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ABSTRACT 
 
Climate resilience is an emerging issue at contaminated sites and hazardous waste sites, since 
projected climate shifts (e.g., increased/decreased precipitation) and extreme events (e.g., 15 
flooding, drought) could affect ongoing remediation or closure strategies. In this study, we 
develop a reactive transport model (Amanzi) for radionuclides (uranium, tritium, and others) and 
evaluate how different scenarios under climate change will influence the contaminant plume 
conditions and groundwater well concentrations. We demonstrate our approach using a two-
dimensional reactive transport model for the Savannah River Site F-Area, including mineral 20 
reaction and sorption processes. Different recharge scenarios are considered by perturbing the 
infiltration rate from the base case, as well as considering cap failure and climate projection 
scenarios. We also evaluate the uranium and nitrate concentration ratios between scenarios 
and the base case to isolate the sorption effects with changing recharge rates. The modeling 
results indicate that the competing effects of dilution and remobilization significantly influence 25 
pH, thus changing the sorption of uranium. At the maximum concentration on the breakthrough 
curve, higher aqueous uranium concentration implies that sorption is reduced with lower pH due 
to remobilization. To better evaluate the climate change impacts in the future, we develop the 
workflow to include the downscaled CMIP5 (Coupled Model Intercomparison Project) climate 
projection data in the reactive transport model, and evaluate how residual contamination 30 
evolves through 2100 under four climate Representative Concentration Pathway (RCP) 
scenarios. The integration of climate modeling data and hydro-geochemistry models enables us 
to quantify the climate change impacts, assess which impacts need to be planned for, and 
therefore assist climate resiliency efforts and help guide site management.  

1.  INTRODUCTION 35 

 
Changing climate may cause unknown risk and uncertainty in environmental remediation, 
particularly in regard to the fate, transport, including both hydrologic and reactive processes 
(Maco et al., 2018). In particular, many sites are managed with monitored natural attenuation 
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strategies where a significant amount of residual contaminants remain in the subsurface 40 
(Denham et al., 2020). Hydrological shift is one of the principal causes of this uncertainty and 
therefore also the risk. As climate change evolves, precipitation and evapotranspiration may 
change both in magnitude and timing, significantly affecting infiltration. Precipitation regimes are 
expected to change depending on where the site is located (e.g., Lambert et al., 2008). 
Increasing evapotranspiration is usually predicted in climate model projection, due to increasing 45 
temperatures under global warming (e.g., Abtew and Melesse, 2013, Milly and Dunne, 2016). 
Extreme climatic events, such as flooding and droughts, are expected to become more frequent 
and thus may result in faster plume remobilization (e.g., Rahmstorf and Coumou, 2011).  
 
We may define climate resilience at contaminated sites as the capacity of individual waste 50 
disposal sites to absorb the projected stresses imposed by climate trends, climate variability, 
extreme events, and other climate-change-related impacts. The researches that addressed 
climate change impacts on groundwater contamination and nuclear waste remediation are 
limited, although a critical need exists due to the changing climate. Most of the previous studies 
(e.g., Gellens and Roulin, 1998; Green et al., 2011; Middelkoop et al., 2001; Pfister et al., 2004) 55 
focuses on evaluating the effect of climate change on the abundance of water resources, water 
quality and contamination issues were less investigated (Visser et al., 2012). Within those 
studies, most previous studies focuses on surface water (Wilby et al., 2006; Van Vliet and 
Zwolsman, 2008; Van Bokhoven, 2006; Futter et al., 2009; Schiedek et al., 2007), because of 
the accessibility and data availability (Green et al., 2011). For groundwater in the subsurface 60 
domain, most studies evaluate agricultural effluents at the regional scale (Bloomfield et al., 
2006; Futter et al., 2009; Li and Merchant, 2013; Olesen et al., 2007; Sjoeng et al., 2009; 
Whitehead et al., 2009; Wilby et al., 2006; Darracq et al., 2005; Destouni and Darracq, 2009; 
Park et al., 2010).  
 65 
Recently, Libera et al. (2019) investigated the potential impacts of climate change on residual 
contaminants in vadose zones and groundwater, using a groundwater flow and transport model. 
They investigated the complex effect of precipitation and recharge shifts, leading to either 
dilution and remobilization of residual contaminants. Libera et al (2019) showed that the effects 
of dilution and remobilization on contaminant concentrations appear in different phases, 70 
depending on the well locations, and that surface barrier and source zone monitoring are critical 
for mitigating the impact. However, Libera et al. (2019) only simulated tritium, which is a 
nonreactive contaminant. Large uncertainties still remain, particularly for reactive contaminants, 
due to complex geochemical processes in the subsurface. The impact of hydrological shifts on 
reactive contaminants is expected to be more complex, especially redox and pH-sensitive heavy 75 
metals. Remobilization would also be affected by additional clean infiltration water. To test those 
hypotheses and evaluate the impacts, process-based flow and reactive transport models that 
can characterize sorption and ion exchange processes are essential for quantitatively analyzing 
the contaminant plume and understanding climate resilience. 
 80 
This study aims to evaluate the impacts of climate change-driven hydrological shifts on (1) 
reactive contaminants and (2) mineral reactions in vadose zones and groundwater. We used a 
numerical reactive transport model to study groundwater flow, contaminant transport, and 
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mineral reactions with sorption in both vadose and saturated domains. The effects of changing 
precipitation are assumed to be represented by changing of natural recharge from surface 85 
through the aquifer system. The model is developed and applied at the Department of Energy 
(DOE)’s Savannah River Site (SRS) F-Area Seepage Basins, South Carolina (SC), USA, where 
various metals and radioactive contaminants exist in the soil and groundwater since 1950s. This 
is the same site studied by Libera et al. (2019). With extensive geophysical data for subsurface 
characterization and comprehensive groundwater chemistry and water level datasets at the 90 
SRS F-Area, the development of a subsurface model can be considered as a testbed for flow 
and transport studies (Flach, 2004; Bea et al., 2013; Sassen et al., 2012; Wainwright et al., 
2014, 2015, 2016; Denham and Eddy-Dilek, 2017; Libera et al., 2019). Hence, the SRS has 
become a unique study site for investigating the potential consequences of a changing climate 
on contamination remobilization and mineral reactions/interactions.  95 
 

2.  SITE DESCRIPTION 
 
The Savannah River Site F-Area in South Carolina is approximately 161 km (i.e., 100 mi) away 
from the Atlantic Ocean with an area of about 800 km2 (Figure 1). Special radioactive isotopes, 100 
plutonium, and tritium were produced at this site for nuclear weapons during the Cold War Era. 
The F-Area is located in the north-central part of SRS. There are three hydrostratigraphic units 
within the Upper Three Runs Aquifer, shown in Figure 1 (B): an Upper Aquifer zone (UUTRA), a 
Tan Clay Confining Zone (TCCZ), and a Lower Aquifer zone (LUTRA). The UUTRA and LUTRA 
are primarily composed of clean sand with relatively high permeability, while the TCCZ is a low-105 
permeability layer with mixed sand-and-clay. The UUTRA and LUTRA units are hydrologically 
connected based on the piezometric head measurements. A competent clay layer confining unit 
at the bottom of LUTRA, namely, the continuous Gordon Confining Unit, at the bottom of 
LUTRA, separates the deeper aquifer (Gordon Aquifer) from the upper two aquifer units (Figure 
1). The historical monitoring data collected at F-Area have shown that the contaminant plume 110 
migrates between the UUTRA and LUTRA (Figure 2), discharging into a local stream called 
Fourmile Branch. 
 
Low-level radioactive acidic waste was disposed of in three separate unlined seepage basins 
(F-1, F-2, and F-3) and leached into the groundwater.  During 1955 to 1988, the basins received 115 
approximately 7.1 billion liters of waste solutions due to uranium industry. The F-Area basins 
were closed and capped with a low-permeability material in 1988 after discharge operations 
ended. At present, an contaminant plume with low pH and high uranium concentration extends 
downgradient from the basins approximately 600 m to the groundwater seepage area near the 
Fourmile Branch Creek. Several measures have been taken to reduce the environmental 120 
impacts at the F-Area site, including capping the basins and pump-and-treat remediation of 
contaminated groundwater. In 2004, a funnel-and-gate system with groundwater flow barriers 
were constructed to decrease the groundwater gradient and enhance natural attenuation. Also 
base injection were used to neutralize pH and in turn immobilize uranium. Although many active 
remediation have been applied in the past several decades, the groundwater remains 125 
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unnaturally acidic with high level of various radionuclides and other contaminants in the 
upgradient of the funnel-and-gate (Seaman et al., 2007, Savannah River Nuclear Solution, 
2021). 
 
The main characteristic of the SRS F-Area is the high acidity of the plume, which makes U(VI) 130 
highly mobile. The natural groundwater pH is slightly acidic, between 5.0 and 6.0, and 
decreases to values approaching 3.2 in the most contaminated locations. It should be noted that 
in the acidic pH range at the SRS-F-Area, Kd values for U(VI) can vary between 10^2 to 10^6 
(Davis et al., 2004; Dong et al., 2012). In addition, competing sorption between U(VI) and H+ is 
important in remediation and well studied in the F-Area site (Davis et al., 2004, Bea et al., 2013, 135 
Arora et al., 2018). Due to the complex geochemical conditions in groundwater and mobility of 
U(VI), uncertainty quantification (UQ) related to U(VI) and H+ competing sorption have been 
performed in the F-Area site in the previous studies (e.g., Curtis et al., 2006; Hammond et al., 
2011). Our research focuses on the effect of climate change on progress toward return to 
natural conditions of the acidic portion of the plume between the basins and the funnel-and-140 
gate. This is important to the timing of the transition of the site from enhanced to monitored 
natural attenuation, and hence, important to the overall effectiveness of remediation. More 
importantly, this work will contribute to the remediation of the site and support the risk 
management under changing climate conditions.  
 145 
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Figure 1. (A) Location of seepage basins in the F-Area of the Savannah River Site (SRS); (B) 170 
Hydrostratigraphic units defined for the F-Area; (C) 2D-cross section model domain. Modified 
from Bea et al. (2013). 
 

 
Figure 2. Left) Schematic figure of the two-dimensional cross section hydrological conceptual 175 
model, representing the middle line of the contaminant source zone; Right) Schematic diagram 
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showing the concentration breakthrough curve (BTC) at a downgradient observational well with 
increasing recharge rate. Modified from Libera et al. (2019).  

3. MODELING METHODS 

3.1. Reactive Transport Modeling with Amanzi and PFLOTRAN 180 

 
Groundwater flow and contaminant transport are simulated by the numerical code Amanzi 
(Moulton et al., 2013, https://github.com/amanzi/amanzi), which provides a flexible and 
extendable parallel flow and reactive transport simulation capability for environmental 
applications. Amanzi has the capabilities to solve coupled unsaturated and saturated 185 
groundwater flow, as well as advection-dispersion transport equations. It includes a general 
polyhedral mesh infrastructure, and provides multiple advanced nonlinear solvers with open 
source libraries. The reaction of contaminants and minerals carried by flow through the 
surrounding rock and soil is modeled by coupling with the geochemistry engine of PFLOTRAN 
(Lichtner et al., 2015) or CrunchFlow via the generic interface Alquimia (Johnson and Molins, 190 
2015, https://github.com/LBL-EESA/alquimia-dev). PFLOTRAN or CrunchFlow simulates the  
mineral reactions, adsorption, and ion exchange, while groundwater flow and transport are 
simulated by Amanzi. 

3.2. Model Setup and Boundary Conditions 
The two-dimensional (2D) flow and transport model developed in Libera et al. (2019) was 195 
employed in this study, while the geochemistry database, mineral composition and kinetic 
reaction were implemented based on a previous study by Bea et al. (2013). The 2D domain  is 
along the groundwater flow line in the F-Area, with approximately 2600 m long and 100 m deep. 
Bea et al. (2013) calibrated the model and verified it using observational geochemical 
concentration data from several monitoring wells, and also evaluated the sensitivities of key 200 
parameters in the modeling. The vadose zone and three hydrostratigraphic units (i.e., UUTRA, 
LUTRA, and TCCZ) defined in the previous section are included in the model. Hydrogeological 
properties are assumed homogeneous within each unit (see Table 2), based on site 
investigation reports and previous studies. The hydrological parameters, including specifies 
porosity, permeability, and capillary pressure/saturation data, are listed in Table 1 (Flach et al., 205 
2004; Bea et al., 2013). The system is considered to be advection dominated; therefore, 
mechanical dispersion and molecular diffusion transport processes are neglected. 
 
TABLE I. Physical model parameters used in the simulations. ɑ, n and Θr are the parameters of 
inverse air entry suction, a measure of the pore-size distribution, and residual water content, 210 
respectively, in the van Genuchten water retention curve. 

Hydrostratigraphic unit Porosity [-] Permeability [m2] ɑ [-] n [-] Θr [-] 
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Upper aquifer (UUTRA) 0.39 5e-12 4e-4 1.37 0.18 

Tan clay (TCCZ) 0.39 1.98e-14 5.1e-5 2 0.39 

Lower aquifer (LUTRA) 0.39 5e-12 5.1e-5 2 0.41 
 
No-flow boundary conditions are assigned along the two vertical sides of the 2D-cross section 
(see Figure 2) according to the groundwater divides, modified from previous studies (Flach, 
2004; Bea et al., 2013). The confining at the bottom of the computational domain is highly clay-215 
rich, therefore, no-flow boundary condition is set at the bottom of the computational domain 
(Bea et al., 2013). The geochemical initial and boundary conditions in Table 2 are set to be the 
same as Bea et al. (2013), with a small modification of the nitrate-concentration initial condition 
for better matching with the observation. Based on previous studies and field investigations, 
eight minerals are simulated in the reactive transport model in the F-Area. Table 3 below listed 220 
the kinetic rate of the primary minerals (i.e., quartz, kaolinite, and goethite) simulated in the 
model. In addition, gibbsite, jurbanite, basaluminite, opal, and schoepite minerals are included 
as they may form when the plume interacts with the solids. 
 
TABLE 2. Chemical composition for the background (initial), recharge and seepage solutions 225 
(modified from Bea et al., 2013). Unit is mol kgw-1, except pH and CO2 (aq).  

Mineral Background and Recharge Seepage 

pH 5.4 1.54 

Al3+ 2.21e-8 1.00e-8 

Ca2+ 1.00e-5 1.00e-5 

Cl- 9.98e-3 a 3.39e-4 

Fe3+ 2.92e-16 b 2.75e-6 

CO2 (g) 10-3.5 c 10-3.5 c 

K+ 3.32e-5 1.72e-6 

Mg2+ 5.35e-3 2.47e-5 

Na+ 2.78e-4 6.82e-5 

SiO2 (aq) 1.77e-4 1.18e-4 

SO4
2- 2.25e-5 4.80e-5 

Tritium 1.0e-15 2.17e-9 

NO3
- 1.0e-4 1.00e-2 

UO2
2+ 1.25e-10 3.01e-5 
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a: Calculated as electric charge balance; b: Equilibrium with Kaolinite; c: fixed by atmosphere 
pressure of  
 
TABLE 3. Initial mineral volumetric fraction distribution in the simulation (Bea et al., 2013). 230 

Mineral wt.% [-] Vol. frac. [-] Surface area [m2 g-1] Density [g cm-3] 

Quartz 94.5 0.9496 0.14 2.648 

Kaolinite 4.015 0.0412 20.71 2.594 

Goethite 1.485 0.0093 16.22 4.268 

Schoepite 0 0 0.1 4.874 

Gibbsite 0 0 0.1 2.44 

Basaluminite 0 0 0.1 2.119 

Opal 0 0 0.1 2.072 

Jurbanite 0 0 0.1 1.789 
 
While Bea et al. (2013) implemented an electrostatic sorption model developed previously by 
Dong et al. (2012), which is less numerically efficient and requires additional parameterization. 
Arora et al. (2018) developed a non-electrostatic sorption model (NEM) at the F-Area site, and 
demonstrated that NEM achieved the same predictive performance as a surface complexation 235 
model (SCM) with electrostatic correction terms. The SCM approach is computationally 
expensive and requires the estimation of additional parameters that describe mineral surface 
characteristics. On the other hand, NEM does not consider the effects of the development of 
surface charge on the formation of surface complexes, and it also simplifies the parameters 
needed in the reactive transport modeling. In Arora et al. (2018), three mineral surface sites with 240 
different site densities and acidity constants are developed for modeling H+ sorption and 
transport, then further extended to noncompetitive and competitive H+ and U(VI) sorption in a 
one-dimensional test case. In this paper, we use the competitive H+ and U(VI) sorption NEM 
parameters (including site density and surface complexation constant listed in Table 4), which 
are derived from an inverse analysis and calibration by Arora et al. (2018), and implement them 245 
in the model.  
 
TABLE 4. NEM model parameters for H+ and U(VI) competitive sorption (Arora et al., 2018). 

Site Site density (moles/m2) 

>TOH 7.0e-7 

>XOH 1.6e-6 

>YOH 9.0e-7 

Reactions Surface Complexation Log K 
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>TOH2
+ --- >TOH + H+ -4.77 

>TO- --- >TOH- + H+ 4.73 

>XOUO2
+ --- >XOH + UO2

2+ - H+ -0.67 

>YOH2
+ --- >YOH + H+ -3.41 

3.3. CMIP5 Climate Scenarios 
 250 
CMIP5 (Coupled Model Intercomparison Project, Taylor et al. (2012) is an experimental protocol 
with an ensemble of global climate model outputs to improve understanding of climate, and to 
provide estimates of future climate change that will be useful to those considering its possible 
consequences. The climate forcing in our study used the 1/8-degree downscaled CMIP5 
outputs at the F-Area study site from January 1950 to December 2100. The ensemble outputs 255 
include 28 models with four climate scenarios (RCP2.6, 4.5, 6.0 and 8.5) in the future climate 
projection. The top soil at the F-Area study site is sandy (Wainwright et al., 2014), so we 
assume that surface runoff is negligible. In other words, infiltration is calculated by subtracting 
evapotranspiration from precipitation, which are simulated by the atmospheric and land surface 
models, respectively, from the coupled climate models. The figure below shows that the 10-year 260 
moving average of selected variables demonstrates that both precipitation and 
evapotranspiration have increased approximately 6% since the 1950s to the present, and will 
keep increasing up to an additional 6% by the end of this century. The differences among 
climate scenarios are not statistically significant, but the highest greenhouse gas concentrations 
(i.e., RCP8.5) ensemble simulates higher precipitation and evapotranspiration than others. 265 
Although both precipitation and evapotranspiration are increasing (hence the difference is 
offset), the total runoff still slightly increases, with significant variability among climate scenarios 
over time (Figure 3).  
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Figure 3. Simulated precipitation, evapotranspiration, and net infiltration (precipitation - 270 
evapotranspiration) at different climate projection scenarios from the CMIP5 datasets.  
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3.4. Modeling Scenarios 
 
The modeling scenarios were developed based on (Libera et al., 2019) are only briefly 275 
described here. The modeling scenarios cover two stages of the F-Area historical operation and 
one additional stage in the future projection. The waste disposal was active during the period 
1955-1988, and the basins were capped in 1988, when seepage from the basins into the 
vadose zone was halted. This study evaluates climate change impact with changing recharge 
on contaminant transport after 2020. A base case was developed with a constant recharge rate 280 
throughout the simulation period for assessing climate change impacts. The uniform recharge 
rate is 4.743e-06 kg-water/m2/sec (0.15 m/yr infiltration rate), based on the estimation in Bea et 
al. (2013). Furthermore, we developed three scenarios, with perturbation with respect to the 
baseline recharge conditions. The three scenarios are: (1) constant positive recharge shift from 
2020, i.e., increasing precipitation scenarios; (2) constant negative recharge shift from 2020, 285 
i.e., decreasing precipitation scenarios; and (3) cap failure and constant positive case from 
2020. In both increasing and decreasing scenarios, recharge changes 10%-50% after 2020. In 
the cap failure scenarios, an increased recharge of 10%-50% is added to the level of the to 
represent a complete failure of the containment structure at the source-zone region. In addition 
to the perturbation scenarios, the contaminant transport and plume remobilization simulated by 290 
Amanzi are also forced by the four projection scenarios of CMIP5 ensemble climate model data, 
i.e., climate model scenarios. Instead of the constant recharge rate in Stage I and II in all 
perturbation cases and Stage III in the base case, the annual recharge rate is computed by the 
difference between precipitation and evapotranspiration in the CMIP5 data from 1950 to 2100.  

  4. RESULTS 295 

4.1. Base Case 
 
The plume migration is depicted in Figure 4 for the base-case results described in Bea et al. 
(2013). The plume migrates through the vadose zone and then infiltrates vertically downward 
until it reaches the groundwater table (Figure 4a). The plume then migrates vertically through 300 
the TCCZ into the LUTRA, and also horizontally downstream closer to the FMB Creek (Figure 
4b). Despite the relatively low permeability of the TCCZ, flow from the UUTRA to the LUTRA is 
observed over most of the domain. After basin closure and capping, the seepage from the basin 
is assumed to stop. The uncontaminated groundwater arriving from upgradient increased pH 
and reduced the U(VI) concentration (Figure 4c). After the basin closure, because the vadose 305 
zone flow stops, pH remains acidic and U(VI) concentrations high in the vadose zone. In 
addition, the uranium concentration is higher in the TCCZ, where the permeability is low. The 
vadose zone below the basin appears to act as a long-term contaminant source for groundwater 
in the deeper layers (Figure 4d). Although aqueous uranium concentration decreased by several 
orders of magnitude after the basin was capped, it is still higher than background concentration.  310 
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Figure 4. Plume profile of aqueous uranium concentration in the downstream of F-Area study 
site from 1954 to 2020 in the base case simulation. 
 315 
Figure 5 shows the base-case breakthrough curves of pH, aqueous uranium, tritium, and nitrate 
at the source-zone well (FSB-95DR) and the downgradient well (FSB-110D) for the full 
simulation period (1956-2100). Both wells are located in the UUTRA layer. The simulated pH 
values rapidly decrease to 3.3 at both the source-zone well (Figure 5a) and the downgradient 
well (Figure 5c). In general, tritium concentrations (Figure 5c) decrease faster and more 320 
dramatically than aqueous uranium and nitrate, owing to its radioactive decay. The uranium 
concentrations (Figure 5b) increased from the background level 1.25e-10 mol kgw-1 to 3.0e-5 
mol kgw-1 at both wells in less than a few years, and remained constant until basin closure in 
1988. After the basin closure, pH rebounds to 4.0 in 2000 and gradually increases throughout 
the end of simulation. Similarly, uranium concentration (Figure 5b) decreases by two orders of 325 
magnitude in 20 years and keeps decreasing to approximately 1.0e-7 mol kgw-1 by the end of 
the simulation period. Compared to the downgradient well, the source-zone well consistently 
has lower pH (Figure 5a) and higher aqueous uranium (Figure 5c) concentrations throughout 
the simulation period. By the end of 2100, pH (Figure 5a) is higher than 5.0 and aqueous 
uranium concentration lower than 2e-7 mol kgw-1 (Figure 5b) in most of the vadose zone at the 330 
source-zone well. 
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Figure 5. Breakthrough curves of pH, aqueous uranium, tritium and nitrate at the source-zone 335 
well and downgradient well in the base case over the simulation period (1954-2100). 

4.2. Increasing Recharge Scenarios 
 
The breakthrough curves under the increasing recharge scenarios are shown in Figure 6. When 
recharge is increased, pH at the source-zone well (Figure 6a) is significantly lower compared to 340 
the base-case scenario. pH values are changed with different recharge rates as relatively high 
pH infiltrated rainwater dilutes the low-pH contaminated environment in the subsurface system. 
However, the relationship between recharge and pH is nonlinear, with thresholds such that pH 
is the lowest at +20% recharge, while pH is higher in the cases with +30% to +50% recharge. 
Nitrate concentrations at the source-zone well (Figure 6b) increase immediately after 2020, and 345 
spike 5 years after perturbation, with the highest concentration in the greater recharge (+50%) 
case. After 2050, nitrate concentration is the highest with +20% recharge, and decreases from 
+30% to +50% recharge (Figure 6b). The tritium concentrations (Figure 6c) peak similarly to 
nitrate, although tritium decreases significantly after 2040 due to radioactive decay. The 
uranium concentrations (Figure 6d) are also similar to the breakthrough curves for the nitrate 350 
concentrations. At downgradient locations, pH (Figure 6e) is not influenced by the recharge 
increase up to +30%. Above the 40% increase, pH decreases significantly after 2040. Nitrate 
concentrations at the downgradient well (Figure 6f) decrease immediately after 2020 due to 
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dilution, but increase afterwards, with peaks around 2040. Similar to the source-zone well 
(Figure 6b), the concentration peaks are higher with greater recharge rates and remain higher 355 
than the base case throughout the end of the simulations. The tritium concentrations (Figure 6g) 
keep decreasing after 2020 with the peaks in 2040, with the similar behavior of sudden increase 
showing in nitrate concentration (Figure 6f), and higher concentrations in the high recharge 
scenarios. The uranium concentrations (Figure 6h) also exhibit patterns similar to those of 
nitrate (Figure 6f), in that both the peak and remaining concentrations are higher in the greater 360 
recharge scenarios.  
 

 
Figure 6: Breakthrough curves of pH, nitrate, tritium, and aqueous uranium at the source-zone 
well (a-d) and downgradient well (e-h) in the base case and increasing precipitation scenarios 365 
from 2020 to 2100.  
 
The reactive (uranium) and non-reactive (nitrate) species are compared in Figure 7. Kd values 
are computed by sorbed uranium concentration in the solid phase with the aqueous uranium 
concentration from the model outputs. Figure 7a shows that Kd values at the source-zone well 370 
are lower in the increasing recharge cases than the base case, which is consistent with pH 
breakthrough curves (Figure 6a). The +20% case has the lowest Kd at the source-zone well, 
while the Kd values are higher in the smaller recharge case (+10%) and greater recharge cases 
beyond +30%. In contrast, at the downgradient well (Figure 7d), the Kd values are lower in the 
+40% to +50% scenarios echoing the downgradient pH breakthrough curves in Figure 6e. In 375 
addition, we compare uranium and nitrate concentrations with respect to the maximum 
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concentration (i.e., the peak concentrations that occur after a few years in the increasing 
recharge scenarios) as well as the average concentration from 2040 to 2100, which illustrates 
the long-term contamination trend. Figure 7 (b-c) presents the ratio of uranium and nitrate, 
defined as the concentration in each scenario compared to the baseline case. In the maximum 380 
concentration at the source-zone well (Figure 7b), the ratios are mostly higher than 1, 
demonstrating that the maximum concentration is higher in the greater increasing recharge 
scenarios. The uranium maximum concentration ratio is higher than the nitrate; therefore, the 
increasing recharge affects the uranium concentrations more than the nitrate concentrations at 
the peaks (Figure 7b). For average concentrations at the source-zone well (Figure 7c), the ratio 385 
increases in the +20% recharge case, but decreases at greater recharge values. Different from 
the maximum concentrations, the mean uranium ratio becomes lower than the mean nitrate 
ratio, and falls below 1.0 in the greater recharge scenarios (Figure 7c). At the downgradient 
well, the maximum concentration ratios are less than 1.0 in the (+10% ~ +30%) recharge 
scenarios but higher than the base case in greater recharge (+40~50%) scenarios, while nitrate 390 
and uranium ratios are similar (Figure 7e). The average concentration ratios at the 
downgradient well after 2040 are generally higher with increasing recharge, and reach their 
highest at the +40% scenario (Figure 7f). The nitrate concentration ratios are lower than 
uranium in the smaller (+10% ~ +30%) recharge scenarios, but are higher in those scenarios of 
above +40% recharge.  395 

 
Figure 7 : Breakthrough curves for Kd at the source-zone well (a-c) and the downgradient well 
(d-f) for the increasing recharge scenario from 2020 to 2100. Maximum and average ratios of 
base case to increased recharge case for uranium and nitrate concentrations at both well 
locations. 400 
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4.3. Decreasing Recharge Scenarios 
 
Although decreasing recharge has little impact on pH at the source-zone well up to -30% 
(Figure 8), pH increases significantly in the -40% ~ -50% recharge scenarios. The nitrate 
concentrations (Figure 8b) increase immediately after the perturbation of recharge, then 405 
decrease throughout the end of the simulation. Similarly to pH, nitrate concentrations (Figure 
8b) do not change significantly in smaller decreasing recharge scenarios, but decrease two 
orders of magnitude in the greater (-40 ~ -50%) decreasing recharge scenario. Tritium 
concentrations (Figure 8c) also increase immediately after 2020, then decrease; the rate of 
decrease is more rapid than the nitrate concentrations due to radioactive decay, and exhibit few 410 
differences among decreasing recharge scenarios. The uranium concentration (Figure 8d) 
breakthrough curves are similar to the nitrate curves. At the downgradient well, the pH values 
have a similar trend to the source-zone well in all decreasing recharge scenarios before 2040. 
However, the breakthrough curves diverge after 2040 and increase more in the greater 
decreasing recharge scenarios. The pH values are higher than the source-zone well and reach 415 
as high as 7.0 in the -50% recharge scenario in 2100 (Figure 8e). The nitrate concentrations in 
the down gradient well (Figure 8f) keep decreasing in the first 10-15 years after 2020. 
Concentrations peak around 2025-2035; the decrease is more significant in all the decreasing 
recharge scenarios than the base case. In general, the peak concentrations occur earlier and 
higher in the greater decreasing recharge scenarios, and the breakthrough curves decrease 420 
faster and lower in the long-term projection to 2100. Spikes were observed in the tritium 
concentration breakthrough curves (Figure 8g), as well as with smaller magnitudes at the down 
gradient well 10-15 years after the perturbation. The uranium-concentration breakthrough 
curves (Figure 8h) are similar to the nitrate concentrations, but decrease more rapidly in all 
cases.   425 
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Figure 8: Breakthrough curves of pH, nitrate, tritium, and aqueous uranium at the source-zone 
well (a-d) and downgradient well (e-h) in the base case and decreasing precipitation scenarios 
from 2020 to 2100.  430 

 
Kd breakthrough curves generally reflect the pH breakthrough curves in Figure 8 and are higher 
in the decreasing recharge scenarios at both well locations. Figure 9a shows that at the source-
zone well, the base case ~ -30% cases have relatively similar Kd values throughout the 
simulation period. After 2060, the -40% and -50% recharge scenarios both significantly 435 
increase. At the downgradient, Kd values are generally higher than source-zone well, and the 
difference in Kd values among cases are more pronounced (Figure 9d). Kd value is the lowest 
in the higher recharge (base case and -10%) scenarios, and largest in the significantly 
decreasing recharge (-50%) case. The -10% and -20% recharge scenarios significantly diverge 
at 2040 and converge at 2100. Similar to the increasing recharge scenarios, maximum uranium 440 
and nitrate concentrations at the source-zone well occur immediately a few years after the 
perturbation (Figure 8). With decreasing recharge from -10% to -50%, maximum concentration 
ratios are higher than 1.0 and increase with decreasing recharge, while average concentration 
ratios are generally lower than 1.0. In Figure 9b, the uranium maximum concentration ratios are 
slightly higher than nitrate, with greater difference in the -50% recharge case. In Figure 9c, the 445 
ratios of long-term average concentrations show that both uranium and nitrate concentration are 
nearly the same as the base case in smaller decreasing recharge scenarios (-10% ~ -20%), but 
decrease quickly and are significantly lower in the greater decreasing recharge scenarios (-30% 
~ -50%). Compared to the results at the source-zone well, the maximum and average 
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concentration ratios at the downgradient well (Figure 9e and f) have similar trends. Nitrate 450 
maximum concentration ratios are higher than nitrate (Figure 9e), and their differences are the 
greatest in the -20% and -30% recharge case. The average concentration ratios (Figure 9f) 
decrease with decreasing recharges, and uranium ratios are consistently higher than nitrate. 

 
Figure 9 : Breakthrough curves for Kd at the source-zone well (a-c) and the downgradient well 455 
(d-f) for the increasing recharge scenario from 2020 to 2100. Maximum and average ratios of 
base case to increased recharge case for uranium and nitrate concentrations at both well 
locations. 

4.4. Cap-Failure Scenarios 
In the cap-failure scenarios, pH is always lower than the base case across +10%  ~  +50% 460 
recharge rates (Figure 10a). At the source-zone well, these pH values dip below 3.5 in 2030, 
rebound to 4.0 after 2045, and then slightly increase to 4.3 by the end of the simulation. The 
+50% cap-failure scenario has the highest pH value compared to the +10 ~ +40% cap-failure 
cases. Nitrate concentrations spike and increase one order of magnitude in 2030, then 
decrease to the same level as the base case in 2050 (Figure 10b). The pattern of tritium and 465 
uranium breakthrough curves (Figure 10 c-d) look very similar to nitrate. Among the 
breakthrough curves of nitrate, tritium, and uranium across all cap-failure scenarios, the +50% 
cap-failure scenario simulates the earliest peak, while the +20% scenario simulates the highest 
peak. At the downgradient well, pH values at all cap-failure scenarios increase with the base 
case in the first ten years, then decrease around 2035 and remain lower than the base case 470 
(Figure 10e). pH values only decrease from 5.5 to 5.0 in the smaller +10 ~ +20% recharge 
rates. However, they decrease significantly with greater recharge rates (+30% ~ +50%) in those 
cap-failure scenarios. The breakthrough curves of pH increase in the first ten years after 2020, 
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dip to 3.6 around 2040, and then slightly increase, but require several decades to rebound to 
the same pH level as in 2020. Compared to the nitrate concentration breakthrough curves at the 475 
source-zone well (Figure 10b), the peaks at the downgradient well are simulated in 2040 with a 
10-year delay (Figure 10f). The nitrate concentrations in those greater (+30% ~ 50%) recharge 
rates occur earlier and are higher than in the smaller (+10% ~ 20%) recharge rates. The tritium 
concentration shows similar peaks as nitrate, but the earliest peak with +50% cap failure has 
the highest values, and the later peaks with smaller (+10% ~ 20%) recharge rates will be lower 480 
because of tritium radioactive decay (Figure 10g). Uranium concentration breakthrough curves 
show similar behaviors to nitrate in both wells (Figure 10bd and fh).  

 

 
Figure 10. Breakthrough curves of pH, aqueous uranium, tritium, and nitrate at the source-zone 485 
well (a-d) and downgradient well (e-h) in the base case and cap-failure scenarios from 2020 to 
2100. 
 
Kd breakthrough curves are highly correlated with pH at both monitoring wells (Figure 10ae), Kd 
decreases by 2035 and 2040 at both wells, respectively, returns to the 2020 level around 2050, 490 
then keeps increasing until 2100. At the source-zone well, Kd values decrease and rebound 
fastest in the +50% recharge case, and the smallest +10% recharge rate case shows a similar 
trend but is delayed by nearly 10 years (Figure 11a). At the downgradient well, the Kd 
breakthrough curves at higher recharge cases (+30% ~ +50%) are more closely correlated with 
pH and decrease around 2040, while smaller recharge cases (+10% ~ +20%) are more similar 495 
to the base case (Figure 11d). A turning point occurs in 2040, when the +30% case switches 
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places with the +50% case and has the lowest Kd value until 2100, similar to the behavior of 
aqueous uranium breakthrough curves in 2040 (Figure 10h). When comparing Figure 11d and 
Figure 10e, it is clear that although pH is not the highest in the +20% cap-failure scenario, after 
2070, that scenario has the highest Kd value and more adsorption. In cap failure scenarios, the 500 
maximum and average uranium concentration ratios are consistently greater than nitrate in both 
wells, and follow the same trend with increasing recharge rates (Figure 11b-c, e-f). Both ratios 
of uranium and nitrate maximum and average concentration are one order of magnitude greater 
than the base case. The maximum concentrations of uranium and nitrate are observed in 2030 
and 2040 at the source-zone well and downgradient well, respectively (Figure 10bf), although it 505 
is difficult to tell the difference from the breakthrough curves because of the magnitude of peak 
concentrations. The uranium and nitrate maximum concentration ratios are highest in the 20% 
cap-failure scenarios (Figure 11b), and decrease with greater increasing recharge rate. The 
ratios of uranium average concentrations against base case are also persistently higher than 
nitrate in the long term throughout 2100, and decrease with greater recharge rate (Figure 11c). 510 
At the downgradient well, the maximum concentration ratio against the base case generally 
increases with greater recharge rate, and is the largest in the +40% recharge case (Figure 11e). 
The average concentration ratio increases with the smaller (+10% ~ +30%) recharge rates, then 
decreases with the greater (+40% ~ +50%) recharge rates (Figure 11f).  

 515 
Figure 11 : Breakthrough curves for Kd at the source-zone well (a-c) and the downgradient well 
(d-f) for the increasing recharge scenario from 2020 to 2100. Maximum and average ratios of 
base case to increased recharge case for uranium and nitrate concentrations at both well 
locations. 
 520 
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4.5. Climate Model Scenarios 
Recharge rates are calculated by subtracting evapotranspiration from precipitation (precipitation  
- evapotranspiration) in the four CMIP5 climate projection scenarios. The highest greenhouse 
gas concentration pathway RCP8.5 scenario has the maximum simulated precipitation and 
evapotranspiration. However, the differences in recharge rate are small across those four 525 
scenarios as both precipitation and evapotranspiration increase in the projection (Figure 3). 
Therefore, the concentration breakthrough curves are similar under those climate scenarios. 
The average recharge rate in those scenarios is around 8.0e-6 kg-water/m2/sec (0.253 m/yr), or 
approximately 1.68 times higher than the base case. In general, simulated contaminant 
concentrations in those climate scenarios are lower than the base case due to dilution effects 530 
with greater recharge rate, except that pH values are also lower than the base case (Figure 12). 
The breakthrough curves decrease faster before 2020 (not shown in Figure 12) and reach 
background concentration sooner than the base case.  
 
At the source-zone well, the pH breakthrough curve gradually rebounds from 4.0 to 4.5 by the 535 
end of the simulation (Figure 12a). Both nitrate and uranium concentrations show annual 
variability after 2020, as recharge rates are changing annually (Figure 12bd). Specifically, nitrate 
breakthrough curves (Figure 12b) become steady state sooner than the uranium, as nitrate 
background concentration is higher. The oscillation is hardly observed in tritium concentration 
breakthrough curves, as it decreases faster due to decay. At the downgradient well, pH values 540 
across climate scenarios are consistently lower than the base case with annual variability 
(Figure 12e). Compared to the results at the source-zone well, the nitrate concentrations at the 
downgradient well (Figure 12f) are lower than the background level with greater annual 
variability, and become steady state a few years later. The tritium concentration becomes 
extremely low below 1e-15 (Figure 12g), while uranium concentrations return to background 545 
level after 2030 (Figure 12h).  
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Figure 12. Breakthrough curves of pH, nitrate, tritium, and aqueous uranium at the source-zone 
well (a-d) and downgradient well (e-h) in the climate scenarios from 2020 to 2100. 550 
 
 

5. DISCUSSION 
 
A balance between dilution and remobilization is a key factor determining the contaminant 555 
concentration depending on recharge rates, as discussed in Libera et al. (2019). Generally in 
the increasing recharge scenarios, contaminant concentrations decrease first due to dilution, 
and then increase because the mobilized contaminants migrate from the source zones to the 
wells. The highest recharge scenario has the earliest and highest peak in contaminant 
concentrations due to a stronger remobilization effect, but it has the lowest concentrations and 560 
highest pH later due to dilution. Additionally, in the later period, the increasing recharge again 
causes dilution due to flushing, resulting in a concentration level below the base case. Because 
of long-term dilution, the aqueous uranium concentration in greater increasing recharge 
scenarios is even lower than the base case at the source-zone well after 2035. The 
relationships between concentrations and recharge are nonlinear and nonmonotonic, depending 565 
on different times and locations. Changing recharge rate has less impact at the downgradient 
well where the spikes are delayed for approximately 10 years since its location is further from 
the seepage basin, and it takes time for the remobilized plume to reach it. The breakthrough 
curves of smaller (+10% ~ +30%) increasing recharge scenarios are similar to those of the base 
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case, with slight dilution effects throughout 2100, while concentration spikes due to 570 
remobilization in 2040 are observed with the larger (+40 ~ +50%) increasing recharge scenarios 
(Figure 6eh).  
 
In the early stage of decreasing recharge scenarios, contaminant concentrations increase 
because of diminished flushing and a low flow rate of clean groundwater. Later in the simulation 575 
period, contaminant concentrations decrease significantly in the greater decreasing recharge 
scenarios, when the groundwater table declines and isolates the residual contaminants in the 
vadose zone. This was not observed in the previous tritium simulation (Libera et al., 2019) 
because of tritium’s radioactive decay. In general, this means that decreasing precipitation and 
droughts are effective in sequestering contaminants in the vadose zone. At the same time, it 580 
implies less flushing and an increase in residence time of the contaminants at the site. The 
uncontaminated groundwater from the upgradient also migrates more slowly in the aquifer. The 
larger volume of residual contaminants could potentially increase risk, particularly considering 
extreme precipitation events, which are projected to happen more frequently in many climate 
models (USGCRP, 2017). Also, when there is a drought, there is more interest in groundwater 585 
resources, which could lead to increased pumping in the contaminated aquifer. Although such 
pumping activities are strictly regulated at our study site, such trade-offs require attention at 
other sites.  
 
To investigate the impact on reactive species such as uranium, we compared reactive (uranium) 590 
and nonreactive (nitrate) concentration ratios to assess the impacts of reaction and sorption.  
We originally hypothesized that increasing recharge would decrease reactive species 
concentration further, since increasing the volume of water in the domain would increase pH, 
which limits the mobility of uranium. However, Figure 7 shows that the uranium-concentration 
ratios compared to the base case increase more significantly than the nitrate concentrations. 595 
This is because the remobilization occurs when the pH is still low, and also because 
remobilization happens to both uranium and protons (Figure 6). In addition, the amount of the 
residual contaminants is larger for uranium than nitrate due to sorption. Later in the simulation 
period, the uranium average concentrations are lower than for nitrate and decrease with greater 
recharge scenarios, because increasing pH, due to long-term dilution by additional recharge, 600 
immobilizes uranium.  
 
In cap-failure scenarios, sorption of uranium is reduced with increasing infiltration, because Kd 
is sensitive to lower pH due to remobilization through the basin. At the downgradient well, the 
greater recharge cases (+30% ~ +50%) have a more closely correlated Kd and pH, and have a 605 
higher aqueous uranium concentration, than the lower recharge scenarios. In our scenarios, 
there is a clear change in the balance of aqueous and sorbed uranium concentration in the 
transition from +20% to +30% recharge, where the system’s sorption in the downgradient 
fundamentally changes. The cap-failure cases indicate that changing recharge and cap-failure 
levels can trigger dramatic changes in pH and sorption. Consistent with Libera et al. (2019), this 610 
study confirms the importance of cap or surface barriers to limit the impacts of cap failure under 
extreme climate regimes. 
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Adsorption and ion exchange in kaolinite and goethite retards pH and uranium concentration 
fronts (Bea et al., 2013). Adsorption/exchange sites are limited and saturated by the lower pH 615 
and higher uranium concentration loading, and eventually reach steady state in 2100. Overall in 
our scenarios, the change in recharge has a similar impact on uranium and nonreactive species, 
which is largely attributed to pH buffering due to mineral precipitation. The increase in pH due to 
dilution encourages the precipitation of kaolinite, but the precipitation reaction of kaolinite 
produces H+ ions, which then decreases pH. At low pH, the hydroxyl groups on the octahedral 620 
structures of aluminosilicates like kaolinite become protonated, effectively creating a net positive 
charge on the mineral. This means that uranium cannot sorb to the clay and is therefore mobile 
in the system. Previous experimental (Dong et al. 2012) and modeling (Arora et al., 2018) 
studies also reaffirmed that percent U(VI) sorption is greater with a higher, neutralized pH, 
because U(VI) and H+ are competing in sorption. This is the process of dissolution and 625 
precipitation of kaolinite: 

      Al2Si2O5(OH)4 + 6H+!!"!!!#$%3+ + 2SiO2 + 5H2O    
A similar reaction occurs with gibbsite. While it was thought to be irrelevant for this particular 
study area within F-Area, some recharge scenarios suggest that there could be more gibbsite 
formation than previously thought. Dong et al. (2012) showed that there was an insignificant 630 
weight percent or volume fraction of gibbsite at F-Area, since it only forms at pH>5.4. However, 
in the decreasing recharge scenarios, all the recharge cases at the downgradient well have a 
pH between 5.4 and 7 after 2070, and pH at the two greater recharge cases at the source-zone 
well also surpass 5.4. Decreasing recharge would likely trigger the formation of gibbsite, which 
could increase pH buffering. Additionally, according to Bea et al. (2013), this mechanism, as 635 
well as cation exchange and adsorption processes on kaolinite and goethite, explain some 
buffering of pH. The pH buffering effect is the major mechanism for pH remaining low for an 
extended period of time in climate resilience studies with reactive transport modeling. 
 
In addition to understanding the impact of a range of recharge scenarios, this study has 640 
established a pipeline to use the CMIP5 climate model projections as input to the hydrology and 
reactive transport modeling simulations. Although increasing precipitation is projected over time, 
we found that the increasing ET associated with temperature can reduce the recharge rates. We 
found that, compared to the base case and hypothetical scenarios, the CMIP5 climate data 
projects a small increase or no change of recharge rate over time, indicating that the changing 645 
climate has minor effects on the contamination plume and breakthrough curves in our study site. 
This is similar to the behaviors observed in the increasing precipitation scenarios in Figure 6: 
that smaller recharge increases have little impact on the concentration breakthrough curves, 
because the increasing recharge is below the threshold that may cause significant 
remobilization. Contaminant migration is more controlled by the transport process. The reactive 650 
transport modeling with CMIP5 projection also reveals the sensitivity of recharge rates, and 
indicates that the uncertainty associated with simulated ET and precipitation could significantly 
affect the assessment of waste disposal and contaminant transport.  
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4. CONCLUSION 655 

 
The climate resilience of residual contamination at the SRS F-Area waste disposal site 
throughout the projection period from 2020 to 2100 is investigated in this study. Groundwater 
flow, mineral reactions, surface complexation sorption, and ion-exchange processes are 
simulated by the Amanzi and PFLOTRAN flow and reactive transport model. We illustrate four 660 
scenarios characterized by a range of variable recharge values: (1) increasing recharge after 
2020, (2) decreasing recharge after 2020, (3) cap failure and constant positive recharge shift, 
and (4) recharge rate under different RCP scenarios from the CMIP5 climate model projection. 
Although exaggerated in the first three cases, this systematic study using changing recharge 
rates was useful in identifying the phased impacts of increasing or decreasing recharge rates, 665 
as well as the difference between the reactive and nonreactive species. Plume distribution and 
breakthrough curves of chemical species are evaluated to assess the impacts of changing 
recharge rate and flow conditions. The ratios of maximum and average reactive and nonreactive 
species concentrations between scenarios and base case are used to understand how climate 
change affects the adsorption and ion exchange of residual contaminants in the subsurface 670 
domain. Furthermore, Kd breakthrough curves are evaluated to understand the pH effects on 
sorption with different recharge rates in those scenarios.  
 
With increasing recharge rates, pH decreases and residual contaminant concentrations 
increase, because of the remobilization of protons and reactive species. The impact on uranium 675 
or pH-dependent species is the same as nonreactive contaminants. Kd values are correlated 
with pH and behave differently when changing recharge rates beyond certain thresholds. In 
most cases, uranium-maximum concentration ratios against the base case are higher than the 
nitrate concentration ratios, owing to remobilization, while the uranium concentration 
breakthrough curves in the later period depend on long-term flow conditions. The results of cap-680 
failure scenarios suggest that reactive transport modeling and analysis of pH effects on reactive 
species are important for the risk assessment of such engineering failures.  
 
Our results highlight that climate change impacts may not be intuitive, and must be analyzed 
quantitatively by models. ET projection has great uncertainty, but is particularly important in 685 
determining the recharge rates in reactive transport modeling for climate resilience studies. 
Reactive transport models which consider pH dependency for reactive species are essential for 
analyzing the impacts of pH with changing recharge rates. Although this study is focused on one 
site, we developed the pipeline to use climate projection datasets in reactive transport modeling 
and thereby demonstrated the capability for assessing climate change impacts on waste 690 
disposal sites. We expect that our approach and insight are transferable to other sites that have 
large amounts of residual contaminants in the vadose zones or in the groundwater.  
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