𝑓smooth =
0.3164

Re
 
Re10.75 + 485010

Re10 + 285010
                         (7) 225 

It is important to point out that according to Eq. (7), as in all pipe hydraulics relations, the friction factor decreases with the 

Reynolds number except for the transition interval between laminar and turbulent regimes. 

Applying the rigorous formulation presented to process the flowmeter logs (Eqs. 3 to 7) and considering that the sonde has a 

significant diameter (rD), the values of <V>/V(rD) vary between 0.85 and 0.94. This difference represents a 20% error in the 

total range of variation of that velocity ratio between 0.5 for laminar flow and 1.0 for fully turbulent flow. However, if the well 230 

diameter is smaller (close to the diameter of the sonde), V(rD) approaches Vmax, resulting that the <V>/V(rD) ratio presents a 

greater variation (from 0.50 to 0.83) for the range of Re found in the case studied, than if the diameter of the well analysed is 

close to 0.2 m as in the case studied in this work. 
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3 Materials and methods 

To estimate the hydraulic parameters from the flowmeter logs, once they have been processed, two specific approaches 235 

developed in this work are applied to obtain the actual hydraulic conductivity of the different layers. The first approach is to 

divide the well into flow stretches with different hydraulic behaviours as a function of the flowmeter results. The second 

approach is based on the fact that the hydraulic head of the deepest flow stretches of the well do not necessarily match the head 

of the overall well (Fig. 3). 

 240 
Figure 3. Scheme of the resulting hydraulic head from the existence of permeable stretches with different hydraulic heads. With the 
plotted dynamic level DLc, only T2 contribute water to the well, T4 do not, and T6 collect water from the well. 

The hydraulic head of a flow stretch is defined as its effective static level, that is, the height of the water level that would be 

achieved if the well were connected with the aquifer only through this stretch. This work proposes that a flowmeter log allows 

to know the existence of hydraulic heads that are different for each stretch. This distinction implies changes in the effective 245 

drawdown of each stretch, which justifies, as shown in the case study, that the water inputs of the deeper aquifer stretches are 

not proportional to drawdown. 

In most flowmeter logging with several pumping steps, the drawdown used in the Thiem (1906) equation is the same for all of 

the aquifer stretches in a well, d0(s)= hDL(s)−HSL where hDL(s) is the dynamic level for the ‘s’ pumping step and HSL is the 

dynamic level of the entire well. However, under the hypothesis presented in this work, the hydraulic head of each stretch, and 250 

therefore the corresponding drawdown, can be different. Numerically, the drawdown of each flow stretch тN will be given by 

the following relation: 

𝑑𝑑N(s) = ℎDL(s) − ℎSL(N),                                            (8) 

where hSL(N) is the static level for flow stretch тN. In short, the proposed method consists of replacing the single drawdown d 

in Eq. (2) from Rehfeldt by a drawdown for each stretch. 255 

The main differences with the method used by Paillet (1998) are that we have chosen to use the Rehfeldt relationship (Eq. 2) 

for permeability instead of the Davis and DeWeist relationship (1966) relation for transmissivity, given that the thickness of 

the layers and the productive sections are taken into account. It has also been considered that the different hydraulic heads are 
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below the static water level (the water level in ambient conditions from Paillet, 1998). The procedure developed is based on 

the linearity of the hydraulic behavior of the aquifer sections and each section is treated separately. 260 

The proposed method for obtaining the hydraulic head of each flow stretch is to 1) correct the drawdown values of the total 

head loss due to flow along the pipeline and 2) modify the height of the hydraulic head for each flow stretch until the straight 

line fitted to the data, qN(s) versus dN(s), reaches the maximum regression coefficient (where qN(s) is the water input in flow 

stretch N for the s pumping steps). With a static level value for each flow stretch, the effective drawdown of each flow stretch 

can be obtained, and although other local well factors may cause differences between screens within each stretch, their 265 

influence is not evaluated in this work because the average hydraulic conductivity of each flow stretch compensates for them. 
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4 Case study 

4.1 Geology of the area and well characteristics 

The study well (named CNC in this work) is located in the Tajo River Basin 

on the Iberian Peninsula. More specifically, it is located in the western sub-basin, also 270 

known as the Madrid Basin, near the city of Madrid (Spain). The Madrid Basin has a 

triangular shape and is bound by several mountain systems of igneous-metamorphic 

nature, which are significant contributing source areas. The structure of the basement 

corresponds to that of a complex graben and has resulted in a sediment thickness of 

approximately 1000 m, although in some areas, the thickness can exceed 3000 m. The 275 

Tertiary (Miocene) sediments that fill the basin correspond to continental deposits of 

an arid, endorheic nature that are fed by alluvial fans; these alluvial fans develop edge 

or detrital facies, intermediate or transitional facies, and central or chemical facies, all 

of which are characteristic of this depositional system (Navarro et al., 1993).  

The aquifer is located in a detrital facies single arkosic unit separated into two 280 

lithostratigraphic units, which are differentiated by grain size and, therefore, by 

hydrogeological characteristics; due to the depositional process of the materials, they 

are differentiated from one area to another as well as vertically. The lower unit, the 

Tosco Formation, is composed of arkose that is generally very clayey with clayey 

sand. The upper unit, the Madrid Formation, consists of arkosic coarse-grained sand, 285 

gravel and clay. Although the Madrid Formation is sandier and permeable and 

overlaps the more clayey Tosco Formation, they are not considered different aquifers 

(López-Vera 1985) but rather a heterogeneous and anisotropic free aquifer system 

where more permeable layers are separated by clayey strata with a lower permeability 

(which qualifies as a multilayer aquifer). 290 
Figure 4. Well logs in CNC borehole together with the lithologic section. 

A lithological column was compiled from information provided by the detritus 

from the borehole and conventional well logs; the normal resistivity and natural 

gamma ray records are presented in Fig. 4. Note that the logs were not corrected for 

borehole diameter, conductivity or mud density; therefore, there was a notable 295 

difference between the larger diameters in the upper part and the base. Three 

differentiated parts were established: the first (0 to 75 m) was composed of sands 

alternating with thin layers of clay, the second (75 to 285 m) comprised alternating 

sandy clay and thin sandy layers, and the third (285 to 485 m) had a predominance of 
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coarse sand and gravel with intercalations of very thick clay layers. As a result of the correlation between lithological stretches 300 

in the NW zone of the studied basin (Díaz-Curiel et al., 1995), the permeable stretches can be considered radially homogeneous 

differentiated aquifers. With the exception of the superficial part, the rest of the permeable stretches can be treated as confined 

aquifers. This allows the use of the Thiem equation for these stretches and for obtaining hydraulic parameters on a regional 

scale (as proposed by Rehfeldt) by averaging the stretches as a whole (Sánchez-Vila, 2006). 

The borehole was rotary drilled with a diameter of 660 mm down to a depth of 120 m, and then it was drilled with reverse 305 

injection of natural mud with a diameter of 445 mm to a final depth of 490 m. The construction details of the well consisted 

of casing to a depth of 480 m, with a 404 mm inner diameter in the sections of blind pipe and 392 mm in the wire-wrap screen 

sections; a gravel packing of 2-3 mm grains was added throughout its length. The well was developed by adding previously 

diluted polyphosphates, and after 12 hours, a series of intermittent pumping was carried out; once the extracted water contained 

no suspended fines, a 72-hour gauging of increasing pumping was conducted up to a flow rate of 100 l/s. 310 

4.2 Pumping test results 

After a process was conducted to eliminate the well storage effect, the static level settled at a depth of 151 m. The pumping 

test started with a flow of 5 l/s until the hydraulic head stabilized. Two main extraction pumping rates of 30 and 70 l/s and a 

final rate of 75 l/s were then used, with a total elapsed time of 80.5 hours. All steps were performed for a sufficient time to 

reach the quasi-steady conditions mentioned in the Sect. 1. The resulting temporary data are shown in Fig. 5, and the drawdown 315 

values for each pumping rate are shown in Table 1. 

 
Figure 5. Water level versus time during the step-drawdown pumping test in the case study. 

Hydraulic conductivity values were obtained using Eq. (1) (Thiem 1906), taking the saturated thickness to be equal to 329 m 

(the depth of the well minus the depth of the static level) and considering a radius of influence of 950 m once the quasi-steady 320 

state was reached. This last datum is the central value of those shown in Villanueva and Iglesias (1984) for semiconfined and 

confined aquifers. The resulting hydraulic conductivity values of the well are shown in Table 1, and they increase with 

drawdown. 
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Table 1. Pumping test results in the case study 

Q 
(l/s) 

D.L. 
(m) 

d 
(m) 

Q/d 
(m2/s) 

K 
(darcy) 

5.0 159.6 8.6 5.81·10−4 2.6·10−4 
30 183.7 32.7 9.17·10−4 4.0·10−4 
70 211.4 60.4 11.6·10−4 5.1·10−4 
75 213.9 62.9 11.9·10−4 5.2·10−4 

Q: pumping rate D.L.: dynamic level 325 
d: drawdown K: hydraulic conductivity 
 

The hydraulic conductivity values that were obtained do not have to coincide with the general values of the aquifer (since the 

general values of the well also depend on the construction details) or with those obtained for each of the different permeable 

stretches that the well crosses (since the result for the well is an average behaviour of those flow stretches). However, it is 330 

possible to speak of a mean value (geometric average) of approximately 3.9·10−4 darcy. To hydraulically characterize the well 

from the pumping test results, Fig. 6 shows the pumping rate versus drawdown Q(d) and the specific capacity versus drawdown 

Q/d(d). 

 
Figure 6. a) Drawdown versus the pumping rate, b) and the specific capacity versus drawdown in the case study. 335 

Let remember that in the characteristic equation d=A·Q+B·Q p for the well for step-drawdown pumping tests, the first term 

corresponds directly to Darcy's law (1856) for the total volume of the water flow crossing through successive cylindrical layers. 

In the second term, the exponent p can be greater than 1; successive drawdown should show a power relationship with an 

exponent greater than 1 versus the pumping rate. Moreover, the specific capacity should decrease with successive drawdown; 

otherwise, the well extraction ratio would increase with drawdown. However, in Fig. 6, the opposite pattern is observed, i.e., 340 

d(Q) increases with a power that is less than 1, and Q/d increases with drawdown. These anomalies do not seem to arise from 

errors in the water level measurement, as their values versus time appear to be correct (Fig. 5). 
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4.3 Flowmeter results 

The static level HSL was measured at a depth of 157 m before the beginning of flowmeter logging. Flowmeter logs were 

obtained for pumping rates of 20 l/s (measured dynamic level at 172 m), 30 l/s (dynamic level at 178 m), and 70 l/s (dynamic 345 

level at 205 m). The drawdowns of the entire well for each pumping rate, without including the head losses, hence are 15 m, 

21 and 58 for 20 l/s, 30, and 70 respectively.  

Since the flowmeter logs were collected during pumping operations, measurements could be obtained only below the pump 

depth. For the pump located at a depth of 191 m, logs were recorded from 200 m to 470 m for pumping rates of 20 and 30 l/s, 

and for the pump located at 253 m, logs were recorded from 260 m to 470 m for pumping rates of 30 and 70 l/s. 350 

Equation 5, that of V(r)/Vmax, used a normalized distance of 0.64, which corresponds to the ratio (rw−rs) /rw, where rs is the 

external radius of the spinner frame (the sonde has a device that maintains its hold on the wall) and rw is the inner radius of the 

well casing. The different diameters (difference < 1%) in the screens were not considered due to the difficulty of executing the 

iterative process to obtain <V>. The initial velocity values considered in the iterative process were obtained by applying the 

calibration curve to the velocities measured by the sonde. The initial Re values varied between 860 and 211 000 for all flow 355 

rates and pumping rates. For τ(Re), Eq. (4), the resulting values of the turbulence exponent varied from 1.0 to 6.7, resulting in 

values of <V>/V(rD) between 0.85 and 0.94. The velocity factor values determined using Eq. (6) were in the range of 0.50 to 

0.83, and deviations with respect to the average value reached 35%. In addition to the zone where the studied well is located, 

there is no geothermalism at all, and the influence of temperature is not considered, as in the common equations on the 

hydraulic characterization of aquifers. 360 

Figure 7 shows the results obtained for the main parameters and ratios of processing flowmeter logs by applying the 

methodology of Díaz-Curiel et al. (2020). 

The accuracy of the measuring equipment was 0.5 l/s, which greatly reduced the reliability of the results between consecutive 

screens and produced strong variation in the quantified water inputs from each screen. 

4.4 Head loss results 365 

The head loss was calculated using the Darcy-Weisbach equation (Darcy, 1857; Weisbach, 1845), and the friction factor 

was calculated using Eq. (7). The curve of the friction factor values obtained for pumping rates of 20, 30, and 70 l/s is shown 

in Fig. 7. Depending on the scale on which the transition interval is analysed, the turbulence of the fluid flow cannot be 

determined at all points along its path. In this study, we chose to use a fitting expression for smooth pipes given by Eq. (7) 

because the flowmeter sondes used in well logging reflect the fluid advance on a much larger scale. The friction factor for low 370 

pumping rates in the deep screens increased by a maximum of 70% compared to that obtained using conventional equations. 

The total head loss below the pump is obtained by integrating the head loss throughout the well based on the flow velocity 

obtained at each depth (see Fig. 7), that is, the cumulated Δh adding the successive local head loses values relying upon local 

friction factors and local water velocities. Above the pump depth, the calculation is based on a linear increase in the velocity 
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between the pump depth and the dynamic level. The obtained values of the head loss ∆h(s) for each pumping rate are shown 375 

in Table 2, which will be used in the calculation of the effective drawdown produced. 

 
Figure 7. Results obtained for the main parameters in the case study and the calculated friction factors. 

Table 2. Head loss values for each pumping rate in the case study 

Q (l/s) ∆h(s) (m) 
20 0.06 
30 0.92 
70 5.42 

 380 

In this case, the friction factor reaches values six times higher at the bottom of the well than at the initially recorded depth, and 

the value of the head loss is low (0.06 m) because the average velocity in the Darcy-Weisbach equation is raised to a power of 

two. Therefore, in large-diameter water wells, the influence of the friction factor along the pipeline is negligible. Finally, 

despite the inclusion of head loss values, the water inputs from some of the stretches still do not maintain the expected 

proportionality with drawdown, so hydraulic reinterpretation is carried out using the flowmeter results. 385 
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4.5 Water inputs 

Figure 8 shows the results from different pumping rates after processing. On the left-hand side of Fig. 8a, the curves for upward 

flow rates versus depth are shown, and in Fig. 8b, the water inputs deducted in the different screens are shown, while the 

negative water inputs (outputs) are not shown in Fig. 8b. 

Note that the accuracy provided by the equipment is 0.05 l/s, which greatly reduces the reliability of the results between 390 

consecutive screens and produces strong variations in quantifying the water inputs from each screen. For this reason, following 

the criteria described in the Sect. 3, the flowmeter log is divided into different flow stretches based on the average productivity 

of each flow stretch. 

Table 3 shows the water inputs from the different flow stretches for each measured depth interval. A "top" stretch has been 

added to the top of the well above the pumping depth, where the different water inputs are unknown. The water input in the 395 

upper part (which includes flow stretch т1 for the case of a pumping rate of 70 l/s) is obtained by the difference between the 

pumping rate and the deduced flow rate at that depth. 

At a pumping rate of 70 l/s, the water input from flow stretch т1 is not known, and the input of this flow stretch may increase 

in proportion to the pumping rate, which should imply that the upper part of the well would remain constant (e.g., due to the 

dynamic level dropping below some of the upper layers). 400 

Both Fig. 8 and Table 3 show that the water input from flow stretch т2 is very low, even for high pumping rates, and it is close 

to the flowmeter accuracy; hence, that flow stretch is omitted from the analysis. 

Table 3 shows that for pumping rates of 20 and 30 l/s, the water inputs from the upper part of the well and from flow stretches 

т1, т3, and т6 increase in a way that is practically proportional to the flow (with a ratio ≈ 1.5) and fits a confined aquifer. Flow 

stretches т4 and т5 have negligible water inputs, reaching negative inputs for a pumping rate of 20 l/s. However, for the 70 l/s 405 

pumping rate, there is an abrupt change in the hydraulic behaviour of the well. On the one hand, the whole water input from 

the upper part of the well and from flow stretch т1 do not increase proportionally to the pumping rate (ratio=2.33). On the 

other hand, flow stretch т6 shows a sharp increase in the water inputs, and flow stretches т4 and т5 present an apparent activation. 

Given the possibility that an increase in the head loss could justify such behaviour, values for each pumping rate were 

calculated and added. 410 
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Figure 8. Flowmeter results in the case study (grey horizontal bars reflect the depth intervals of each screen). a) upward flow rate 
versus depth; b) water inputs from each screen. 

The high correlation of the water inflows in stretches 2 and 3 for the pump located at the depths of 191 m and at 253 m, 

confirms the consideration that the depth of the pump does not affect the values obtained with the flowmeter logs. 415 
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Table 3. Water inputs of flow stretches for different pumping rates and fractions over the total flow rate QT in the case study 

  Pumping rate Q T  (l/s) 
  20 30 70 

Stretch Depth  
(m) 

Input 
(l/s) 

qN (20) 

% of 
Q T 

Input  
(l/s) 

qN (30) 

% of 
Q T 

Input  
(l/s) 

qN (70) 

% of 
Q T 

Top    0 - 200 10.2 0.53 14.8 0.49 
44.5 0.64 

т1 203 - 250 7.0 0.34 9.8 0.33 
т2 (*) 250 - 300 0.4 0.02 0.4 0.01 0.8 0.01 

т3 300 - 360 1.1 0.06 1.7 0.06 3.8 0.05 
т4 360 - 400 −0.9 −0.05 0.1 0.00 5.8 0.08 
т5 400 - 430 −0.3 −0.02 0.4 0.01 4.6 0.07 
т6 430 - 470 1.6 0.08 2.9 0.10 10.5 0.15 

(*) As cited above, this flow stretch is not analyzed because its water inputs are very 
low for all pumping rates 

 

Regarding the existence of different hydraulic heads, note that the negative water input in flow stretches т4 and т5 for the 

pumping rate of 20 l/s corroborates the validity of the hypothesis in this work. These negative inputs reflect the fact that when 

the drawdown is located above the hydraulic head of these flow stretches, the water flow does not occur inwards towards the 420 

well but rather outwards, reducing the upward vertical flow. In any case, the fact that the deeper flow stretches have a hydraulic 

head below the static level of the well explains that the pumping rate versus drawdown curve adjusts to a power function with 

an exponent greater than 1, and the specific capacity versus drawdown curve is ascending. There are several studies in the 

literature that mention negative water inputs as those obtained in this case, but they do not present the hydraulic interpretation 

thereof, most of them correspond to flow-logs measured in ambient conditions (Paillet et al., 2000; Butler et al., 2009; Day-425 

Lewis et al., 2011). 

4.6 Hydraulic reinterpretation 

The permeability of each stretch has been calculated using Eq. (2). Instead of the contribution of each layer qj, the sum 

total of the contributions of each stretch qN(s) is considered (see table 3). The unique initial drawdown d considered in Eq. (2) 

has been modified by the drawdown of the entire well d0 (s)= hDL(s)−HSL− Δh(s) for each pumping rate (s) (Δh(s) being the 430 

head losses showed in table 2). The static level HSL is 157 m (as determined before the flowmeter logging was conducted) and 

the dynamic levels hDL(s)  are 172 m for pumping rate of 20 l/s, 178 m for pumping rate of 30 l/s y 205 m for pumping rate of 

70 l/s. The thickness of each layer Δz j has been replaced by the thickness of each stretch Δz (тN) (depth intervals in Table 3). 

The radius of influence (R0) considered is 950 m (as in the previous calculations), and the well radius (rw) is 0.404/2=0.202 m. 

The characteristic curves of each stretch are shown in Fig. 9.a. 435 

Analysing the specific capacities of different flow stretches, т1 and т3 show the expected proportionality for a confined 

aquifer. However, this is not the case for flow stretches т4, т5 and т6, whose dN(s) versus qN(s) data fit to a power function with 
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exponents of 0.22, 0.37 and 0.67, respectively (see Fig. 9.a). Not only does this not reflect Darcian behavior, but it also indicates 

an exponent p in the Jacob equation of less than 1, as is the case with the well as a whole (see Fig. 6). 

However, if it is considered that flow stretches т4, т5 and т6 have different hydraulic heads, the results vary. Through an iterative 440 

process, the value of the static level (hydraulic head) of each flow stretch for which the total water input of the flow stretch 

versus the drawdown acquires greater alignment can be determined. This means that when the data are fitted to a straight line, 

the regression coefficient is maximum. In other words, the resulting exponent in the Jacob equation when the data are fitted to 

a power function is p=1. Thus, for flow stretch т6, the static level for which inputs versus drawdown acquire greater alignment 

occurs at a depth of 165 m. Similarly, the resulting static level for flow stretch т5 is located at a depth of 175 m. For a pumping 445 

rate of 70 l/s, flow stretch т4 undergoes an “activation” effect (even higher than flow stretch т5) when the dynamic level exceeds 

the true static level of т4, which is computed at a depth of 177.5 m. Summarizing, the hydraulic heads hSL(N) obtained with 

this criterion are 157 m for т1 and т3; 177.5 m for т4; 175 m for т5; and 165 m for т6. 

Figure 9.b shows the regression lines of water inputs versus drawdown for each stretch, with the corresponding relationships 

and R2 coefficients. 450 

 
Figure 9. Drawdown versus water inputs for different flow stretches in the case study. a) dN(s) # qN(s) with a unique hydraulic head 
for all the stretches. b) dN(s) # qN(s) with the modified hydraulic heads for each stretch obtained considering that p is at least equal 
to one in the Rorabough equation). 

With these differentiated static levels, the hydraulic conductivities of each flow stretch were obtained using a next change of 455 

Eq. (2) (Rehfeldt et al. 1989) replacing d0 (s) by dN(s)= hDL(s)−hSL(N)−Δh(s), which values are presented in Table 4. 

The successive relationships used to arrive to the actual permeability with depth have been: 
Thiem (1906) 

→ 
Rehfeldt et al. (1989) 

→ 
Adapting to stretches 

→ 
With actual тN hydraulic heads 

𝑘𝑘 =
𝑄𝑄

2𝜋𝜋𝑏𝑏𝑑𝑑 𝑙𝑙𝑛𝑛
𝑅𝑅0
𝑟𝑟𝑤𝑤

 𝑘𝑘𝑗𝑗 =
𝑞𝑞𝑗𝑗

2𝜋𝜋∆𝑧𝑧𝑗𝑗𝑑𝑑
𝑙𝑙𝑛𝑛
𝑅𝑅0
𝑟𝑟𝑤𝑤

 𝑘𝑘𝑁𝑁(𝑠𝑠) =
𝑞𝑞𝑁𝑁(𝑠𝑠)

2𝜋𝜋∆𝑧𝑧(𝑇𝑇𝑁𝑁)𝑑𝑑0(𝑠𝑠) 𝑙𝑙𝑛𝑛
𝑅𝑅0
𝑟𝑟𝑤𝑤

 𝑘𝑘𝑁𝑁 =
𝑞𝑞𝑁𝑁(𝑠𝑠)

2𝜋𝜋∆𝑧𝑧(𝑇𝑇𝑁𝑁)𝑑𝑑𝑁𝑁(𝑠𝑠) 𝑙𝑙𝑛𝑛
𝑅𝑅0
𝑟𝑟𝑤𝑤

 

 

It must point out that the kN is the same for the different (s) because the ratio qN(s)/dN(s) is the same for any pumping rate 

(dN(s) versus qN(s) are fitted to a straight line) 460 
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Table 4. Specific capacities and permeabilities of flow stretches for the static level determined in the case study 

Stretch hSL(N)  
(m) 

qN(s)/dN(s) 
(m2/s) 

k 
(darcy) 

Top 157.0 - - 
т1 157.0 4.7·10−4 1.3·10−3 
т2 157.0 - - 
т3 157.0 7.5·10−5 2.0·10−4 
т4 177.5 1.8·10−4 5.3·10−4 
т5 175.0 1.4·10−4 5.4·10−4 
т6 165.0 2.4·10−4 1.0·10−3 

 

The average hydraulic conductivities of the stretches in the studied part of the well (200 to 470 m) have values between 2·10−4 

and 1.3·10−3 Darcy, providing a geometric mean value of 5·10−4 Darcy, which is close to the average hydraulic conductivity 

obtained with the pumping tests. The largest contrast occurs with the difference between the hydraulic conductivity values of 465 

the different flow stretches, which is close to an order of magnitude. 

As mentioned at the beginning of Sect. 4, the precision of flowmeter logs does not allow to obtain reliable hydraulic 

conductivity values of each permeable layer to make a more detailed characterization of each stretch. However, that analysis 

could be undertaken by considering the average water input and average thickness. 

5 Discussion 470 

Regarding the linearity predicted by Darcy's law, in this work, the variation corresponding to nonlinear flow is a different 

process than the change in the flow from a laminar to a turbulent regime. Takhanov (2011) determined that the onset of 

nonlinear flow occurs prior to the change to turbulent flow; in fact, some authors have considered that turbulent flow does not 

occur in porous fine-grained media in their natural state (Green and Duwez, 1951; Bakhmeteff and Feodoroff, 1937). In this 

sense, Houben (2015) established a linear laminar regime in the aquifer that becomes nonlinear in the gravel pack and only 475 

becomes turbulent on the screen and inside the pipe. In this work, the regime change is less gradual than that predicted by the 

Forchheimer equation (1901) and does not increase with the same power after the transition. It should be taken into account 

that both the values of the friction factor and the particle Reynolds number established for the Forchheimer flow decrease as 

Re increases. To analyse the flow linearity in water wells, the hydraulic characteristics of the flow in the aquifer levels must 

be quantifiable by the velocity near the well. Moreover, a value of 0.01 m/s can be considered the maximum velocity in 480 

groundwater near wells. For example, if a water well with a very high extraction rate of 100 l/s, radius of 0.2 m, total length 

of 400 m and screened length of 80 m (20%) is considered, then the average water input velocity would be 0.005 m/s. 

Considering the results in Lopik et al. (2017), nonlinear behaviour starts at velocities greater than 0.01 m/s, so the maximum 

water input still exhibits Darcian behaviour. 
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Among the possible explanations for the difference in hydraulic head values for the deeper flow stretches are hydrogeological 485 

reasons, such as the presence of flow stretches with different vertical transmissivities. However, the approximated values for 

the hydraulic conductivity in the less permeable stretches (т2 and т4) contradict this hypothesis, since flow stretch т2 is less 

permeable than flow stretch т4, but flow stretch т3 is not affected by a similar effect. Another possible explanation is that the 

change in the effective drawdown is due to the existence of nearby extraction wells, which overexploited the aquifers 

corresponding to flow stretches т4 and т5, thereby producing a drop in the static level of these flow stretches. 490 

Concerning the reliability of the final permeability values, one aspect that must be considered in estimating hydraulic 

parameters from flowmeter results is that the analysis was conventionally performed through the screens assembled in the 

casing. However, the distribution of these screens only approximately matches the permeable layers that the well crosses. 

Hence, differences between the thicknesses of the permeable layers and the assembled screens may exist, as well as permeable 

layers that are not faced with a screen, whose effects are minimized by gravel packing. This effect adds to that produced by 495 

the local factors of the aforementioned well, which is an additional reason for differences in the water inputs of the different 

screens within each stretch. 

Therefore, although the results of the pumping tests and the flowmeter results yield a similar hydraulic conductivity value for 

the entire well, after considering the possible hydraulic head difference that justifies and relates the anomalies reported over 

the pumping test data, this value moves away from the actual hydraulic conductivity of the aquifer. 500 

Under the consideration that vertically there is a high hydraulic connection (similar to horizontal one), it is common practice 

in hydrogeology to model large aquifers as an equivalent porous medium. In addition to obtaining water balance results, such 

models have a wide application in many basins (De Filippis et al., 2016). However, this study focuses on a case where the 

vertical hydraulic connection is much lower than the horizontal one, as can be deduced from the existence of different hydraulic 

heads found. In this study, it is considered that the low hydraulic connection due to the existence of one or several wells in a 505 

basin of the size studied does not significantly affect the lateral variations of the hydraulic head along the basin. In contrast 

with several works taking into account the hydraulic head field (Yeh et al., 1996; Axness and Carrera, 1999), in this study it is 

considered a single hydraulic head for distances smaller than the radius of influence. When wells are continuously screened, 

on a small scale it can be taken into account that the hydraulic head does not show as abrupt a change as is considered in great 

continental hydrological basins. In these basins this effect, which causes the conventional hydraulic head field over distance, 510 

is included in the hydraulic parameter relationships from the hydraulic head gradient. It is also considered that in the interior 

of a large diameter well, such as water wells in large continental basins, there is no change with depth of the effective hydraulic 

head. In oil wells, this possibility is considered because of the strong variations in vertical flow velocity and the use of smaller 

diameters, leading to higher head losses. 

Regarding Jacob's well equation (Eq. (3)), some authors say that the coefficient that multiplies Q2 is the turbulent flow 515 

coefficient, but others say that when the characteristic curve is not linear, it is because turbulent flow occurs. However, it is 

not clear what this “turbulent flow” refers to. It does not seem to refer to the change in flow in the pipeline but to the water in 

the aquifers acquiring turbulent flow. Regarding the friction factor, water flow in granular aquifers is not turbulent, although 
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the obtained Re value would correspond to turbulent flow if the thickness of the aquifer is used to calculate the Reynolds 

number instead of using a mean pore diameter through which the water circulates. 520 

This contrasts with the complex flow regime in oil wells where gas and liquids of different characteristics are combined, the 

behaviour of which has been analysed in many publications (Nind, 1965; Hasan and Kabir, 1988; Bri and Arirachakaran, 1992; 

Kabir and Hasan, 2004; Wu et al., 2017). This may lead one to believe that such behaviour is also common for water. However, 

if we consider, for example, a pressure gradient reaching 5 atm and an average pore diameter reaching 2 mm, the Re number 

obtained for water flow is <100, which does not correspond to turbulent flow. 525 

Related to the spatial extension of the different hydraulic heads obtained, there are two facts that should be considered. On the 

one hand, hydrogeologists who have studied the Madrid Basin are already aware of the increase in arsenic that occurred at 

other points in the NW part of the basin for high drawdowns (López-Vera 1985). This would confirm that the hydraulic head 

of the arsenic-contaminated stretches is lower. On the other hand, although has already mentioned, this part of the basin is 

classified as a heterogeneous and anisotropic free aquifer system (Samper, 1999; Yélamos and Villarroya, 2007), other studies 530 

on borehole correlation in this area show that the stretches established from logs reach distances of more than 10 km (Caparrini, 

2006). 

This study has allowed to carry out the hydrological and hydraulic division of the studied basin that had not been done 

before, and such division involve a more precise obtaining of the permeability values in each stretch (and hence in its 

corresponding aquifer) which was neither been before. Certainly, the new procedure developed to obtain the hydraulic head 535 

differences in heterogeneous granular basins and the results obtained for the first time in the Madrid basin may allow 

hydrogeological hypotheses to understand the large-scale structure of aquifers concerning recharge. According to the results 

obtained, the fact that the Madrid Basin is considered a single aquifer should be replaced, at least from a depth of 200 m, by 

a sequence of stretches -aquifers- differentiated by their different permeability values. From 345 m depth (the one of stretch 

4), it was also found that the aquifers corresponding to stretches 4, 5 and 6 have different "hydraulic heads" than the upper 540 

aquifers. One hypothesis would be that this means different "recharge pathways". So that it could be deduced that above 345 

m the Madrid Basin can be considered a single heterogeneous aquifer (with different sub-aquifers of different permeability), 

and below 345 m, the Madrid Basin consists of a sequence of confined aquifers (the last three coarse-grained ones shown in 

the welllogs, see Fig. 4) that are hydraulically separated from the rest of the aquifers. 

 545 
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Figure 10. Large-scale scheme of NW arc of the Madrid Basin.  

It should be emphasized that the hydrogeological hypotheses that can be made as the previous scheme must be contrasted with 

results in more wells within the NW arc of the Madrid Basin. 

The division of the studied well also allows proposing a strategy regarding the arsenic propagation in the Madrid basin. The 

obtained results indicate the stretch of the studied well that is "activated" when the dynamic level exceeds the "hydraulic head" 550 

of the aquifer to which it corresponds, is the rather connected to a point -or zone- where the arsenic focus is. As the exploitation 

of that stretch in different points of the basin will cause the contaminant to move towards those points, that critical dynamic 

level should be not allowed 

Finally, regarding the application of this methodology to other aquifers of the same type, there is no hydrogeological hypothesis 

that implies that in other great continental basins in which large impermeable-type stretches are found, all the permeable 555 

stretches should have the same hydraulic head. 

6 Conclusions 

The improvements developed in this work are represented by the following advances in the hydraulic interpretation of 

flowmeter logs: 

a) The method developed from the flowmeter allows to reinterpret the hydraulic behaviour of any well in which the 560 

characteristic curve d(Q) increases with a power less than 1 and the characteristic curve Q/d increases with drawdown, which 

until now was considered anomalous due to poorly measured data or due to changing aquifer characteristics with pumping 

time. 

b) The processing of flowmeter logs provides an increase in the quantified values of water inputs in the deepest permeable 

media for low pumping rates. This increase modifies the obtained values for hydraulic conductivities in the studied well data 565 

that approach Darcian behaviour but do not reach it. 

c) The division of the wells into flow stretches with different hydraulic heads provides hydraulic reinterpretation that explains 

the possible anomalies produced in the step-drawdown pumping tests. As occurs in the well in this study, both the characteristic 

curve of the pumping test and the specific capacity versus the drawdown curve show unexpected slopes, the anomalous nature 

of which is not justified by non-Darcian behaviour. 570 

d) In particular, the resulting values of the different hydraulic heads make it advisable, in any well located in the Madrid Basin, 

not to use pumping rates for which the dynamic level goes beyond the depth corresponding to the drawdown of 165 m in the 

studied well. Once it is determined if flow stretches т4  and т5 have a greater arsenic content than flow stretch т6, the mentioned 

depth can be changed to that corresponding to a drawdown of 175 m in the studied well. 

The verification of the existence of different hydraulic heads for the different stretches with depth entails a substantial change 575 

in the hydrogeological knowledge of a basin such as the one studied. It can also be concluded that the corresponding 

determination of the actual hydraulic properties of the different stretches is essential for modelling the hydraulic behaviour of 
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the basin. Likewise, although it does not have a spatial extension corresponding to the entire basin (as there are characteristics 

that do not necessarily have to be maintained, depending on the position with respect to the different source areas and the 

distance to them), the extension of up to 10 km is sufficiently interesting to characterise parts of the basin. 580 

As a future line of action, this study proposes the execution of step-drawdown pumping test and flowmeter logs with various 

flow rates in wells progressively distant from the studied one to verify that the stretches with different hydraulic heads maintain 

and to determine the spatial extension of this behaviour. 
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