Event controls on intermittent streamflow in a temperate climate
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Abstract. Intermittent streams represent a substantial part ofotla¢strean network andheir occurrence iexpected to
increase due to climate changdéus, it is of high relevance to provide detailed informatiothe temporal and spatial controls
of streamflow intermittency to support management decisions. This study presewsnabased analysis of streamflow
responsedn intermittent streams in a mesoale catchment with temperate climateBaseal onthe streamflowesponses
10 precipitationevents were classifiethto flow or noflow classesResponseontrols like precipitation, soil moistureand
temperature were used as predictors in a random forest model to ideetifgmporally changing famts that explain
streamflow intermittencyat the evenscale. Soil moisture was the most important predidiat thepredictor importance
variedwith geolog in the catchmen&treamflowesponsem theslate geology were controlled by soil moisture in the shallow
and deep soil laysrwhile streamflow in the marl geology wpemarily controlledby soil moisture in the upper soil layer.
15 Streamflow responseis catchmentsunderlain byboth marland sandsne were depenent on soil moisture whereas
streamflow inthe onlycatchmentith apuresandstone geologiepen@don precipitation characteristids all slate and marl
catchmentsstreamflow intermittencyaried also withsoil temperaturewhich is probablya proxy for seasonal changes in
evapotranspiratiomnd an indicator of freezing condition®ur findings underline thénportance ofusing high temporal
resolution data anthiloredevent definitions that account for tfestchangedetween flow / neflow in intermittent streams

20 toidentify streamflowcontrolsatthe event scale.

1. Introduction

The scientific literatureontainsa variety of terms to defirthe differentdegree®f streamflow intermittencor streams that
cease to flow during certain parts of the y@arluding temporary, ephemeral, seasaral episodic streamandintermittent

25 rivers(UysandO6 Keef f e, 16 8,2016;Mavyetal., @od #Fritz et al. 202 This study follows the definition
of Busch et al. (2020) wh o -pereniial river or astreami witht aeconsidetatileeconhection tv e r
the groundwater table, having variable cycles of wettinglamdcessation, and with flow that is sustained longer than a single
storm event. These waterways are hydrologically gaining
Accordingly, an ephemer al -perennial ever orsseand withoutra eothsidarable raundivatar e

30 connection that flows for a short period of time, typically only after precipitation events. These waterways are hydirological
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losing the majority of the time when considering long term flow patr n s 0 ( B u s d¢nputsim formafisubsurfa2ed 2 0 ) .
stormflowand overlandlbw as immediateesponse tprecipitation eventarefrequently mentioned as the predominant source
of streamflowin ephemeral reaches (e.g. Boulton et al., 2017; ZimmerNeo@lynn, 2017), whereastreamflowin
intermittent streams is dominantly driven by the seasonal fluctuations of theurésre groundwater tablsnowmelt
contributionsormonssonseasoning . g. Uys and Obkeef fe, 1992D18;F6tnapdl2e20).e ous
The stream network changes its spatial extent with the wetting and dnytingsefintermittendand ephemerakachesEven
larger perennialrivers are becomingintermittentas a result ofclimate changeand the numberof intermittent streams is
expected to increase in the futfiatry et al., 2014Reynolds et al., 2015Llimate, geology, soil, topography, and land use
have beeidentified agnajorspatialcontrols of streamflow intermittengplsonandBrouillette, 2006;Reynolds et al., 2015;
Trancoso et al., 201&;ostigan et al., 201&immer and McGlynn, 201AVard et al., 2018Jaeger et al., 201Butiérrez
Jurado et al., 2019; 202Rrancevic and Kirchner, 201Baplan et al., 2020aThe temporal dynamiosf streamflowresult

from fluctuating contributions ofjroundwaterand precipitationevent inputs(overland flow and subsurfacgormflow)
depending on the antecederdtness state of trmatchmentg.g.Zeheet al., 2007Zimmermann et al., 20}4

Although extensive research owerland flowand subsurfacstornflow generation at the hillslope and reach scadewell as
baseflow contributions to perennial streanas been conductethere are stilfew studieson the dynamiccontrolsof flow
occurrence inephemeral and intermittent reach@mesand Roulet, 2009;Zimmer and McGlynn, 2017. Studies of
intermittentstreamsan beroughlycategorsed irto four scales. (1) continental scalstudiesbased on discharge measurements
(Reynolds et al., 2015; Eng et al., 2016; Trancoso et al., 2016; Jaeger et 3).(2qbh8sted) catchment scatidiesbased

on wet/dry mapping of the stream netwd@@odsey and Kirchner, 2@1 Sando and Blasch, 201Shaw, 2016; Goodrich et

al., 2018;Jensen et al. 2017, 20183) single siteor hillslope scalestudies based otonventionaldischarge measurements
(Sidle et al., 1995, Ries et al., 2017, Moratelas-Heras et al., 2020and(4) (multi)-catchment scalstudies thaare based

on continuousneasurements of streflow presence and absene#h low-cost sensor§.e. temperature, electric conductivity

or flow-sensors and timlpse camerast multiple locationsalong the strearto monitor the intermittentstream network
(JaegermndOlden 2012; Zimmermann et al. 2014; ZimmaedMcGlynn, 2017; Jensen et al. 20k&plan et al., 202Qd he
continental scale studiegebased on datasets from environmental agencies, which are usually not specifically dedicated to
intermittent streams (Reynolds et al., 2015; Eng et al., 2016; Traetadqg 2016; Jaeger et al., 2019hesestudiesof
streamflow intermittency commonly use statistical models to predittte exten of the intermittert streamnetwork by
incorporaing the climatic controls a coarse temporal resolutio@limatic controls includenean or total annuakecipitation
(Reynolds et al., 2015; Trancoso et al., 2016; Jaeger et al.,,28&9annual average number of days of measurable
precipitation Reynolds et al., 20)5snowpack persistenckom e.g. March to July/Augusbr the contribution ofsnow to
annualprecipitation(Reynolds et al., 2015; Sandmd Blasch, 2015; Jaeger et al., 2018)¢ annual evapotranspiration
(Trancoso et al., 2016anddryness or searality index (Trancoso et al., 201@heseclimatic predictors are used to identify
the likelihood of the stream network beiggatiallyintermittent (Reynolds et al., 2015; Trancoso et al., 2016; Jaeger et al.,

2019) or to identify longerm changes of streamflow intermittency undehanging clnate (Eng et al., 2016[Reynolds et
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al. (2015) found a generally poor agreement of single climate predictdzgeroflow days in the Upper Colorado River Basin
and emphasisithe importance of interplay betwettte composite of precipitatioand temperature to predict zdtow days.
Theyalsohighlighedthehigh correlatiorbetweerthe Palmer Draought Severity Indexdthe degree of stream intermittency.
Eng et al. (2016) identéd differenttypes of intermittent streams in the USA based orclineatic seasonalityhatwasin
some cases overwritten bgtchmentharacteristic¢e.g. local geology)They found ntermittency irfall-to-winter primarily

to becawsed by precipitation storage fine form of snow and icevith streamflow staihg with the onset of snowmelt ansl
sustained only by the stored sn@@ontrarysummerto-winter intermittency was mainly causedsriods of low precipitation
coinciding with maximum potential evaporatidimilar precipitation events that did nattiate flow during thesummetrto-
winter streamflow intermittencyere able to cause flovater in the yeawhen soil moisture content was higher due to
antecedent precipitation evenfdon-seasonal intermittent streams mainly appeared in regions with pngipitation
variability and large water deficits causedtigh evapotranspiration (Eng et al., 201.8eger et al. (2019) presedéa regional
scale model approach for the Pacific Northwest of the USA and fthatdotal annual precipitatiorminimum annual
temperature and the percent forest coverethe most important predictors filow permanencewhile submodels for specific
regions highlight the importance of evapotranspiration during tiee mhonths The regional variation ofontinental scale
intermittencyin eastern Australia could be best ddsedli by the dryness indeBdykao, 1974 and photosynthetically active
radiation (fPAR) while soil properties had an significant effect tneamflow intermittency at the regional scale (Trancoso et
al., 2016)

The (nested) catchment scale studies often rely on a limited numhvestfry mapping campaignsf the stream network
(Godsey and Kirchner, 2014; Sando and Blasch, 28i&y, 2016; Gadrich et al., 2018)Jensen et al. 2017, 2Q1Burighetto

et al., 202). Thesedataareusedto validated models that preditie dynamic®f the wettecchannel networkPredictors used
in these models vary frothedischargdGodseyandKirchner, 2014; Jensen et al., 20br}he recession rat the catchment
outlet (Shaw, 201pto groundwaterechargedata(Goodrich et al., 2018 owever,the drainage network extémoes not
necessarily correspond to the timing of streamflow recesafoshown by Shaw (2016) for a headwater catchméheistate
of New York He noticed the presence of seeps at the channel head of multiple subchancefgribaiedto flow even when
the lower reaches ceased to flow. This suggistspresence afultiple perchedwater tablesddue to the structure dhe
subsurface(i.e. geological layering, bedrock fractureahd contribute to channellow at the seepgShaw, 2016).The
importance of geologgn the occurrence of intermittent streamflaxas alsoshown inother climatic settings (Buttle et al.,
2012; Jensen et al., 201Burighetto et al., 2020 Rainfall timing and intensityvere good predictoref stream network
dynamicsin an Alpine headwater catchmewhereas evapotranspiration Hetlle predictive poweKDurighetto et al., 2020).
In hillslope scalestudies streamflow isusuallymeasuredontinuouslywith conventionaktreamflow gauges at a single site
or in nested subatchments and hillslopdSidle et al., 1995, Ries et al., 2017, Moratelas-Heras et al., 2020)The
streamflow gnamics ar¢ypically analysedn combination with higtemporakesolution soil moisture daténna et al., 2011;
Ries et a., 203, 7ZimmerandMcGlynn, 2017, localshallowgroundwatemeasurementZimmerandMcGlynn, 2017; Sidle

et al., 1995)or subsurfacdlow observationsit a trenci{Sidle et al., 1995)as well as withhigh-resolutionprecipitation data
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These studieaim towards a separation stfeamflowinto contributionsof Hortonianoverland flow (HOF), saturation excess
overland flow (SOF)subsurface storflow (SSF)and groundwater contributioms the evenscale The dependeremf runoff
initiation onthresholds of antecedesuil moistureat 1330cm depttwasdemonstratedolr several climategopographies and

land use characteristics (James and Roule®;2@énna et al., 2011Ries et al. (20173howedfor Mediterranearephemeral
streamghat event precipitatiommountsbelow 50mm lead tdocal hortonian runoffAbove this thresholdtreamflowwas
primarily explained by bedrock permeability, soil water storage rainfall intensityand apredominance oc8OFwith only

small contributions of HOFThe importance of storage variability was atéghlightedby Zimmer and McGlynn (2017), who
found seasonally distinct flow paths depending on the catchment storage state. These seasonal fluctuation of catckement stora
were driven bythe changes in evaportranspiratidPrecipitation events #gt occurred at low dacedent storage resulted in
HOF at thebeginning of the event, followed by SQ¥#th contributionsfrom shallow preched groundwater at the upper
hillslope During more saturated conditiojthe deeper groundwatprovided baseflow before and afterfecipitationevent
andall stormflowwas SOFandthe stream networkxtended tdts maximum lengthincluding zereorder hollows

Some of theecentstudieson streamflow intermittencyere based orstreamflow duration dateaptured by nely developed
sensor technologysuch aselectric conductivity (EG)temperature and selfmade flow-detectionsensos or time-lapse
camerasalong the stream netwoildaeger and Olden 2012; Zimmermann et al. 2&hEmjee et al., 201&immer and
McGlynn, 2017; Jensen et al. 20¥3plan et al., 202QaNarix et al., 202)L For exampleJaeger and Oldef2012 studied

the temporal dynamics ddngitudinal connectivityand streamflow continuityin the stream networkased orthe temporal

high and spatially coarse (2 km spacingpolution data of streamflow presence and absértey found thatthe stream
location within the channel network (headwater vs. lower parts) had a higher aqolapowerto differentiate between
perennial and neperennial streamthan geology Recent studies have broadened ithital approachego eventbased
analysesand the inclusion of additional measul®s including the antecedent precipitation index (AR describethe
antecednt wetness state of the catchmemtd precipitation meases like rainfall amount, intensity amd duration
(Zimmermann et al., 2014; Jensen et al., 20IBgse studies also hadmallersensor spacinganging from5 to 40 meters
Jensen et al. (201®)undthat60%of the variancén the maximum wetted fraction of the stream network during precipitation
eventawvasexplained by to 30days antecedeptecipitationand 16% by the precipitatiGamount Zimmermann et al. (2014)
modekd the connectivity of the drainage network at the ewmatieusing precipitation characteristigs.e. event duration,
maximum precipitation intensityand total rainfa)l and APl as predictorsThey furthermoreidentified total rainfall and
maximum precipitation intensity as the major contrafsl the longerm antecedent wetness (APl including 128 days prior to
the event) as a minor controlf drainage networkonnectivity(i.e., the total active stream length divided by the maximum
length of the channel networR)Varix et al. (2021) found a poor correlation between groundwater residencntinseasonal

flow permanence in a serarid catchments in southwestern lIdaho that are underlain by volcanics, basalt and latite. They
observed cotinuous streamflow at some reackeg toseasonally stable groundwater inputs. The seasonal flow permanence
in these catchmentwashighly correlaedwith topographic metrics (contributing area, slope, topographic wetness index), but

groundwater and topography only explained half of the observed variability in streamflow intermittency.
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Although the understandimyf streamflowintermittencyand drainag network connectivitpeen addressed by the different
types of studieat the continental, headwater catchment and hillstmade studies of intermittency in mescale catchments
in temperate climatestill remairs scarce With this study we aim tolosetheresearch gapf tempordly variabledrivers of
intermittent stream temperate climates and diverse geologiw'e benefit from alarge dataset ofobservations on the
presence or absence of fl¢iwaplan et al., 2019), higtesolution precipitation (Neup@andEhret, 2019)soil moisture and
temperature dataZ€he et al., 2014Pemand et al., 201Malicke et al., 202Dcollectedin the mesescale Attert catchment.
In a previous studythe three distinct main geologies were identified as majmtialcontrols of streamflow iermittency
(Kaplan et al., 2020aWe now take this a step further and evaluatrelationship betweegeology and the temporal
predictorsof streamflow intermittencyfollowing the approaches of Zimmermann et al. (2014) and Jensen et al. (2819),
present an evefitased analysis of precipitation astdeamflowresponsesSimilar to their approachgmeasures aintecedent
precipitationand precipitatiorevent charactesticsare considerebutwe also includesoil moistureandsoil temperaturén a
random forest modelling approadie aim to answer the followinguestions{1) which types of rainfall eventsigger a
streamflowresponsean intermitent streamsnd which do n& (2) what are themain dynamiccontrols(or predictor$ of

streamflowin intermittent streamsnd (3)are the controlsf intermittent streamflodependent othe geological settir)

2. Researcharea

The Attert catchment is located in the ruwigst of Luxembourgwith a minor area located Belgium, and has a catchment
area of 247 km2 at the outlet at Useldange (Hellebrand et al., 208&)nian slate is the dominant bedrock in the northern
part of the catchmeim the Luxembourg Ardenngthe central part consists of Keuper manld the southenpartis conformed

of the Jurassic Luxemboumgandstoneformation (Fig. 1, MartineZarreraset al., 2012) The elevation ishighest in the
Ardennes and Luxembourg sandstone formaicd49 m a.s.l. and 440 m a.srespectivelywhile theoutlet in Useldangés

has an elevation 0245 m a.s.l. MlartinezCarreras et al., 2012Pfister et al., 2018)The Luxembourg Ardennes are
characterised by steep inclined valleys with forested hillsl¢gasrox.15-25°) and plateaus with agricultural land use. The
central part of the catchment consists of gentle {8lispeca. 3°)thataremainly used forgriculture,grasslandand forest.
Thesandstone areas are characterised bgpdtélslopesthatare dominantly feested andh thelower partusedasgrassland

and for agriculture Kaplan et al., 202Qa Soils in the Attert catchment are linked to lithology, land cover and land use
(Cammeraat et al., 2018). Spih the slate geologgredominated by stony silty sailwhile the soils in Kuper marl have

silty clayey texture and the Luxembowsandstone region iargelycovered by sandy and silty soils (Miller et al., 20T8).
slatethe soil depth to the weathered C horizsrusuallyless tharbOcm,while the soi$ on the marl are more heterogeous

with a clay rich layer (> 50 % clay) starting between 20 and 50cm depth (Demand et al., 2019). The soil depth to the
unweathered bedroalan reach more than 2imsandstone and Bt horizons are ofteejgler than 1n§Sprenger et al2015.

The climateis classified as pluvial oceanic (Wrede et al., 2024nual precipitatiorvariesfrom 1000 mm inthe northwest

to roughly 800 mnin the soutkeast (Pfister et al., 2017). Theean monthly precipitatiorangefrom 70 mm in August and
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Septemberto 100 mm in Decembemtil February (Wrede et al., 201&8vapotranspiratiotis higherduring summer (82 mm

in Juy when the average temperature is 1)r&@dlowest in winter(13 mmin December when the average temperature is
0°C) (Wrede et al., 2014 The seasonal fluctuations iprecipitation andevapotranspirationfluencethe runoff regime,
resulting inhigh flows during the winter seasamhile low flows occur in the summéWrede et al., 20145patial differences

in the seasonalariation instreamflowdepend on the bedrock permeabilishich controls the storagmixing, and release of
waterin the Attert catchment (Pfister et al., 201The sandstone geologin the Attert catchmerprovides the largegotal
andactive storage (defed asthe maximuminterannual variability in catchment storagempared tonarl andslate (Pfister

et al., 2A7). Thus, the sandstone geology has Itheest proportion of active storage compared to total stofh526%),
while thisis higherin the slate (6882%) and mar{69%). For nearbycatchment®n the Keuper marl active storageaujs to
100% of total storagéPfister et al., 2017).

Kaplan et al. (2020) demonstrated the importance of bedrock permeability and soil hydraulic condoctstigamflow
intermittency in the Attert catchmenthey also highlighted the potential of streamflow alteration through either artificial
surface ad subsurface drainage, dams and trenches in the agriculturglaseaported by Schaich et al. (201dndflows
from wastewater treatment plants on the plateaus of the Ardefimedainage densitgf the perenniastreanmetworkderived
from the topographic magpf the region(Le Gouvernment du Grariduché de Luxembourg, 20p% 1.4 km/km2and 0.6
km/kmzfor intermittent streamsThe drainage dengitvaries among the three geologies vit8 km/km2and0.2 km/km2for
perennial andntermittentstreamson sandstone, Dkm/km2and 03 km/kmz? for perennial andntermittent streams on marl

and 1.0 km/kmé&nd 1.0 km/km?2 foperenniaintermittent streams on slate.
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Figure 1: Geology and stream network of the Attert catchment andhe locations of streamflow monitoring at artificial channels,

forest roads and natural channelsas well as thesoil moisture and temperature measuremensites Sites with intermittent flow were

used for analy®s in this study, while the sites with perennial flowvere used as pour point sites to delineate the catchment boundaries
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APall 0 and WaSedbrvEBMBOEM) 0 i Hei 0 boandarytismet vidibledue to the overlap with its labe). The map
sectiors show the morentensively instrumentedareas in each geology: slate (blue frame), mafted frame) and sandstone (green
frame). Selected sites in the sandstone geology are labled with tie(e.g. SAl)that is usedin the discussion.The geological map

from 1947 was provided by the Geological Service of Luxembourgdapted version from Kaplan et al., 2019) the stream network

10 was derived from a topographic map e Gouvernment du Grand-Duché de Luxembourg, 2009
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3. Methods
3.1 Data acquisition

We used the intermittency dataset described in Kaplan et al. (20&h is a binary datet of streamflow presenae
absencdor 182 gaugingsites in the Attert catchmerifhese siteswere predominantlyiocated ataturalstreams but also
comprise smaller channeds ditches andhree sites irsandstone erosion channels forest roadsGauging sites atrficial
channels were mainly located in the less natural landscethe marigeology (se€ig. ). Thus, t he imeenfitiert i t i
or ephemeratreanchannesd i n t ihcludesnaturakaddsrtificial channed with occasiona(ephemeraljurface runoff

or intermittent streamflovas definedabove(Section 1) The data were collectagsing various sensors, including tiamse
imagery(Dorr Snapshot Mini 5.)) electric conductivit{EC) sensorgmodifiedOnset HOBO Pendant waterproof temperature
and light data loggerand conventional gaug€SIETER/Decagon CTD pressure transduderstilling wells at weirs Time
lapse imagery was predominantly installed at sites that were expected to have intermittent strearrgtavepE#t locations
with expected perennial flow and conventional gauges atmaichoutletaandclose to the soil moisture measurement sites
(Kaplan et al., 2019From the 182sitesof the aiginal dataset, asubset 0b4 gaugesvith intermittent streamflowas selected
comprisingthe sites which were monitored by tifamse camera (C) antbnventional gauges (CGJo account for the
definition ofintermittent streamflovin section 1pbserved streamflow at gaugisijes showing at leaatperiod ofone hour
with no flow are casidered as intermittenthe subset wasplit into further subsets according to the dominant geolsigye(
marl, sandstongof the upslope contributing area. For the different geological retjiess subsets comprisgégaugingsites

in slate, 23 in marl andinein sandstone (Sdegurel andFigure3). The contributing arederived from GlSanalysis using

a DEM (15m esolution)of all intermittert streamflow gaugingsites(Kaplan et al., 2020as shown in figure $in the
supplementThe streamflow datavere aggregated from the origindb min temporal resolutiorio onehour intervals by
calculating the mean of the binary values and roundimgshold: 0.5Yhe resulting value to one digit, i.e. back to binary
values (0/1).

Soil moisture and soil temperatur@remeasured at 45 sitésh e r e a fnioisture siiesoafioss the catchmewith each
siteconsisting othree soil profilegtotal: 135 soil profile3 (Figurel). In each profilecombined soil moisture and temperature
sensors were installeat 10, 30 and 5@m below the surface andcorded dathavea temporal resolutioof five minutes.
Thesoil moisturesites were located in each of the three main geologies in the catéhreigmér forest or grasslarideeTable

1). Combined these two land cover daes represent the predominant land cover in the catchment (Kaplan et allr2019).
marl and slate regionsagricultural land use has a substantial share of 41% and HM@¥ever, in agricultural land use
permanent sensor installations are not feasible and the natural stream network is heavily altered by artificial dramage syst
The soil moistureites werechoserfor the best possible representation of the combinedl lse and geology at a variety of
slope gradients, expositions (North, South) and posélongthe slope (top, mid, valleyZehe et al.2014).Eleven sites
were located in thmarl region, 22 sites were in tlsiate region and 12 sites the sandstongeresulting ina total of 33, 66 and

36 soil moisture measuremeptofiles per geology, respective{fable1). Althoughthese measurements do not include all

8
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landcover classeghe assumption was made that the sites represent thalggsiemoisture dynamics in the three geologies.
The first measurements started in March 2012 to October 2013 ardiarfeebruary 2018. In this studg subset of the data
for the period from 01.04.2016 until 17.07.204&s usedbecause ihad the largest overlapith the other data sources used
in this study Initially 5TE capacitanceoil moisturesensors (Decagon Devices/METER Environment, Us&de installed

but due to sensor malfunction, 43 sensors were replacedSM{F100 (TRUEBNER GmbH, Neustadt, Germany) ake
sensors with GS3 sensors (Decagon Devices/METER Environment, USA) in 2016. Therdataually checked and offsets
between soil moisture measurements after sensor replacesreaietected in fourineseries. Additionally, seven timeseries
with strongsensor noisand/or extensiveeriodsof constant soil moisture weremoved from the dataséthe soil moisture
valueswere normabed to the minimum and maximum of the time series for sankotto avoidpossible bias among sensors.
Soil moisture dynamicat each geologwrerepresented by the mean of the norsaglitime series for all sites located in the
corresponding geology. Ths®il moisture datavereaggregated to hourly mearie averaged soil moisture was assigned to
the streamflow gauging sites based on the main gedatotipe upstreancatchment areaf each site.

Neuper and Ehret (2018¥timated precipitatioflom weather radar data combined with data from six disdrometers, two micro
rain radars, regular rain gaugesid weather radar reflectivifyocations sed-ig. 1) using an information theory approach
This precipitation datetwas used in this studdue to itshigh temporal(1 hour)and spatial(100 m)resolution.The
precipitation datérom this griddedlatasetvereused at théocations of théntermittent streargauging sitesThe precipitation
data at thegaugingsiteswerethereafter used to calculate precipitation averagethéeight subcatchmentgFig. 1) for a
catchment scale analysis of precipitation evefiteragesf the precipitation time seriegere calculated as the average of

precipitation at alstreamgauging sites within the catchment without further spatial interpolation.

Table 1: Number of soil moisture and temperature measurement sites for each geology and lané&uEach site has three soil profiles
with soil moisture and temperature sensorat 10, 30 and 50 cm depth.

Geology Forest Grassland
Slate 15 7
Marl 5 6
Sandstone 9 3

3.2 Definition of precipitation eventsand streamflow response

In accordance with Wiekenkangpal. (2016) and Demand et al. (2019), a precipitation event was dagim@dng a minimum
precipitation sum of 1 mm. The required time peddo precipitatiorio separatéwo successive events was definethase
hours (3h) after testing a set dbur different values3, 6, 12 and 24 hours without rain, Penna et al. 2011; Penna et al. 2015;
Demand et al., 2019The maximum time between the start of a precipitation event and the startstietdnaflowresponse

was limited to 48 hours after tesgi both the24 and 48 hours as threshol@$gure2). In the case of multiple precipitation
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events within 48 hours before tisereamflowresponse, the latest precipitation event beforestreamflowresponse was
chosen as the initiaing precipitation event. The following characteristics were calculated for eamit: &Cumulative
Antecedent Precipitation (CAP) within 24h before the precipitation event armtve@and 14day antecedent precipitation
index (APIY

5

oL OB

cn
e}

1)

with P, as the precipitation during timrstep t, ithe number of antecedent timeeps(7 or 14 daysand k as a decay constant
(Kohler and Linsley, 1951 Values for the decay constant usually range between 0.80 andHa§8eh, 200)L A value of
0.85waschosen fothis studyto minimise the correlation between the API and CAP

Additional precipitationevent characteristimcluded themaximum1-hour precipitation intensity (R.), mean precipitation
intensity (Rean, total sum of pregitation (Rum), duration of the precipitation eventy)Pand the normaded soil moisture
(averaged pergeologgl 0 cigrFig{H) , 3 Qg c aan @ dsp Geptl anthfrstfand last timestep of the precipitation
event as well as théempord minimum, meanand maximunnormalizedsoil moistureduring the eventWe also usedhe

minimum soil temperature during the precipitation eventi{TFig. 3) as a proxyf seasonal changes in temperature and the

corresponding fluctuations in evapotranspiration (Wrede et al., 2014) as well as a potential identifier of freezingscondition

The soiltemperature was used due tddwer daily variability and lower dependemn the microclimate at the site obtain
a better representation thfe average temperature for each geology.

(Flow class) (No-Flow class)
A /_/H
r ~
Event #1 (trigger) Event #2 (maintaining) Event 3 (No-Flow)
oy b OGN | =
P [mm] ' ' ' i i
0_|
Flow — i i i i
@ i e =
No-Flow [ | | | 1 | [ T - T ;
0 5 10 i 15 £: | N
P~ Time [h] ' '

AT < 48h sum(P) > 1Imm

Figure 2: Precipitation events are definedby a minimum precipitation sum of 1mm separated by at leastthree hours on no
precipitation (gp T> 3h). Flow events are assigned to thesaprecipitation event within a 48 hour period beforeflow initialisation (T
< 48h). Precipitation events are classified as either triggering or maintaining events for the correspondirsreamflow events and
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summarised i n the #fAfl ow clfalssswo oirn cdstesmiswiespertdie oatltih 48 loors after thestart of the
precipitation event.

Eventswere classified according to the presence or absence of flow at the stream gauges. Precipitatiohieterniggered
the initialisation of astreamflowresponse within 48h after tiséart of the precipitatoaventi according to the definition above
i were classified agflow initialisingd. Precipitation eventsvithout aflow responseare classified asino-flowo. Those
precipitation events thatre classifiedneitheras flow initialising nor asno-flow responseand happemwhile the streanis
already flowing are classified aflow maintaining (Figure 2) For the purpose of modellirgjreamflowresponses, the two
classes flowinitialising and flowmaintaining were merged into omesponseclass namediflowo (Figure 2), because we
assume from the event data ttiepreconditions for flow initiation and maintenance aeey similar. The precipitationevent
definition andstreamflowclassification were carried ofdr rainfall measured locallgt the stream flow monitoring sites as
well asfor each of theeight subcatchmentsas the averaged precipitatian thesingle gaugingsiteswithin each ofthose
catchmentsi Pal | 0, AfBeschruederbaacho, AHei 0, ASchammi cht o
ANout emer baacho, ACol pacho aRigurel Fablaid. Forcehchsalxcdichracodxisteddns | at e
precipitation datasetontaining the same precipitation timeself@serages of those at the sited each sitethusidentical
precipitation eventwerederived for all sites within a subatchmentThe spatial aggregation of precipitation data is possible

due to the very highorrelation between the precipitatiahthe single sites in the sghtchments (fig. §. Thus, for each site

responses to the precigiltoavtdi mm WAt i marc alse sii folf o wa,r glemo

Table 2: Number of gauging sites per sulzatchment, precipitation sumsduring the study period (01.04.2016 to 17.07.201@nd the
percentage of catchment geologyl-he three main geological units do not always sut® 100% due to the presence obther geologies
and alluvium in the catchment

Number of sites peratchment &geology Catchment geology [%0]
Catchment Slate Marl Sandstone Slate Marl Sandstone  Psym[mm]
Foulschterbaach 5 0 0 86 0 14 687
Colpach 14 1 0 81 15 1 634
Noutemerbaach 3 0 0 98 0 0 637
Pall 0 7 1 0 64 22 592
Beschruederbaac 0 4 0 0 73 16 593
Hei 0 2 0 0 93 0 645
Schammicht 0 8 0 0 100 0 603
Schwebich 0 0 9 0 47 41 573
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3.3 Random forestmodel for intermittency

In general, aandomforest(RF) model contains an ensemble of regression trees. PredictianReiodel are based dhe
averaged predictions of all trees in the forest (Breiman, 280R): model is created by bootstrapping several random samples
from the original data and fitting a single classification trezttootstrapedsample(Out Of Bag samples (OBB)Yalidation

of the OBBclassification is performed witthé datathat are not included inthe bootstrap sampleThis dataare used for
independent predictions for each OBB based freem hese predictions the OBB error ragecalculatedover all trees to
provide a measure of the predictive performance @htbdel (Breiman, 2001).

Multiple RF models were used to model the classedremflowresponses (flow or nrflow) as a function of the predictor
variables Table 3). Table3 includes the selected predictor variables. Ghlymaximum soil moistur@t 10cm and 50cm
depth(dipandds))wer e sel ected due t o hi gh ¢ o rheresotilabistuoerpediciaiiial, d a | | €
end, minimumand meansoil moisture during a precipitation event in the different deatitsthe high correlation between

soil moistureat 10 and50 cmwith soil moisture at 30 cr(see Fig. S). The correlatiorwas low among most of theelected
predictorsfor the RF model (table 3pnly thecorrelation between th&il moisture measures in the two depths andfaPI

the two periodsvashigherfor most sitegseetable 3;Fig. 51 S8). For each site mindividual randomforest modelvith the
dataset containing the classificationstfeamflowresponses and the corresponding predictoiableswas set upThis is
necessary as the numberocoimplete precipitatioevens with streamflow responsearies considerably among the sitkese

to gaps in the streamflow observations and the variance of precipitation patterns and timing in the cé¢htoeb19
precipitaion events, se€ig. 3 andTab. 9, &, S3). Despite the varying number of precipitation evetite, importance of
temporalpredictorson thestreamflowresponsgto theprecipitationevents can still be analysed for each site.

The datasetvas split into a training dataset (70% of the data) for model fitting and a test dataset (30% of the data) for model
validation. Several training datasdtad ahighly unequal numbeof flow or noflow responseswhich would lead to an
overfitting of the model to the class withhighernumber ofresponsesThus,two methods of data resampling from the R
package ROSE (Random Ov&amping Examplesl.unardon et al., 20)4wvere used to avoidn overrepresentation of one
class (1) the oversampling function from the ROSE package performs simple oversampling with replacement from the
minority class until the specified sample size N is reaemed(2)with the optiorbothof the ROSE package the minority class

is oversampled with replagent and the majority class is undersampled without replacement until the sample size N is
reached The resampling is carried outith the probability for the minority class given by the value p (in this study 0.5;
Lunardon et al., 2014). Oversampling wset up to generate a dataset holding twice the number of observations of the
overrepresented class, whereas the -fwedersamplingaimsfor the 1.5fold number of all events contained in the original
datasetThus,three different datasets wareedas training data: a) the original training dataset, b) a resampled training dataset
after using the oversampling function of ROSE and ¢) a resampled training dataset using thendsesampling (called
Abot ho) f un tntafirs nn tle ftreeRIBFS dht datasets for each site were used to fit tarsmforest models

which were validated with the corresponding test dataBe¢ random forest models were run with the-package
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i r ando mEiawaadMener 2002 with arandomly choseseed set to 12® ensure reproducibility of the statistical
model the number of treesasset t02500 after reaching stable OBB error rates around this threshmalthe default value
of threepredictorvariables tried at each splithe confusionMatrix function from the-Rackageicared Kuhn et al., 20%)
was used for validationThe confusion matrix compares the modelled with the observed values and tallquentify the
percentage of correct and false clfisdiclasses and overall accuracy of model results as total correct classificanbns.
models withan averaged sensitivitycorrect flow predictions fotal flow observationsyand specificity(correct neflow
predictions / total ndlow observations » 0.5and a sum of both measures higher thannmreconsideredor further analysis.
The dataset with the highest averaged sensitivity/specificity was choseadorsite forfurther analysis. In caseghere
multiple datasetdor a site hadthe samevalues of sensitivity/ specificifythe original datavere chosen over the resampled
datasetsThe model accuracy (total correctly classifeents/ total number of modelledvent3 was used as an additional
indicator for the assessment of model gudiut was not used during the evaluation process.

With onedatasestelected for each sjtene model was run for each site and the mean decrease Gini (Mi¥&ptained only

for thosemodek based on the selected databgtasing thefimportancé function fromthe Rpac kage fir andomFo

MDG is calculated for each predicteariable X in the random forest model. For each decision tree in the rttedslimmed

up decrease of the node impurity measure (the Gini indewgighted by the proportion of data points reaching the nibdés

are split bythe specific predictovariable. These decreases in Gini index for single trees are averaged over all trees in the

forest toobtainthe mean decrease Gini (Louppe et al., 20A3higher meandecrease in Gini indicates higher variable

importance. ThtMDG is recognsed asarobust measure to rank the importance of the predictor variables of the random forest

models (CallandUrrea, 2010).

Table 3: Predictor variables used in the random forest model selection.

Predictor Abbreviation
Mean event precipitatiomtensity [mm/h] Prean

Event precipitation sufmm] Psum
Maximum Event precipitatiomtensity [mm/h] Prax
Cumulative antecedeptecipitation (24hJmm] CAP
Antecedent precipitation indeX @ay3 [mm] APL_7
Antecedent precipitation index (14 days) [mm] API_14

Maximum normalizedsoil moistureat 10 cm depthduring | dho
the even{-]

Maximum normalizedsoil moistureat 50 cm depthduring | dso

the event-]
Duration of the precipitation evefit] Po
Minimum soil temperature during an evéit] Thin
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4. Results
4.1 Eventanalysis
4.1.1Event analysisbased on local rainfall characteristics

Between64 and 11%recipitationeventswereidentifiedfor the 22 sites in the slate geold@ygure3, Tab.S1). Thedifferent
numbe of eventsverecaused by the natural spatial variability of precipitation but also bygdat#n thestreamflowresponse
dataset For 17 sitesthe precipitation events led predominantly to fi@sponsesvhile noflow responsesiereonly dominant
for five sites(Figure3). The share of nflow responsesat the sites rangefrom 3% to 89%. For one sité althoughhaving
intermittent flowi no precipitation evered toano-flow responseFor the 23sites located ithe marl geology between 51
and 114eventswereidentified Twelve of theseiteshad mordlow response$o precipitationthan neflow responseswhile
for eleven sitethere wereanore neflow responseéTab. S2 Figure3). Generally, the number of flovesponset precipitation
eventswerelower in themarl geologythan the slate and sandstone s{teigure 3). The percentagef no-flow responses
rangeal betweernl4%and 93% but for one sitéhere were naanydetected ndlow responseThetotal number of precipitation
events for thenine sitesin the sandstone geology vatibetweend0 and 110(Tab. S3, Figure 3). Therewasa nearly equal
split of sites with predominance flow (5 sites) and ndlow (4 sites)responsesThe proportion of ndlow responseto the
total number of precipitation even@gel from 3 to 82 %.

14



Slate

1% 83% 97% gpo, 339 37% 15% 90%

o196 97%
l 63% go, 100% 36% 64% 7% 7%
D

Events [count]

P I o KRS
PRI IR S IR PO RPN PO G P S P P N N
Marl
> 68% 41% 82% 19% 84% 4o, 7% 25% 17% gagp O 15%

Events [count]

18%
86% 68%
N 20% 4% = 100%
i II I I II
D

PPN & > » & vv‘sv}u\g*b"\vv 4
@@@&@@&&@@&@@@&3&@@&& &

Sandstone

@-
Q- T T T

N v ~
o o o K cf' % & S &
Sites

. Flow . No-Flow

Figure 3: Number of precipitation eventsresulting in either a flow or no-flow response for the sites underlain by differengeolog:
slate, marl, and sandstone.The average percentage of flowesponses per geologgre 71% in slate, 4®6 in marl, and 5% in
sandstone.
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Figure 4: Box plots of the characteristics of the events that led tilow (blue x-axis labels)and no-flow (red labels)responsesn the
three geologies (slate, maylsandstone) (a) averaged maximumsoil moistureat 10 cm and 50 cm depth during precipitation events,
(b) averaged minimum soil temperatureat 10 cm depth during the precipitation event, (c)average and maximumprecipitation
intensity (Pmeanand Pmay, (d) the cumulative antecedent precipitation (CAP) and the cumulative event precipitation (&m), (e)the 7
and 14-day antecedent precipitation index AP1_7 / AP1_14)and (f) the duration of the precipitation event(Pp) as well as the time
between initial precipitation and flow initiation (P w© g). One outlier for Pmean (6.5 mm/h)in slate is not shown to enhance the
readability . The boxes show the Z5and 75" percentile, dots are theoutliers outside 1.5times the interquantile range from the box
boundaries The line indicates the medianSignificant differences (two sided ttest) between flow and neflow responses forthe
predictor values within eachgeology are marked with a star symbol.
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The differences of the averaged values of the predictors at each site between flowflandresponses were tested with a
two sidedt-testseperatlyfor each geologyThe results ofhet-testshowsignificantly (p < 0.05)higheraveragesoil moisture
at sitesfor flow responsesompared to the nflow responsed all geologies(Figure 4a). The largest differenceds soil
moisturebetween flow and nflow responsesvere observedor the marl geology, withame a pof @.63a n doofd.66
during flow responsesompared to 0.38 @) and 0.44( ) during neflow responsegFigure 4a). The differencein soil
moisturewere smallest fothes a n d s t oig0ef Wi .t 4p8f Ad7nddringfflowmresponseand 0.35and0.36 respectively
during neflow responsedor the site®n slate, sil moisturewas slightly higher than in the sandstahging the responses
(choo f 0 . Sodf 0.85naddsidhilar during neflow responses(37 in both depths

In contrast to soil moistur¢he averages for minimum soil temperatuatid not differ significantlybetween flow and nélow
responsegFigure 4b). The precipitation measuresnk, Psumand Riaxweresimilar for flow and neflow responsest sitesin
slate and mageology(Figure 4c). However the ttest showedignificantlyhigher values for 8nand R.axfor flow responses
(Psum= 6.4 mm, Rax= 3 mnih) compared to ndlow responsefPsum= 4.3 mm, Rax= 2 mnth) for the sandstoneas well as a
significantly higherPsymduring flow response@sum= 5.5 mm)thanno-flow responses @n= 4.6 mm)for the marl While
the APl 7 and API_14 vaedsignificantly between flow and nflow responsescrossll geologies, the 24 hogumulative
antecedent precipitatiowas significantly higher for flowresponsesn marl (CARiow = 4.7 mm, CARofiow = 2.7 mm) and
sandstone (CARw = 3.1 mm, CARs1iow = 1.9 mm)(Figure 4d, €) compared to ndlow responsesbut the differences in the
slate were not significanfThe duration of a precipitation evewas not sigrficantly differentbetweenflow or no-flow
responsebut wereslightly longerfor flow responses the sandstond={gure 4). However there areoteworthy differences
in thelag between initiation of the precipitation events and the begin aftteamflowresponseHRigure 4f). The sites irmarl
have the shortesind sandstongitesthe longest response times.

4.1.2Event analysis based on subatchment averaged rainfallcharacteristics

The streamflow response f o r t he catchments APal,l 0f SchBadgmad ltatchineddfe r b a a
i Sc h we bandsttné catthment, AiNout emer baach?o, i C o Kateaatchnentgare showf o u | s «
Figure5. Themapped data revekdrge difference@ flow responsesven between catchmerttgtare located close to each
other.The twosmall subcatchmerg within the Hei catchmentre prominentexample of two gaugingsitesthat wereless
than500m apart buwvith very different shares of flomesponsegeasternise: 56% ;western #e: 15% Figure5).
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Figure 5. Maps of the sites and theircorresponding proportion of flow responsesThe prevalent geology at themajority of the sites

in eachcatchment is indicaked by the colour of the catchment blue = slate, grey = marland green = sandstone. The geology at the
site does not always reflect the dominant geology the entire catchment.Catchment shapes appeadistorted in the mapsdue to the
differences in shape and size.
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Figure 6: Eventsfor each catchmentordered by their temporal successionEach subplot showsthe mean event precipitation (top),
normalized maximum soil moisture in 10 cm depth (mid) and thepercentageof sites in the catchment withafi f | cowd i h o wo
response or "no data" for each catchment ordered by the temporal succession of the everisr sub-catchmentswith sites in two
different geologiesthe soil moistureis shownfor each of the geologiesThe events in themonths February, March and April are
highlighted with a blue background representing a period with a high number of sites in the Attert catchmentith flow, whereas

the months June, July and Augustare highlighted with a gray background indicate a dry period. Specific events are highlighted
with dashed lines and labled with letters for referenceThe colour of the header of the suiplot represents the dominant geology
(blue = slate, gray = mar] green = sandstone). The header also includes the number (fisites in the catchment. Notehat the event
numbers on the xaxis differ between the plots, i.e. Event #40 does not refer the same event across all sites.
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