
Unravelling the contribution of potential evaporation formulation to
uncertainty under climate change
Thibault Lemaitre-Basset1, 2, Ludovic Oudin1, Guillaume Thirel2, and Lila Collet2, 3

1Sorbonne Université, CNRS, EPHE, UMR 7619 METIS, Case 105, 4 place Jussieu, F-75005 Paris, France
2Université Paris-Saclay, INRAE, HYCAR research unit, Hydrology Research Group, Antony, France
3Now at EDF R&D, OSIRIS Department, 7 boulevard Gaspard Monge, 91120 Palaiseau, France

Correspondence: Thibault Lemaitre-Basset (thibault.lemaitre-basset@sorbonne-universite.fr)

Abstract. The increasing air temperature in a changing climate will impact actual evaporation and have consequences for

water resources management in energy-limited regions. In many hydrological models, evaporation is assessed by a preliminary

computation of potential evaporation (PE) representing the evaporative demand of the atmosphere. Therefore, in impact studies

the quantification of uncertainties related to PE estimation, which can arise from different sources, is crucial. Indeed, a myriad

of PE formulations exist and the uncertainties related to climate variables cascade into PE computation. So far, no consensus5

has emerged on the main source of uncertainty in the PE modelling chain for hydrological studies. In this study, we address

this issue by setting up a multi-model and multi-scenario approach. We used seven different PE formulations and a set of 30

climate projections to calculate changes in PE. To estimate the uncertainties related to each step of the PE calculation process

(namely Representative Concentration Pathways, General Circulation Models, Regional Climate Models and PE formulations),

an analysis of variance decomposition (ANOVA) was used. Results show that PE would increase across France by the end of10

the century, from +40 to +130 mm/year. In ascending order, uncertainty contributions by the end of the century are explained

by: PE formulations (below 10%), then RCPs (above 20%), RCMs (30-40%) and GCMs (30-40%). Finally, all PE formulations

show similar future trends since climatic variables are co-dependent to temperature. While no PE formulation stands out from

the others, in hydrological impact studies the Penman-Monteith formulation may be preferred as it is representative of the PE

formulations ensemble mean and allows accounting for climate and environmental drivers co-evolution.15

1 Introduction

Ongoing climate change causes regional modifications of precipitation regimes and a global increase of air temperature (In-

tergovernmental Panel on Climate Change, 2014a). As a consequence, the increase in evaporation has been highlighted as a

potential key risk that may decrease streamflow and water resources, particularly in Europe and arid environments (Intergov-

ernmental Panel on Climate Change, 2014b). However, the relationship between air temperature and evaporation increase is20

not straightforward. This relationship is highly dependent on water availability and atmospheric feedbacks (Boé and Terray,

2008). Indeed, some studies pointed out a decreasing trend for evaporation in observed records, despite an increasing trend in

air temperature, due to soil moisture limitation (Jung et al., 2010) or atmospheric feedbacks such as increasing air moisture

(Allen et al., 1998).
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In many crop water requirements and hydrological models, evaporation is assessed by a preliminary computation of potential25

evaporation (PE) representing the evaporative demand of the atmosphere and used as inputs in the models. A large panel

of formulations exist for PE estimation, from empirical temperature-based formulations to more integrative ones, based on

energy budget. In impact studies, the choice of an empirical temperature-based method is often motivated by the limited

confidence in some climate variables relatively to air temperature (Wilby and Dessai, 2010; Dallaire et al., 2021), while the

choice for more physically-based formulations is guided by the will to explicitly take into account interactions and possible30

feedbacks between radiative and aerodynamic variables that may co-evolve under climate change (McKenney and Rosenberg,

1993; Donohue et al., 2010). However, through calibration, many impact models accommodate from PE amounts of different

magnitudes (Oudin et al., 2006) but are much more sensitive if these magnitudes are not constant over time (Nandakumar

and Mein, 1997). Frameworks to assess PE formulations validity in climate change impact studies concentrated on the ability

to reproduce past and sometimes extreme events (Prudhomme and Williamson, 2013), but the assumptions that these past35

events are representative of the future climate are difficult to verify. A more comprehensive way to assess the uncertainty of PE

formulations on impact models is testing several formulations. Since PE formulations is not the unique source of uncertainty

in impact modelling chains and since PE uncertainties also stem from the uncertainty conveyed by General Circulation Models

(GCMs), Regional Climate Models (RCMs) and/or downscaling methods, quantifying the contribution of PE formulations to

the total uncertainty of PE estimates is deemed crucial.40

Previous studies that examined the contribution of PE formulations to the total uncertainty of PE projections show rather

divergent results. Hosseinzadehtalaei et al. (2016) considered seven alternative PE formulations to the Penman-Monteith un-

der a large set of 44 GCMs-RCPs couples over Belgium. They found that RCPs, GCMs and PE formulations show balanced

contributions to the total PE uncertainty. McAfee (2013) compared three different PE formulations in the North American

Great Plains and showed that the Hamon formulation presents higher increase of PE than Penman and Priestley-Taylor formu-45

lations. Wang et al. (2015) showed that the Penman-Monteith formulation leads to a higher increase of PE than the Hargreaves

formulation in China.

Regarding hydrological projections, Bae et al. (2011), Seiller and Anctil (2016), Williamson et al. (2016) and Milly and

Dunne (2016, 2017) showed how dependent from the choice of PE formulations future streamflow anomalies can be. Con-

versely, Koedyk and Kingston (2016) and Thompson et al. (2014) found that PE formulation adds a minor contribution to the50

total uncertainty on streamflow anomalies in the Mekong River and over New Zealand. Kay and Davies (2008) found that

climate models bring the most uncertainties but pointed out that hydrological impacts can be quite different depending on the

PE formulation used across Great Britain. Vidal et al. (2013) studied the differences between two PE formulations over the

French Alps, and found a very significant contribution of the PE formulations to the total uncertainty of the projections.

These rather mixed results may originate from several choices made by the authors. First, the studies did not use the same55

ensemble of PE formulations. For example, Kay and Davies (2008) used two PE formulations while Koedyk and Kingston

(2016) and Milly and Dunne (2017) used up to eight different formulations including both empirical and physically-based

formulations derived from an energy balance. Second, not all studies used the same radiative forcing scenarios and were often

limited to a single scenario. For example, Koedyk and Kingston (2016) limited their study to a warming of 2°C. However, other
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studies have focused on the most pessimistic greenhouse gas emission scenario associated with the greatest global warming.60

For instance, Milly and Dunne (2017) only explored the CMIP5 RCP 8.5 scenario, and before them Kay and Davies (2008) only

used SRES A2. Third, results are apparently linked to the study spatial scale, depending on whether the authors are interested

in climate impact at the global scale (e.g. Milly and Dunne, 2016, 2017), the regional scale (e.g. Kay and Davies, 2008), or the

local scale (e.g. Koedyk and Kingston, 2016). Vidal et al. (2013) only focused on mountainous areas, where all PE formulations

are questionable. Finally, studies differ on the variable of interest on which the total uncertainty is computed: it can be either the65

PE estimate itself or streamflow simulated by an hydrological model. Assessing the PE uncertainty on the resulting streamflow

simulations is legitimate for case studies where water resources are assessed but it largely complicates the analysis since the

sensitivity of streamflow simulations to PE inputs is conditioned both by hydrological model parameterization and by the

climatic settings of the studied area (Koedyk and Kingston, 2016).

In this study, we use a comprehensive framework, including a large variety of seven PE formulations under several scenarios70

and using a large set of thirty CMIP5 GCM/RCM outputs. The sensitivity of impact models to PE is not addressed in this study,

we focus our analysis on PE and assess the contribution of the formulations to the total PE uncertainty over a large domain,

France. First, the analysis will focus on the future change in potential evaporation under climate change. Second, projection

uncertainty will be analysed to characterise the influence of the PE formulations on projections compared to the other impact

modelling steps.75

2 Material and method

2.1 Climate projections

Three different RCPs (RCP 2.6, RCP 4.5 and RCP 8.5) were used to account for the uncertainty on the unknown future

greenhouse gas emissions trajectories and climate variables from thirty GCM/RCM couples from EURO-CORDEX (Jacob

et al., 2014) were collected (Table 1). The use of several models at each step allowed for a more robust quantification of the80

uncertainties stemming from each step. The reference period used with climate projections to compute PE anomalies is 1976-

2005 and projections were analysed over 1976-2099. In practice 30-year periods are used for climate impact studies, and the

EURO-CORDEX simulations using the climate change scenarios cover the 2006-2100 time period. All data were available at

the daily time step.

2.2 PE formulations85

Seven PE formulations were selected in this study (see Table 2). This selection was made to represent diverse ways of estimating

PE, including physically-based methods derived from the energy balance and empirical methods. In this study, all formulations

were applied at a daily time step.

The Penman and Penman-Monteith formulations are often referred to as combinational methods since they are derived from

the energy budget coupled with aerodynamic considerations. While the Penman formulation is recommended for open water90
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Table 1. The available climate projection data. The numbers (2.6, 4.5 and 8.5) refer to the RCPs used by the GCM (rows)/RCM (columns)

pairs. Empty boxes or missing RCPs show the absence of data.

GCM/RCM Aladin63 Racmo22E WRF381P RCA4 RegCM4 CCLM4-8-17 REMO2009 HIRHAM5 REMO2015

IPSL-CM5A 4.5 8.5 4.5 8.5

CNRM-CM5 2.6 4.5 8.5 2.6 4.5 8.5

EC-EARTH 2.6 4.5 8.5 2.6 4.5 8.5

HadGEM2-ES 2.6 8.5 4.5 8.5

MPI-ESM-LR 2.6 4.5 8.5 2.6 4.5 8.5

NorESM1-M 4.5 8.5 2.6 8.5

Table 2. The seven formulations used to compute PE. The column ‘Climate variables’ refers to the input data required in each PE formulation.

Rn is net radiation, rh is relative humidity, u2 is 2-m wind speed and Ta is 2-m air temperature. Full equations are available in the provided

R code (see code availability section).

Name and notation Sources Climate variables

Penman Penman (1948); Allen et al. (1998) Rn, Ta, u2, rh

Penman-Monteith Monteith (1965); Allen et al. (1998) Rn, Ta, u2, rh

Priestley-Taylor Priestley and Taylor (1972) Rn, Ta

Morton Morton (1983); McMahon et al. (2013) Rn, Ta, rh

Oudin Oudin et al. (2005) Ta

Hamon Hamon (1963); Oudin et al. (2005) Ta

Hargreaves Hargreaves and Samani (1985); Allen et al. (1998) Ta

evaporation estimation, the Penman-Monteith formulation was proposed to estimate the potential evaporation from a reference

crop. These two formulations are widely used in crop water requirements and hydrological models since they make full use

of currently measurable climate variables, under a physically-derived framework. For climate change impact studies, these

formulations allow to take into account possible interactions and feedbacks between climate variables. The Priestley-Taylor

formulation is a simplification of the Penman equation that allows estimation of PE with only radiative climate variables. This95

formulation does not make use of aerodynamic climate variables, which are highly uncertain in climate change impact studies.

The Morton formulation was recommended by McMahon et al. (2013) for hydrological modelling. Based on the Priestley-

Taylor formulation, it includes an iterative estimation of a so-called equilibrium temperature more representative of the surface

temperature. Oudin, Hamon and Hargreaves formulations use air temperature only. Proxies of radiations are implicitly included

in these formulations either through extraterrestrial radiation estimation or using empirically-derived equations that relate100
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radiation to mean or amplitude of daily air temperature. For climate change impact studies, these formulations are interesting

since air temperature is probably the least uncertain variable in climate projections. However, the absence of other climate

variables is questionable under climate change since there exists feedbacks between climate variables, e.g. the dimming effect

making radiation decrease while air temperature increases. Shaw and Riha (2011) pointed out higher future PE amounts with

the temperature-based formulations, compared to other formulations, over five predominantly hardwood forest sites at differing105

latitudes in the eastern United States.

2.3 Quantifying and partitioning projected PE uncertainties

A Bayesian data augmentation technique, the QUALYPSO method (Evin et al., 2019; Evin, 2020), was applied to deal with

the lack of balance in terms of representation within the combinations of climate models (GCMs/RCMs) and RCPs (see

gaps in Table 1). This framework was successfully applied by Lemaitre-Basset et al. (2021) to analyse projected hydrological110

uncertainties with an incomplete ensemble of projections. ANOVA methods are frequently used to quantify the contribution

of different models to total uncertainty. They rely on the calculation of the respective variance of the different modelling chain

steps to the total variance. The analysis of variance can be performed with a time series approach as mentioned by Hingray

and Saïd (2014), which considers the quasi-ergodicity of climate variables for the long term. This approach was also used by

Lafaysse et al. (2014) and Vidal et al. (2016) who added the downscaling and hydrological modelling steps to the modelling115

chain in the evaluation of uncertainties. In the present study, to quantify and partition the total uncertainty on the projected

changes among the different modelling steps, the QE-ANOVA framework was chosen (Hingray and Saïd, 2014; Hingray et al.,

2019). The QE-ANOVA method allows decomposing the total variance of the projected potential evaporation estimates. The

total uncertainty partitioning is composed by the sum of all specific variances of each modelling chain step (namely RCPs,

GCMs, RCMs and the PE formulations), and a residual term, representing the interaction between models. Moreover, a 30-120

year rolling mean is applied on projected variables that are available from 1976 to 2099, to reduce the impact of internal

variability. Within the QE-ANOVA analysis, the trend signal analysed by a variance decomposition is a trend model fitted to

rolling mean projections. This statistical analysis allows to assess the importance of the choice in PE formulation, according to

the time scale and geographical-area targets.

3 Results125

3.1 Trends in potential evaporation according to the different RCPs

Figure 1a shows the mean annual PE, from multi-scenario and multi-model average, over the reference period 1976-2005

based on climate projections data. Across France, a north-south gradient is visible, with the highest values obtained over the

Mediterranean region and the lowest ones over the northern part and the mountainous areas (Alps and Pyrenees).

Annual PE is shown to increase over the 1976-2005 period (Figure 1b). A mean increase from about 730 mm.y−1 at the130

beginning of the century to about 840 mm.y−1 by the end of the century is simulated for all RCPs averaged (Figure 1b).
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However, this PE increase highly depends on RCPs, as PE reaches around 775, 820, and 920 mm.y−1 for RCPs 2.6, 4.5 and

8.5, respectively. This means that for the majority of climate models and PE formulations, the projected increase in greenhouse

gas concentrations clearly leads to an increase in PE estimates and the trend in PE is closely related to the RCP considered: an

exponential increase for RCP 8.5, a rather linear increase for RCP 4.5 and a plateau reached by 2040 for RCP 2.6.135

Figure 1. Mean annual PE (mm.y−1) computed with climate projections from 1976 to 2005 plotted over France (a), and mean annual time

series of PE averaged over the whole study area (b) computed with the three RCPs (1976-2099). Pluriannual (a) and annual (b) mean PEs

were calculated by averaging the seven PE formulations (a) and also the different GCM/RCM couples (b). As mentioned in Table 1, the RCP

2.6 time series is obtained by averaging 8*7 time series (8 GCM/RCM couples and 7 PE formulations), the RCP 4.5 time series is obtained

by averaging 10*7 time series (10 GCM/RCM couples and 7 PE formulations) and the RCP 8.5 time series is obtained by averaging 12*7

time series (12 GCM/RCM couples and 7 PE formulations).

3.2 Behavioural differences between PE formulations and links to climate variables

The PE formulations show large differences in terms of magnitude, whatever the time period considered (Figure 2a). This is in

line with previous studies that compared PE amounts depending on the PE formulation (Federer et al., 1996; Kingston et al.,

2009). The differences between formulations reach about 400 mm.y−1, which is much higher than the expected PE changes

over the 1976-2099 period for a given formulation.140

Figure 2b shows gradual positive anomalies for each formulation. By the end of the century, the annual PE changes over the

1976-2099 period are between +30 mm.y−1 with the Morton formulation and +130 mm.y−1 with the Hamon formulation,

whose relatively high sensitivity to air temperature increase was already demonstrated on other locations (Duan et al., 2017).

However, interestingly, the trend slopes do not necessarily depend neither on the climate variables used nor on the type of

equation, since Penman, Penman-Monteith and Oudin present similar trend slopes, while they are probably the most different145

in terms of formulation and climate variables used.
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Figure 2. Projected mean annual PE (a) and absolute anomalies (b) for each formulation. The time series are obtained by averaging the 30

RCP/GCM/RCM time series for each PE formulation. A 30-year rolling mean is applied so that, for instance, the value for the first year in

the plotted time series (at year 1990) corresponds to the PE averaged over the 1976-2005 period.

To better understand this point, we analysed the link between the PE and climate variables anomalies, regardless of their use

in PE formulations. We show that whatever the PE formulation, an increase in air temperature or radiation or a decrease in rela-

tive humidity leads to an increase in PE (Figure 3). The relationships exhibit rather linear behaviors, with higher slopes obtained

for the Hamon PE formulation. This might suggest that the interdependence between climate variables from GCM/RCMs cou-150

ples of models allows for PE formulations not making use of all available climate variables to still show consistent evolutions of

annual PE. Surprisingly, no clear relationship is observed between the PE and wind speed anomalies. A large discrepancy exists

between the GCMs/RCMs climate models regarding the sign of the evolution of wind speed, suggesting large uncertainties for

this variable.

3.3 Quantifying and partitioning the total uncertainty in PE projections155

We showed in the previous section that differences between PE evolutions are large in the future. In this section, we aim at

deciphering the real contribution of PE formulations to the total uncertainty, relatively to other factors (RCPs, GCMs and

RCMs). Figure 4 shows the contribution of each modelling step (RCPs, GCMs, RCMs and PE formulations) to the total

uncertainty of the future PE changes, i.e. the proportion of the variance explained by each step in the modelling chain at three

different 30-year periods centered around 2030, 2050 and 2085, over the entire domain of the study (France), obtained applying160

the QUALYPSO method.

By 2030, GCMs are the main source of uncertainty with a contribution ranging from 30% (over the south-east part of the

domain) to 50% (over the north-west part of the domain). RCMs are the second largest source of uncertainty with a contribution

ranging from 20% to 30%. The other steps in the modelling chain exhibit a much lower contribution: PE formulations account

for less than 5% to the total uncertainty, except over the south-east part of the domain, where it reaches 10%. The RCPs165

represent less than 10% of the total uncertainty. Finally, the residual variability is quite low with a proportion below 10%.
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Figure 3. Average PE anomalies compared to the average anomalies of the climate variables by the end of the century (2070-2099), for

air temperature (Ta, top left), net radiation (Rn, top right), relative humidity (rh, bottom left) and wind speed (u2, bottom right). Each

symbol represents one combination of RCP/GCM/RCM/PE formulation. Full symbols are used when the climate variable is used in the PE

formulation, blank symbols are used when the climate variable is not used in the PE formulation.
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By 2050, GCMs are still the largest source of uncertainty over a large part of the territory, with a contribution of about

40% to the total uncertainty. However, in the southern part of the territory, this contribution is still lower (30%). The lower

contribution of GCMs in this part of the territory can be explained by the increase in the contribution of RCPs to the total

uncertainty, on average by up to 10%. The contributions of RCMs show a small increase in the center of the French territory,170

from 30% to 40% on average. The contributions of other steps remain similar as those for 2030.

By 2085, GCMs and RCMs provide the major sources of uncertainty in the modelling chain, with a contribution of 30%

each. The contribution of RCPs to the total uncertainty is particularly higher than for other periods (especially in the south part

of the domain), so that in 2085, the divergence between RCP scenarios explains 20% of the variances in PE estimates. Finally,

differences between PE formulations, although they lead to largely different PE changes, remain a minor source of uncertainty175

compared to other factors, with a contribution to the total uncertainty below 10%.

Figure 4. Uncertainty contribution of each impact modelling chain step, to changes in PE across France at three different 30-year periods

centered around 2030, 2050 and 2085. Contribution to the total uncertainty is presented in percents and is calculated with the QUALYPSO

method.
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4 Discussion

4.1 Investigating the role of the uncertainty partitioning approach on results

Figure 5 (top row) shows the mean yearly PE increase (mm.y−1) computed with the complete matrix of data, i.e. com-

pleted with the QUALYPSO framework, at three different 30-year periods centered around 2030, 2050 and 2085. The data set180

available for this study is composed of 30 RCP/GCM/RCM chains, multiplied by seven PE formulations. The Bayesian data

augmentation process of the QUALYPSO framework fills a complete and balanced matrix of climate projections composed of

162 members (3 RCPs*6 GCMs*9 RCMs), multiplied by seven PE formulations. This process results in a balanced data set,

which is essential to correctly assess the contribution of each modelling step and to avoid inducing a biased estimation of the

variance explained by a specific modelling step over or under represented. The PE increase for future lead times, computed185

from the inferred complete matrix with the augmentation process does not modify the spatial distribution of the original data as

shown in Figure 1. The south-north gradient is still well represented for PE anomalies, only mountainous areas are no longer

standing out.

Figure 5. Mean change in annual PE (mm.y−1), computed with the QUALYPSO framework (top row); signal-to-noise ratio (bottom row).

Results are shown at three different 30-year periods centered around 2030, 2050 and 2085.
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Finally, the signal-to-noise ratio due to climate change, based on the method of Hawkins and Sutton (2012), is presented in

Figure 5 (bottom row). This indicator allows assessing if the change signal is more significant than the uncertainty associated190

to the change trend (i.e. the noise of the ensemble). When the signal-to-noise ratio is above one, the change is more significant

than the uncertainty and an emergence time can be associated to the change trend. Across France, the signal-to-noise ratio is

rarely above one in the projection time period. It shows a decrease from the 2030 to the 2085 horizon. This implies that no

emergence time could be calculated with this multi-scenario multi-model approach in terms of changes in PE. This highlights

the large uncertainty that can also be associated to the estimation of future PE, in addition to the uncertainty associated to other195

climate variables usually pointed out in climate change impact studies (e.g. precipitation). Surprisingly, the only signal-to-noise

ratio above one was computed at the short lead-time, over mountainous regions.

We performed another descriptive analysis to evaluate the distribution of PE changes, more specifically the distributions of

PE anomalies averaged over the entire domain (France) according to each scenario and model. Figure 6 shows the variability

of the mean PE anomaly projected over France for each model and scenario used in the study, namely RCPs, GCMs, RCMs200

and PE formulations, at three different 30-year periods centered around 2030, 2050 and 2085. The figure allows identifying

which scenario or model in the ensemble is likely to convey more uncertainty to the projections. For example, a model showing

a greater variability than the other ones or a significantly different projection can be identified as contributing to a significant

amount to the ensemble uncertainty range. At a first glance, the figure shows the increase in variability of the projections with

time, i.e. a growing uncertainty associated to the PE projections from horizon 2030 to horizon 2085. This increase is relevant205

to previously shown results, such as the divergence between RCPs (Figure 1), the divergence between PE formulations (Figure

2) or the increase in total uncertainty (Figure 5).

Regarding the RCPs, the divergence between the three of them increases with time. At the 2085 horizon, PE projections

clearly differ according to the emission scenario, which explains results observed in Figure 4 (increased proportion of uncer-

tainty due to RCPs). As expected, RCP 8.5 shows the largest uncertainty range and mean value increase, followed by RCP 4.5210

and RCP 2.6. Given that the signal-to-noise ratio (in Figure 5) is calculated from the mean of the total set of projections, we

can assume that if RCP 8.5 only were considered to estimate future PE, the signal-to-noise ratio would be greater and be more

likely to become above unity on some areas and under some horizons, while considering RCP 2.6 only, the signal-to-noise

ratio would be lower.

Regarding the GCMs, the divergence of PE projections between each model increases over time in terms of median change215

and distributions of change. Moreover, the uncertainty spread also globally increases with time, which adds up to the total

uncertainty, despite the fact that the relative contribution of this factor to the total uncertainty decreases with time (see Fig. 4).

Two GCMs stand out from the rest: ICHEC-EC-EARTH projects particularly higher PE than the others, while MPI-ESM-LR

shows significantly lower PE values.

The divergence between RCMs increases over time as well. It must be highlighted that not all RCMs are used with the220

same GCMs. For example, CLMcom-CCLM4-8-17 appears in Figure 6 as the RCM with the most variability. However, this

RCM only uses the outputs of two different GCMs, the MPI-ESM-LR model that projects the lowest PE increase, and the
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Figure 6. Distribution of PE changes across France at three different 30-year periods centered around 2030, 2050 and 2085 for each modelling

step: RCPs (top left), GCMs (top right), RCMs (bottom left) and PE formulations (bottom right). The boxplots represent the quantiles 5, 25,

50, 75 and 95 of the discributions.

MOHC-HadGEM2-ES model that projects one of the highest PE increases. The projected higher uncertainty derived from this

RCM can thus be explained by significantly divergent GCM inputs to this model compared to the other RCMs.

Finally, Figure 6 also shows changes in PE projection uncertainty level and spread derived from the PE formulations. For225

each time horizon, the uncertainty level and spread show similar values across the seven PE models. However, for each for-

mula, the variability and hence the uncertainty to PE projections increases over time. In addition, it is clear that except the
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Hamon formulation, all PE projection anomalies remain within similar value ranges. This important result confirms that PE

formulations are not the main factor of uncertainty in PE projections, comparatively to RCPs, GCMs and RCMs.

4.2 Guidelines for selecting PE formulations in impact studies230

Two related questions arise when using PE as inputs of climate change impact models: (1) do we need to consider multiple PE

formulations or does a single PE formulation suffice? and (2) which formulation(s) are preferable?

As for the first question, our results suggest that PE formulations may have different trends in the future and assessing

these differences through a multi-formulation approach is undoubtedly a relevant practice. The PE anomalies obtained in this

study are of the same order of magnitude than those of previous studies and rank PE formulations in a similar way (Milly235

and Dunne, 2016, 2017). However, considering the other sources of uncertainties conveyed by RCPs, GCMs and RCMs, we

found that PE formulations account for only around 10% of the total uncertainty in PE projections. This result contrasts with

previous studies that highlighted the relatively important role of PE formulation in the impact modelling chain (Vidal et al.,

2013; Seiller and Anctil, 2016; Williamson et al., 2016). However, we must notice that many studies focused on the RCP8.5

scenario, which is associated to the highest greenhouse gas emissions and therefore the highest radiative forcing. This leads240

to greater divergence between the formulations than in the multi-scenario approach, due to the higher future air temperature

gradient. We attribute the differences between our results and those from previous studies to the inclusion of several climate

model simulations under a large range of emission scenarios and to the approach used to partition uncertainty relying on a

Bayesian method to complete our unbalanced set of projections. In addition, oppositely to these studies, we did not use any

impact model (such as an hydrological model or a crop water requirements model), aiming at making this study as general as245

possible. Due to the minor contribution of PE formulations to the total uncertainty in PE projections, it does not seem necessary

to consider several formulations in impact studies. However, in case several impact models are used, due to the differences in

the magnitude of PE and its changes between formulations, the same formulation should be conserved for all modelling chains.

These recommendations do not apply in case only one climate projection is used, which should be avoided anyway.

As for the second question, it is difficult to provide clear guidelines. In theory, the choice of a PE formulation for an250

impact study needs to consider both the uncertainties on the projected climate variables used by the formulations and the

physical consistency handled by these formulations. In practice, since the choice of a PE formulation is often driven by the

own experience of the modeller, the relatively insensitivity of PE projections to PE formulations obtained in our study, relatively

to the other sources of uncertainty, tends to confirm this usage. We showed that the behaviors of the PE formulations along

projected climatic gradients are generally consistent (Fig. 3), even for very different formulations in terms of climate variables255

used and physical consistency. This results from the fact that other climate variables co-vary with temperature and these

relationships are maintained in climate projections. On the one hand these results tend to suggest that the choice of a formula

for estimating PE is not essential given the uncertainties. On the other hand, if one wants to take into account other aspects such

as CO2, then we would recommend choosing a Penman-Monteith type formula that explicitly allows for this. We found that

Penman-Monteith PE trends are representative of the average of the PE formulations tested. Besides, its physical soundness260

allows taking into account interactions between climate drivers more explicitly than other formulations (even though we showed
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that those interactions tend to be implicitly taken into account in all formulations). In addition, its structure theoretically allows

accounting for other environmental changes such as land use or plant behavior under elevated atmospheric CO2 in a more

explicit way (Schwingshackl et al., 2019; Yang et al., 2019). Accounting for these changes probably represents a greater

challenge than identifying the "best" PE formulation with fixed vegetation parameters.265

5 Conclusions

Potential evaporation (PE) is a necessary proxy for the estimation of actual evaporation in impact models such as hydrologi-

cal and crop water requirements models. However, many formulations exist and the role of these formulations on projections

remains largely unclear. We investigated in this study the uncertainties sources of PE projections using 30 RCP/GCM/RCM

combinations and seven PE formulations over the 21st century. Thanks to an ANOVA-based method, we assessed the contribu-270

tion of each step of the PE modelling chain.

Our work shows that whatever the PE formulation used, PE will increase across France (from +40 to 130 mm/y), with higher

increases associated to a higher greenhouse gas emission scenario. The PE increase is higher on the southern part of France and

lower on the northern and mountainous regions. However, uncertainties are large, leading to a signal-to-noise ratio lower than

one. This involves issues to determine an emergence time in terms of signal change. The contribution of the PE formulations275

to the overall uncertainty in PE projections is much lower than the contribution of the other uncertainty sources (RCPs, GCMs

and RCMs, namely). Indeed, with calibration, similar PE trends over time do not bring much uncertainties. However, this work

also highlighted differences both in terms of absolute values and future changes in PE among the different formulations. The

divergence between formulations was found to be higher with higher air temperature increases. Hamon formulation leads to

the highest increase while Morton formulation leads to the smallest increase.280

Finally, the use of different PE formulations does not have a large influence on PE projections variances in a multi-model

framework. The contribution of PE formulations is rather small, because PE anomalies according to the formulation remain

gradual over time, and the ranking of formulations (according to magnitude) does not change over time. However, the bias in-

duced by the formulation could lead to a different estimation depending on the impact modelling chain used. Further work may

consider testing these conclusions with a full climate impact modelling chain, for example including an integrated hydrological285

model, which would have a different sensitivity to PE.

Code availability. The PE formulation codes can be retrieved from: https://doi.org/10.15454/NCNCHG

Data availability. EURO-CORDEX projections can be retrieved from https://www.euro-cordex.net/.
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