
Response to Reviewer #1 Comments: 

In this manuscript, Hou et al. estimated water storage dynamics for more than 6,000 reservoirs 

worldwide from 1984 to 2015 using a combination of Landsat imagery, radar satellite altimetry, and 

geostatistical modeling. They also analyzed the patterns of increasing and decreasing trends globally. 

Finally, they attributed reservoir storage changes to climate and human variables and found that 

precipitation and river inflows largely dominated reservoir storage changes. 

I feel this is a very interesting study. Previous studies provided long-term storage changes for only 

dozes of reservoirs. It is really great to see a global dataset of more than 6,000 reservoirs, as compiled 

in this study. Their attributions on the reservoir storage changes can potentially inform local to regional 

water resources management. However, I have some major concerns on the quality of the global 

dataset and the methodology that they applied to attribute the storage changes. 

We thank the reviewer for the detailed and valuable comments and suggestions, which will 

enable us to greatly improve the quality of our manuscript. Below please find our response to 

reviewer’s comments in detail. 

R1C1) The Landsat satellites does not provide global coverage in the 1980s and maybe in the 1990s as 

well (Murray et al 2019). The authors did not acknowledge this limitation while stating they quantified 

reservoir storage from 1984 to 2015 globally. Is the produced storage time series consistent through 

1984 to 2015? Could you provide a figure documenting the number of observations in each year in the 

time series from 1984 to 2015? 

“Murray, N. J. et al. The global distribution and trajectory of tidal flats.” 

We agree that Landsat-derived products have limitations on providing observations in the 1980s. 

But this issue predominantly occurs in Oceania, Siberia, Greenland and parts of central and 

eastern Asia (Pekel et al. (2016); https://www.nature.com/articles/nature20584/figures/5). 

Landsat-derived water observations are available from 1984 onwards for most parts of Northern 

America, South America, Africa, Europe, and western and eastern Asia. 

Furthermore, Zhao and Gao (2018) developed an algorithm to fill gaps in time series when the 

contamination/occultation in a Landsat image is between 5-95%, and applied interpolation and 

extrapolation for the missing monthly area estimates (i.e., no images or >95% invalid data). As a 

result, in their reservoir area product, there are 5,917 reservoirs that have Landsat observations 

every month from 1984 - 2015 (Fig. 1). 

Despite that, we were still cautious in using the reservoir area data for long-term storage trend 

analysis. First, we removed reservoirs for which over five years of data were inter- or 

extrapolated. Second, we filtered out reservoirs with observations for less than 360 months (30 

years), e.g. in New Zealand. After these steps, we found that 4,573 reservoirs constructed before 

1984 have consistent Landsat observations and these were used for long-term analysis, compared 

to the 6,690 reservoirs for which we produced monthly storage dynamics. 

https://www.nature.com/articles/nature20584/figures/5


We will better explain these steps in the revised manuscript. 

R1C2) While this study produces storage changes for a greater amount of reservoirs globally, I do not 

think the authors fully addressed the limitations that prevent previous studies from documenting 

reservoir storage dynamics with a better spatial coverage. The authors estimated storage changes for 

the 132 large reservoirs with both water areas and levels without assessing their consistency. Without a 

high correlation between water areas and levels, it makes no sense to me to combine these two to 

deduce storage changes. The authors need to refer to existing studies (e.g., Busker et al.) on quality 

control before simply combining satellite observations. The authors used a geostatistical method to 

estimate the storage changes in the vast majority of reservoirs, on which I have an even greater 

concern. The authors need to be aware that the mean depth, as archived in the HydroLakes dataset, is a 

ratio of the total volume and maximum lake area. The mean depth does not provide any meaningful 

information of the actual water depth. Additionally, the geostatistical model adopted by Messager et al. 

is a spatial model measuring the relationship between the total storages and maximum areas for a large 

group of water bodies. The authors tried to use the outcome (e.g., mean depth) to estimate storage 

changes in each individual reservoir, which differs from the purpose of the Messager et al. Unless the 

authors provide a comprehensive validation, I am not convinced the proposed method is feasible to 

estimate storage changes for the majority of studied reservoirs here. 

“Busker, T. et al. A global lake and reservoir volume analysis using a surface water dataset and satellite 

altimetry. Hydrol. Earth Syst. Sci. 23, 669–690 (2019).” 

“Messager, M. L., Lehner, B., Grill, G., Nedeva, I. & Schmitt, O. Estimating the volume and age of 

water stored in global lakes using a geo-statistical approach. Nat. Commun. 7, (2016).” 

We thank the review for this suggestion. Following comments R1C2 and R1C7, we will increase 

correlation (R) thresholds between A-L and between A-V for reservoir storage estimation. We 

regard R values above 0.7 as indicating strong correlation, and will use this as the correlation 

threshold. For group A, we will only calculate reservoir storage when the correlation between A-

L is above 0.7. Storage dynamics between 1984-1993 (when altimetry data is not available) will be 

estimated using A if the correlation between A-V is above 0.7 between 1993-2015. We will update 

the subsequent long-term analysis as well. We can confirm that these stricter measures do not 

affect the conclusions of our study, however. 

We would like to clarify that we did not directly use the mean depth archived in the 

HydroLAKES dataset (Messager et al., 2016). Indeed, this value is not related to the geo-

statistical model and is simply the ratio of the reported volume and lake area. Rather, the geo-

statistical model provides the empirical relationship of the mean depth with water surface area 

and the average slope within a 100 m buffer around the water body (Table S2; Supplementary 

Material). Messager et al. (2016) have validated the predicted lake depth and volume derived 

from the geo-statistical model against observed data. The symmetric mean absolute percent error 

(Eq. (1)) and correlation between predicted and observed lake depth are 47.4% and 0.71, 



respectively (Messager et al., 2016). Furthermore, the SMAPE and correlation between predicted 

and reference volume are 48.8% and 0.95, respectively (Messager et al., 2016). 

     (1) 

We used this statistical model to estimate reservoir depth and volume dynamics from 1984-2015. 

We will clarify how we used the geo-statistical model for storage estimation in the revised 

manuscript. In addition, also responding to comments R1C2 and R1C13, we will include the 

absolute error (SMAPE) in Fig.2 and Fig.3 (L205-210) and list the SMAPE and correlation 

metrics (Table 1 and 2) for individual reservoirs in supplementary material. 

R1C3) The presented attribution on reservoir storage changes seems to be so simplified that I have 

many concerns. First, the authors simply compared the directions of the trend in reservoir storage 

versus that in potential drivers but the analysis only produces coincidence rather than causation. 

Second, the authors conclude that the evaporation did not significantly impact the reservoir storage but 

the calculation for the evaporation is too cheap.  The authors may need to use more advanced 

approaches (e.g., Zhao and Gao) in order to draw a confident conclusion. Third, reservoirs, particularly 

large ones as documented in GranD dataset, are highly regulated by humans. The authors depend on 

the outputs of global models on estimating human water release from reservoirs. Are the data really 

reliable for producing trend in human release for each reservoir? In sum, the authors need to pay 

careful attention to these limitations that potentially affect their conclusions. 

“Zhao, G. & Gao, H. Estimating reservoir evaporation losses for the United States: Fusing remote 

sensing and modeling approaches. Remote Sens. Environ. 226, 109–124 (2019)” 

We thank the reviewer for this comment, but in fact we explicitly considered the difference 

between coincidence and causation in our study. In a first step, we indeed looked at the 

coincidence of trends. We identified that the spatial distribution of trends of storage and in situ 

river flow show very similar global patterns (Fig. 4; L225-227). We could not relate each 

individual reservoir to a corresponding river gauge because the limited number of gauging 

stations upstream of reservoirs cannot accurately represent overall reservoir inflows. In a 

second step, therefore, we performed trend analysis using modeled river flow (validated against 

in situ river flow in Fig.8b; L272-275) at the basin scale, given total basin water storage can be 

expected to respond to a change in overall precipitation and streamflow. We confirmed the same 

directions of trends between precipitation, streamflow and reservoir storage in most basins 

globally, though not all (Fig. 7; L269-271). Third, we focused more on attribution by calculating 

Pearson correlations among the different variables, which obviously can provide evidence for, 

but not proof of, a causative relationship. Thus, we showed that there are reasonably strong 

correlations among linear trends in precipitation, streamflow and reservoir storage (Fig. 8a and 

c; L272-275). Furthermore, positive relationships between annual time series of storage change 

and reservoir inflow and between reservoir inflow and precipitation were found in a majority of 



basins globally (Fig. 9; L276-278). We will attempt to clarify the logic of our analysis in the 

revised manuscript. 

With regards reservoir evaporation, we believe our estimates are robust. Zhao and Gao (2019) 

estimated evaporation losses for 721 reservoirs in the contiguous United States using three 

different meteorological datasets, including TerraClimate, North American Land Data 

Assimilation System phase 2 (NLDAS-2) forcing and Global Land Data Assimilation System 

Version 2 and Version 2.1 (GLDAS-2 and GLDAS-2.1). We used their monthly reservoir 

evaporation amount (1000 m3/month) to analyse the trends in net evaporation and compared the 

trends with the ones derived from the W3 model (Van Dijk et al. 2018) for 721 reservoirs. The 

results show strong agreement in derived linear trends, especially with regard to the more 

detailed TerraCliamte dataset (Fig.2). Various hydrological variables estimated by the W3 model 

have been evaluated in previous studies. Therefore, we argue that the E0 derived from the W3 

model are entirely appropriate to analyze linear trends in net evaporation. 

The eartH2Observe model estimates do not include the impacts of reservoirs on river flows, and 

there is currently no global hydrological model that is capable of estimating the impact of 

historical operational water management at the reservoir or basin level with any acceptable 

degree of accuracy. Instead, we focused on all relevant variables for the reservoir water balance 

and tried to infer the influence of the remaining unknown variable (i.e. reservoir releases). 

Specifically, we did analyse the interaction between precipitation/streamflow/evaporation and 

reservoir volume and inferred the influence of human activity given that the water volume 

dynamics in a reservoir is the net balance of inflow (streamflow, affected by precipitation), net 

evaporation (i.e., evaporation minus direct precipitation) and reservoir releases (L306-312). We 

will clarify the approach to infer the role of human activity in reservoir storage long-term 

changes in the revised manuscript. 

Specific comments: 

R1C4) Line 25: “The majority of …particularly in South America, Southeast Asia and Africa”. The 

authors may consider add more relevant references here. 

“Wang, J. et al. GeoDAR: Georeferenced global dam and reservoir database for bridging attributes and 

geolocations. Earth Syst. Sci. Data 0–52 (2021)” 

“Mulligan, M., van Soesbergen, A. & Sáenz, L. GOODD, a global dataset of more than 38,000 

georeferenced dams. Sci. Data 7, 1–8 (2020).” 

Thanks. We will include these two references. 

R1C5) Line 65: Schwatke et al. 2019 is another study on estimating long-term lake area changes. 

Schwatke, C., Scherer, D. & Dettmering, D. Automated Extraction of Consistent Time-Variable Water 

Surfaces of Lakes and Reservoirs Based on Landsat and Sentinel-2. Remote Sens. 11, 1010 (2019) 



We will include this paper in the revised manuscript. 

R1C6) Line 89: It is hard to understand “coefficient of determination” here. Could you define or 

explain it? 

As we used Pearson correlation throughout this paper, we will convert coefficient of 

determination (R2) to Pearson correlation (R). 

R1C7) Line 120: I do not quite understand what’s the purpose showing the correlation between A0 and 

calculated V0 (based on A0). It makes more sense to me to show the correlation between A0 and h0 as 

these two are independent estimates. The authors may only need to consider a pearson’ R greater than 

0.8 (or R2 higher than 0.6) as correlation between A-L or A-V should be pretty high, otherwise it 

indicates substantial uncertainty in the data sets. 

Thank you for this suggestion. We will increase correlation (R) thresholds between A-L and 

between A-V for reservoir storage estimation. Please see our response to R1C2 for full details 

(the first paragraph). 

R1C8) Line 135: the equation does not make sense to me. The authors need to show more details about 

the rationale. 

We apologize for the confusion. We will clarify the rationale of this equation. 

R1C9) Line 150: “Only 132 reservoirs with both area and level observations….”. Do you conclude 

based on the 132 reservoirs or all reservoirs, majority of which do not have both observations? 

We performed a long-term trend analysis for 4,573 reservoirs, including both Group A (have 

area and level observations) and Group B (have only area observations). We will modify these 

sentences to clarify this information. 

R1C10) 164: It seems the MSWEP v1.1 may not be the latest version of the dataset. 

Although there is a latest version of MSWEP now, we carried out our study using MSWEP 1.1 

two years ago. We will consider using the latest MSWEP product, but among us are authors of 

the MSWEP product and with knowledge of the changes between successive versions we do not 

expect any important impact for the type of long-term analysis done here. 

R1C11) 192: The authors only validated on 1% of the studied reservoirs and the validation samples are 

located in U.S. only, which could be a concern. 

We provide validation of our calculated storage volumes for 65 reservoirs with publicly available 

storage data from US and Australia and cross-validation between two volume estimation 

methods for 33 reservoirs globally. Please see our response to R1C2 for full details (the second 

paragraph). We note that the availability of such ground data is limited, which was the primary 

reason for us to develop a remote sensing-based methodology. However, to further demonstrate 

the validity of our storage estimates, we compared our product with MODIS-derived water 



storage dynamics from 1992 to 2018 for another 100 reservoirs from Tortini et al. (2020) in L202-

204. 

R1C12) 194: What do you mean by “published”? The authors use pearson’s R (correlation) for doing 

validation, which does not give insights on the accuracy of estimated values. 

We will change “published” to “observed”. We think Pearson correlation is the most important 

validation metric for this study as we focused on trend analysis and this depends on temporal 

pattern rather than absolute value. However, we will include the absolute error (SMAPE) 

valuation and compared this validation to Messager et al. (2016). Please see our response to R1C2 

for full details (the second paragraph). 

R1C13) Figure 2: it would be more clear to show global-scale evaluation and move the evaluations on 

individual cases into the supplementary. 

Thank you for this suggestion. We will show the validations for individual reservoirs in 

supplementary material. Please see our response to R1C2 for full details (the second paragraph). 

R1C14) Line 214: “a positive trend in combined global reservoir storage of 3.1 km3 per yr”. This rate 

seems to less than 10% of earlier estimates on global reservoir storage rates (e.g., Chao et al.). Could 

you provide an uncertainty estimate for this rate? 

“Chao, B. F., Wu, Y. H. & Li, Y. S. Impact of artificial reservoir water impoundment on global sea 

level. Science (80-. ). 320, 212–214 (2008).” 

We explicitly performed trend analysis for the reservoirs constructed before 1984 only (L150-

152), to remove the influence of new reservoir water impoundments from 1984-2015. This was 

done to provide a clearer understanding on the interaction between 

precipitation/streamflow/evaporation and reservoir volume. Our study differs from Chao et al. 

(2008), who focused on cumulative storage by increased water impoundment. We will clarify this 

in the revised manuscript. 

R1C15) Line 215: “this was almost entirely explained by positive trends for the two largest reservoirs 

in the world, Lake Kariba (+0.8 km3 yr-1) on the Zambezi River and Lake Aswan”. This statement is 

confusing. I know some completed projections of megadams in China and Brazil, such as the three 

gorges dams.   

Please refer R1C14. Many mega-dams in China and Brazil were constructed after 1984 and 

have not been included in our long-term analysis. We will clarify this in the revised manuscript. 

R1C16) Line 219: “while 948 reservoirs showed increasing trends, distributed in northern North 

America and southern Africa”. The reported hotspots of increasing reservoir storage are inconsistent 

with the patterns of recent dam booms. 

Please refer R1C14. We did not consider dams constructed after 1984 for long-term analysis. We 

will clarify this in the revised manuscript. 



R1C17) Figure 4: This map is confusing to me. For example, China may be the global lead in dam 

constructions during the study period. Why its reservoir storage decreased? Is the data correctly shown 

in this map? 

Please refer R1C14. The map shows trends for reservoirs constructed before 1984. We will 

clarify this in the caption of Fig.4. 

R1C18) Line 245: “We summed storage for individual reservoirs to calculate combined storage in 134 

river basins worldwide”. Do reservoirs show a similar pattern of storage change in the same river 

basin? Is it more meaningful to analyze each of them individually? 

A majority of reservoirs in each basin shows the same trends where there is a significant trend in 

total storage (Fig. 11; L301-305). We showed the trend analysis at both the individual (Fig.4a; 

L225-227) and basin scale (Fig.7c; L269-271). Due to the limited abilities of the hydrological 

model to simulate inflow for individual reservoir, we performed our climate analysis at the basin 

scale instead, given total basin water storage can be expected to respond to the change in overall 

precipitation and streamflow. 

R1C19) Line 268: “In summary, we did not find evidence for widespread reductions in reservoir water 

storage due to increased releases”. Reservoir storage increase could be a result of increased 

impoundments. Did you consider that? 

Please refer R1C14. We have removed the effect of the increased reservoir water impoundments 

from 1984-2015. Therefore, reservoir storage increase cannot be a result of increased 

impoundments. 

R1C20) Line 339: As Zhao and Gao used contaminated Landsat imagery to increase the monthly 

coverage of reservoir areas by 80%, do the estimates from poor-quality images affect your storage 

analysis? I know some studies (e.g., Busker et al) only adopted good-quality images due to this issue. 

“Busker, T. et al. A global lake and reservoir volume analysis using a surface water dataset and satellite 

altimetry. Hydrol. Earth Syst. Sci. 23, 669–690 (2019).” 

We think the consistency of observations from 1984-2015 is more important for long-term analysis. 

This is the reason why we used the reservoir area product developed by Zhao and Gao (2018). In 

addition, Zhao and Gao (2018) demonstrated that the correlations between observed and estimated 

reservoir areas were improved from 0.66 to 0.92 by ‘repairing’ contaminated Landsat images. 

 

 

 

 

 



Table 1 The SMAPE and Pearson correlations between predicted and reference volumes for 65 

reservoirs. 

Grand ID Dam Name Latitude Longitude Capacity (MCM) R SMAPE (%) 

307  Fort Peck Dam  48.00  -106.41  23560 0.98  28.58  

597  Glen Canyon  36.94  -111.49  25070 0.99  39.12  

753  Garrison Dam  47.51  -101.43  30220 0.97  30.98  

870  Oahe Dam  44.46  -100.40  29110 0.97  30.48  

6199  Darwin River Dam  -12.83  130.97  265 0.90  8.20  

6579  Tinaroo Falls  -17.16  145.55  407 0.91  11.05  

6581  Paluma  -18.95  146.15  12.3 0.77  18.28  

6582  Copperfield River Gorge  -19.04  144.12  20.6 0.79  14.54  

6583  Ross River  -19.41  146.74  417 0.95  59.49  

6586  Peter Faust  -20.37  148.38  500 0.94  28.74  

6588  Burdekin Falls  -20.65  147.14  1860 0.89  14.70  

6592  Eungella  -21.14  148.39  131 0.94  27.14  

6593  Kinchant  -21.21  148.90  62.8 0.94  22.11  

6594  Fairbairn  -23.65  148.07  1440 0.96  29.56  

6595  E.J. Beardmore  -27.91  148.65  101 0.84  30.51  

6600  Windamere Dam  -32.73  149.77  368 0.96  26.89  

6603  Carcoar Dam  -33.62  149.18  35.8 0.96  12.45  

6605  Wyangala  -33.97  148.95  1220 0.97  22.22  

6613  Burrinjuck  -35.00  148.60  1026 0.92  39.02  

6618  Blowering  -35.40  148.24  1628 0.92  42.00  

6619  Googong  -35.42  149.26  124.5 0.97  7.52  

6620  Bendora  -35.45  148.83  11.1 0.37  12.17  

6621  Corin  -35.54  148.84  75 0.72  19.99  

6629  Eucumbene  -36.13  148.61  4800 0.99  34.55  

6652  Malmsbury  -37.21  144.37  18 0.92  43.73  

6655  Lauriston  -37.27  144.39  20 0.80  13.98  

6656  Upper Coliban  -37.29  144.39  37.5 0.80  57.93  

6657  Rosslynne  -37.47  144.57  24.5 0.93  75.76  

6658  White Swan  -37.52  143.92  14.1 0.91  23.12  

6659  Yan Yean  -37.55  145.13  32.7 0.93  43.44  

6662  Greenvale  -37.63  144.90  27.5 0.83  11.88  

6663  Maroondah  -37.64  145.56  28.4 0.65  46.40  

6664  Upper Yarra  -37.67  145.90  207.2 0.58  38.91  

6667  Silvan  -37.84  145.42  40.2 0.27  8.21  

6668  Glenmaggie  -37.91  146.80  190 0.84  39.69  

6669  Cardinia  -37.97  145.39  288.9 0.90  19.06  

6670  Tarago  -38.02  145.94  37.5 0.78  13.47  

6673  Devilbend  -38.29  145.11  14.5 0.93  9.82  

6676  West Barwon  -38.53  143.72  21.7 0.74  61.63  

6701  Awoonga High  -24.07  151.31  300 0.96  40.04  

6702  Callide  -24.37  150.62  127 0.96  49.09  

6703  Cania  -24.65  150.98  89 0.93  60.31  

6704  Fred Haigh  -24.87  151.85  586 0.97  15.20  

6706  Glebe Weir  -25.46  150.03  17.3 0.69  35.41  

6707  Boondooma  -26.10  151.43  212 0.93  11.58  



Table 1 The SMAPE and Pearson correlations between predicted and reference volumes for 65 

reservoirs (continued). 

Grand ID Dam Name Latitude Longitude Capacity (MCM) R SMAPE (%) 

6708  Bjelke-Petersen  -26.30  151.98  125 0.98  13.87  

6709  Borumba  -26.51  152.58  42.6 0.91  13.56  

6715  Cressbrook  -27.26  152.20  83 0.98  29.38  

6717  Perseverance Creek  -27.30  152.12  30.9 0.95  27.42  

6723  Moogerah  -28.04  152.54  92.5 0.92  45.60  

6725  Maroon  -28.19  152.65  38.4 0.95  21.53  

6726  Leslie  -28.22  151.92  108 0.98  26.93  

6728  Coolmunda  -28.44  151.22  75.2 0.93  18.06  

6731  Glenlyon  -28.98  151.46  254 0.91  23.18  

6731  Glenlyon  -28.97  151.45  254 0.92  20.47  

6733  Copeton  -29.90  150.92  1364 0.81  42.56  

6735  Split Rock Dam  -30.58  150.70  372 0.95  39.52  

6736  Keepit Dam  -30.88  150.49  423 0.93  23.43  

6737  Chaffey  -31.35  151.14  61.8 0.98  12.27  

6738  Glenbawn  -32.10  150.99  750 0.99  9.33  

6739  Chichester  -32.24  151.69  17.7 0.47  15.85  

6740  Lostock  -32.33  151.46  20 0.63  9.90  

6741  Glennies Creek  -32.36  151.25  283 0.97  18.70  

6742  Grahamstown  -32.77  151.79  152.6 0.84  18.31  

6743  Mangrove Creek  -33.22  151.13  170 0.93  49.24  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 2 The SMAPE and Pearson correlations of predicted volumes between Group A and B for 33 

reservoirs. 

Grand 

ID 
Dam Name Latitude Longitude Capacity (MCM) R 

SMAPE 

(%) 

250  Mica  52.08  -118.57  25000 0.90  15.22  

253  Gardiner  51.27  -106.86  9870 0.84  3.41  

297  Libby  48.41  -115.32  7434.2 0.89  15.97  

310  Grand Coulee  47.95  -118.98  6395.6 0.92  13.19  

370  Cascade  44.52  -116.05  805.5 0.98  15.44  

597  Glen Canyon  36.94  -111.49  25070 0.99  22.43  

1275  Sam Rayburn Dam And Reservoir  31.07  -94.11  7815.6 0.94  5.40  

1320  International Falcon Lake Dam  26.56  -99.17  3920 0.96  13.66  

1863  Buford  34.16  -84.07  3150.3 0.93  9.09  

2376  Itumbiara  -18.41  -49.10  17000 0.96  7.81  

2377  Emborcacao  -18.45  -47.99  17590 0.97  6.37  

2388  Mascarenhas de Moraes  -20.28  -47.06  4040 0.91  3.32  

2405  Capivara  -22.66  -51.36  10540 0.93  5.23  

2416  Paraibuna  -23.36  -45.66  4732 0.99  5.29  

2447  Passo Fundo  -27.55  -52.74  1570 0.97  6.51  

2467  Araras  -4.21  -40.45  1000 0.98  12.13  

2490  Boa Esperanca  -6.75  -43.57  5060 0.94  9.72  

3014  Bagre  11.47  -0.55  1700 0.95  5.83  

3670  Mape  6.04  11.30  3300 0.94  8.34  

4212  Sterkfontein  -28.39  29.02  2620 0.99  27.54  

4431  Karakaya  38.23  39.14  9580 0.87  7.70  

4500  Nyumba ya Mungu  -3.82  37.47  1135 0.89  12.36  

4501  Mtera  -7.14  35.98  3200 0.98  13.74  

4686  Kayrakkum  40.28  69.82  4160 0.98  4.58  

4702  Tarbela  34.09  72.69  13940 0.74  29.99  

4715  Kajakai  32.32  65.12  2680 0.86  12.17  

4739  Ukai  21.26  73.60  8510 0.80  16.18  

4943  Upper Indrawati  19.28  82.83  2300 0.99  41.12  

5150  Lam Pao  16.60  103.45  1430 0.97  9.93  

5796  Sirindhorn  15.21  105.43  1966 0.97  8.38  

5902  Shuifeng  40.46  124.97  14700 0.86  13.83  

6606  Lake Victoria  -34.04  141.28  680 0.98  33.63  

6653  Eildon  -37.22  145.93  3390 0.98  16.10  

 

 



 

Figure 1 The number of reservoirs with Landsat observations for each month from 1984 - 2015 in the 

reservoir area product developed by Zhao and Gao (2018). 

 

 

Figure 2 The comparison (dash grey line: 1: 1 line) of the linear trends in net evaporation using 

evaporation losses derived from the W3 model, TerraClimate, NLDA and GLDAS for 721 reservoirs. 

 


