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Abstract. The evaporation demands upon a rock or soil surface can exceed the ability of the profile to bring sufficient amount

of liquid water. A dry surface layer arises in the porous medium that enables just water vapor flow to the surface. The interface

between the dry and wet parts of the profile is known as the evaporation front.

The paper gives the exact definition of the evaporation front and studies its motion. A set of differential equations governing

the front motion in space is formulated. Making use of a set of measured and chosen values, a problem is formulated that5

illustrates the obtained theory. The problem is solved numerically and the results are presented and discussed.
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1 Introduction

Under arid or semiarid conditions, the evaporation demands usually exceed the ability of the exposed porous medium to

provide liquid-phase water. The water content of subsurface zones of coarse-grained rocks or sandy soils is usually very below10

its residual value and consequently only the gas-phase water can flow through. These, mostly up to few centimeters thick, zones

are referred to as vapor zones, dry surface layers or evaporation zones (e.g. Yamanaka and Yonetani, 1999; Saravanapavan and

Salvucci, 2000; Shokri et al., 2009; Deol et al., 2014).

The extent and development of the dry surface layer significantly affect the material’s decay: directly by changes in its

wetness, by frost and particularly by salt weathering, since dissolved salts are transported by the capillary water and form15

crystals at places of evaporation (e.g. Rijniers et al., 2005; Mol and Viles, 2013; Kurtzman et al., 2016).

The phenomenon is preconditioned by the fact that the porous medium becomes impervious for the liquid-phase water if

the water content becomes sufficiently small. A limit arises inside the porous medium behind which the transport of water is

only possible in the form of vapor. Such a soil profile can be divided into two parts that can be referred to as the zone of water

flow and the zone of vapor diffusion. This formulation, however, is too vague and leaves the intermediate zone, its extend and20

nature, unclear.

Several studies were published giving detailed description of the evaporation process and the development of the transition

zone (e.g. Lehmann et al., 2008; Shokri et al., 2010; Sakai et al., 2011; Or et al., 2013; Assouline et al., 2013; Rothfuss et al.,

2015). These papers are mostly focused to special problems, unlike the present paper which studies the 3D problem under

general transport conditions.25
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Sakai et al. (2011) studied the problem considering both hydraulic and thermal processes and detected a narrow transition

layer at the bottom of the dry surface layer. Another approach, (Konukcu et al., 2004), connects the interface between the

region of water flow and the region of vapor flow, denoted as the evaporation front, with a critical value of the water content

that can be determined directly from such porous medium characteristics as hydraulic conductivity and vapor diffusivity.

Hadley (1982) studied the problem of water vapor transport through a region of dry material from a receding evaporation30

front. In the paper, the heat balance equation was involved to the final system of equations, the evaporation front was considered

as a sharp interface between the saturated zone and the dry (without liquid water) zone; the front was fixed and given a-priori,

and the liquid water was unmovable.

Kulikovskii (2002) studied the time-space development of discontinuities in one-dimensional porous medium. Liquid water,

vapor and mixture of liquid water and vapor were assumed in the void space and two governing equations, water and heat flow,35

were considered. No particular interfaces were defined, discontinuities, in general, were studied in the time-space. Il’ichev and

Shargatov (2013) started their study with similar assumptions concerning the governing laws and investigated the resulting

transition surfaces and conditions of loss of their stability.

Unlike these studies, the present paper aims to define the evaporation front by means of porous media characteristics and to

formulate the law of its motion generally not involving any particular law governing the water transport. This approach makes40

it possible to use any set of flow and transport laws when formulating a problem of the evaporation front motion.

Several methods using dyes were developed to visualize the dry and wet regions within soil or rock profiles (e.g. Shokri

et al., 2009; Bruthans et al., 2018; Kumar and Arakeri, 2018; Weiss et al., 2018). These methods proved their efficiency in

laboratory conditions when utilized to visualize the dry surface layers and, in particular, the evaporation front positions. The

applied water-dye solutions increase their concentration at places of evaporation and indicate these places by changing their45

color.

A special method was developed (Weiss et al., 2020) that minimizes the medium destruction and is usable under the field

conditions. A very thin rod covered by a layer of color is inserted into a narrow hole drilled to the investigated material where

there is the sought evaporation front. The present liquid-phase water colors the corresponding part of the rod showing its

extend.50

Numbers of experiments aimed at seeking for and visualizing the evaporation front, see (Weiss et al., 2018) and (Weiss et al.,

2020), show that its position can be detected as a sharp line. The present paper tries to respect this experimental result in the

definition presented below.

The goal of this paper is to give an exact definition of the evaporation front and to formulate the law of its motion.

2 Basic assumptions and theory55

We study such processes of water transport in porous media, where both the fluid phases, gaseous and liquid, are present and

evaporation is taken into account. A porous medium domain is considered that is in contact with a wet neighborhood at a part

of its boundary while at the other part of the boundary, it is in contact with a dry neighborhood. Here wet and dry is understand
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as containing liquid water and without liquid water, respectively. Such a part of the domain’s boundary which is open to the

atmosphere is considered as the dry contact.60

Under these conditions, there necessarily exists a set of points inside the studied domain or upon its boundary that makes

an interface between the wet medium (porous medium) and the dry medium (porous medium or air). In view of the above

introduced terms, these points can be considered as points of the evaporation front.

Generally, the porous medium profile can be divided into three parts: (a) the dry zone, where just two phases, solid and

gaseous (air), are present and water exists in the form of vapor as a component of the gaseous phase, (b) the wet zone, where65

the movable liquid water exists, and (c) the intermediate zone, where the liquid water is present but only in such a contact

with the solid phase, that makes it unmovable. Here, such liquid phase water is understood as movable that moves due to the

hydraulic head gradient.

The evaporation front does not exist in itself; it is a matter of definition. It seems natural to place the evaporation front to

the intermediate zone or to an interface between the intermediate zone and one of the neighboring zones. It can be expected70

that during the process of evaporation, the depth of the intermediate zone becomes small. The present water evaporates quickly

due to its immobility, its small amount and contact with the solid phase. In view of this and of the fact that experimentally the

evaporation front can be indicated as a sharp interface between two neighboring zones, we assume: the extend of the zone (c)

can be neglected and the evaporation front is defined as the common boundary of the zone without liquid water and the zone

with movable liquid water. The concept evidently enables existence of a jump in water content values.75

We do not consider the temperature distribution and heat flow and balance; it is only supposed that the heat conditions
:
,

:::::
since,

::
in

::::::
wirtue

::
of

::
its

:::::::::
definition,

:::
the

::::::::::
evaporation

:::::
front

:::::
results

:::::
from

:::
the

:::::
water

::::::::
transport

::::
data.

:::::::
Though

:::::::::
unknown,

:::
the

::::
heat

::::
flow

within the profile are sufficient to provide the amount of the
:::::::
provides

:::
the

:
latent heat of vaporization that is necessary for the

evaporation resulting from the actual process of water transport.

In virtue of its definition, the
:::
The

:
evaporation front changes its position with time according to the outer conditions. Its shape80

and motion results from mutual relations (water transfer) between the wet zone and the dry zone. The front moves towards the

wet region if the evaporation exceeds the flow of the liquid water towards the interface through the wet zone and vice versa.

Since the evaporation front inside porous media, e.g. in a rock massif, is difficult to detect, mathematical modelling
::::::::
modeling

becomes an important tool always if the knowledge of its position and motion is required.

In what follows, all the introduced characteristics are macroscale porous-medium characteristics; e.g. a domain is a macroscale85

domain, a surface is a macroscale surface, etc..

Denote by Ω, Ω⊂ R3, the domain in space, and by (0,T ) the time interval in which we study the transport process and

suppose that the movable liquid-phase water occupies an open part Gw of the time-space domain G (i.e. the water content θ is

positive and sufficient to enable the water flow in Gw), where

G= (0,T )×Ω.90

G= (0,T )×Ω.
:::::::::::::

(1)
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We further define

Gd =G∖Gw;

95

Gd =G∖Gw;
::::::::::::

(2)

in virtue of our assumptions, θ = 0 in Gd
:::
and

:::::
θ > 0

::
in

::::
Gw,

::::::
where

:
θ
:::::::
denotes

:::
the

:::::
water

::::::
content.

To any time t ∈ (0,T ) we define the wet zone Ωw
t and the dry zone Ωd

t by putting

Ωw
t = {x ∈ R3 ; (t,x) ∈Gw} and Ωd

t = {x ∈ R3 ; (t,x) ∈Gd}. (3)

It holds100

Ωw
t ∩Ωd

t = ∅, Ωw
t ∪Ωd

t =Ω for t ∈ (0,T ). (4)

We define the evaporation front γt at time t ∈ (0,T ) as

γt =Ωw
t ∩Ωd

t

γt =Ωw
t ∩Ωd

t
:::::::::::

(5)105

This definition covers the wet-dry interfaces inside Ω. In order to enable the location of the evaporation front upon the

domain’s surface, we define the wet and dry contacts from outside of Ω. The sets Ωw
t and Ωd

t divide the boundary ∂Ω into wet

and dry parts with respect to wet-dry conditions inside Ω at t ∈ (0,T ) . Denote by Bw
t and Bd

t such two parts of ∂Ω that are

at time t in contact with wet and dry conditions outside Ω, respectively, and define: a boundary point x ∈ ∂Ω belongs to the

evaporation front at time t if it satisfies110

x ∈ Ωw
t ∩Bd

t or x ∈ Ωd
t ∩Bw

t .

x ∈ Ωw
t ∩Bd

t or x ∈ Ωd
t ∩Bw

t .
:::::::::::::::::::::::::::

(6)

The complete evaporation front γt at time t ∈ (0,T ) is then

γt =
(
Ωw

t ∩Ωd
t

)
∪
(
Ωw

t ∩Bd
t

)
∪
(
Ωd

t ∩Bw
t

)
.115

γt =
(
Ωw

t ∩Ωd
t

)
∪
(
Ωw

t ∩Bd
t

)
∪
(
Ωd

t ∩Bw
t

)
.

:::::::::::::::::::::::::::::::::::
(7)
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The image of the evaporation front in time-space is

Γ = {(t,x) ∈ R4 ; x ∈ γt, t ∈ (0,T )}.

120

Γ = {(t,x) ∈ R4 ; x ∈ γt, t ∈ (0,T )}.
::::::::::::::::::::::::::::::

(8)

We assume that Γ is a smooth hypersurface in R4 and denote by νΓ ∈ R4 the unit vector normal to Γ that points out of the wet

part or into the dry part of G. Since we defined the wet and dry boundary Bw
t and Bd

t of Ω at time t with respect to the outer

conditions, this orientation has sense everywhere on Γ.

Suppose that (t,ξ) ∈ Γ and125

νΓt (t,ξ) ̸= 0,

νΓt (t,ξ) ̸= 0,
::::::::::

(9)

where νΓ = (νΓt ,ν
Γ
1 ,ν

Γ
2 ,ν

Γ
3 ). Then the hypersurface Γ can be in a certain neighborhood of (t,ξ) expressed by a function τ in

the form of equation130

t= τ(x1,x2,x3).

t= τ(x1,x2,x3).
::::::::::::::

(10)

Then νΓt < 0 implies the existence of a positive value τ
:
ϵ such that (t+ϑ,ξ) ∈Gw for ϑ ∈ (0, τ)

:::::::
ϑ ∈ (0, ϵ). Consequently, the

evaporation front γt moves at its point ξ towards the dry zone if νΓt is negative at (t,ξ) and vice versa.135

The position of the evaporation front results from the mutual relations between the water transport in the wet zone and in

the dry zone. Denote by
:
n
::::

the
:::::::
porosity,

:::
by w the volumetric flux density of liquid water in the wet zone, by vd and vw the

volumetric flux density of the gaseous phase in the dry zone and in the wet zone, and by bd and bw the water vapor flux

density by diffusion in the gaseous phase within the dry zone and the wet zone. Let further cd and cw denote the water vapor

concentration in the gaseous phase within the dry zone and the wet zone. We suppose that functions bd, cd,vd are continuous140

in Gd and functions bw, cw,vw,w are continuous in Gw.

The evaporation front is not connected with a fixed set of mass points and the problem of its motion is not a problem of the

particle tracking. The evaporation front moves in such a direction and with such a velocity that are given by the balance of mass

of water. Since the tangential motion of the evaporation front at its point does not change the front’s position, the evaporation

front moves at each point in the direction of its normal.145
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Let ξ = ξ(t) be a point upon the evaporation front at time t; ξ ∈ γt. Let δt be an elementary time step and δS an ele-

mentary surface surrounding the point ξ, δS ⊂ γt. Denote by ν(t,ξ) the unit normal vector to γt at point ξ, oriented out of

the wet zone, and by δs the distance between the positions γt and γt+δt at ξ. Then the next position ξ+ δsν(t,ξ) ∈ γt+δt

of point ξ at time t+ δt satisfies the balance equation
::::
flow

:::
and

::::::::
transport

:::
of

:::::
water

:::::::
coming

::
to

:::
the

::::::::::
elementary

:::::::
surface

:::
δS

::::
from

:::
the

::::
wet

:::::
zone,

:::::::::::::::
ρw+ bw + cw vv ,

::::::
pushes

:::
the

:::::
front

:::::::
towards

:::
the

:::
dry

:::::
zone,

::::
and

:::
the

::::::::
transport

::
of

:::::
water

:::
out

:::
of

:::
δS

::::
into

:::
the150

:::
dry

:::::
zone,

:::::::::
bd + cdvd,

:::::::
pushes

:::
the

:::::
front

:::::::
towards

:::
the

:::
wet

::::::
zone.

:::
The

::::::
excess

:::
of

:::::
water

:::::::
coming

::
to

:::
δS

::::::
during

::::
the

::::
time

:::::::
interval

::
δt,

::::::::::::::::::::::::::::::::::
δtδS(ρw+ bw + cw vw − bd − cdvd,ν),

::
is
:::::::::::
compensated

:::
by

:::
the

::::
mass

:::
of

::::
water

:::::::::::::::::::::::::
δsδS(ρθ+ cw(n− θ)−ncd)

:::::::
shifting

:::
the

::::::
surface

:::
δS

::
to

:::
its

::::
new

:::::::
position

::::::
distant

::
by

:::
δs

::
in

:::
the

::::::::
direction

:::
ν.

::::
Here

::::
and

::
in

:::
the

::::::
sequel,

::::::
(u,v),

::::::
where

::::
u,v

:::
are

::::
two

:::::::
vectors,

::::::
denotes

:::
the

:::::
scalar

:::::::
product.

::::
This

:::::::
account

:::::
gives

:::
the

::::::
balance

::::::::
equation

δS δt
(
ρw(t,ξ)+bw(t,ξ)+ cw(t,ξ)vw(t,ξ)− bd(t,ξ)− cd(t,ξ)vd(t,ξ),ν(t,ξ)

)
= δS δs

(
θ(t,ξ)ρ+(n− θ(t,ξ))cw(t,ξ)−ncd(t,ξ)

)
(11)155

where values of higher orders of δt and δs are neglected. The idea of this calculation can be seen in Figure ??
:
1. It shows two

positions of the front, at times t and t+ δt, and two possible vectors, W and B, where, for the sake of simplicity, B denotes

the vector sum of fluxes by diffusion

B = bd(t,ξ)− bw(t,ξ),

:
,160

B = bd(t,ξ)− bw(t,ξ),
:::::::::::::::::::

(12)

and W denotes
::
the

::::
sum

:
fluxes due to water flow and advection by the gaseous phasemotion

W = ρw(t,ξ)+ cw(t,ξ)vw(t,ξ)− cd(t,ξ)vd(t,ξ).

:
,

W = ρw(t,ξ)+ cw(t,ξ)vw(t,ξ)− cd(t,ξ)vd(t,ξ).
::::::::::::::::::::::::::::::::::::::::::

(13)165

The depicted directions of these vectors suggest simultaneous flooding of the dry zone and drying of the wet zone. These two

processes act against each other; the figure shows that the vapor transport predominates and the front moves towards the wet

zone.

The limit form of Eq. (11) for δt approaching to zero is
:::
zero

:::::
gives

∂s

∂t
(t,ξ) =

((
ρw(t,ξ)+ cw(t,ξ)vw(t,ξ)+ bw(t,ξ)− bd(t,ξ)− cd(t,ξ)vd(t,ξ)

)
,ν(t,ξ)

)
cw(t,ξ)(n− θ(t,ξ))−ncd(t,ξ)+ ρθ(t,ξ)

(
ρw(t,ξ)+ bw(t,ξ)+ cw(t,ξ)vw(t,ξ)− bd(t,ξ)− cd(t,ξ)vd(t,ξ),ν(t,ξ)

)
cw(t,ξ)(n− θ(t,ξ))−ncd(t,ξ)+ ρθ(t,ξ)

.

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(14)170
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and hence
::
By

:::
this

::::::::
equation

:::
and

:::
by

:::
the

::::::::::
assumption

::
of

:::
the

::::::::
direction

::
of

:::
the

::::
front

:::::::
motion,

:::
we

:::::
obtain

:::
the

:::::::::
following

:::::::
ordinary

::::
first

::::
order

::::::::::
differential

:::::::
equation

dξ
dt

(t) =

((
ρw(t,ξ)+ cw(t,ξ)vw(t,ξ)+ bw(t,ξ)− bd(t,ξ)− cd(t,ξ)vd(t,ξ)

)
,ν(t,ξ)

)
cw(t,ξ)(n− θ(t,ξ))−ncd(t,ξ)+ ρθ(t,ξ)

(
ρw(t,ξ)+ cw(t,ξ)vw(t,ξ)+ bw(t,ξ)− bd(t,ξ)− cd(t,ξ)vd(t,ξ),ν(t,ξ)

)
cw(t,ξ)(n− θ(t,ξ))−ncd(t,ξ)+ ρθ(t,ξ)

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

ν(t,ξ).

(15)

Equation (15) is the governing equation of the evaporation front motion in the interval (0,T ). Note that, in view of the

introduced assumptions, the values of functions θ,w,bd,bw, cd, cw,vd and vw on Γ are uniquely defined. The water den-175

sity and porosity are presented as constants in Eqs (11) and (15). Such an assumption is evidently not necessary and the

equations remain unchanged for n= n(t,ξ) and ρ= ρ(t,ξ).

In the cases we commonly meet in connection with problems of evaporation, the flow of the gaseous phase is restricted to

balancing the changing volume of liquid water, i.e.

∥w∥ ≈ ∥vd∥ ≈ ∥vw∥180

∥w∥ ≈ ∥vd∥ ≈ ∥vw∥
:::::::::::::::::

(16)

and since

ρ∥w∥≫ cd ∥vd∥ and ρ∥w∥≫ cw ∥vw∥,

185

ρ∥w∥≫ cd ∥vd∥ and ρ∥w∥≫ cw ∥vw∥,
::::::::::::::::::::::::::::::::::::

(17)

the advective transport of water vapor can be neglected. The governing equation becomes

dξ
dt

(t) =

((
ρw(t,ξ)+ bw(t,ξ)− bd(t,ξ)

)
,ν(t,ξ)

)
cw(t,ξ)(n− θ(t,ξ))−ncd(t,ξ)+ ρθ(t,ξ)

(
ρw(t,ξ)+ bw(t,ξ)− bd(t,ξ),ν(t,ξ)

)
cw(t,ξ)(n− θ(t,ξ))−ncd(t,ξ)+ ρθ(t,ξ)
:::::::::::::::::::::::::::::::::::

ν(t,ξ). (18)

3 Problem formulation

The front’s motion reflects the proportions between the water flow and transport out of the front and towards the front which190

are given by the laws of flow and transport in the wet zone and in the dry zone. In order to evaluate flow and transport in porous

media, Darcy’s law and Fick’s law can be utilized

w =−k(h)grad (x3 +h) , bd =−Dd gradcd, and bw =−Dw(θ)gradcw, (19)
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where the third coordinate x3 is oriented vertically upwards, h is the pressure head, k is the hydraulic conductivity, and Dd

and Dw are the coefficients of water diffusion in air within the porous medium.195

In the dry zone, water is present in the form of water vapor and its motion is governed by the continuity equation with the

use of Fick’s law:

∂

∂t
(ncd)− ∂

∂xi

(
Dd ∂c

d

∂xi

)
+

∂

∂xi
(cd vdi ) = 0. (20)

The vapor motion in the wet zone is governed by the same laws

∂

∂t
((n− θ)cw)− ∂

∂xi

(
Dw(θ)

∂cw

∂xi

)
+

∂

∂xi
(cw vwi ) = 0, (21)200

and the motion of liquid phase water in the wet zone is governed by Richards’ equation

∂θ

∂t
− ∂

∂xi

(
k(h)

(
∂x3

∂xi
+

∂h

∂xi

))
= 0. (22)

In virtue of the introduced theory, the evaporation front motion is governed by Eqs. (20), (21), (22) and (15) or (18). The

unknown functions are θ and h, connected by the retention curve, cw, cd and ξ defined in Gw, Gd and [0,T ). The functions

n,k,D,v and ρ are supposed to be known or given by additional equations.205

In this way, Eqs. (21) and (22) in Gw and Eq. (20) in Gd stand for a coupled moving boundary problem, and Eq. (15) is a

condition imposed upon the movable common part of the boundaries of the domains. The unknown function ξ defined in [0,T )

is then given as the position of the moving boundary.

Another possible formulation of the problem is to solve the ordinary differential equation (15) in the interval [0,T ), where

the right-hand side of the equation is given as the solution of the problems (21), (22) and (20) defined in Gw and Gd.210

The latter approach was utilized when solving the problem presented in the 5-th section.

4 One-dimensional problem

Let now the studied domain be an interval Ω⊂ R1,

Ω= (0,L), Ωw
t = (0, ξ(t)), Ωd

t = (ξ(t),L),

215

Ω= (0,L), Ωw
t = (0, ξ(t)), Ωd

t = (ξ(t),L),
::::::::::::::::::::::::::::::::::::::

(23)

where the function ξ(t) that denotes the position of the evaporation front at time t is a scalar function defined in (0,T ). The

sets Gw and Gd are

Gw = {(t,x) ∈ R2 ; t ∈ (0,T ), x ∈ (0, ξ(t))} and Gd = {(t,x) ∈ R2 ; t ∈ (0,T ), x ∈ (ξ(t),L)}.
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220

Gw = {(t,x) ∈ R2 ; t ∈ (0,T ), x ∈ (0, ξ(t))} and Gd = {(t,x) ∈ R2 ; t ∈ (0,T ), x ∈ (ξ(t),L)}.
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(24)

The image of the evaporation front in time-space is

Γ = {(t,x) ∈ R2 ; ξ(t)−x= 0, t ∈ (0,T )}

Γ = {(t,x) ∈ R2 ; ξ(t)−x= 0, t ∈ (0,T )}
::::::::::::::::::::::::::::::::::

(25)225

and νΓ ∈ R2, the unit normal to Γ, is

νΓ(t,ξ(t)) =

(
−dξ

dt
(t),1

)
/

√(dξ
dt

(t)
)2

+1 .

νΓ(t,ξ(t)) =

(
−dξ

dt
(t),1

)
/

√(dξ
dt

(t)
)2

+1 .

::::::::::::::::::::::::::::::::::::

(26)

The above presented assertion concerning the direction of the evaporation front motion with respect to the sgn(νΓt ) is now230

evident.

In virtue of the introduced theory, the law of the evaporation front motion is given by Eq. (15). In one space dimension, since

ν(t,ξ) is either 1 or -1, the equation reads

dξ
dt

(t) =
ρw(t,ξ)+ cw(t,ξ)vw(t,ξ)+ bw(t,ξ)− bd(t,ξ)− cd(t,ξ)vd(t,ξ)

cw(t,ξ)(n− θ(t,ξ))−ncd(t,ξ)+ ρθ(t,ξ)

235

dξ
dt

(t) =
ρw(t,ξ)+ cw(t,ξ)vw(t,ξ)+ bw(t,ξ)− bd(t,ξ)− cd(t,ξ)vd(t,ξ)

cw(t,ξ)(n− θ(t,ξ))−ncd(t,ξ)+ ρθ(t,ξ)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(27)

and its simplified form (18) is

dξ
dt

(t) =
ρw(t,ξ)+ bw(t,ξ)− bd(t,ξ)

cw(t,ξ)(n− θ(t,ξ))−ncd(t,ξ)+ ρθ(t,ξ)
. (28)

In order to complete the problem formulation, to determine the right-hand side function, the one-dimensional form of equa-

tions (18) to (22) can be utilized.240

5 A solved problem

In the frame of a wider research that concerns evaporation from rock surfaces and the time dependence of evaporation front

positions, an experiment was carried out. It was an unpublished auxiliary experiment performed by several of the author’s col-

leagues and since it was not sufficiently documented from the point of view of this study, it cannot be simulated. Nevertheless,
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part of its results can be utilized here in order to present an example of possible use of the achieved theoretical results. The245

missing data were simply chosen, not optimized. The following description should be understood as a problem formulation not

as a documentation of measurements.

A cylinder shaped sample of the studied rock was put to the position with horizontal axis. The jacket of the cylinder was

insulated so that no water (of any phase) could penetrate and the motion of water through the sample was possible only in the

horizontal direction along the cylinder’s axis.250

The length of the sample was L= 49 mm, and the length of the time interval was T = 63 days. One open end of the sample,

say x= 0, was equipped so that it was possible to measure the pressure head and the rate of water inflow into the sample at

this point. The obtained discrete data were approximated by smooth functions h0(t) and w0(t) (pressure head and volumetric

flux density), h0, w0 ∈ C1(0,T ), that were utilized as the imposed boundary conditions.

Figure ??
:
2
:
shows the pressure head values; the squares are the measured data and the solid curve is their approximation h0.255

The volumetric flux density was measured indirectly in the form of discrete values of the cumulative flux to the sample. In

Figure ??
:
3, the step function represents the measured data and the smooth function is the boundary condition w0. The integral

values over (0,T ), (the total inflow to the sample per unit surface) of both functions are equal. The other end of the sample,

x= L, was left open to the outer (atmospheric) conditions which were not measured.

Soil moisture retention data and the hydraulic conductivity (at saturation) Ks were obtained elsewhere using samples similar260

material. Making use of these characteristics, the Mualem and van Genuchten parameters θr,θs,α,m and n were determined

and hence, the hydraulic conductivity and the soil moisture retention curve as functions of either pressure head or water content

were defined.

Similarly the value of the diffusion coefficient of water in the gaseous phase within the porous medium, Dd, was obtained

measured on samples of the utilized material. The characteristic surface layer ε, was added from outside to the domain Ω, its265

value was taken from the paper (Slavík et al., 2020), where the layer is referred to as "calibrated L" and also as "boundary

layer".

The fluorescein visualization method, (Weiss et al., 2018), was utilized to detect the front’s position during the experiment.

Fluorescein was applied at the water input side of the sample and a set of couples (t,ξ), time and the front’s position, was

registered. The data were calibrated (using a simple linear transformation) to agree with the value measured after finishing the270

experiment.

The following problem was formulated. In the interval [0,T ], the solution t 7→ ξ(t), ξ ∈ C1(0,T )∩C[0,T ], of equation (28)

is sought that satisfies the initial condition

ξ(0) = L, (29)

where ρ and n (density and porosity) are known constants.275

Since neither functions cd and cw nor their boundary values at x= 0, ξ(t) and L were measured during the experiment, the

following two assumptions were introduced.

(*) The vapor concentration has a constant value cf at the evaporation front in the gaseous phase and at points of positive value
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of water content θ, i.e. at points of contact with liquid phase water.

(**) There are steady-state outer atmospheric conditions during the process giving a constant value ce of vapor concentration280

in the gaseous phase at x= L.

The assumptions do not contradict each other at the point ξ(0), since the characteristic surface layer ε was accepted in the

model. As presented above, the right-hand side of Eq. (28) can be determined by solving the related initial-boundary value

problems with Eqs. (20), (21), (22).

In view of assumption (*) and Eqs. (21) and (19), it holds285

cw(t,x) = cf and bw(t,x) = 0 in Gw.

cw(t,x) = cf and bw(t,x) = 0 in Gw.
::::::::::::::::::::::::::::::::::::

(30)

Applying assumption (*), Eq. (21) reads

∂θ

∂t
− ∂vw

∂x
= 0.290

∂θ

∂t
− ∂vw

∂x
= 0.

::::::::::::

(31)

The comparison with Richards’ equation (22) gives vw =−w; the gaseous phase continuously replaces the leaving water.

Similar result has already been expected even for more general cases, see the estimations utilized when replacing Eq. (15) by

Eq. (18). Making use of these results, Eq. (28) becomes295

dξ
dt

(t) =
ρw(t,ξ)− b(t,ξ)

θ(t,ξ))(ρ− cf )
(32)

where the unknown parameters at the right-hand side of (32) are solutions of the following two initial-boundary value problems

and, since bw, cw and Dw do not appear in what follows, b, c and D stand for bd, cd and Dd.

To determine functions θ and w, function h defined in Gw is sought that satisfies equation (22), now in the form

∂θ

∂t
− ∂

∂x

(
k(h)

∂h

∂x

)
= 0, (33)300

and the conditions

h(0,x) = hi(x) in (0,L),

h(0,x) = hi(x) in (0,L),
:::::::::::::::::::::::::

(34)
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and305

h(t,0) = h0(t) and − k(h(t,0))
∂h

∂x
(t,0) = w0(t) in (0,T ), (35)

where θ(h), is the retention curve. Functions h0 and w0 are known from the experiment and function hi, the initial pressure

head distribution, was not measured and has to be determined.

Incorporating the characteristic surface layer to the problem formulation, we change the set Gd to

Gd = {(t,x) ∈ R2 ; x ∈ (ξ(t),L+ ε), t ∈ (0,T )}.310

Gd = {(t,x) ∈ R2 ; x ∈ (ξ(t),L+ ε), t ∈ (0,T )}.
:::::::::::::::::::::::::::::::::::::::

(36)

Now, c solves the equation

∂

∂t
(nc)− ∂

∂x

(
D

∂c

∂x

)
= 0 (37)

in Gd and satisfies the conditions315

c(0,x) = ci(x) in (L,L+ ε),

c(0,x) = ci(x) in (L,L+ ε),
::::::::::::::::::::::::::

(38)

and

c(t,ξ(t)) = cf and c(t,L+ ε) = ce in (0,T ), (39)320

where ci is the initial distribution of the water concentration in the gaseous phase. The values ce and cf were chosen with

respect to these requirements: the relative humidity at the front was 100%, the outer relative humidity was between 30% and

50% and the temperature between 18◦C and 23◦C.

In order to define the initial state of the sample, functions ci and hi, it was assumed: the process started from the steady

state water vapor diffusion determined in (L,L+ ε) by the boundary values cf and ce and from the steady state water flow325

determined in (0,L) by the initial conditions h0(0) and w0(0). The error involved to functions ci and hi vanishes soon, since

the sample is small and the imposed boundary conditions take over the dominant role.

Our requirement on the initial conditions is easy to satisfy in the case of function ci in the domain Ωd
t=0, since, in view of

Eq. (37), the governing equation is

d
dx

(
D

dci
dx

)
= 0 in (L,L+ ε).330
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d
dx

(
D

dci
dx

)
= 0 in (L,L+ ε).

:::::::::::::::::::::::::::

(40)

With respect to the boundary conditions, the solution reads

ci(x) =
ce − cf

ε
(x−L)+ cf .

335

ci(x) =
ce − cf

ε
(x−L)+ cf .

:::::::::::::::::::::::

(41)

In the case of function hi and domain Ωw
t=0, the governing equation is

d
dx

(
ρk(hi)

dhi

dx

)
= 0 in (0,L) (42)

with the initial conditions

hi(0) = h0(0) and − k(hi(0))
dhi

dx
(0) = w0(0). (43)340

The solution to the problem (42), (43) is equivalent to the solution to the problem

dhi

dx
=−w0(0)

k(hi)
in (0,L)

dhi

dx
=−w0(0)

k(hi)
in (0,L)

:::::::::::::::::::::

(44)

with the initial condition hi(0) = h0(0). Let the maximum solution to this initial-value problem be defined in [0,λ). It can be345

shown that, in our case, λ > L and the wet zone reaches the point x= L. Hence, our choice of the initial condition hi does not

contradict the initial condition (29).

Now the problem (32), (29) can be solved numerically. Figure ??
::::
The

::::::
utilized

::::::
values

:::
are:

:::
the

::::::::
Mualem

:::
and

:::
van

::::::::::
Genuchten

:::::::::
parameters

:::::::::
α= 0.0223

::::::
cm−1,

:::::::::::::::::::
n= 1.99,m= 1− 1/n,

:::
the

:::::::
saurated

::::::::
hydraulic

:::::::::::
conductivity

::::::::::
Ks = 0.0071

:::
cm

::::
s−1

:::
and

:::
the

:::::::
diffusion

::::::::
coefficient

:::
of

:::::
water

::
in

:::
the

:::::::
gaseous

:::::
phase

:::::
within

:::
the

::::::
porous

:::::::
medium

:::::::::::
Dd = 0.045

:::
cm2

::::
s−1.

::::::
Figure

::
4 shows three solutions ob-350

tained for three different couples of chosen parameters, the boundary values of water concentration in the gaseous phase. The

chosen values were

(1) cf = 2.27× 10−5g/cm3, ce = 9.35× 10−6g/cm3,

(2) cf = 2.41× 10−5g/cm3, ce = 9.94× 10−6g/cm3,

(3) cf = 2.56× 10−5g/cm3, ce = 1.06× 10−5g/cm3.355

:::::
When

:::::
using

:::
the

:::::::
method

::
by

:::::::::::::
McRae (1980)

:::
and

::::::::
choosing

:::
the

:::::::
relative

::::::::
humidity

::
at

:::
the

::::::::::
evaporation

:::::
front

::::
and

::
at

:::
the

::::::::
sample’s
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::::::
surface

::
as

:::::
100%

:::
and

:::::
40%,

:::::::::::
respectively,

::
we

:::
get

:::
the

::::::::
following

:::::::::::
temperatures

::
at

:::
the

::::::::::
evaporation

::::
front

::::
and

::
at

::
the

::::::::
sample’s

:::::::
surface:

::
(1)

:::::::
19.5◦C

:::
and

:::::::
20.0◦C,

:::
(2)

::::::
20.5◦C

:::
and

:::::::
21.0◦C,

:::
(3)

::::::
21.5◦C

::::
and

:::::::
22.0◦C.

The problem (32), (29) was solved numerically using a predictor-corrector method. The values of the right-hand side were

determined using the method of Rothe to solve problems (33) to (35) and (37) to (39).360

Let Mw denote the total mass of liquid water in the investigated domain related to unit cross-section. Then it holds

Mw(t) =

ξ(t)∫
0

ρθ(t,x) dx.

Mw(t) =

ξ(t)∫
0

ρθ(t,x) dx.

::::::::::::::::::::

(45)

Hence, the rate of its change is365

dMw

dt
(t) = ρ

dξ
dt

(t)θ(t,ξ(t))+ ρ

ξ(t)∫
0

∂θ

∂t
(t,x) dx.

dMw

dt
(t) = ρ

dξ
dt

(t)θ(t,ξ(t))+ ρ

ξ(t)∫
0

∂θ

∂t
(t,x) dx.

:::::::::::::::::::::::::::::::::::::::

(46)

Making use of Eqs. (32), (33) and (19), we get

dMw

dt
(t) = ρ

ρw(t,ξ(t))− b(t,ξ(t))

ρ− cf
+ ρ

(
w(t,0)−w(t,ξ(t))

)
.370

dMw

dt
(t) = ρ

ρw(t,ξ(t))− b(t,ξ(t))

ρ− cf
+ ρ

(
w(t,0)−w(t,ξ(t))

)
.

::::::::::::::::::::::::::::::::::::::::::::::::::

(47)

Since ρw(t,0) is the inflow of liquid water into the domain,

E(t) =
b(t,ξ(t))− cf w(t,ξ(t))

1− cf/ρ
(48)

is, under the assumptions of this section, the rate of evaporation expressed as the mass of evaporated water per unit time and375

unit surface of the evaporation front. Consequently, having solved an evaporation-front-motion problem, the demands of the

latent heat of vaporization can be evaluated and located in time and space.
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6 Discussion and conclusions

The evaporation front has been defined as an interface separating two different zones, wet and dry, inside or upon the boundary

of a porous medium domain. The exact definition of these zones, presented in this paper, is based on the form of water they380

contain. Subsequently, the law of the evaporation front motion was formulated in the form of the vector equation (15). Since

the law is based on the complete mass balance of water, i.e. liquid water and water vapor, it holds generally and does not need

any additional account of energy. The laws of heat transfer and heat balance do not affect the presented equations which define

the evaporation front motion. On the contrary, solving problems that are fully determined by water transport data, the equations

of the evaporation front motion can give certain insight into the energy requirements of such processes, e.g. the final part of385

section 5.

Smits et al. (2011) and Nuske et al. (2014) studied the process of evaporation from soils with the particular attention the

phase change, and found that nonequilibrium models yield better agreement with experimental data than equilibrium models.

The nature of the phase change process does not affect the results presented here directly, since the equation of the evaporation

front motion requires other kind of data. The process of phase change enters Eq. (15) through its actual effect on the transport390

of water. On the other hand, the constitution laws like Darcy’s law or the retention curve, that may be utilized when solving

problems with Eq. (15), are equilibrium laws. In the example presented in section 5, equilibrium laws were utilized. However,

the governing equation (15), being general, makes it possible to use nonequilibrium laws as well. Mls (1999) presented a general

nonequilibrium approach to two-phase systems that keeps Darcy’s law valid.

Lehmann et al. (2008) and Or et al. (2013) investigated the process of evaporation from the top of an initially saturated395

vertical column. They introduced the term characteristic length as the distance between the surface and the receding drying

front (interface between the saturated zone and the unsaturated zone) and described different stages of the evaporation process.

No evaporation front was introduced. In virtue of the present theory, the evaporation front cannot move in the positive direction

of ν(t,ξ) if

ξ(t) ∈ Ωw
t ∩Bd

t ,400

ξ(t) ∈ Ωw
t ∩Bd

t ,
:::::::::::::

(49)

i.e. if ξ(t) is a point of a "dry from outside" part of the domain boundary. Hence, see Eq. (14), the front does not move until

the condition((
ρw(t,ξ)+ cw(t,ξ)vw(t,ξ)+ bw(t,ξ)− bd(t,ξ)− cd(t,ξ)vd(t,ξ)

)
,ν(t,ξ)

)
< 0405

((
ρw(t,ξ)+ cw(t,ξ)vw(t,ξ)+ bw(t,ξ)− bd(t,ξ)− cd(t,ξ)vd(t,ξ)

)
,ν(t,ξ)

)
< 0

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(50)
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is satisfied. In the simplified one dimensional case, Eq. (28), this condition reads

(
ρw(t,ξ)+ bw(t,ξ)− bd(t,ξ)

)
ν(t,ξ)< 0, (51)

where ν(t,ξ) = 1 if x ∈ Ωw
t ⇒ x < ξ(t), and vice versa. Under conditions of sufficiently small values of |bd|, condition (51)410

is not satisfied for a period, and the evaporation front does not move. Consequently, the evaporation rate does not change

significantly. In the solved problem, the chosen initial conditions and the size of ε make (51) valid even at t= 0, and the front

moves from the very beginning of the process. If the flux density of liquid water from inside of the wet zone exceeds the flux

density b(t,L), either θ(t,L) increases or, being θ(t,L) = θsat, flux density ρw(t,L)− b(t,L) of liquid water discharges out

of the porous medium domain.415

The characteristic surface layer ε was found experimentally, see (Slavík et al., 2020), and accepted in this paper as a part of

the measured data. Note that Song et al. (2018) studied similar problems and introduced also a special diffusion layer outside

the porous medium. From the viewpoint of moving front equations, the characteristic surface layer prevents infinite value of

function bd at x= 0 and t= 0 which may be obtained when solving a problem with equation (20). This possibility origins in

the fact that the equation is a balance equation that contains an equilibrium law – the Fick law; for more on this problem and420

an alternate approach see (Mls and Herrmann, 2011).

The process of evaporation alone does not determine the direction of the evaporation front motion. Since the denominator

of the right-hand side of (15) is positive, the direction of the evaporation front motion is determined by the sign of the scalar

product in the numerator. Consequently, both the processes of wetting or drying (increasing or decreasing the wet zone) can

take place while evaporating water out of the profile; compare also Eqs. (32) and (48).425

The presented problem example and its numerical solutions were aimed at showing the ability of the theory to simulate

real processes, not at getting an optimized agreement. Most of the measured parameters of the solved problem were obtained

independently of the experiment. Only the pressure head and water flow data shown in Figures ?? and ??
:
2

:::
and

::
3
:
were

measured during the experiment and utilized as the imposed boundary conditions of the problem. The concentration of water

in the gaseous phase, the functions cf and ce, and the initial values of functions h and w were not measured but chosen. For430

the sake of their simple interpretation by means of acceptable values of temperatures and relative humidities, cf and ce were

kept constant. No method of fitting was applied and a different choice of functions hi,wi and constants ce and cf can give a

better agreement between the measured and computed values.

The presented theory is now prepared to prove its reliability on such problems that are fully documented and to be used

when solving a wide range of problems of evaporation from a rock or soil profile.435
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Figure 1. Evaporation front motion; W is the liquid water flux density and vapor advection in the gaseous phase, B is the water vapor flux

density by diffusion in the gaseous phase, γt is the evaporation front position at time t, ν is the unit normal to the front pointing out of the

wet zone, ξ(t) is the position of a chosen point upon the front at time t.
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Figure 2. The x= 0 boundary condition – the pressure head at the boundary. The squares show the measured values, the smooth function is

their approximation h0(t) that was used in the solved example.
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Figure 3. The x= 0 boundary condition – the volumetric flux density at the boundary. The step function shows the measured values, the

smooth function is its approximation used in the solved example.
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Figure 4. Evaporation front motion. ⋄ : measured positions, solid lines: numerical simulations, (1) cf = 2.27× 10−5, ce = 9.35× 10−6,

(2) cf = 2.41× 10−5, ce = 9.94× 10−6, (3) cf = 2.56× 10−5, ce = 1.06× 10−5, all in g/cm3.
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