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Abstract 12 

Climate warmingchange affects snowfall fractions and snowpack storage, displaces the rain-snow transition zone towards 13 

higher elevations, and impacts dischargeprecipitation phase, which can propagate into changes in streamflow timing and 14 

magnitude as well as low-flow patterns. However, it remains unknown. This study examines how variations in the spatial and 15 

temporal distribution of precipitation at the rain-snow transition zonerainfall and snowmelt affect discharge. To investigate 16 

this, we in rain-snow transition zones. These zones experience large year-to-year variations in precipitation phase, cover a 17 

significant area of mountain catchments globally, and might extend to higher elevations under future climate change. We used 18 

observations from eleven weather stations and snow depths measured infrom one aerial lidar survey to force a spatially 19 

distributed snowpack model (iSnobal/Automated Water Supply Model) in a semi-arid, 1.8 km2 headwater catchment at the 20 

rain-snow transition zone.. We focused on surface water inputs (SWI; the summation of rainfall and snowmelt on the soil) for 21 

four years with contrasting climatological conditions (wet, dry, rainy and snowy) and compared simulated SWI to measured 22 

discharge. We obtained aA strong spatial agreement between snow depth from the lidar survey and model (r2:  0.88), and) was 23 

observed, with a median Nash-Sutcliffe Efficiency (NSE) of 0.65 for simulated and measured snow depths for all modelled 24 

years (0.75 for normalized snow depths). The spatial pattern of SWI was consistent between the four years, with north-facing 25 

slopes producing 1.09 to 1.25 times more SWI than south-facing slopes, and snow drifts producing up to six times more SWI 26 

than the catchment average. We found thatAnnual discharge in a snowy year the catchment was almost twice as high as in a 27 

rainy year, despite similar SWI. However, years not significantly correlated with a lower snowfall the fraction did not always 28 

have lower annual discharge nor earlier stream drying. Instead, we found thatof precipitation falling as snow, but instead with 29 

the magnitude of precipitation and spring snow and rain. Stream cessation depended total and spring precipitation, but also on 30 

snowpack characteristics: the dry-out date at the catchment outlet was positively correlated to the snowpack melt-out date. 31 

These results highlight the importance of the heterogeneity of SWI at the rain-snow transition zone for streamflow generation 32 

and cessation, and emphasize the need for spatially distributed modelling or monitoring of both the snowpack and rainfall 33 

dynamics. 34 

 35 
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1. Introduction 39 

Due to increases in temperature, mountainous regions will receive less snowfall and more rainfall (Barnett et al., 2005; Stewart, 40 

2009). This will alter the timing and amount of snowmelt, a significant source for water resources across the globe (Barnett et 41 

al., 2005; Marks et al., 1999; Somers and McKenzie, 2020; Viviroli et al., 2007). On the scale of the continental United States 42 

(US), a decrease in the fraction of precipitation falling as snow (snowfall fraction hereinafter) is expected to decrease stream 43 

discharge (Berghuijs et al., 2014). Earlier stream discharge peaks in response to earlier snowmelt and a decline in summer low 44 

flows across the semi-arid mountainous US have been reported in both observational data records (McCabe et al., 2017; Luce 45 

and Holden, 2009; Regonda et al., 2005) and future climate projections (Naz et al., 2016; Leung et al., 2004; Milly and Dunne, 46 

2020; Christensen et al., 2004). However, lower snowfall fractions in much of the western United States have not yet led to a 47 

significant decrease in annual discharge (McCabe et al., 2017). Given that future climate predictions suggest further low-flow 48 

declines are likely, understanding year-round discharge responses, and in particular the sensitivity of stream discharge to 49 

changes in yearly snowfall fractions, is therefore warranted, and will help us to anticipate how stream discharge might be 50 

affected by climate change.   51 

 52 

Variations in snowfall fractions can affect the temporal distribution of surface water inputs (SWI = rainfall + snowmelt onto 53 

the soil). Snowpacks store water and release snowmelt later, whereas rain on snow-free ground immediately enters the 54 

hydrologic system. After rainfall or snowmelt reaches the ground surface, it might become stream discharge, remain stored on 55 

the land surface or in the soil, recharge deeper groundwater, or become evaporated or transpired. Generally, water inputs from 56 

rain or snowmelt during periods with high antecedent wetness and low evapotranspiration rates are more likely to recharge 57 

groundwater and generate discharge (Jasechko et al., 2014; Molotch et al., 2009; Hammond et al., 2019). Rainfall and snowmelt 58 

inputs might result in similar runoff ratios (discharge/SWI) as long as the overall catchment wetness is similar or if the 59 

catchment is wet at key locations for water transport (Seyfried et al., 2009). These antecedent wetness conditions may reflect 60 

the ability of catchment storage to provide a “memory effect” of past inputs that can buffer short -term changes in inputs, but 61 

this memory varies among catchments and across years. Consequently, changes in snowfall fractions might not always affect 62 

stream discharge, especially in locations with a strong memory effect. Prevailing climatic conditions and subsurface storage 63 

capacity might also influence how precipitation is partitioned takes after it reaches the ground surface (Hammond et al., 2019), 64 

indicating that both the temporal and spatial distribution of SWI are important when considering how snowfall fractions affect 65 

seasonal to annual stream discharge generation. 66 

 67 

Snowfall fractions may also influence the spatial distribution of SWI. In the semi-arid western US, rainfall magnitudes 68 

generally increase with elevation (Johnson and Hanson, 1995). In regions with large snowfall fractions, this general elevation-69 

driven pattern can be overlain by impacts of wind-driven redistribution of snow, which is dependent on factors such as 70 

topography, aspect, wind speed and wind direction (Sturm, 2015; Tennant et al., 2017; Winstral and Marks, 2014; Trujillo et 71 

al., 2007). Hence, differences in the SWI distribution due to varying snow depths could be particularly substantial in areas 72 

where wind-driven redistribution of snowfall is significant. The primary controls (e.g., topography, aspect, elevation) on snow 73 

depth and snow water equivalent (SWE) are relatively consistent from year to year, so the interannual distribution of snow is 74 

usually spatially consistent (Parr et al., 2020; Sturm, 2015; Winstral and Marks, 2002). The effects of elevation and aspect on 75 

the spatial distribution of snow depth, and thus the potential for SWI as snowmelt, are well-studied in both high and mid-76 

altitude mountains (e.g., Grünewald et al., 2014; López-Moreno and Stähli, 2008; Tennant et al., 2017). Studies on snow 77 

drifting in seasonally snow-covered areas (Mott et al., 2018), prairie and arctic environments (e.g., Fang and Pomeroy, 2009; 78 

Parr et al., 2020) and in the context of avalanches (e.g., Schweizer et al., 2003), have shown that snow drifts can strongly 79 

influence the spatial water balance. These studies also revealed that equator-facing slopes might only receive half as much 80 

SWI as snowmelt compared to snow drift areas (Flerchinger and Cooley, 2000; Marshall et al., 2019). In turn, water originating 81 

from snow drifts can locally control groundwater level fluctuations (Flerchinger et al., 1992), and contribute to streamflow 82 
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into the summer season (Chauvin et al., 2011; Hartman et al., 1999; Marks et al., 2002). Due to increases in temperature, 83 

mountainous regions will receive less snow and more rain (Barnett et al., 2005; Stewart, 2009). This is concerning because 84 

snowmelt is a primary source for water resources across the globe (Barnett et al., 2005; Marks et al., 1999; Somers and 85 

McKenzie, 2020; Viviroli et al., 2007)The relative importance of spatial snowmelt patterns is expected to increase with 86 

snowmelt magnitude, which is sensitive to snowfall fractions. Hence, quantifying spatial snowmelt patterns in areas that are 87 

not seasonally snow-covered, and determining the importance of snow drifts for streamflow generation in these areas, could 88 

be an important step in clarifying how stream discharge is affected by snowfall fractions.  89 

 90 

One area where the snowfall fraction varies substantially from year to year is the rain-snow transition zone. . On the scale of 91 

the continental United States (US), a decrease in the fraction of precipitation falling as snow (snowfall fraction hereinafter) is 92 

expected to decrease stream discharge (Berghuijs et al., 2014). However, lower snowfall fractions in much of the western 93 

United States have not yet led to a significant decrease in annual discharge (McCabe et al., 2017). Nonetheless, both 94 

observational data records (McCabe et al., 2017; Luce and Holden, 2009; Regonda et al., 2005) and future climate projections 95 

(Naz et al., 2016; Leung et al., 2004; Milly and Dunne, 2020; Christensen et al., 2004) reveal earlier stream discharge peaks 96 

in response to earlier snowmelt, and a decline in summer low flows across the semi-arid mountainous US. One emerging 97 

question from these findings is how decreases in snowfall affect discharge in areas that already receive a mix of snow and rain.  98 

 99 

The rain-snow transition zone is an elevation band withinin which the dominant phase of winter precipitation shifts between 100 

snow and rain (Nayak et al., 2010), and is often characterized by a transient snowpack in (at least) parts of the defined area. 101 

Multiple studies in the European Alps and the north-western United StatesUS have shown that snowfall fractions in lower and 102 

mid-altitude mountains, where the rain-snow transition zone is located, are particularly vulnerable to increases in temperature 103 

associated with climate change (Stewart, 2009).(e.g., Stewart, 2009). For example, the snowfall fraction in the Swiss Alps is 104 

projected to decrease between 50% (at ~2000 m) to 90% (~(at ~1000 m) towards the end of the century (Beniston et al., 2003). 105 

The current extent of the rain-snow transition zone covers about 9200 km2 in the Pacific Northwest of the United StatesUS 106 

alone (here defined as Oregon, Washington, Idaho and the western part of Montana; Nolin and Daly, 2006), and is expanding 107 

and moving to higher elevations in response to climate change (Bavay et al., 2013; Nayak et al., 2010). This migration of the 108 

transition zone can affect precipitation patterns as well as discharge generation and timing across mountain ranges, with notable 109 

effects at the elevations surrounding the transition zone.   110 

 111 

 112 

In addition to the Climate expected decrease in snowfall fractions with climate change also has the potential to increase , annual 113 

climate variations are expected to increase almost everywhere across the planet (Seager et al., 2012), affecting annual runoff 114 

efficiency (Hedrick et al., 2020)(Hedrick et al., 2020) and likely also influencing stream discharge timing and magnitude. In 115 

mid-elevation rain-snow transition zones the annual snowpack variability is already relatively large. For example, in the 116 

Reynolds Creek Experimental Watershed (RCEW, in Idaho, US) the coefficient of variation (CV) of peak snow-water 117 

equivalent (SWE) between 1964 and 2006 ranged from 0.28-0.37 for five high-elevation stations (2056-2162 m) and was 0.72 118 

for a mid-elevation weather station at the rain-snow transition zone (1743 m, Nayak et al., 2010). This mid-elevation variability 119 

suggests that year-to-year differences in snowfall at the rain-snow transition zone might already be substantial compared to 120 

nearby catchments at higher elevations. This allows the investigation of catchment responses to snowfall variations using a 121 

relatively short data record. One well-documented discharge response is that years in which catchments receive less snow have 122 

earlier snow-driven discharge peaks (McCabe and Clark, 2005; Stewart et al., 2005)(McCabe and Clark, 2005; Stewart et al., 123 

2005). EarlierThis is relevant because earlier spring snowmelt has been linked to an increased risk of wildfire for catchments 124 

across the western US (Westerling et al., 2006), as well as to earlier and lower low-flows in late-summer and fall months 125 

(Kormos et al., 2016). In some catchments and years, portions of the stream network might also dry, alteringcompletely cease 126 
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to flow and this drying can alter the network’s ecological and biogeochemical functioning (Datry et al., 2014). In mid-elevation 127 

rain-snow transition zones, the annual snowpack variability is already relatively large. For example, in the Reynolds Creek 128 

Experimental Watershed (RCEW, in Idaho, US) the coefficient of variation (CV) of peak snow-water equivalent (SWE) 129 

between 1964 and 2006 ranged from 0.28-0.37 for five high-elevation stations (2056-2162 m) and was 0.72 for a mid-elevation 130 

weather station at the rain-snow transition zone (1743 m, Nayak et al., 2010). This mid-elevation variability suggests that year-131 

to-year differences in snowfall at the rain-snow transition zone might already be substantial compared to nearby catchments at 132 

higher elevations, and allows for the investigation of catchment hydrologic responses to snowfall variations using a relatively 133 

short data record, especially in sites with a limited memory of past inputs. Using observations of hydro-climatically different 134 

years (e.g., rainy vs. snowy) could reveal how discharge and stream drying at the rain-snow transition zone has responded to 135 

past variations in water inputs, and thereby provide insight in how catchmentsother small (<10 km2) catchments with a similar 136 

vegetation cover and precipitation regime might respond to future changes in rain/snow apportionments. 137 

 138 

Annual or climate-driven variations in snowfall fractions might affect the spatial distribution of surface water inputs (SWI = 139 

rainfall + snowmelt). In years that receive less snow, the spatial pattern of SWI could depend more on the spatial distribution 140 

of rain, whereas the SWI pattern might reflect the distribution of the snowpack more strongly in years that receive more snow. 141 

In the semi-arid western US, rainfall magnitudes generally increase with elevation (Johnson and Hanson, 1995), whereas the 142 

spatial distribution of the snowpack is dependent on elevation, aspect, and wind-driven redistribution of snow, among other 143 

factors (Sturm, 2015; Tennant et al., 2017; Winstral and Marks, 2014; Trujillo et al., 2007). These primary controls on snow 144 

depth and SWE are relatively consistent from year to year, so the interannual distribution of snow is usually spatially consistent 145 

(Parr et al., 2020; Sturm, 2015; Winstral and Marks, 2002). The effects of elevation and aspect on the spatial distribution of 146 

snow depth, and thus, SWI, are well-studied in both high and mid-altitude mountains (e.g., Grünewald et al., 2014; López-147 

Moreno and Stähli, 2008; Tennant et al., 2017), and the seasonal spatial distribution of SWI has been quantified at the rain-148 

snow transition zone (Kormos et al., 2014). Snow drifting can also strongly impact the snowpack in the rain-snow transition 149 

zone, but thus far, research on snow drifting has been focused mainly on seasonally snow-covered areas (Mott et al., 2018), 150 

prairie and arctic environments (e.g., Fang and Pomeroy, 2009; Parr et al., 2020) or has been studied in the context of 151 

avalanches (e.g., Schweizer et al., 2003). These studies have shown that snow drifts can strongly influence the spatial water 152 

balance, that equator-facing slopes might only receive half as much SWI as areas that host snow drifts (Flerchinger and Cooley, 153 

2000; Marshall et al., 2019), and that water originating from snow drifts can locally control groundwater level fluctuations 154 

(Flerchinger et al., 1992), and contribute to streamflow into the summer season (Chauvin et al., 2011; Hartman et al., 1999; 155 

Marks et al., 2002).  156 

 157 

In addition to the spatial distribution of water inputs, the snowfall fraction also influences when SWI reaches the ground 158 

surface. Snowpacks store water and release snowmelt later, whereas rain on bare ground enters the hydrologic system 159 

instantaneously. After rainfall or snowmelt reaches the ground surface, it might become stream discharge, be stored in the soil, 160 

recharge deeper groundwater, or be evaporated or transpired. Generally, water inputs from rain or snowmelt during periods 161 

with high antecedent wetness and low evapotranspiration rates are more likely to recharge groundwater and generate discharge 162 

(Jasechko et al., 2014; Molotch et al., 2009; Hammond et al., 2019). However, rain and snowmelt inputs might result in similar 163 

runoff ratios (discharge/SWI) as long as the overall catchment wetness is similar or if the catchment is wet at key locations  for 164 

water transport (Seyfried et al., 2009). The precipitation phase might also affect other hydrological processes that control water 165 

partitioning, for instance by inhibiting soil evaporation in areas that are snow-covered (Wang et al., 2013). Prevailing climatic 166 

conditions and subsurface storage capacity might also influence which route precipitation takes after it reaches the ground 167 

surface (Hammond et al., 2019), indicating that both the spatial and temporal distribution of SWI could affect if and when 168 

water reaches the stream. 169 

 170 
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Thus, ourthe overarching goal of this work is to improve our understanding of discharge responseresponses to year-to-year 171 

variations in precipitation phase and magnitude. We do this at the rain-snow transition zone - a region that experiences large 172 

year-to-year variations in snowfall fractions, covers a significant part of the land surface and might extend to higher elevations 173 

due to climate change. Specifically, we address the following research questions: 174 

 175 

1. How does the spatial and temporal distribution of SWI at the rain-snow transition zone vary between particularly wet, 176 

dry, rainy or snowy years?  177 

 178 

2. How does stream discharge timing and amount respond to SWI in wet, dry, rainy or snowy years?  179 

3.  Are variations in stream discharge related to variations in yearly snowfall fractions?  180 

 181 

Examining natural variation in snowfall fractions in the rain-snow transition zone contrasts with other research on snow-related 182 

processes that focus on seasonally-snow covered catchments. While many studies of snowmelt runoff examine seasonal 183 

responses at the landscape scale, here we focus on hourly responses at a fine spatial resolution. This allows us to investigate 184 

the spatial distribution of the snowpack and snowmelt, as well as the phase of precipitation and the temporal distribution of 185 

SWI. Furthermore, while SWE is frequently used as a summarizing variable for winter precipitation when comparing 186 

precipitation to stream discharge, SWI is more directly related to the timing and amount of water resources, and might therefore 187 

be an important variable to model in future work addressing similar questions. Lastly, we also compare stream discharge to 188 

annual metrics of snowfall fraction and total precipitation to provide a finer-scale context for results from larger scale models 189 

or estimations that rely on annual metrics.   190 

 191 

2. Site description 192 

We focus our efforts in theOur study location is Johnston Draw study area, a 1.8 km2 headwater catchment at the Reynolds 193 

Creek Experimental Watershed (RCEW) in Idaho, USA. Elevations range from 1497 to 1869 m a.s.l., and mean annual air 194 

temperature and precipitation are 8.1 °C and 609 mm, respectively (2004-2014; Godsey et al., 2018). Previous research in 195 

RCEW has shown that mid-elevation catchments (1404 and 1743 m a.s.l.) have seen an increase in minimum daily 196 

temperatures (+0.57°C/decade), reduced snowfall (‑32  mm/decade), and a decrease in streamflow (-0.75 x 106 m313.8 197 

mm/decade) over the 1965-2006 data record, while there was no change in total precipitation (Nayak et al., 2010; Seyfried et 198 

al., 2011)(Nayak et al., 2010; Seyfried et al., 2011). These streamflow trends are unlikely to be driven by increased plant water 199 

use (caused by increased temperatures) because there is only a short time window (~weeks) in which plant leaf-out has occurred 200 

and there is still sufficient soil water available in this water-limited environment (Seyfried et al., 2011). The catchment is 201 

underlain by granite bedrock (79%), with some basalt (3%) and tuffs (18%) (Stephenson, 1970), and slightly deeper soils exist 202 

on the north-facing slopes, although the difference is not significant (1.31±0.56 m vs. 0.77±0.34 m, respectively, p-value: 0.05; 203 

Patton et al., 2019). Annual average soil water storage on the north-facing slopes is larger than on the south-facing slopes, 204 

which is largely due to the difference in soil depth and a later start of vegetation growth compared to the south-facing slopes 205 

(Godsey et al., 2018; Seyfried et al., in review).(Godsey et al., 2018; Seyfried et al., 2021). Snowberry (Symphoricarpos), big 206 

and low sagebrush (Artemisia tridentate and Artemisia arbuscula), aspen (Populus tremuloides) groves and wheatgrass 207 

(Elymus trachycaulus) characterize the north-facing slopes, whereas the south-facing slopes host Elymus trachycaulus, 208 

Artemisia arbuscula, mountain mahogany (Cercocarpus ledifolius) and bitterbrush (Purshia tridentate) (Godsey et al., 2018). 209 

Discharge at the catchment outlet is non-perennial, and the stream at the catchment outlet typically flows from early November 210 

until mid-July (MacNeille et al., 2020)(MacNeille et al., 2020). 211 
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3. Methods 212 

3.1 Hydrometeorological and discharge data 213 

We used hourly hydrometeorological data recorded at eleven weather stations throughout the catchment (Fig. 1; Godsey et al., 214 

2018). The stations are placed at 50-m elevation intervals on the north and south-facing slopes, and span a ~300 m elevation 215 

range (1508-1804 m a.s.l.; see Marks et al., 2013Marks et al., 2013 for a detailed description). Observations started in 2002, 216 

although some stations were placed only in 2005 or 2010, and some were decommissioned in 2017 (see Godsey et al., 2018 217 

for exact years). Air temperature, solar radiation, vapor pressure and snow depth were measured at hourly intervals at each of 218 

the stations, whereasand additional measurements of wind speed, wind direction and precipitation were available at jdt125, 219 

jdt124, and jdt124b. The snow depth time series were processed to remove gaps and unreliable measurements during storms 220 

and smoothed over an 8-h window in most cases, and a 40-h window under specific circumstances (Godsey et al., 2018). 221 

Stream discharge data (Godsey et al., 2018) were obtained with a stage recorder using a drop box weir at the watershed outlet 222 

(Pierson et al., 2000).  Stage height was converted to discharge using a stage height-discharge relationshiprating curve (Pierson 223 

and Cram, 1998), and discharge was frequently measured by hand to ensure high data quality (Pierson et al., 2000). 224 

3.2 Remotely sensed observations 225 

To characterize the spatial distribution of snow depth, a 1-m resolution snow depth product was calculated as the difference 226 

between a snow-off LiDAR flight (10-18 November 2007; Shrestha and Glenn, 2016) and a snow-on LiDAR flight (18 March 227 

2009, around the time of peak accumulation), hereafter referred to as lidar snow depth. Typical vertical accuracies for lidar 228 

surveys are ~10 cm (Deems et al., 2013). We assumed that uncertainties in both lidar surveys were uncorrelated, resulting in 229 

an overall uncertainty of ~14 cm for lidar snow depth (summation in quadrature). of uncertainties associated with each survey). 230 

All pixels that yielded a negative snow depth were excluded. The lidar snow depths were higher than the weather station snow 231 

depths, but this pattern was consistent across the catchment resulting in a strong linear relation between the two individual sets 232 

of snow depth measurements (R2r2: 0.88, SupplementSupplemental Fig. S1).  233 

Because we had only one lidar observation was available near peak snow accumulation, we also characterized snow presence 234 

throughout the season by mapping the snow-covered area (SCA) using satellite-derived surface reflectance at 3-m resolution, 235 

which is available starting in 2016 (4-band PlanetScope Scene; Planet Team, 2018). This high-resolution imagery was critical 236 

for our analysis because snow drifts in the rain-snow transition are relatively small in extent. Although noNo high-resolution 237 

satellite imagery was available for years that exhibited the key characteristics we sought to study (e.g., rainy, snowy, wet or 238 

dry; see section 3.3), so we focused on the most recent snow-covered period for which streamflow data and Planet imagery 239 

were available (1 November 2018 until 31 May 2019) to assess snow coverage. This targeted year was warmer than the year 240 

for which the lidar observations were available (mean annual air temperature: 8.0°C compared to 6.7°C in 2009), which may 241 

have resulted in earlier peak streamflow, melt-out date, and dry-out date for the stream. We manually selected all available 242 

images in which the entire watershed was captured and for which snow was visually recognizable, then removed all images 243 

for which clouds significantly covered the watershed, resulting in 41 usable images. The information from all four spectral 244 

bands was then condensed to one layer using a principal component analysis (‘RSToolbox’ package in R). We used the 245 

Maximum Likelihood Classification tool in ArcGIS (Esri Inc., 2020) to identify the SCA, after manually training the tool by 246 

selecting areas with and without snow cover (averagemean of 26895 pixels per class; median: 9019), visually aided by the 247 

original satellite imagery. Obtaining training data was most challenging during periods in which almost the entire area was 248 

snow-free or snow-covered, for densely vegetated areas, and when part of the catchment was shaded. To overcome the latter, 249 

we classified “snow-free”, “snow-covered”, and “shaded snow”,” in heavily shaded images, and afterwards merged “snow-250 
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covered” and “shaded snow”. The mean confidence for all classifications is shown in SupplementSupplemental Fig. S2. Our 251 

method differs from other satellite-derived snow products that combine both visible and infrared light, but yielded a higher 252 

resolution data product (3-m resolution vs. 30-m for Landsat-8 or 500-m for MODIS) that was necessary to capture the snow 253 

drifts in the rain-snow transition zone.  254 

We also used the surface reflectance imagery to determine the melt-out date of the snowpack for all years in which satellite 255 

and discharge observations were available (2016-2019). This was done by manually reviewing all available images and 256 

visually determining when all snow had melted. Given the high visiting frequency and limited cloudiness in early summer, we 257 

estimate that an error of ~2 days is appropriate for these melt-out dates.  258 

3.3 Spatially distributed snowpack modelling 259 

We used the Automated Water Supply Model (AWSM; Havens et al., 2020) to obtain a spatially continuous 260 

estimationestimates of the distribution and phase of precipitation, snowpack characteristics and surface water inputs (SWI). 261 

The two major components of AWSM are the Spatial Modeling for Resources Framework (SMRF; Havens et al., 2017) and 262 

iSnobal (Marks et al., 1999). iSnobal isSMRF was used to spatially distribute precipitation and all other weather variables (air 263 

temperature, solar radiation, vapor pressure, precipitation, wind speed and wind direction) along an elevation gradient using 264 

the hourly measurements from the weather stations. We included precipitation measurements from two stations within the 265 

basin (jdt125 and jdt124b) and two stations outside of the basin (jd144 and jd153, Fig. 1) to capture the elevation gradient. 266 

Precipitation at the wind-exposed site, jdt124, was excluded because of precipitation undercatch issues. The interpolated vapor 267 

pressure and temperature fields were then used within SMRF to calculate the dew point, and further distinguish which fraction 268 

of precipitation fell as rain and/or snow. The output from SMRF was then used to force iSnobal, a physically-based, two-layer 269 

snowpack model that accounts for precipitation advection from rain and snow (Marks et al., 1999). We used SMRF to spatially 270 

distribute precipitation and all other weather variables (air temperature, solar radiation, vapor pressure, precipitation, wind 271 

speed and wind direction) along an elevation gradient using the hourly measurements from the weather stations. We included 272 

precipitation measurements from two stations within the basin (jdt125 and jdt124b) and two stations outside of the basin (jd144 273 

and jd153, Fig. 1) to capture the elevation gradient. Precipitation at wind-exposed site jdt124 was excluded because of 274 

precipitation undercatch issues. The interpolated vapor pressure and temperature fields were then used within SMRF to 275 

calculate the dew point, and further distinguish which fraction of precipitation falls as rain and/or snow.  276 

The model was run at a 10-m resolution for five water years, namely, 2005, 2009, 2010, 2011 and 2014. We selected 2009 277 

because the snow depth lidar survey was available in this year, and 2005, 2010, 2011 and 2014 because they provide a 278 

representation of rainy, snowy, dry and wet conditions, respectively (Table 1). We focus on the latter four years in the results 279 

and discussion of this manuscript but evaluate the model performance for allare hydroclimatically different. 2005 was rainy 280 

(snowfall fraction: 63% of the 2004-2014 mean and 23% of 2005 total precipitation) whereas 2010 was snowy (snowfall 281 

fraction: 155% of 2004-2014 mean and 57% of 2010 total precipitation). 2014 was dry (precipitation: 86% of 2004-2014 mean) 282 

and 2011 was wet (precipitation: 132%) (Table 1, Supplemental Table S3 and Fig. S4) with snowfall fractions of 41% and 283 

30% of the total precipitation for each year, respectively. The work was limited to four years because we aimed to focus on 284 

differences in the distribution of SWI and stream discharge for years that had different snowfall fractions and total precipitation 285 

magnitudes. Therefore, these strongly contrasting years were selected from 11 potential years of record (Godsey et al., 2018). 286 

Towards the end of the 2004-2014 period, more stations were deployed, yielding additional observations to force the model 287 

with meteorological inputs and validate the model output of snow thickness, so if conditions were similar, we selected later 288 

years within this period. We focus on the four hydroclimatically distinct years in the results and discussion of this manuscript, 289 

but evaluate the model performance for all five years. 290 
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In order to represent the spatial variability in snowfall and the effects of wind redistribution of snow, we use the precipitation 291 

rescaling approach proposed by Vögeli et al. (2016) that implicitly captures the spatial heterogeneity induced by these 292 

processes using distributed snow depth information (e.g., from lidar or structure from motion (SfM)). This methodology can 293 

be used to rescale the precipitation falling as snow to reproduce the observed snow distribution patterns while conserving the 294 

initial precipitation mass estimation. Given the inter- and intra-annual consistency of spatial patterns of snow distribution 295 

(Pflug and Lundquist, 2020; Schirmer et al., 2011; Sturm and Wagener, 2010)(Pflug and Lundquist, 2020; Schirmer et al., 296 

2011; Sturm and Wagener, 2010), Trujillo et al. (2019, manuscript in preparation)Trujillo et al. (2019) has been extending the 297 

original implementation to utilize historical snow distribution information to other years in the iSnobal model. Following these 298 

successful implementations, we useused the spatial distribution of snow depth from the 2009 survey around peak snow 299 

accumulation to inform the snowfall rescaling to all years in the study period. Although using the 2009 survey to rescale 300 

snowfall in other years might have induced some uncertainty, this uncertainty is likely to be small givenverification of the 301 

intra-annualinterannual consistency in the snow distribution patterns, which was verified in this catchment by comparing the 302 

lidar snow depth and the satellite imagery indicated that this uncertainty is likely to be small. 303 

3.4 SWI 304 

One of the model outputs from iSnobal is ‘surface water inputs’ (SWI), which represents snowmelt from the bottom of the 305 

snowpack, rain on bare ground, or rain percolating through the snowpack. iSnobal is limited to surfaceOne of the model outputs 306 

from iSnobal is ‘surface water input’ (SWI), which represents snowmelt from the bottom of the snowpack , rain on snow-free 307 

ground, or rain percolating through the snowpack. Rainfall is directly counted as SWI when it falls over snow-free ground, 308 

and it is included in the energy and water balances when it falls onto the snowpack. To calculate snowmelt, iSnobal solves 309 

each component of the energy balance equation for each model time step using the best available estimations of forcing inputs. 310 

Melt occurs in a pixel when the accumulated input energy is greater than the energy deficit (i.e. cold content) of the snowpack. 311 

If the accumulated energy input is smaller than the energy deficit, the sum of current hour melt and previous hour liquid water 312 

content will be carried over into the next hour. If that hour’s input energy conditions are negative, the liquid mass is refrozen 313 

into the column. Sublimation and evaporation of liquid water from the snow surface and condensation of liquid water onto the 314 

snow surface is computed as a model output term, though these quantities were not considered here. Canopy interception must 315 

be handled a priori when developing the model forcing input, and it was also not considered here. Although not accounting for 316 

the latter introduces some uncertainty, we expect this to be small with the shrub and grass vegetation types in Johnston Draw. 317 

Lastly, iSnobal is limited to snow processes only, which means that SWI ‘exits’ the modelling domain. In reality, SWI might 318 

travel to the stream as surface or subsurface runoff, could be stored in the soil until it evaporates or is transpired, or could 319 

recharge deeper groundwater storages. The route that SWI takes depends on the overall catchment wetness as well as the local 320 

energy balance (e.g., incoming radiation) and vegetation activity. In this manuscript, we computed SWI for each pixel and 321 

time step and assumed that all SWI generated in simulated snow-free pixels was rain and that all SWI generated in simulated 322 

snow-covered pixels was snowmelt.  323 

3.5 Model evaluation 324 

Model results were evaluated in two ways. First, the simulated snow depths were compared to lidar snow depths covering the 325 

entire basin on March 18, 2009; and second, the temporal variation of the simulated snow depths were compared to snow 326 

depths measured at each of the weather stations for all simulated years. The latter comparison was done using model results 327 

from a 30-m x 30-m area surrounding each station; this is equivalent to 3x3 grid cells because the model was run at a 10-m 328 

resolution. We computed the Root Mean Square Error (RMSE) and Nash-Sutcliffe Efficiency (NSE; Nash and Sutcliffe, 1970) 329 
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for the observed versus simulated snow depths, as well as the NSE for the normalized observed versus normalized simulated 330 

snow depths (NSEnorm). NSEnorm reflects the ability of the model to reproduce the dynamic behaviour of the snowpack.  331 

3.6 Comparison with discharge 332 

The phase and magnitude of precipitation and the magnitude and temporal distribution of SWI were compared to annual 333 

discharge and the stream dry-out date. The stream dry-out date is the day when the stream first ceased to flow at the catchment 334 

outlet. For comparisons across seasons, we defined winter as December, January and February; spring as March, April and 335 

May; summer as June, July and August, and fall as September, October and November. To compare SWI with the dry-out 336 

date, we also calculated how much SWI occurred during the water year before the stream dried. No delays were considered 337 

when comparing SWI to discharge (e.g., discharge as a fraction of SWI in January results from dividing discharge in January 338 

by SWI in January). Discharge metrics were also compared to the flashiness of SWI inputs, which was calculated as the sum 339 

of the difference in total SWI from day to day, divided by the sum of SWI (also known as the Richards-Baker Flashiness Index; 340 

Baker et al., 2004). Further metrics included the fraction of time that more than half of the catchment was snow-covered and 341 

the melt-rate between 40% snow-coverage in the catchment and the date at which the catchment was snow-free. A threshold 342 

of 40% snow-coverage was chosen because this resulted in an approximately linear melt-rate for all years.  343 

4. Results  344 

4.1 Snow depth observations 345 

The lidar snow depth ranged from 0 to 5.3 m on the date of acquisition (18 March 2009), which was near peak snow cover 346 

(median: 0.4 m; CV: 0.91; Fig. 2a). The south-facing slopes had little to no snow cover (mean: 0.3 m), whereas the north-347 

facing slopes were covered with 0.7 m of snow on average. For the years studied here, during the approximate duration of the 348 

snowy season between 15 Nov and 15 Apr, the average snow depth for all north-facing stations was more than five times that 349 

of the average snow depth at south-facing stations (0.20.2 vs. 3.7 cm0.04 m, respectively), and the snowpack lasted almost 90 350 

days longer on average (132 vs. 43 days, respectively). Although weatherWeather stations on north-facing slopes and at higher 351 

elevations generally had deeper snowpacks and were snow-covered longer than sites on the south-facing slopes or at lower 352 

elevations (data not shown), this pattern was masked by the effects of other processes.Godsey et al., 2018). The snowpack 353 

distribution was also affected by wind-driven redistribution of snow. For instance, snow depths at jdt2 (north-facing) and jdt3b 354 

(south-facing) were consistently lower than at the weather stations directly below them in elevation (jdt1 and jdt2b, 355 

respectively). Large snow drifts formed in some western parts of the watershed, up to a maximum depth of 5.3 m 356 

(90th percentile of all snow depths = 1.2 m, Fig. 2a). Wind-driven redistribution of the snow in Johnston Draw is facilitated by 357 

a relatively consistent southwestern wind direction (average during storms: 225°), and high wind speeds (average during storms 358 

at wind-exposed station jdt124: 6.7 m s-1; Godsey et al., 2018Supplemental Fig. S5). 359 

4.2 Model performance in space and over time 360 

Simulated snow depths on the day of the lidar survey agreed well with the lidar snow depth (r2: 0.88, Fig. 2a-c). The residual 361 

snow depths (lidar – simulation) were approximately normally distributed, with a mean of 0.2 m (see Supplement 362 

S3Supplemental Fig. S6 for a histogram and QQQ-Q plot). The largest differences (maximum difference: 1.1 m) between the 363 

simulated and measured snowpack were for isolated 10 m pixels on both the north- and south-facing slopes (Fig. 2c2a-c). The 364 

spatial pattern of the lidar snow depth also agreed well with the spatial patterns of snow-covered area (Fig. 2a,d), and there 365 

was a strong agreement between the simulated snow-covered area for 2009 (Fig. 2e) and the snow-covered area determined 366 
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from satellite imagery for 2019 (Fig. 2d). This), including the modelled duration of snow cover and the number of satellite 367 

images in which snow-covered areas were observed. The largest discrepancy between the simulated and imagery-based snow 368 

duration was in the scour zone west of the snow drifts, where the model underestimated snow duration. Nonetheless, the 369 

consistent locations of the snow drifts between 2009 and 2019 indicates that the model captured the spatial distribution of the 370 

snowpack as well as the differential melt-out patterns, and that the location of the snow drifts was consistent between 2009 371 

and 2019. . 372 

 373 

The median NSE for the hourly simulated snow depths compared to observations at the weather stations ranged from 0.22 374 

(wet 2011) to 0.86 (snowy 2010) for all modelled years and weather stations, with RMSE ranging from 0.8008 to 9.7 cm0.097 375 

m (Table 2, see Supplement S4Supplemental Fig. S7 for time series of all simulated and observed snow depths). RMSE was 376 

equal to or lower than 10 cm0.1 m for all years, with the year in which the NSE performance was lowest (wet 2011) having 377 

an RMSE of 4.6 cm. There were no weather stations for which the model performed consistently poor or well, with both high 378 

and low NSE values at each of the stations (e.g., range NSE at jdt4: -9.60 to 0.91 and jdt1: 0.01 to 0.83).0.046 m. The temporal 379 

variation of the snowpack at each of the weather stations was well-captured by the model; the median NSE for the normalized 380 

snowpack depths (NSEnorm) ranged from 0.65 to 0.94 (median: 0.75), although there were some sites and years with low NSE 381 

(Table 2). This indicates that the overall patterns of snow accumulation and melt were captured by the modelBoth high and 382 

low NSE values are observed at nearly all of the stations (e.g., range NSE at jdt4: -9.60 to 0.91 and jdt1: 0.01 to 0.83) with 383 

lower values at some sites in 2011. Possible explanations for the relatively low performance at the remaining sites are discussed 384 

further in section 5.3. Despite the low performances for some years and locations, the normalized snow depths were largely 385 

acceptable (35 out of 40 year/location-combinations had NSEnorm value above 0.5; Table 2). The generally strong performance 386 

lends confidence that the simulation of ablation and accumulation processes in the model is reasonable and implies that the 387 

temporal distribution of snow-covered area (SCA) and surface water inputs (SWI) simulated by the model are reliable.  388 

4.3 Spatial and temporal pattern of surface water inputs (SWI) 389 

The spatial pattern of SWI was similar for all years, with the highest SWI occurring in areas hostingthe snow drifts (maximum 390 

SWI (SWImax): 3892 mm; 98th percentile of SWI (SWI98): 1235 mm, both in wet 2011; Fig. 3, Table 1). Annual SWI across 391 

the rest of the catchment varied less, with north-facing slopes receiving 45 to 127 mm more SWI than south-facing slopes 392 

(values for rainy 2005 and snowy 2010, respectively; Table 1). Areas hosting snow driftsSnow drift locations received 1.7 to 393 

2.7 times more SWI than the catchment average (ratio SWI98/SWIavg). Summarizing SWI by aspect (see polar diagrams in Fig. 394 

3) revealed the highest SWI on northeast-facing slopes and roughly equal annual SWI for all other aspects. Differences between 395 

the northeast-facing slopes and other parts of the catchment were largest in snowy 2010 (ratio of major/minor axis of polar 396 

plot: 1.29), and smallest in rainy 2005 and dry 2014 (ratio: 1.13 and 1.17, respectively). 397 

 398 

Weekly sums of SWI ranged from 0 to ~75 mm in all years (Fig. 4). Summer most frequently had weeks without SWI 399 

generation, whereas the highest weekly SWI occurred with simultaneous rainfall and snowmelt (i.e., rain-on-snow events, such 400 

as for instancethe one visible in February 2014, Fig. 4d). However, large rainfall events without snowfall or snow cover in 401 

spring of rainy 2005 (weekly SWI: ~75 mm),) and in fall of wet 2011 (weekly SWI: ~50 mm; grey peaks in Fig. 4a and c) also 402 

generated high SWI. In 2011, the majority of SWI was generated in winter and spring (47% between December and May, see 403 

inset in Fig. 4c) whereas in dry 2014 most SWI was generated in winter (54% between December and February, Fig. 4d). In 404 

2005 and 2010, most SWI was generated in spring (March-May 32% and 46%, respectively). Although similarSimilar amounts 405 

of SWI occurred in spring in 2005 and 2010 (339 and 388 mm, respectively),); however, in 2005, 93% came from rain, whereas 406 

in 2010, only 35% came from rain. As a result, averageAverage daily spring SWI rates were higher in snowy 2010 than in 407 

rainy 2005 (mean spring SWI rate March-May: 3.7 mm d-1 in 2010 vs. 2.9 mm d-1 in 2005). Overall, variations in weekly and 408 
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daily SWI rates were lower in snowy 2010 (CV daily SWI: 1.71) than in all other years (2.50 in 2005, 2.14 in 2011, and 2.65 409 

in 2014). 410 

4.4 Stream discharge 411 

Streamflow was least responsive to SWI at the beginning of each water year (Fig. 5). For instance, in 2005 and 2010, 174 and 412 

108 mm of SWI occurred before February 1st (31% and 20% of annual SWI), whereas discharge amounted to only 7% and 1% 413 

of its yearly total during that same period. Similarly, 82 mm of SWI in October 2011 resulted in less than 1 mm discharge, 414 

whereas roughly 30%180 mm of SWI left the catchment via the stream in the following period (Nov-Jan SWI: 180led to 415 

62 mm, of discharge: 62 mm). After the wet-up period, SWI. SWI generally resulted in most discharge when SWI rates were 416 

high, such as during a 3-day rain-on-snow event in February 2014 (SWI: 75 mm, discharge: 29 mm) or during spring snowmelt 417 

in April 2011 (SWI: 108 mm, discharge: 102 mm). Such individual precipitation events had a strong influence on the annual 418 

runoff efficiency. For instance, 2014 had a slightly higher runoff efficiency (0.16) than 2005 (0.11) and 2009 (0.14), mostly 419 

due to the high runoff generation during one rain-on-snow event (29 mm, 36% of yearly discharge).  420 

 421 

Annual discharge was highest in 2011 (307 mm, 43% of SWI) and lowest in 2005 (62 mm, 11% of SWI). Despite similar SWI 422 

inputs in 2005 and 2010 (SWIavg: 553 and 557 mm, respectively, Table 1), snowy 2010 had nearly twice as much annual 423 

discharge as rainy 2005 (117 mm, or 21% of SWI vs. 62 mm or 11% of SWI, respectively). Apart from these two years, there 424 

was no relation between annual discharge and the annual snowfall fraction (Fig. 6c), nor between annual discharge and the 425 

amount of SWI coming in as rainproduced by rainfall or snowsnowmelt in different seasons (winter, spring, summer, or any 426 

combination of these periods). By considering additional years (for which SWI was not simulated), we found that annual 427 

discharge was positively related to the amount of precipitation recorded at the lowest elevation precipitation station (jdt125, 428 

r2=0.8083, Fig. 6a). Annual discharge was slightly higher for years that were preceded by a year that received above average 429 

annual precipitation (see Supplement S6Supplemental Fig. S8), but the correlation coefficient decreased when including the 430 

precipitation totals recorded in the preceding year (e.g., annual discharge vs. precipitation in the same year + 0.5 times 431 

precipitation previous year, S6). This indicates that any memory effect is likely to be small in this catchment. ). This indicates 432 

that any memory effect is likely to be small in this catchment. Frequent stream drying (16 out of 18 years between 2003 and 433 

2020, data not shown, the stream did not cease flow in 2006 and 2011) and the high potential evaporation rates in this semi-434 

arid, high desert system (evapotranspiration accounts for nearly 90% of precipitation in the nearby Upper Sheep Creek 435 

catchment; Flerchinger and Cooley, 2000) also suggest that any water in the shallow, ‘active’ subsurface storage is likely 436 

limited, and that any memory effect, if present, is perhaps constrained to deeper subsurface water storages. 437 

 438 

Except for wet 2011, the Comparison of annual runoff efficiency (discharge/SWI) was higher for years that had a lower average 439 

weekly SWI rate (annual SWI/number of weeks in which SWI was generated). Although and the stream dry-out date to metrics 440 

describing the phase and magnitude of precipitation, the temporal distribution of SWI is affected by the phase of precipitation 441 

(Fig. 4), average weekly SWI ratesand key characteristics of the snowpack highlighted the importance of the magnitude and 442 

timing of SWI (Fig. 7). Significant relationships with annual discharge were not related to the found for annual precipitation 443 

(Fig. 6a) and the sums of precipitation and snowfall in spring (Fig. 7 and Supplemental Fig. S9). The dry-out date of the stream 444 

was significantly correlated to annual precipitation, the sum of winter and spring precipitation and spring snowfall, spring 445 

precipitation as a fraction (r2: of SWI,0.06). Individual precipitation events also had a strong influence on the annual runoff 446 

efficiency. For instance, dry 2014 had a higher runoff efficiency (0.16) than 2005 (0.11) and 2009 (0.14), but this was mostly 447 

due to the high runoff generation during one rain-on-snow event (29 mm, 36% of yearly discharge).  448 

 449 
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Stream drying occurred in each of the five years except 2011 (Table 1, Fig. 5). The stream dried earliest in 2014 (13 July), and 450 

in late August in 2009, 2005 and 2010 (Table 1). For the five years studied here, the stream dry-out date (the first day at which 451 

discharge equals zero) was later for years receiving more SWI (r2: 0.84), and for years that had a later melt-out date (date at 452 

which all snow had melted; r2: 0.77 for all coloured points in Fig. 6b). When considering the melt-out dates for four additional 453 

years based on planet-lab satellite observations (2016-2019, section 3.2), we found thatdate of the snowpack, and the sum of 454 

SWI before the dry-out date was later in years when snow persisted longer (r2: 0.54 for all points in Fig. 6b). There was no 455 

relation(Fig. 7 and Supplemental Fig. S9). No significant correlation was found between the annual, winter and spring snowfall 456 

fraction and annual discharge and the stream dry-out date (Fig. 6d).7).  457 

 458 

5. Discussion  459 

5.1 Spatial variability in SWI 460 

Snow drifting and aspect-driven differences in snow dynamics caused a strong variability in the spatial pattern of the snowpack 461 

(Fig. 2a) and SWI (Fig. 3). We found that the spatial pattern in simulated SWI was similar across all years, with snow drifts 462 

receiving up to seven times more SWI than the catchment average (SWImax/SWIavg in 2010, Table 1). Even in rainy 2005, SWI 463 

was more than 3.5 times higher in the snow drifts (SWImax: 2005 mm) compared to the catchment average (SWIavg: 573 mm, 464 

Table 1). In our modelling routine, the spatial consistency between years is pre-determined by the snowfall rescaling (see 465 

section 3.3), but this likely also reflects real-world conditions, as suggested by the spatial agreement between the independently 466 

collected satellite imagery and lidar snow depths suggests (Fig. 2). Most importantly, the nearly four-fold variation in SWI 467 

over less than a kilometre distance is equivalent to the average precipitation difference between most of Reynolds Creek and 468 

the peaks of the Cascade Mountains in Oregon hundreds of kilometres away, or equivalently, shifting from a semi-arid steppe 469 

to coastal mountain snowpacks, andsnowpack. This difference directly affects water-limited processes such as weathering or 470 

the plant species distribution. One local example of In Johnston Draw, this are theis clearly visible: aspen stands which are 471 

uniquely located directly below the snow drifts (Kretchun et al., 2020), while sagebrush is predominant in the rest of the 472 

catchment.(Kretchun et al., 2020) and sagebrush dominates the rest of the catchment. Because snow drifts drive the spatial 473 

pattern of SWI, it is crucial to quantify wind-driven redistribution processes as well as capture aspect and elevation-driven 474 

processes, even at the rain-snow transition zone. 475 

 476 

Snow drifts delivered 4.2% (2005) to 7.2% (2010) of the basin-total annual SWI on just ~2% of the land surface, and snow in 477 

drifts persisted longer, compared to non-drift areas, into the spring season (Fig. 3d2d-e). Previous work in the seasonally snow-478 

covered Reynolds Mountain East catchment, showed that snow drifts indeed hold a large fraction of total catchment snow 479 

water equivalent (SWE), with 50% of total SWE on just 31% of the catchment area (Marks et al., 2002), and SWI varying 480 

strongly in space, ranging from 150 to 1100 mm for individual grid cells (10 – 20 m) in the relatively dry water year 2003 481 

(Seyfried et al., 2009). Snow drifts in Johnston Draw arewere shallower (up to 5 m in 2009) and covered a smaller portion of 482 

the area (~2%) than in the higher elevation Reynolds Mountain East catchment, but are proportionally even more important in 483 

the rain-snow transition zone by hostingholding up to 15% of SWE during peak SWE in snowy 2010 and 25% in rainy 2005. 484 

Water originating from snow drifts has been shown to locally control groundwater level fluctuations (Flerchinger et al., 1992), 485 

and contribute to streamflow into the summer season (Chauvin et al., 2011; Hartman et al., 1999; Marks et al., 2002). For 486 

instance, in the Upper Sheep Creek watershed, also in RCEW, Chauvin et al. (2011) showed that the lowest stream discharge 487 

was recorded for the year in which snow drifts were least prominent. In Johnston Draw, the stream dry-out date was positively 488 

correlated with the drift melt-out date (Fig. 66b), suggesting that isolated snow patches are also here important for sustaining 489 

streamflow. These results do not reveal the mechanism or influence of the specific drift location since neither subsurface flow 490 

nor streamflow generation processes were measured or simulated. Nonetheless, observations of snow drifts from high-491 
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resolution satellite imagery are largely consistent with model simulations of SCA (Fig. 2) and 6) and are easily obtained from 492 

high-resolution imagery. This suggests that satellite observations mightthus may be an alternative information sourceused to 493 

predict stream drying in drift-influenced watersheds.  494 

5.2 Temporal variability in SWI and discharge response 495 

We found that the majority of SWI occurred in winter and spring, and that catchment-average SWI was more uniform in time 496 

in snowy 2010 than in the other years (CV of daily SWI, in 2010: 1.7; other years: 2.14 – 2.65). We hypothesize that the The 497 

steadier water inputs in that yearthe snowmelt period might explain why annual discharge in snowy 2010 was double that of 498 

rainy 2005 despite similar precipitationtotal SWI. More stable water inputs from snowmelt rather than flashy water inputs from 499 

rain could have led to wetter soils and higher soil conductivity rates, allowing more water to pass through the subsurface 500 

towards the stream or towards deeper storagesstorage (Hammond et al., 2019). Previous work in the nearby Dry Creek 501 

Experimental Watershed (Idaho) showed that water stored in the soil dries out approximately ten days after snowmelt 502 

(McNamara et al., 2005). For the years on record here, streamflow was sustained for a minimum of 59 days after the melt-out 503 

date (Table 1), whileeven though SWI during this period was is generally low after June each year (Fig. 4). This underscores 504 

that it is indeed likely that deeper flow paths contributedcontribute to the stream in the early summer. This is also consistent 505 

with stream discharge being nearly unresponsive to SWI during the dry catchment conditions in the beginning of each water 506 

year (Fig. 5). During fall, subsurface water storage across the catchment is low, and any SWI during this period thus likely 507 

results in recharge rather than stream discharge (Seyfried et al., in review). Alternatively, SWI during early fall might be used 508 

to satisfy evaporative demands. In any caseor evaporation rather than stream discharge (Seyfried et al., 2021). Air temperature 509 

also has a small effect on the runoff efficiency, particularly in the summer season. The runoff efficiency, calculated as summer 510 

discharge divided by summer precipitation for the 2004-2014 record, was significantly correlated to summer air temperatures 511 

(r2=-0.54, p value=0.08, Supplemental Fig. S10) whereas this relationship was insignificant on the annual scale (r2= -0.43, p-512 

value=0.217; Supplemental Fig. S11). This suggests that evapotranspiration, which is directly affected by the ambient air 513 

temperature, has some influence on runoff efficiency, despite the catchment being an overall water-limited environment. In 514 

winter, higher temperatures result in higher runoff efficiencies (r2=0.48, p-value=0.131, Supplemental Fig. S10), which is 515 

likely due to faster melt-out and more saturated soils, as described above. However, further simulations are required to fully 516 

understand how precipitation amounts, timing and location interact with subsurface water storage to control stream discharge. 517 

 518 

In contrast to our hypothesis and what has been suggested in the literature (e.g., based on the comparison of 420 catchments 519 

in the continental US using the Budyko framework, Berghuijs et al., 2014), neither annual discharge nor the stream dry out-date 520 

were correlated with snowfall fraction (Fig. 6, 7). Instead, annual discharge and the stream dry-out date were more correlated 521 

with total precipitation and the snowpack melt-out date were positively related to annual discharge and the stream dry-out date. 522 

This highlights the importance of the temporal distribution of SWI, which is not captured in an annual value for snowfall 523 

fraction. The temporal distribution of SWI might be less important for predicting stream discharge and cessation in more humid 524 

catchments in which precipitation is more evenly distributed over the year and/or in which more precipitation events occur, or 525 

in larger catchments, such as those considered in Berghuijs et al., (2014; range catchment areas: 67-10,329 km2). We found 526 

that individual precipitation events can also heavily influence the yearly runoff efficiency, as described for 2014 (section 4.4). 527 

As such, considering inter-annual variability and rainfall or snowmelt events is an important addition to annual average values, 528 

when investigating how precipitation affects discharge in semi-arid regions.  529 

 530 

Bilish et al. (2020) similarly found that streamflow was not correlated to the snowfall fraction for a small catchment with an 531 

ephemeral snowpack in the Australian Alps. They attributed this to the frequent occurrence of mid-winter snowmelt;: the 532 

snowpack melted out several times each year, independent of the annual snowfall fraction, and the snowpack thus did not store 533 
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a significant amount of water. Field observations at Dry Creek, a nearby semi-arid catchment that includes a rain-dominated 534 

and a snow-dominated area, also suggested that the snowfall fraction was not related to annual discharge for a small sub-535 

catchment at the rain-snow transition zone (Treeline sub-catchment, 0.015 km2), but a relation did existsnowfall fraction was 536 

correlated with annual discharge when considering the entire Dry Creek catchment (28 km2, J. McNamara, personal 537 

communication). Another study at Dry Creek suggested that the snowfall fraction is less important than spring precipitation 538 

for sustainingto satisfy evaporative demands of upland ecosystems (McNamara et al., 2005), emphasizing the importance of 539 

the temporal distribution of SWI for other semi-arid catchments. For the years studied here, we did not find a relation between 540 

stream drying and spring precipitation, but our findings do corroboratefound that streamflow is morewas sensitive to spring 541 

precipitation and total precipitation than to, but that the snowfall fraction did not significantly affect stream discharge (Fig. 6, 542 

7).  543 

5.3 Limitations and opportunities 544 

Though the model adequately reproduced the spatial snowpack patterns and dynamics (Fig. 3 and Table 2), temporal variations 545 

in the snow depths (i.e., melt and accumulation) recorded at the weather station locations were simulated better than the 546 

absolute snow depths. WeTo investigate why simulations of snow depths were poor for some stations and years, we calculated 547 

the average and precipitation-weighted average wind directions, wind speeds and snow densities for all events during which 548 

the snowfall fraction was higher than 0.2 (i.e., 20%; see Supplemental Table S12 and Fig. S13) from the station data. Although 549 

wind speed and directions were generally consistent (Supplemental Fig. S13), in 2011, the combination of higher snow 550 

densities (stronger cohesion of snow particles; 122 kg m-2) and lower wind speeds (less energy for transport; 5.7 m s-1) 551 

compared to 2009 (102 kg m-2 and 6.5 m s-1, respectively, precipitation-weighted averages in Table S12) might have led to 552 

less wind redistribution of snow in that year and correspondingly resulted in underpredictions of snow depths at north-facing 553 

and high-elevation sites in 2011 (jdt3, jdt4, jdt5 and jdt124b). Since NSE values are based on squared errors, the divergence 554 

between the simulated and observed snow depths impacted the model performance more severely in 2011 than in years with 555 

shallower snowpacks (i.e., 2005 and 2014). The snowpack density, wind speed and wind direction values in 2005 diverged 556 

most from 2009, from which the lidar observations were used, but nonetheless had a relatively high performance (NSE: 0.83), 557 

possibly because there was data from only one station available for validation.  558 

 559 

In addition to the uncertainty in the spatial redistribution of snow depending on wind speeds, wind direction and snow densities, 560 

we suggest three additional reasons for the differences between simulated and observed snow depths. First, there was 561 

uncertainty in the precipitation measurements and the spatial distribution thereof. Precipitationthe varying performance at 562 

jdt125 might be related to inaccuracies in calculating the phase of precipitation, which would most strongly affect lower 563 

elevations at which the phase shifts more often from rain to snow. Any uncertainty in the magnitude or phase of precipitation 564 

would decrease model efficiency because precipitation was interpolated based on elevation, after which the proportion of 565 

precipitation falling as snow was redistributed based on the lidar snow depths (see section 3.3). Uncertainties in either data 566 

products or in the spatial extrapolation thereof will have decreased the model efficiency. Second, the simulated snow depths 567 

reflect all processes occurring in each 10-m grid cell (our model resolution), whereas the ultrasonic snow depth measurements 568 

represent processes at ~1-3 m2. Small differences between the simulated and observed snow depths are therefore expected. 569 

Third, iSnobal is a mass and energy balance model, and therefore optimized to correctly model mass. Model evaluation using 570 

snow depths (instead of SWE) is thus less favourable, since small differences in snow densities and SWE could lead to 571 

significant differences in snow depths. However, since snow depth measurements were available and SWE measurements 572 

were not, we focused on snow depth. Uncertainties were also present in the weather station snow depths, as well as the lidar-573 

based snow depths and the satellite-based SCA analysis. We compared the spatial patterns from the lidar and satellite imagery 574 

to test if the spatial pattern was consistent between these two data sources and found this to largely be the case (Fig.  2). As 575 
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such, we are confident that despite the uncertainties of our analysis, we captured the within-catchment variability of the 576 

snowpack and also adequately modelled the variability in SWI that we set out to investigate.  577 

 578 

Discrepancies between simulated and observed snow depths are challenging to solve, especially for areas with an ephemeral 579 

snow cover (Kormos et al., 2014) or with complex vegetation patterns, such as the sagebrush in Johnston Draw. Shallow snow 580 

covers are more sensitive to small variations in energy fluxes than deeper seasonal snow covers (Pomeroy et al., 2003; Williams 581 

et al., 2009)(Pomeroy et al., 2003; Williams et al., 2009). As a result, small errors in the spatial extrapolation of the forcing 582 

data or in the forcing data itself (e.g., uncertainty in the observed relative humidity or temperature) can result in largeintroduce 583 

uncertainties in the model results (Kormos et al., 2014). For instance, the transition from snow-covered to snow-free areas 584 

results in a large change in albedo, which influences solar radiative fluxes. The snowpack at the rain-snow transition zone can 585 

melt out several times per year, even within a single day, and melt-out dates are variable across the catchment. Therefore, a 586 

small error in the simulated melt-out date for each cell can result in a larger error in the basin-average or yearly results. Perhaps 587 

these challenges are also a reason for the limited number of studies that have simulated warm snowpacks  (Kormos et al., 2014; 588 

Kelleners et al., 2010), despite multiple regional studies highlighting that the rain-snow transition zone is expanding and that 589 

their climates are changing rapidly (Klos et al., 2014; Nolin and Daly, 2006). Challenges linked to snow ephemerality likely 590 

also affected our results, but the agreement between the observed and simulated snow depths indicates that at least the general 591 

patterns of accumulation and melt in space and over time were represented by the simulations, at a scale that was small enough 592 

to characterize the snow drifts.  593 

 594 

Regardless of the challenges that come with studying an intermittent snow cover, the relationship between the snowpack melt-595 

out date and stream dry-out date poses interesting opportunities to inform hydrological models or evaluate model results with 596 

independent observations. Measurements of SCA can be obtained through satellite imagery and are thus easier and cheaper to 597 

obtain than SWE or snow depth measurements (e.g., Elder et al., 1991). Satellite observations can be particularly helpful to 598 

investigate remote areas that exceed a feasible modelling domain, and can be used to inform or evaluate models. Given the 599 

restrictions for satellite imagery imposed by clouds and visit-frequency, particularly for areas with an ephemeral snow cover 600 

that might melt out in a single day, a combination of satellite imagery and snowpack modelling seems a promising way to 601 

leverage these observations while ensuring the fine temporal resolution that might be needed to study stream cessation. 602 

 603 

6. Conclusions 604 

As a result of climate change, the rain-snow transition zone will receive more rain and less snow, which influencesmay 605 

influence the spatial and temporal distribution of surface water inputs (SWI, summation of rainfall and snowmelt). The goal 606 

of this work was to quantify the spatial and temporal distribution of SWI at the rain-snow transition zone, and to assess the 607 

sensitivity of annual stream discharge and stream cessation to the temporal distribution of SWI as well as to the annual snowfall 608 

fraction. To this end, we used a spatially distributed snowpack model to simulate SWI during five years, of which four had 609 

contrasting climatological conditions. We found that the spatial pattern of SWI was similar between years, and that snow 610 

drifting and aspect-controlled processes caused large differences in SWI across the watershed. Some areasSnow drifts received 611 

up to six times more SWI than other sites, and the difference between SWI from the snow drifts and catchment average SWI 612 

was highest for the year with the highest snowfall fraction. This highlights that the snowfall fraction affects temporal and 613 

spatial variability in SWI, with more rain leading to less variability. The majority of SWI occurred in winter or spring, which 614 

was also the time that the percentage of SWI becoming streamflow was highest (up to 94% in April 2011). Despite similarOver 615 

the 2004-2014 data record, annual SWI (553 vs. 557 mm) and a similar timing of SWI (majority of SWI in spring), snowy 616 

2010 had about twice as much stream discharge as rainy 2005. However, in contrastwas insensitive to our hypothesis, years 617 

with a lower snowfall fraction did not always have lower discharge nor earlier stream drying in summer. This highlights the 618 

potential importance of where SWI reaches the ground surface, in addition to whenand depended more on total and how much 619 
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SWI occurs. We found that the spring precipitation. The stream dry-out date at the catchment outlet waswas also sensitive to 620 

total and spring precipitation. In addition, stream cessation was  positively correlated to the last day at which there was snow 621 

present anywhere in the catchment. These results highlight, which indicates that the persistence of snow drifts in small parts 622 

of the catchment is critical for sustaining streamflow. This study highlights the heterogeneity of SWI at the rain-snow transition 623 

zone and its impact on stream discharge, and thus the need for spatially and temporally representing SWI in headwater-scale 624 

studies that simulate streamflow. 625 

Data availability 626 

The hydrometeorological and discharge data used in this paper is available via Godsey et al. (2018), satellite imagery can be 627 

obtained via Planet Team (2018)Planet Team (2018) and remaining data is available upon reasonable request.  628 

Author contribution 629 

LK developed the concept of the study together with SEG. LK, SH, ET, AH and KH performed and/or contributed to the 630 

simulations. LK prepared the first draft of the manuscript. All co-authors provided recommendations for the data analysis, 631 

participated in discussions about the results, and edited the manuscript. 632 

 633 

Competing interests 634 

The authors declare that they have no conflict of interest. 635 

Financial support 636 

This research has been supported by the Swiss National Science Foundation (grant no. P2ZHP2_191376) and the US National 637 

Science Foundation (award EAR-1653998). 638 

Bibliography 639 

Baker, D. B., Richards, R. P., Loftus, T. T., and Kramer, J. W.: A New Flashiness Index: Characteristics and Applications to 640 

Midwestern Rivers and Streams, J Am Water Resources Assoc, 40, 503–522, https://doi.org/10.1111/j.1752-641 

1688.2004.tb01046.x, 2004. 642 

Barnett, T. P., Adam, J. C., and Lettenmaier, D. P.: Potential impacts of a warming climate on water availability in snow-643 

dominated regions, Nature, 438, 303–309, https://doi.org/10.1038/nature04141, 2005. 644 

Bavay, M., Grünewald, T., and Lehning, M.: Response of snow cover and runoff to climate change in high Alpine 645 

catchments of Eastern Switzerland, Adv. Water Resour., 55, 4–16, https://doi.org/10.1016/j.advwatres.2012.12.009, 2013. 646 

Beniston, M., Keller, F., Koffi, B., and Goyette, S.: Estimates of snow accumulation and volume in the Swiss Alps under 647 

changing climatic conditions, Theor. Appl. Climatol., 76, 125–140, https://doi.org/10.1007/s00704-003-0016-5, 2003. 648 

Berghuijs, W. R., Woods, R. A., and Hrachowitz, M.: A precipitation shift from snow towards rain leads to a decrease in 649 

streamflow, Nature Clim. Change, 4, 583–586, https://doi.org/10.1038/nclimate2246, 2014. 650 

Formatted: Font color: Auto, Not Highlight



 

17 

 

Bilish, S. P., Callow, J. N., and McGowan, H. A.: Streamflow variability and the role of snowmelt in a marginal snow 651 

environment, Arct. Antarct. Alp. Res., 52, 161–176, https://doi.org/10.1080/15230430.2020.1746517, 2020. 652 

Chauvin, G. M., Flerchinger, G. N., Link, T. E., Marks, D., Winstral, A. H., and Seyfried, M. S.: Long-term water balance 653 

and conceptual model of a semi-arid mountainous catchment, J. Hydrol., 400, 133–143, 654 

https://doi.org/10.1016/j.jhydrol.2011.01.031, 2011. 655 

Christensen, N. S., Wood, A. W., Voisin, N., Lettenmaier, D. P., and Palmer, R. N.: The Effects of Climate Change on the 656 

Hydrology and Water Resources of the Colorado River Basin, ClimaticClimat. Change, 62, 337–363, 657 

https://doi.org/10.1023/B:CLIM.0000013684.13621.1f, 2004. 658 

Datry, T., Larned, S. T., and Tockner, K.: Intermittent Rivers: A Challenge for Freshwater Ecology, BioScience, 64, 229–659 

235, https://doi.org/10.1093/biosci/bit027, 2014. 660 

Deems, J. S., Painter, T. H., and Finnegan, D. C.: Lidar measurement of snow depth: a review, J. Glaciol., 59, 467–479, 661 

https://doi.org/10.3189/2013JoG12J154, 2013. 662 

Elder, K., Dozier, J., and Michaelsen, J.: Snow accumulation and distribution in an Alpine Watershed, Water Resour. Res., 663 

27, 1541–1552, https://doi.org/10.1029/91WR00506, 1991. 664 

Esri Inc.: ArcMap (version 10.7.1), 2020. 665 

Fang, X. and Pomeroy, J. W.: Modelling blowing snow redistribution to prairie wetlands, Hydrol. Process., 23, 2557–2569, 666 

https://doi.org/10.1002/hyp.7348, 2009. 667 

Flerchinger, G. N. and Cooley, K. R.: A ten-year water balance of a mountainous semi-arid watershed, J. Hydrol., 237, 86–668 

99, https://doi.org/10.1016/S0022-1694(00)00299-7, 2000. 669 

Flerchinger, G. N., Cooley, K. R., and Ralston, D. R.: Groundwater response to snowmelt in a mountainous watershed, J. 670 

Hydrol., 133, 293–311, https://doi.org/10.1016/0022-1694(93)90146-Z, 1992. 671 

Godsey, S. E., Marks, D., Kormos, P. R., Seyfried, M. S., Enslin, C. L., Winstral, A. H., McNamara, J. P., and Link, T. E.: 672 

Eleven years of mountain weather, snow, soil moisture and streamflow data from the rain–snow transition zone – the 673 

Johnston Draw catchment, Reynolds Creek Experimental Watershed and Critical Zone Observatory, USA, Earth Syst. Sci. 674 

Data, 10, 2018. 675 

Grünewald, T., Bühler, Y., and Lehning, M.: Elevation dependency of mountain snow depth, Cryosphere, 8, 2381–2394, 676 

https://doi.org/10.5194/tc-8-2381-2014, 2014. 677 

Hammond, J. C., Harpold, A. A., Weiss, S., and Kampf, S. K.: Partitioning snowmelt and rainfall in the critical zone: effects 678 

of climate type and soil properties, Hydrol. Earth Syst. Sci., 23, 3553–3570, https://doi.org/10.5194/hess-23-3553-2019, 679 

2019. 680 

Hartman, M. D., Baron, J. S., Lammers, R. B., Cline, D. W., Band, L. E., Liston, G. E., and Tague, C.: Simulations of snow 681 

distribution and hydrology in a mountain basin, Water Resour. Res., 35, 1587–1603, 682 

https://doi.org/10.1029/1998WR900096, 1999. 683 

Havens, S., Marks, D., Kormos, P., and Hedrick, A.: Spatial Modeling for Resources Framework (SMRF): A modular 684 

framework for developing spatial forcing data for snow modeling in mountain basins, Comput. and Geosci., 109, 295–304, 685 

https://doi.org/10.1016/j.cageo.2017.08.016, 2017. 686 



 

18 

 

Havens, S., Marks, D., Sandusky, M., Hedrick, A., Johnson, M., Robertson, M., and Trujillo, E.: Automated Water Supply 687 

Model (AWSM): Streamlining and standardizing application of a physically based snow model for water resources and 688 

reproducible science, Comput. and Geosci., 144, 104571, https://doi.org/10.1016/j.cageo.2020.104571, 2020. 689 

Hedrick, A. R., Marks, D., Marshall, H., McNamara, J., Havens, S., Trujillo, E., Sandusky, M., Robertson, M., Johnson, M., 690 

Bormann, K. J., and Painter, T. H.: From Drought to Flood: A Water Balance Analysis of the Tuolumne River Basin during 691 

Extreme Conditions (2015 – 2017), Hydrological Processes, hyp.13749, https://doi.org/10.1002/hyp.13749, 2020. 692 

Jasechko, S., Birks, S. J., Gleeson, T., Wada, Y., Fawcett, P. J., Sharp, Z. D., McDonnell, J. J., and Welker, J. M.: The 693 

pronounced seasonality of global groundwater recharge, Water Resour. Res., 50, 8845–8867, 694 

https://doi.org/10.1002/2014WR015809, 2014. 695 

Johnson, G. L. and Hanson, C. L.: Topographic and atmospheric influences on precipitation variability over a mountainous 696 

watershed, J. Appl. Meteor., 34, 68–86, 1995. 697 

Kelleners, T. J., Chandler, D. G., McNamara, J. P., Gribb, M. M., and Seyfried, M. S.: Modeling Runoff Generation in a 698 

Small Snow-Dominated Mountainous Catchment, Vadose Zone J., 9, 517–527, https://doi.org/10.2136/vzj2009.0033, 2010. 699 

Klos, P. Z., Link, T. E., and Abatzoglou, J. T.: Extent of the rain-snow transition zone in the western U.S. under historic and 700 

projected climate: Climatic rain-snow transition zone, Geophys. Res. Lett., 41, 4560–4568, 701 

https://doi.org/10.1002/2014GL060500, 2014. 702 

Kormos, P. R., Marks, D., McNamara, J. P., Marshall, H. P., Winstral, A., and Flores, A. N.: Snow distribution, melt and 703 

surface water inputs to the soil in the mountain rain–snow transition zone, J. Hydrol., 519, 190–204, 704 

https://doi.org/10.1016/j.jhydrol.2014.06.051, 2014. 705 

Kormos, P. R., Luce, C. H., Wenger, S. J., and Berghuijs, W. R.: Trends and sensitivities of low streamflow extremes to 706 

discharge timing and magnitude in Pacific Northwest mountain streams, Water Resour. Res., 52, 4990–5007, 707 

https://doi.org/10.1002/2015WR018125, 2016. 708 

Kretchun, A. M., Scheller, R. M., Shinneman, D. J., Soderquist, B., Maguire, K., Link, T. E., and Strand, E. K.: Long term 709 

persistence of aspen in snowdrift-dependent ecosystems, Forest Ecology and Management,For. Ecol. Manag., 462, 710 

118005, https://doi.org/10.1016/j.foreco.2020.118005, 2020. 711 

Leung, L. R., Qian, Y., Bian, X., Washington, W. M., Han, J., and Roads, J. O.: Mid-Century Ensemble Regional Climate 712 

Change Scenarios for the Western United States, ClimaticClim. Change, 62, 75–113, 713 

https://doi.org/10.1023/B:CLIM.0000013692.50640.55, 2004. 714 

López-Moreno, J. I. and Stähli, M.: Statistical analysis of the snow cover variability in a subalpine watershed: Assessing the 715 

role of topography and forest interactions, J. Hydrol., 348, 379–394, https://doi.org/10.1016/j.jhydrol.2007.10.018, 2008. 716 

Luce, C. H. and Holden, Z. A.: Declining annual streamflow distributions in the Pacific Northwest United States, 1948–717 

2006, Geophys. Res. Lett., 36, L16401, https://doi.org/10.1029/2009GL039407, 2009. 718 

MacNeille, R. B., Lohse, K. A., Godsey, S. E., Perdrial, J. N., and Baxter, C. N.: Influence of drying and wildfire on 719 

longitudinal chemistry patterns and processes of intermittent streams, Frontiers inFront. Water, 720 

https://doi.org/10.3389/frwa.2020.563841, 2020. 721 

Marks, D., Domingo, J., Susong, D., Link, T., and Garen, D.: A spatially distributed energy balance snowmelt model for 722 

application in mountain basins, Hydrol. Process., 13, 26, 1999. 723 



 

19 

 

Marks, D., Winstral, A., and Seyfried, M.: Simulation of terrain and forest shelter effects on patterns of snow deposition, 724 

snowmelt and runoff over a semi-arid mountain catchment, Hydrol. Process., 16, 3605–3626, 725 

https://doi.org/10.1002/hyp.1237, 2002. 726 

Marks, D., Winstral, A., Reba, M., Pomeroy, J., and Kumar, M.: An evaluation of methods for determining during-storm 727 

precipitation phase and the rain/snow transition elevation at the surface in a mountain basin, Advances inAdv. Water 728 

Resources,Resour., 55, 98–110, https://doi.org/10.1016/j.advwatres.2012.11.012, 2013. 729 

Marshall, A. M., Link, T. E., Abatzoglou, J. T., Flerchinger, G. N., Marks, D. G., and Tedrow, L.: Warming Alters 730 

Hydrologic Heterogeneity: Simulated Climate Sensitivity of Hydrology‐Based Microrefugia in the Snow‐to‐Rain Transition 731 

Zone, Water Resour. Res., 55, 2122–2141, https://doi.org/10.1029/2018WR023063, 2019. 732 

McCabe, G. J. and Clark, M. P.: Trends and Variability in Snowmelt Runoff in the Western United States, J.  Hydromet,., 6, 733 

476–482, https://doi.org/10.1175/JHM428.1, 2005. 734 

McCabe, G. J., Wolock, D. M., Pederson, G. T., Woodhouse, C. A., and McAfee, S.: Evidence that Recent Warming is 735 

Reducing Upper Colorado River Flows, Earth Interact., 21, 1–14, https://doi.org/10.1175/EI-D-17-0007.1, 2017. 736 

McNamara, J. P., Chandler, D., Seyfried, M., and Achet, S.: Soil moisture states, lateral flow, and streamflow generation in a 737 

semi-arid, snowmelt-driven catchment, Hydrol. Process., 19, 4023–4038, https://doi.org/10.1002/hyp.5869, 2005. 738 

Milly, P. C. D. and Dunne, K. A.: Colorado River flow dwindles as warming-driven loss of reflective snow energizes 739 

evaporation, Science, 367, 1252–1255, https://doi.org/10.1126/science.aay9187, 2020. 740 

Molotch, N. P., Brooks, P. D., Burns, S. P., Litvak, M., Monson, R. K., McConnell, J. R., and Musselman, K.: 741 

Ecohydrological controls on snowmelt partitioning in mixed-conifer sub-alpine forests, Ecohydrol., 2, 129–142, 742 

https://doi.org/10.1002/eco.48, 2009. 743 

Mott, R., Vionnet, V., and Grünewald, T.: The Seasonal Snow Cover Dynamics: Review on Wind-Driven Coupling 744 

Processes, Front. Earth Sci., 6, 197, https://doi.org/10.3389/feart.2018.00197, 2018. 745 

Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through conceptual models part I -A discussion of principles, J. 746 

Hydrol., 10, 282–290, 1970. 747 

Nayak, A., Marks, D., Chandler, D. G., and Seyfried, M.: Long-term snow, climate, and streamflow trends at the Reynolds 748 

Creek Experimental Watershed, Owyhee Mountains, Idaho, United States, Water Resour. Res., 46, 749 

https://doi.org/10.1029/2008WR007525, 2010. 750 

Naz, B. S., Kao, S.-C., Ashfaq, M., Rastogi, D., Mei, R., and Bowling, L. C.: Regional hydrologic response to climate 751 

change in the conterminous United States using high-resolution hydroclimate simulations, Global and PlanetaryGlob. 752 

Planet. Change, 143, 100–117, https://doi.org/10.1016/j.gloplacha.2016.06.003, 2016. 753 

Nolin, A. W. and Daly, C.: Mapping “At Risk” Snow in the Pacific Northwest, J. Hydromet., 7, 1164–1171, 754 

https://doi.org/10.1175/JHM543.1, 2006. 755 

Parr, C., Sturm, M., and Larsen, C.: Snowdrift Landscape Patterns: An Arctic Investigation, Water Resour. Res., 56, 756 

https://doi.org/10.1029/2020WR027823, 2020. 757 



 

20 

 

Patton, N. R., Lohse, K. A., Seyfried, M. S., Godsey, S. E., and Parsons, S. B.: Topographic controls of soil organic carbon 758 

on soil-mantled landscapes, Sci Rep, 9, 6390, https://doi.org/10.1038/s41598-019-42556-5, 2019. 759 

Pflug, J. M. and Lundquist, J. D.: Inferring Distributed Snow Depth by Leveraging Snow Pattern Repeatability: Investigation 760 

Using 47 Lidar Observations in the Tuolumne Watershed, Sierra Nevada, California, Water Resour. Res., 56, 761 

e2020WR027243, https://doi.org/10.1029/2020WR027243, 2020. 762 

Pierson, F. B. and Cram, Z. K.: Reynolds Creek Experimental Watershed Runoff and Sediment Data Collection Field 763 

Manual, Northwest Watershed research Center, USDA-ARS, Boise, Idaho, 1998. 764 

Pierson, F. B., Slaughter, C. W., and Cram, Z. K.: Monitoring Discharge and Suspended Sediment, Reynolds Creek 765 

Experimental Watershed, Idaho, USA, Northwest Watershed Research Center USDA-Agricultural Research Service, Boise, 766 

Idaho, 2000. 767 

Planet Application Program Interface: In Space for Life on Earth. San Francisco, CA.: https://api.planet.com. 768 

Pomeroy, J. W., Toth, B., Granger, R. J., Hedstrom, N. R., and Essery, R. L. H.: Variation in Surface Energetics during 769 

Snowmelt in a Subarctic Mountain Catchment, J. Hydromet., 4, 18, 2003. 770 

Regonda, S. K., Rajagopalan, B., Clark, M., and Pitlick, J.: Seasonal Cycle Shifts in Hydroclimatology over the Western 771 

United States, J. Clim., 18, 372–384, https://doi.org/10.1175/JCLI-3272.1, 2005. 772 

Schirmer, M., Wirz, V., Clifton, A., and Lehning, M.: Persistence in intra-annual snow depth distribution: 1. 773 

Measurements and topographic control, Water Resour. Res., 47, https://doi.org/10.1029/2010WR009426, 2011. 774 

Schweizer, J., Jamieson, J. B., and Schneebeli, M.: Snow avalanche formation, Rev. Geophys., 41, 1016, 775 

https://doi.org/10.1029/2002RG000123, 2003. 776 

Seager, R., Naik, N., and Vogel, L.: Does Global Warming Cause Intensified Interannual Hydroclimate Variability?, J. of 777 

Climate, 25, 3355–3372, https://doi.org/10.1175/JCLI-D-11-00363.1, 2012. 778 

Seyfried, M., Chandler, D., and Marks, D.: Long-Term Soil Water Trends across a 1000-m Elevation Gradient, Vadose Zone 779 

Journal,J., 10, 1276–1286, https://doi.org/10.2136/vzj2011.0014, 2011. 780 

Seyfried, M., Flerchinger, G., Bryden, S., Link, T., Marks, D., and McNamara, J.: Slope/Aspect Controls on Soil Climate: 781 

Field Documentation and Implications for Large-Scale Simulation of Critical Zone Processes, Vadose Zone J., 782 

https://doi.org/10.1002/vzj2.20158, 2021. 783 

Seyfried, M. S., Grant, L. E., Marks, D., Winstral, A., and McNamara, J.: Simulated soil water storage effects on streamflow 784 

generation in a mountainous snowmelt environment, Idaho, USA, Hydrol. Process., 23, 858–873, 785 

https://doi.org/10.1002/hyp.7211, 2009. 786 

Seyfried, M. S., Flerchinger, G. N., Bryden, S., Link, T. E., Marks, D. G., and McNamara, J. P.: Slope/Aspect 787 

Controls on Soil Climate: Field Documentation and Implications for Large-Scale Simulation of Critical Zone 788 

Processes, in review. 789 

Shrestha, R. and Glenn, N. F.: 2007 Lidar-Derived Digital Elevation Model, Canopy Height Model and Vegetation Cover 790 

Model Data Sets for Reynolds Creek Experimental Watershed, Southwestern Idaho [Data set], 791 

https://doi.org/10.18122/B27C77, 2016. 792 



 

21 

 

Somers, L. D. and McKenzie, J. M.: A review of groundwater in high mountain environments, WIREs Water, 7, 793 

https://doi.org/10.1002/wat2.1475, 2020. 794 

Stephenson, G. R.: Soil-Geology_vegetation Inventories for Reynolds Creek Watershed, Agric. Exp. Stn. Univ. Idaho Coll. 795 

Agric., 1970. 796 

Stewart, I. T.: Changes in snowpack and snowmelt runoff for key mountain regions, Hydrological Processes,Hydrol. 797 

Process., 23, 78–94, https://doi.org/10.1002/hyp.7128, 2009. 798 

Stewart, I. T., Cayan, D. R., and Dettinger, M. D.: Changes toward Earlier Streamflow Timing across Western North 799 

America, J. Clim., 18, 1136–1155, https://doi.org/10.1175/JCLI3321.1, 2005. 800 

Sturm, M.: White water: Fifty years of snow research in WRR and the outlook for the future, Water Resour. Res., 51, 4948–801 

4965, https://doi.org/10.1002/2015WR017242, 2015. 802 

Sturm, M. and Wagener, A. M.: Using repeated patterns in snow distribution modeling: An Arctic example, 46, W12549, 803 

https://doi.org/10.1029/2010WR009434, 2010. 804 

Tennant, C. J., Harpold, A. A., Lohse, K. A., Godsey, S. E., Crosby, B. T., Larsen, L. G., Brooks, P. D., Van Kirk, R. W., 805 

and Glenn, N. F.: Regional sensitivities of seasonal snowpack to elevation, aspect, and vegetation cover in western North 806 

America, Water Resour. Res., 53, 6908–6926, https://doi.org/10.1002/2016WR019374, 2017. 807 

Trujillo, E., Ramírez, J. A., and Elder, K. J.: Topographic, meteorologic, and canopy controls on the scaling characteristics 808 

of the spatial distribution of snow depth fields: SPATIAL SCALING OF SNOW DEPTHspatial scaling of snow depth, 809 

Water Resour. Res., 43, https://doi.org/10.1029/2006WR005317, 2007. 810 

Trujillo, E., Havens, S., Hedrick, A. R., Johnson, M., Robertson, M., Pierson, F. B., and Marks, D. G.: Utilizing spatially 811 

resolved SWE to inform snowfall interpolation across a headwater catchment in the Sierra Nevada - AGU Fall meeting, 812 

C33B-1579, https://doi.org/bib code: 2019AGUFM.C33B1579T, 2019. 813 

Viviroli, D., Dürr, H. H., Messerli, B., Meybeck, M., and Weingartner, R.: Mountains of the world, water towers for 814 

humanity: Typology, mapping, and global significance, Water Resources Research,Resour. Res., 43, 815 

https://doi.org/10.1029/2006WR005653, 2007. 816 

Vögeli, C., Lehning, M., Wever, N., and Bavay, M.: Scaling Precipitation Input to Spatially Distributed Hydrological 817 

Models by Measured Snow Distribution, Front. Earth Sci., 4, https://doi.org/10.3389/feart.2016.00108, 2016. 818 

Wang, R., Kumar, M., and Marks, D.: Anomalous trend in soil evaporation in a semi-arid, snow-dominated 819 

watershed, Advances in Water Resources, 57, 32–40, https://doi.org/10.1016/j.advwatres.2013.03.004, 2013. 820 

Westerling, A. L., Hidalgo, H. G., Cayan, D. R., and Swetnam, T. W.: Warming and Earlier Spring Increase Western U.S. 821 

Forest Wildfire Activity, Science, 313, 940–943, https://doi.org/10.1126/science.1128834, 2006. 822 

Williams, C. J., McNamara, J. P., and Chandler, D. G.: Controls on the temporal and spatial variability of soil moisture in a 823 

mountainous landscape: the signature of snow and complex terrain, Hydrology and Earth System Sciences, 13, 1325–1336, 824 

https://doi.org/10.5194/hess-13-1325-2009, 2009. 825 



 

22 

 

Winstral, A. and Marks, D.: Simulating wind fields and snow redistribution using terrain-based parameters to model snow 826 

accumulation and melt over a semi-arid mountain catchment, Hydrol. Process., 16, 3585–3603, 827 

https://doi.org/10.1002/hyp.1238, 2002. 828 

Winstral, A. and Marks, D.: Long-term snow distribution observations in a mountain catchment: Assessing variability, time 829 

stability, and the representativeness of an index site, Water Resour. Res., 50, 293–305, 830 

https://doi.org/10.1002/2012WR013038, 2014. 831 

 832 

 833 

  834 

Formatted: Font color: Auto, Not Highlight



 

23 

 

Tables  835 

Table 1. Precipitation, discharge and SWI characteristics for each water year including: total precipitation (mm), the 836 

fraction of precipitation falling as snow (snowfall fraction), dates of the start (snowstart) and end (snowend) of the snowy 837 

season, defined as > 1 cm of snow at weather station jdt124b (except for 2005, for which only data for weather station 838 

jdt125 was available), dates at which the simulated snow cover had melted (melt-out date; SCA = 0), annual discharge 839 

(Qannual) and runoff efficiency (Qannual/SWIavg) as well as the start (Flowstart) and end (Flowend) of surface flow at the 840 

catchment outlet, and simulated surface water inputs (SWI). We report the catchment-average SWI (SWIavg) as well 841 

as SWI from rain (SWIrain), SWI from snowsnowmelt (SWIsnow), the 98th percentile of SWI (SWI98), maximum SWI 842 

(SWImax) and the average SWI for north-facing slopes (excluding the drift area, SWINF-drift) and south-facing slopes 843 

(SWISF)). 844 

 845 

WY  2005 2009 2010 2011 2014 

  Rainy 
Lidar 

available 
Snowy Wet Dry 

Precipitatio

n 
mm 542 549 531 693 450 

Snowfall 

fraction 
- 0.23 0.49 0.57 0.41 0.30 

Snowstart 
dd-mon 

(DOWY) 

16-Oct* (16) 01-Nov (32) 04-Oct (4) 06-Nov (37) 20-Oct (20) 

Snowend 01-Mar* (152) 19-Apr (201) 26-May (238) 01-May (213) 06-Apr (188) 

SCA = 0 02-Jun (245) 14-Jun (257) 16-Jun (259) 18-Jun (261) 14-May (226) 

Qannual mm 62 81 117 307 80 

Q/SWIavg - 0.11 0.14 0.21 0.46 0.16 

Flowstart dd-mon 

(DOWY) 

11-Nov (38) 22-Nov (54) 12-Nov (43) 24-Oct (24) 28-Oct (28) 

Flowend 25-Aug (328) 25-Aug (328) 26-Aug (329) - 13-Jul (285) 

SWIavg mm 557 587 553 672 506 

SWIsnowSWIra

in 
mm 145 271 310 229 170 

SWIrainSWIsno

w 
mm 412 316 243 443 336 

SWI98 mm 982 1394 1513 1588 1015 

SWImax mm 2005 3350 3863 3892 2219 

SWINF-drift mm 551 568 534 665 490 

SWISF mm 505 456 407 556 430 

*dates based on measurements at jdt125 (outlet) rather than 124b (close to top of the catchment, see Fig. 1) 846 

 847 

 848 
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Table 2. Nash-Sutcliffe Efficiency’sEfficiency (NSE; Nash and Sutcliffe, 1970)Nash and Sutcliffe, 1970) and root mean 850 

square errorserror (RMSE, cmm) for simulated and observed snow depths at each weather station, as well as the NSE 851 

for the normalized (z-transformed) snow depths (NSEnorm). Dashes (-) indicate that no observed snow depths were 852 

available in that year. See Supplement S4Supplemental Fig. S7 for the time series of observed and simulated snow 853 

depths. 854 

 855 

  Outlet North-facing South-facing Upper region Median 

 Station jd125 jdt1 jdt2 jdt3 jdt4 jdt2b jdt3b jdt4b jdt5 jd124b  

NSE 

2005 0.83 - - - - - - - - - 0.83 

2009 0.45 0.67 0.09 0.95 0.91 - - - 0.65 0.84 0.67 

2010 0.01 0.92 0.91 0.68 0.86 - - - 0.67 0.92 0.86 

2011 0.40 -0.46 0.63 0.03 -9.60 0.52 0.76 0.54 -0.06 -5.56 0.22 

2014 0.80 -2.07 0.76 0.49 0.25 0.39 0.60 0.80 0.81 0.66 0.63 

NSEnorm 

2005 0.87 - - - - - - - - - 0.87 

2009 0.65 0.50 0.50 0.83 0.85 - - - 0.89 0.97 0.83 

2010 0.25 0.94 0.92 0.96 0.95 - - - 0.68 0.94 0.94 

2011 0.86 0.34 0.73 0.89 -0.86 0.55 0.75 0.67 0.63 0.15 0.65 

2014 0.77 0.59 0.75 0.81 0.64 0.33 0.64 0.72 0.80 0.79 0.74 

RMSE 

(cmm) 

2005 0.801 - - - - - - - - - 0.801 

2009 0.11.5 
9.70.1

0 
0.19.1 

5.11

0.05 
7.90.08 - - - 0.11.1 

9.10.0

9 
9.70.10 

2010 
11.70.1

2 

3.70.0

3 

5.10.0

5 

0.11

.1 
9.30.09 - - - 

8.70.0

9 

5.60.0

6 
8.70.08 

2011 2.90.03 
0.065

.5 

4.20.0

4 

8.30

.08 
0.30.3 

2.10.

02 

2.10.0

2 

1.90.0

2 
5.0.05 0.15.0 4.60.08 

2014 1.20.01 
5.70.0

6 
2.0.02 

3.60

.04 
4.70.05 

1.90.

02 

2.20.0

2 

1.10.0

1 

1.60.0

2 

2.40.0

2 
2.10.03 

 856 
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Figures 858 

 859 
Fig. 1 Maps of the location of (a) the Reynolds Creek Experimental Watershed (RCEW) in the state of Idaho (USA, 860 

EPSG:4269 - NAD83 projection), (b) Reynolds Creek Experimental Watershed with indication of elevation (white = 861 

lower, dark green = higher), 100 m contour lines, the location of Johnston Draw (grey polygon) and two additional 862 

precipitation gauges (dots) indicated in light blue, and (c) Johnston Draw with the weather stations (light blue dots), 863 

stream (blue line), and 10 m contour lines (black lines), overlain on a hillshade DEM. 864 

  865 
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 866 

 867 

Fig. 2. (a) Lidar snow depth (m) at 3-m resolution on 18 March 2009, and (b) simulated snow depthdepths for the same 868 

day, where yellow indicates low snow depths, blue high snow depths, and grey the areas for which the snow depth could 869 

not reliably be determined from the lidar measurement (see section 3.2). (c) shows a hexagonalHexagonal bin plot 870 
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comparing the observed and simulated snow depths with grey colors indicating fewer pixels and blue indicating more 871 

pixels included per bin. (d) shows the fractionFraction of images for which sites were snow-covered, using 3-m 872 

resolution satellite imagery for the available images (n=41) of water year 2019 (see section 3.2), and (e) shows the 873 

fraction of time during which each pixel was snow-covered, using the simulated snow cover from the beginning of the 874 

water year 2009 until all snow had melted (n=238). Bushes and trees (marked in grey in Dpanel d) inhibited the exact 875 

determination of the snow cover for the satellite imagery in some locations.  876 
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  878 

Fig. 3. Maps showing the yearly sum of surface water inputs (SWI, mm) for (a) rainy 2005, (b) snowy 2010, (c) wet 2011 879 

and (d) dry 2014, with polar diagram insets showing the average sum of SWI per 10-m grid cell for each aspect (binned 880 

per 22.5°). Higher SWI values are shown in darker colours, lower SWI values in lighter colours, and SWI values are 881 

capped at 2000 mm to enhance the contrast. Maximum annual SWI values are shown in Table 1 and a map of simulated 882 

SWI for 2009 is shown in Supplement S5Supplemental Fig. S13. 883 

 884 
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Fig. 4 Weekly sums of surface water inputs (SWI, summation of rainfall and snowmelt, green polygons, mm), rainfall 887 

(grey polygons, mm) and specific discharge (black line graph, mm) for (a) rainy 2005, (b) snowy 2010, (c) wet 2011 and 888 

(d) dry 2014. Background panels are coloured according to the different seasons (fall, winter, spring, summer, fall). 889 

The polar diagram insets indicate whichthe fraction of SWI (fSWI) occurred in whicheach season. Squares at the top of 890 

each panel indicate the annual center of mass for snowmelt (white), rainfall (grey), SWI (green) and discharge (black).  891 
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 896 

Fig. 5 Cumulative surface water inputs (SWI, dashed lines, mm) and discharge (coloured polygons, mm) for each of 897 

the water years (dark green = rainy 2005, light blue = snowy 2010, dark blue = wet 2011, light green = dry 2014). Circles 898 

indicate the day at which the stream ceased to flow at the catchment outlet (dry-out date, please note that the stream 899 

did not cease to flow in 2011) and diamonds indicate the day at which all snow had melted from the catchment (melt-900 

out date).  901 
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  903 

Fig. 6 Scatter plots of (a) annual discharge at the catchment outlet (mm) and annual precipitation at the lowest 904 

precipitation gauge (jdt125, mm; see Supplemental Fig. S14 for a comparison with simulated mean catchment 905 

precipitation), (b) the day that surface flow in the stream ceased (dry-out date, day of water year (DOWY)) and the 906 

day on which all snow had melted (melt-out date, DOWY), (c) annual runoff ratio (annual discharge/annual 907 

precipitation at jdt125) and the annual snowfall fraction (-), and (d) the stream dry-out date and the annual snowfall 908 

fraction. Years in which the stream did not fall dry out are projected to the last day of the hydrological year. R2 and p-909 

values for linear regressions between the variables in each panel are: (a) r2=0.6083, p-value=0.005001, (b) r2=0.4874, p-910 

value=0.023, (c) r2=-=0.0923, p-value=0.607524, (d) r2=-=0.1112, p-value=0.790. 730.  911 
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  913 

Fig. 7: Heatplot showing Pearson correlation coefficients (α=0.1) for comparisons between annual discharge, the stream 914 

dry-out date and precipitation and snowpack metrics. Significant correlations are marked in dark red (negative) and 915 

dark blue (positive), whereas insignificant correlations are marked in light blue (positive) or light red (negative) and 916 

correlations without a direction are marked in white (r < 0.3). For most metrics, the comparison is based on the 917 

2004-2014 data record (n=11 years). The comparison with the melt-out date (marked with one asterisk) is based on the 918 

simulated years (n=5) and the years for which satellite imagery was available (2016-2019, n=4; which totals to n=9). 919 

For the SWI flashiness index, the melt rate, and the number of days when at least half the catchment was snow-covered 920 

and the sum of SWI before the dry-out date (marked with two asterisks), we used only the years that were simulated 921 

(n=5). Scatter plots of all significant correlations can be found in Supplemental Fig. S9. 922 
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