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Abstract. We model monthly precipitation maxima at 132 stations in Germany for a wide range of durations from one minute

to about six days using a duration-dependent generalized extreme value (d-GEV) distribution with monthly varying parameters.

This allows for the estimation of both monthly and annual intensity–duration–frequency (IDF) curves: (1) The monthly IDF

curves of the summer months exhibit a more rapid decrease of intensity with duration, as well as higher intensities for short

durations than the IDF curves for the remaining months of the year. Thus, when short convective extreme events occur, they are5

very likely to occur in summer everywhere in Germany. In contrast, extreme events with a duration of several hours up to about

one day are conditionally more likely to occur within a longer period or even spread throughout the whole year, depending on

the station. There are major differences within Germany with respect to the months in which long-lasting stratiform extreme

events are more likely to occur. At some stations the IDF curves (for a given quantile) for different months intersect. The

meteorological interpretation of this intersection is that the season at which a certain extreme event is most likely to occur10

shifts from summer towards autumn or winter for longer durations. (2) We compare the annual IDF curves resulting from the

monthly model with those estimated conventionally, that is, based on modeling annual maxima. We find that adding information

in the form of smooth variations during the year leads to a considerable reduction of uncertainties. We additionally observe

that at some stations, the annual IDF curves obtained by modeling monthly maxima deviate from the assumption of scale

invariance, resulting in a flattening in the slope of the IDF curves for long durations.15

1 Introduction

Extreme precipitation events can potentially cause significant damage (Linnerooth-Bayer and Amendola, 2003; Barredo, 2009;

Davenport et al., 2021), depending on their duration and spatial extent: extreme convective events can lead to flash floods,

while long-lasting stratiform precipitation may lead to river flooding. In recent years, floods and landslides following heavy

precipitation have become increasingly frequent in many European countries (Bronstert, 2003; Paprotny et al., 2018), and20

weather conditions favoring the occurrence of heavy rainfall events are expected to further increase due to anthropogenic

climate change (Hattermann et al., 2013; Hartmann et al., 2013, and references therein). However, in addition to regional

differences, changes in the frequency and intensity of extreme precipitation in Europe have been found to also differ between

different storm types, namely convective and stratiform events (Berg et al., 2013), as well as between different seasons (e.g.,

Moberg and Jones, 2005; Łupikasza, 2017; Kunz et al., 2017, and references therein). Hence, it is critical to research and25
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improve our understanding of the occurrence of extreme precipitation events on different time scales as well as in different

seasons in order to detect and interpret changes in seasonality in a consistent way.

The characteristics of extreme precipitation on different time scales can be summarized in terms of intensity–duration–

frequency (IDF) curves. These are a standard tool in hydrology for designing hydrological structures and managing water

supplies (Durrans, 2010). IDF curves are basically probability distributions for extreme values of precipitation intensity for30

a range of durations, or more precisely aggregation times. Thus, they provide the relationship between precipitation intensity

and duration for selected occurrence frequencies (i.e. exceedance probabilities or return periods). Since differences exist in

the storm characteristics of different seasons, it is essential to provide information on precipitation extremes on a seasonal

basis. Even though a seasonal resolution may not be relevant for planning or adjusting hydrological structures, it could be

beneficial for stakeholders managing water storage. In addition, a seasonal approach allows for a more detailed examination35

of the underlying mechanisms that influence the IDF relationship, considering that extreme events with different durations

may occur in different seasons. However, while studies exist that investigate seasonality in extreme precipitation of a selected

duration (e.g., Maraun et al., 2009; Rust et al., 2009; Fischer et al., 2018, 2019) or also in flood frequency (e.g., Durrans et al.,

2003; Kochanek et al., 2012; Rottler et al., 2020), there are few studies regarding seasonal IDF curves (Willems, 2000; Durrans,

2010).40

Extreme value theory offers several approaches to describe the occurrence probability of extreme events (for an introduction,

see Coles, 2001). There are numerous applications of extreme value statistics in hydrology and climatology (e.g., Katz et al.,

2002; Friederichs, 2010; Davison and Gholamrezaee, 2012; Papalexiou and Koutsoyiannis, 2013; Sebille et al., 2017; Lazoglou

et al., 2019), making use of two commonly accepted concepts: the block maxima approach and the peaks over threshold (POT)

approach. For the block maxima approach, the observed time series is divided into blocks of equal length and the probability45

distribution of the maxima of these blocks is modeled using a generalized extreme value (GEV) distribution. For the peaks

over threshold (POT) approach, on the other hand, the distribution of exceedances above a chosen threshold is modeled using

a generalized Pareto distribution (GPD), potentially allowing the use of more data. However, while a sufficient block size has

to be selected for the block maxima approach, the POT approach requires the choice of a suitable threshold. In the context of

this study, it would be necessary to choose a threshold that varies seasonally as well as with duration, therefore we consider the50

block maxima approach to be the more suitable choice.

Since extreme events are by definition rare, the estimation of quantiles (return levels) corresponding to small exceedance

probabilities (return periods) is always associated with the problem of limited data. When modeling IDF curves, the limitations

of the observations are firstly the spatial coverage and secondly the temporal resolution (Courty et al., 2019). For example,

the German Meteorological Service (DWD) operates a relatively dense weather station network, so that many long observa-55

tion time series exist for daily precipitation measurements. However, fewer stations provide sub-daily measurements and, in

addition, considerably shorter time series are available at these stations, since operating instruments with hourly or minutely

measurement intervals has only been feasible without considerable maintenance for a few decades. The situation is similar in

many other countries (see e.g., Dyrrdal et al., 2015; Olsson et al., 2019). The objective in modeling sub-daily extreme precip-

itation events is therefore to use the available data most efficiently, i.e. to pool the information where possible. Hence, in this60
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study we aim to combine different information on extreme precipitation within one model, namely information on different

durations as well as seasonal variations.

In order to assess extreme precipitation observations of different aggregation times simultaneously, it is possible to use a

duration-dependent extreme value distribution (Koutsoyiannis et al., 1998; Van de Vyver and Demarée, 2010; Lehmann et al.,

2013; Van de Vyver, 2018). In the context of the block maxima approach, a duration-dependent GEV (d-GEV) distribution65

is derived by implementing empirical dependencies of the GEV parameters on duration. Thus, we are able to directly obtain

quantile estimates for all durations within the considered interval while additionally reducing the uncertainties of the estimation

by combining information of different durations (Ulrich et al., 2020). To our knowledge, this approach has so far only been

used with an annual block size. This means that only the annual maxima of each aggregation time are used, and therefore large

amounts of data are neglected for the analysis. However, when modeling daily precipitation sums, monthly block sizes have70

been shown to be sufficient to model extreme precipitation in the mid-latitudes (Coles, 2001; Maraun et al., 2009; Rust et al.,

2009). Naturally, it would be possible to model the block maxima separately according to the month of their occurrence, but

the choice of a more complex model that explicitly includes the intra-annual variations results in a substantial reduction in the

number of parameters that need to be estimated. This can be accomplished by adding smooth periodic functions as covariates

for the GEV parameters (Fischer et al., 2018, 2019). Fischer et al. (2018) demonstrated that this approach provides more precise75

quantile estimates than using an annual block size as it allows the use of more data.

In this study, we implement monthly covariates analogously for the parameters of the d-GEV distribution. Hence, we model

intra-annual variations of extreme precipitation for a wide range of durations from one minute to approximately 6 days at 132

stations in Germany. This not only allows us to estimate and compare IDF curves of different months, but we also expect

to obtain more reliable annual IDF curves due to the more efficient use of the available data. Furthermore, we anticipate80

that accounting for seasonality and reducing uncertainties in parameter estimation will provide a better understanding of the

underlying processes. Hence, we expect to gain new insights into the empirical dependencies of GEV parameters on duration,

which are in turn relevant for the modeling of annual maxima. This study addresses the following research questions:

– How does the IDF relationship at different stations in Germany evolve throughout the year?

– To what extent do the annual IDF curves based on monthly and annual maxima differ?85

– Does explicit modeling of seasonal variations allow drawing conclusions aimed at improving the modeling of annual

maxima?

The remainder of this study is organized as follows: In Sect. 2, we present the data and methods on which this study is based.

We address both the methods used for modeling as well as for comparing the different models. We then present and discuss the

respective results regarding our research questions in Sect. 3. We close with our conclusions in Sect. 4.90
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Figure 1. Map of Germany with positions of all 132 stations considered. Colors represent the length of the available time series with minute

resolution. The longest observation period of 51 years exist for station Bever-Talsperre (dark blue).

2 Methods

We aim to model the intra-annual variations of extreme precipitation on different time scales. For this purpose, we use obser-

vations with high temporal resolution from stations in Germany. We use a duration-dependent GEV (d-GEV) distribution with

monthly covariates to describe the monthly maxima over a range of durations collectively in one model. Thereby, appropriate

models for the intra-annual variations of the d-GEV parameters are selected through step-wise forward regression. This ap-95

proach allows us to examine how the IDF curves vary throughout the year in different areas of Germany. From this seasonal

model, we can derive annual IDF curves as well. We compare these annual IDF curves with those resulting from directly

modeling the annual maxima via a verification procedure using the quantile skill index. Finally, we verify whether modeling

monthly maxima allows for a more precise estimate of the relationships between GEV parameters and duration. Therefore, we

model each duration separately using the GEV distribution with monthly covariates. Details of the data as well as all methods100

involved are described in the following section.

2.1 Data

We use precipitation measurements at 132 stations in Germany that provide a temporal resolution of one minute. Their locations

are presented in Fig. 1. The majority (129) of these stations are operated by the German Meteorological Service (DWD)1.

The available time series at these stations range from 19 to 28 years (Fig. 1 yellow and green). Additionally we use three105

1The data were obtained via ftp://ftp-cdc.dwd.de/climate_environment/CDC/observations_germany/climate.
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stations operated by the Wupperverband2 with time series≥ 44years (Fig. 1 blue). The station Bever-Talsperre with the longest

observation period of 51 years is used as example station.

The observations were accumulated to the following durations: d ∈ 2{0,1,2,..,13}min = {1,2,4, ...,8192}min, with the longest

duration 8192min≈ 5.7days. Thus, resulting in 14 time series per station. Of each time series, we consider both the monthly

and annual maxima. Blocks are excluded from the analysis if they contain more than 10% missing values.110

2.2 Modeling annual maxima of different durations

The challenge in modeling extremes is to estimate probabilities of very rare or even not yet observed events. Here, we apply

the block maxima approach which is commonly used for this purpose. It is based on the Fisher–Tippett–Gnedenko Theorem,

which essentially states that under certain assumptions the probability distribution of block maxima can be modeled by the

generalized extreme value (GEV) distribution (Coles, 2001).115

More precisely, let X1, ...Xn be a sequence of n random variables which are independent and identically distributed (iid),

with an unknown distribution. We denote the maximum of this sequence as

Mn =max{X1, ...,Xn}. (1)

In the limit of large block sizes n, the non-exceedance probability can be approximated by the generalized extreme value

(GEV) distribution120

Pr{Mn ≤ z} ≈G(z), (2)

if for n→∞ the distribution of properly rescaled Mn converges to a non-degenerate distribution. The GEV distribution

G(z;µ,σ,ξ) = exp

{
−
[
1+ ξ

(
z−µ
σ

)]−1/ξ}
(3)

is defined on {z : 1+ ξ(z−µ)/σ > 0} and has three parameters: location parameter −∞< µ <∞, scale parameter σ > 0,

and a shape parameter −∞< ξ <∞. Thus, the position and width of the distribution are specified by µ and σ, respectively.125

Whereas ξ determines the right tail behavior, resulting in bounded right tails for ξ < 0 and polynomial decay for ξ > 0. In the

case ξ = 0 Eq. (3) is interpreted in the limit of ξ→ 0, leading to the Gumbel distribution, with an exponentially decaying tail.

The GEV distribution is thus likely to be a well suited model for the distribution of annual precipitation intensity maxima

of one selected aggregation duration. In order to model the distribution for different durations simultaneously, Koutsoyiannis

et al. (1998) proposed that the empirical relationship between precipitation intensity and duration can be directly used to model130

the parameters of the GEV distribution depending on duration, which leads to a duration-dependent GEV (d-GEV) distribu-

tion G(z,d;µ(d),σ(d), ξ(d)). The relationship between precipitation intensity I and duration d for a chosen non-exceedance

probability p corresponds to the quantile qp(d) of the d-GEV distribution:

Ip(d) = qp(d) = µ(d)− σ(d)

ξ(d)

[
1−{− log(1− p)}−ξ(d)

]
; (4)

2https://www.wupperverband.de
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hence IDF curves can be estimated in a consistent way (Ulrich et al., 2020). For the empirical dependence of the parameters135

on duration, we follow the assumptions of Koutsoyiannis et al. (1998):

σ(d) = σ0

(
d

1h
+ θ

)−η
, (5)

µ(d) = µ̃ ·σ(d), (6)

ξ(d) = const., (7)

with re-parameterized location parameter −∞< µ̃ <∞, scale offset σ0 > 0, duration offset θ ≥ 0 and duration exponent140

0< η ≤ 1. These assumptions are commonly used (Lehmann et al., 2013; Van de Vyver, 2015; Stephenson et al., 2016;

Ritschel et al., 2017), however, it may be beneficial to introduce additional parameters (Van de Vyver, 2018; Fauer et al.,

2021). By inserting assumptions (5)-(7) into Eq. (3), we obtain the d-GEV distribution with 5 parameters

G(z,d; µ̃,σ0, ξ,θ,η) = exp

{
−
[
1+ ξ

(
z

σ0(d+ θ)−η
− µ̃
)]−1/ξ}

, (8)

which constitutes a model for the distribution of annual precipitation maxima for a range of durations.145

2.3 Modeling monthly maxima

According to the Fisher–Tippett–Gnedenko-Theorem, the GEV distribution is an adequate model for block maxima if the block

size is sufficiently large. For geophysical applications, such as modeling extreme precipitation, it is common to choose a block

size of one year, as explicit modeling of seasonality is thereby avoided. However, this results in two major disadvantages: Large

portions of the data are lost for the analysis if only the annual maxima are used, and the assumption that precipitation events150

originate from an identical distribution is violated if a distinct intra-annual cycle exists. Therefore, the use of a smaller block

size is worth considering. Multiple studies suggest that the GEV distribution is well suited to model monthly block maxima

of daily precipitation sums in the mid-latitudes (Maraun et al., 2009; Rust et al., 2009; Fischer et al., 2018). Similarly, we use

monthly maxima to model extreme precipitation of different durations: either with separate models for each duration using

the GEV (Eq. (3)) or simultaneously by using the d-GEV distibution (Eq. (8)). Inspection of the quantile-quantile (q-q) plots155

indicates that the d-GEV distribution is a reasonable approximation for the distribution of monthly maxima at the regarded

stations. The q-q plots for station Bever-Talsperre with respect to each month are shown in Fig. A1.

To account for any form of variability in the GEV model (Eq. (3)), the GEV parameters ϕ ∈ {µ,σ,ξ} can be modeled as

linear functions of covariates xi within the framework of vector generalized linear models (VGLM) (Yee and Stephenson,

2007)160

lϕ (ϕ(xi)) = ϕ0 +

I∑
i=1

βϕi xi, (9)

where ϕ0 represents the intercept and βϕi are the regression coefficients. The choice of the parameter specific link function lϕ(·)
can ensure parameters to stay within a predefined range. However, we employ the identity lϕ(ϕ) = ϕ as link function for all
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parameters. Following Fischer et al. (2018), the intra-annual variations of the GEV parameters can be modeled as a periodic

functions of the day of the year (doy) by using a series of harmonic functions with a fundamental period of one year:165

ϕ(doy) = ϕ0 +

J∑
j=1

[
αϕj cos

(
2πj · doy
365.25

)
+βϕj sin

(
2πj · doy
365.25

)]
, (10)

where J is the maximum order of harmonic functions. To obtain the parameters for each month, Eq. (10) is evaluated at the

corresponding center-days of each month. We model the seasonal variations of the d-GEV distribution in exactly the same way.

Essentially, this means that each of the parameters ϕd-GEV ∈ {µ̃,σ0, ξ,θ,η} can be expressed in the form of Eq. (10).

2.4 Parameter estimation170

The parameters of the GEV distribution can be estimated from a time series of observed block maxima. For this purpose, we

apply the widely used maximum likelihood estimator (MLE) (Coles, 2001). Thus, the parameters are chosen by optimizing the

likelihood

L(φ |Z) =
∏
n∈N

g(zn;φ), (11)

where the parameter vector φ= (µ,σ,ξ)T contains the unknown GEV parameters, the vector Z consists of the observed175

maxima zn for different blocks (years/ months) n and g(zn;φ) is the probability density function of the GEV distribution. This

can be applied analogously for the d-GEV distribution:

L(φ |Z) =
∏
d∈D

∏
n∈N

g(zn,d,d;φ), (12)

whereas in this case the parameter vector φ= (µ̃,σ0, ξ,θ,η)
T , Z now contains all observed maxima zn for different blocks

(years/ months) n and durations d and g(zn,d,d;φ) is the probability density function of the d-GEV distribution. A benefit of180

the MLE is that it can be easily extended in the case of using covariates to model the parameters (Eq. (10)). The parameter

vector then contains the parameter intercepts ϕ0 and regression coefficients αϕj and βϕj for each parameter in the case of both

GEV and d-GEV distribution.

Since the logarithm of the likelihood reaches the maximum at the same value, but is easier to calculate, the parameters are

estimated by optimizing the log-likelihood numerically185

φ̂= argmax
φ
{ ln[L(φ |Z)]}. (13)

It is possible to derive the uncertainty of the parameter estimates, i. e. the variance-covariance matrix, via the Fisher information

matrix estimated in this process.

Nevertheless, Eqs. (11) and (12) are only valid if the block maxima are independent of each other. The assumption that

maxima of different years or also months are independent is reasonable. However, a dependency exists between the maxima190

of different durations. Jurado et al. (2020) have shown that accounting for asymptotic dependence between durations yields
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a modest improvement in the estimation of quantiles of short durations d≤ 10h, but comes at the cost of increased model

complexity. We therefore decide to neglect the dependence between durations when estimating the d-GEV parameters using

Eq. (12). Yet, the dependence between durations is taken into account when estimating the uncertainties of the quantiles by

using the bootstrap method (see Sect. 2.6).195

2.5 Model selection

To obtain a parsimonious model, we use a selection procedure consisting of two steps: In the first step, we determine for which

of the GEV/ d-GEV parameters the modeling of the intra-annual variations is not appropriate and which should therefore

remain constant. In the second step, we select which terms of the harmonic series in Eq. (10) are actually needed in order to

model the non-constant parameters.200

When modeling intra-annual variations of GEV parameters, the shape parameter ξ is often assumed to be constant (Maraun

et al., 2009; Rust et al., 2009; Fischer et al., 2018). This is justified by the fact that ξ controls the tail of the distribution, and

thus the estimation of ξ is already associated with large uncertainties. Hence, adding additional coefficients to the estimation

of ξ is only reasonable if there are sufficient data available. Fischer et al. (2019) demonstrated that modeling the intra-annual

variations of ξ can indeed improve the GEV model. However, their model is able to combine the observations of many stations205

– due to additional spatial covariates – and therefore the amount of data on which the estimation is based is increased. Since in

contrast we employ separate models for each station, we choose the shape parameter to remain constant ξ(doy) = ξ0. For the

parameters µ(doy) and σ(doy), a variation in the form of Eq. (10) is adopted.

To be consistent, we also use a constant shape parameter in the d-GEV case. The estimation of the duration offset parameter

θ is likewise associated with considerable uncertainties, because it is strongly influenced by the estimation of the parameters η210

and σ0. Eq. (5) clearly indicates this effect. Therefore, we choose for θ to remain constant θ(doy) = θ0 as well. The parameters

µ̃(doy),σ0(doy) and η(doy) are allowed to vary periodically throughout the year according to Eq. (10).

For the maximum order of the harmonic series in Eq. (10), we choose J = 4. This results in a maximum of 8 regression

coefficients αϕj and βϕj for each non-constant parameter. Thus, in the GEV case one would obtain one model per duration

containing 3+2·8 = 19 parameters and in the d-GEV case one model describing all durations simultaneously with 5+3·8 = 29215

parameters to be estimated. To reduce this number to a level where the model describes the variations sufficiently well without

over-fitting, we apply a step-wise forward regression. For both the GEV model and the d-GEV model, we use the same methods

to select the necessary predictor terms: As model selection criterion we use the cross-validated log-likelihood. For this purpose,

the observations are divided into a training set and a test set, and ln[L(φ |Z)] is computed as in Eqs. (11) and (12), where the

parameter vector φ is estimated based on the training set and the observations Z originate from the test set. We choose a small220

number of folds k = 2, as recommended for cross-validation with the aim of model selection (Arlot and Celisse, 2010). Thus,

the data is divided into two sets, each of which is used once as a training and once as a test set. In the first step of the step-wise

regression, we compare all possible models that can result from the addition of the cosine term with j = 1 as covariate for the

non-constant parameters. This yields 4 possible models for the GEV case, listed in Table 1, and analogously 8 models for the

d-GEV case. The model resulting in the maximum cross-validated likelihood is retained for the next model selection step. In225
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Table 1. All possible models in the first step of the step-wise regression (GEV case) with ω = 2π
365.25

µ(doy) σ(doy) ξ(doy)

µ0 σ0 ξ0

µ0 +αµ1 cos(ω · doy) σ0 ξ0

µ0 σ0 +ασ1 cos(ω · doy) ξ0

µ0 +αµ1 cos(ω · doy) σ0 +ασ1 cos(ω · doy) ξ0

this next step we similarly identify the non-constant parameters for which the addition of the sine term with j = 1 results in an

improvement of the model. We proceed to the maximum order J = 4 accordingly.

For the station Bever-Talsperre, the resulting estimated d-GEV parameters are presented in Fig. 2. For comparison, the

estimated parameters resulting from using a separate model for each month are shown as well. In the case of the station Bever-

Talsperre, model selection yields a model with 16 parameters to be estimated. This represents a large parameter reduction230

compared to using one separate d-GEV model per month with 5 · 12 = 60 parameters. From Fig. 2 we can note that the choice

to keep the parameters ξ and θ constant seems to be justified. In addition, the parameters σ0 and η show a clear variation

throughout the year. The estimates of the separate models per month and the d-GEV model with covariates agree well for these

two parameters. In the case of the modified location parameter µ̃, the variations are not as pronounced as for σ0 and η, so

it might be possible to model this parameter as constant as well. However, following Eq. (6), setting µ̃(doy) = const. would235

enforce the annual cycle of the location parameter µ(d) and the scale parameter σ(d) to be in phase for any fixed duration d.

Based on the results of an exploratory analysis, see Appendix C, we conclude that the assumption of phase equality of µ(d)

and σ(d) for each duration may be too restrictive. Therefore, we decide to allow variations in µ̃(doy) throughout the year.

2.6 Obtaining IDF curves

When modeling the annual maxima with the d-GEV distribution according to Eq. (8), we can derive IDF curves that correspond240

to the annual exceedance probabilities using Eq. (4). Likewise, when modeling monthly maxima using the d-GEV distribution

with monthly covariates (Eq. (10)), Eq. (4) yields separate IDF curves for each month of the year. These correspond to the

probabilities that a certain intensity will not be exceeded within a specific month. To distinguish between these two types of

IDF curves, we refer to them as annual and monthly IDF curves, respectively.

However, we can also derive annual IDF curves, i. e. quantiles of the distribution of annual maxima, from modeling the245

monthly maxima. Assuming the maxima of all months in a year as independent, the non-exceedance probability p of an

intensity level qp,d within one year is derived from its monthly non-exceedance probabilities as

p=
12∏
m=1

Gm(qp,d;µm,σm, ξm), (14)

9
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Figure 2. Estimated d-GEV parameters µ̃,σ0, ξ,θ,η (a-e) for station Bever-Talsperre: through applying one separate d-GEV model for each

month (blue dots) and by modeling all month simultaneously using a d-GEV model with monthly covariates (green lines). The error bars and

shaded areas show the 95% confidence intervals obtained via the estimated Fisher information matrix.

for a fixed duration d. Therefore, to obtain the quantiles of the distribution of annual maxima, we numerically solve Eq. (14)

for qp,d. Where qp,d is the quantile corresponding to the exceedance probability 1− p, sometimes interpreted as return level250

associated with the return period 1/(1− p). We compute qp,d for the entire duration range to yield the annual IDF curves.

We determine the uncertainties of the estimated IDF curves using the ordinary non-parametric bootstrap percentile method

(Davison and Hinkley, 1997). In this process, a sample is first created from the data by drawing with replacement. This sample

is used to estimate the model parameters, from which a certain intensity quantile dependent on duration Ip(d) is then calculated

using Eq. (4). By repeating this process R= 500 times, we obtain a distribution of intensity quantiles. Finally, the empirical255

0.025 and 0.975 quantiles of the bootstrap distribution are used as the lower and upper bounds of the 95% confidence interval

for Ip(d). We assume that considering an appropriate sampling strategy, this method accounts for the dependence between

maxima of different durations. For this purpose, all maxima from a particular year are jointly sampled, thus we obtain a sample

of n years matching the length of the station time series. Fauer et al. (2021) demonstrated in a sampling experiment that the

coverage of the 95% confidence intervals obtained in this manner stays adequate, even when the dependence of the maxima of260

different durations is increased.

To visualize the differences between the annual IDF curves resulting from the different models, it can be useful to compare

the parameters of the respective distributions of annual maxima. Unfortunately, these are only directly available when modeling

the annual maxima. However, we can assume that the distribution of the annual maxima resulting from modeling the monthly

maxima is for each duration again a GEV distribution, due to its max stability property. Thus, we estimate the GEV parameters265

of the distribution of annual maxima by firstly using Eq. (14) to estimate the quantiles in the range p ∈ [0,1] and through

inversion obtaining p(qp,d). We then fit the GEV distribution to p(qp,d) using the non-linear least squares method to estimate

10



µd,σd and ξd

p(qp,d)∼ exp

{
−
[
1+ ξd

(
qp,d−µd

σd

)]−1/ξd}
. (15)

The uncertainties of the estimates of µd,σd and ξd are likewise determined using the described bootstrap method.270

2.7 Verification

We apply a verification procedure in order to asses the estimated quantiles, i.e. IDF curves. At a given station, we aim to

compare the annual IDF curves obtained by modeling the monthly maxima with those obtained by modeling the annual max-

ima. We model the monthly maxima using the d-GEV distribution with monthly covariates according to Eqs. (8) and (10). We

abbreviate this model as monthly d-GEV in the following. For modeling the annual maxima, we use the d-GEV distribution275

(Eq. (8)) and abbreviate this model as annual d-GEV.

To provide a detailed analysis we follow Ulrich et al. (2020), who suggest a verification strategy that allows examining

the estimated quantiles, for each duration d and probability p separately. The approach is based on the comparison of the

observations on with the modeled quantile qp via the quantile score (QS) (Bentzien and Friederichs, 2014):

QS(p) =
1

N

N∑
n=1

ρp(on− qp), where ρp(u) =

pu ,u≥ 0

(p− 1)u ,u < 0,
(16)280

where the check-loss function ρp(u) is evaluated at u= on− qp. To obtain the out-of-sample performance of the model, QS

is evaluated in a cross-validation setting (Wilks, 2011). For this purpose, we split the available time series at a station into

ny sets, corresponding to the length of the time series in years, by removing the maxima of all durations of a specific year y

for each set. The model parameters and thus the quantile qp,d are estimated based on the remaining data. The quantile score

for a cross-validation set is calculated from qp,d and the respective omitted observed annual maximum od,y . Therefore, the285

cross-validated quantile score results to:

QScv(p,d) =
1

ny

∑
y∈Y

ρp(od,y − qp,d). (17)

To compare the score of the monthly d-GEV QSmcv with that of the annual d-GEV QSacv, we use the quantile skill index (QSI)

(Ulrich et al., 2020) that is based on the quantile skill score (Wilks, 2011):

QSI(p,d) =

1−QSmcv(p,d)/QSacv(p,d) ,QSmcv(p,d)≤ QSacv(p,d)

−1+QSacv(p,d)/QSmcv(p,d) ,QSmcv(p,d)> QSacv(p,d) .
(18)290

Therefore, QSI ∈ [−1,1], where negative values indicate a superior performance of the annual d-GEV model, whereas positive

values indicate a superior performance of the monthly d-GEV model.
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Figure 3. The 0.9-quantiles for station Bever-Talsperre for each month (a) and for various durations (b). The durations shown correspond

to the durations d ∈ 2{0,1,2,...,13} min discussed in Sect. 2.1. Shaded areas represent the 95% confidence intervals obtained via the bootstrap

method.

3 Results and discussion

We first show the results for the monthly IDF curves at the station Bever-Talsperre. Based on the probability that the annual p-

quantile is exceeded within a certain month, we investigate the seasonal variations of the IDF relationship across Germany. We295

present the results in detail for six selected stations. Furthermore, we examine the annual IDF curves resulting from modeling

monthly maxima and compare them to those obtained from modeling annual maxima. We present the resulting annual IDF

curves together with the verification results for three example stations. Since the annual IDF curves derived from the monthly

maxima deviate from our original assumptions about the duration-dependence, we finally investigate the dependence of the

estimated GEV parameters on duration using annual and monthly maxima, respectively. We focus in detail on the shape300

parameter.

3.1 Intra-annual variations

We obtain quantile estimates, i.e. IDF curves, for each month using the d-GEV distribution (Eq. (8)) with monthly covariates

(Eq. (10)), through Eq. (4). In the case of the monthly IDF curves, p indicates the probability that the value of the p-quantile

will not be exceeded within a given month. The 0.9-quantile for each month dependent on duration is shown in Fig. 3 (a) for the305

station Berver-Talsperre. The IDF curves exhibit a steeper slope in the summer months (pink) than in the autumn and winter

months (blue). This is related to the duration exponent η, which exhibits higher values in summer than in winter (Fig. 2 (e)).

This result matches the findings of Willems (2000) who determined the rate of exponential decline β of intensity with duration
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Figure 4. Probability of the annual 0.9-quantile q0.9,d being exceeded in a given month. Dots indicate the probability that q0.9,d is exceeded

in a certain month, while each point in a line can be interpreted as the probability that q0.9,d is exceeded within the surrounding block of

30 days. To illustrate the interpretation: the product of all probability values presented as dots for a chosen duration results in the annual

exeedance probability 1− p= 0.1. Therefore, dividing the probability values by 0.1 yields the conditional probability of exceeding q0.9,d in

a given month. For reasons of visual clarity, confidence intervals are not presented. Station names are listed at the top of each plot, while the

numbers indicate their positions in Fig. 5.

(equivalent to η) for different seasons and likewise found that β exhibits the smallest values in the winter season. For short

durations d≤ 1h the intensities reach their maximum in the summer months and their minimum in the winter months. This310

corresponds to the scale offset parameter σ0, which similarly peaks in summer (Fig. 2 (b)). In contrast, the intensity maximum

of long durations d≥ 24h occurs in winter and the minimum in spring and summer, since the curves for different months

intersect at d≈ 8h. The annual variation of the intensity for the different durations is presented in Fig. 3 (b). It is evident

that the intensity maximum shifts from summer for the short durations (purple/ blue) through autumn into winter for the long

durations (light green/ yellow). Here, only the quantiles of the monthly distributions for p= 0.9 are shown. However, the315

monthly quantiles for other probability values exhibit the same behavior. The intersection of the IDF curves and the resulting

change in seasonality for different durations is not generally present at all stations in the investigated duration range. However,

since different duration exponents of the curves in summer and winter occur at all stations, we suspect that at all stations, given

sufficiently long durations, the intensity maximum moves into winter eventually.
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Figure 5. Maximum probability of the annual 0.9-quantile qp,d beeing exceeded in one month and month when the maximum occurs at

each of the considered stations for three different durations. Dividing the probability values by the annual exeedance probability 1−p= 0.1

yields the conditional probability. Therefore a value of Prmax = 5% can be interpreted as 50% of the exceedances of qp,d occurring in a single

month.

Numbers indicate the locations of example stations, presented in more detail in Fig. 4.

Due to the exponential decrease of intensity with duration, a comparison of the p-quantiles of different durations is only320

possible on a logarithmic intensity scale. However, the interpretation of a logarithmic axis is often difficult. Therefore, in

addition to the monthly 0.9-quantiles presented in Fig. 3, we will also consider the probabilities that the annual 0.9-quantile

is exceeded within a given month. To do this, we first use Eq. (14) to calculate the annual quantiles qp,d (return values) from

the monthly non-exceedance probabilities. Based on this, we calculate the probability that qp,d will be exceeded within a

given month. Fig. 4 (upper left) presents the probabilities that the annual 0.9-quantile q0.9,d (10-year return value) for different325

durations will be exceeded within a given month at the Bever station. This depiction is a useful complement to Fig. 3, since the

probabilities for different durations vary on a linear scale, unlike the intensities. The monthly exceedance probability for short

durations d < 1h (purple/ blue) exhibits a sharp peak with a maximum in July. The probability that q0.9,<1h is exceeded in the

months November to April is approximately zero. This means that extreme events of short duration, i.e. caused by convective

precipitation cells, are likely to occur in summer while the probability of these events occurring in the months October to330

April is very small. This is consistent with the results for one station in Belgium (Willems, 2000). In the transition to longer

durations, the probability decreases in July, while a second maximum occurs in December/ January. This results for durations

of about 8 h to 17 h in an extended period of time ranging from June to February, during which the probability shows similarly

elevated values. For the long durations d > 48h (light green/ yellow), the probability again has one clear maximum, which

occurs in December to January. The probability of q0.9,>48h being exceeded in the months April to June is relatively low in335

this case. Therefore, these long-lasting extreme events, i.e. frontal events, are more likely to occur in late autumn or winter.
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To investigate the intra-annual variations across Germany, we calculate the probability that the annual p-quantile is exceeded

in a given month for each station. We present the results for p= 0.9 in Fig. 5, whereby a different choice of p yields very

similar results. We summarize the information on a map by indicating the maximum probability (size of the dots), as well as

the month in which the maximum occurs (color of the dots). To a certain extent, the maximum probability provides information340

about the shape of the curve: A high maximum probability is associated with a narrow probability peak. This implies that the

probabilities in the remaining months of the year are comparatively small. In contrast, a small maximum probability suggests

that there are other months in the year with similar probability values.

From Fig. 5 (a) it is evident that for short durations the probability peaks in summer at every station, specifically in July at

most stations. There are also some stations where the maximum occurs in June or August. Noticeably, the stations where the345

maximum is in August are all located at the North Sea coast. Futhermore, at most stations the maximum probability is greater

than 3%, which indicates a narrow probability peak in summer for short durations. When comparing the maximum probabilities

with those at d= 24h (Fig. 5 (b)), we find that the maximum probability decreases considerably at almost all stations. Thus,

broadening the time window within which the annual 0.9-quantile is more likely to be exceeded. At most stations, the maximum

occurs in the period from June to September. At six stations, however, the maximum is reached in December or January. These350

stations are all located at higher altitudes (Mittelgebirge). Figure 5 (c) for d= 120h reveals a comparatively heterogeneous

spatial distribution, both in terms of the maximum probability and the months in which the maximum occurs. At most stations

in Germany the maximum still lies between June and September, however, the number of stations with maximum probability

between November and January is considerably increased in the west of Germany, especially in higher regions.

Regarding the month with the highest probability in the case of long durations, we derive a rough division of the stations355

within Germany into three types. For each type we choose two stations, for which we present the probabilities in detail in

Fig. 4. We separate into stations with maximum in late autumn and winter (1,2), between September and October (3,4), and in

summer (5,6). The locations of the stations are indicated by numbers in Fig. 5.

The station (1) is Bever-Talsperre, which has already been discussed in detail. Similarly to (1), the maximum at the station

Saarbrücken-Ensheim (2) also shifts from summer for short durations into late autumn to winter for long durations. The stations360

differ, however, insofar as the maximum probability for short durations at station (2) in July varies only slightly from the

probability in the months of June and September. In addition, the probability for long durations remains rather high in summer,

in contrast to station (1). Stations that show a similar shift of the maximum exceedance probability, from summer for short

durations to late autumn or winter for long durations, are located exclusively in the western half of Germany and also occur

mostly at higher altitudes. The exception are two stations in northern Germany. The location of these stations coincides well365

with the results of Fischer et al. (2018). They explain the increased occurrence of longer-lasting extreme events in these regions

in late autumn and winter with the stronger westerly winds during these months, which cause particularly high precipitation

amounts on the windward sides of the mountain chains (Mittelgebirge) due to the forced uplift of the air. However, this study

is based on daily precipitation sums. The fact that when modeling several durations simultaneously, the seasonal variations are

observed at longer durations than when modeling a single duration might be due to the smoothing of the seasonal signal.370
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As examples for stations where the maximum occurs in September or October, for long durations, we present the monthly

exceedance probabilities for Cuxhaven (3) and List auf Sylt (4). At both stations the width of the probability peak increases

for long durations while its maximum shifts. This shift is more pronounced at station (3). The probabilities in the interval

between December and May are relatively low at both stations for all durations. Some stations of this type are located scattered

throughout Germany. However, a clear cluster of these stations exists at the North Sea coast. This group is also characterized by375

extreme convective precipitation events occurring most likely in August, which could be related to the water temperature in this

region reaching its maximum during this month. Accordingly, a possible explanation for the high probability of long-lasting

heavy precipitation in the following months might be that extra-tropical cyclones transport air, which was warmed over the

North Sea and thus features a high water content, into this region.

Examples of stations where the probability maximum for all durations occurs in summer are Berlin-Tempelhof (5) and380

Mühldorf (6). An essential difference to the stations (3) and (4) is that in this case a second maximum occurs in winter for long

durations. At station (6) this second maximum is even almost as high as the one in summer for d > 120h. Stations of this type

occur everywhere in Germany, but are the prominent station type in the eastern half of Germany. The example stations (5) and

(6) show a very distinct behavior for the probabilities with increasing duration. At most of the other stations of this type the

signal for longer durations is less clear, as sometimes several maxima occur, or the summer maximum might be shifted by one385

or two months. However, the common characteristics of these stations continue to be the maximum for all durations occurring

in the period between May and October and the probability for long durations showing similarly increased values throughout

several months of the year.

The monthly exceedance probability is a useful indicator of the months from which the annual maxima of different durations

originate. For all stations, the peak of the probability is relatively narrow for short durations, with the maximum in summer. The390

probability that the annual 0.9-quantile occurs in one of the other seasons is negligible. This fact contradicts the assumption of

the block maxima approach that precipitation intensities are identically distributed within the block of one year. In other words,

a block size of one year for short durations results in a much smaller effective block size of about four to six months. With

respect to longer durations, the stations differ greatly, but it can be generally stated that the effective block size increases for

long durations. Thus, the annual maxima at a station for different durations originate from effective blocks of different sizes,395

which might even be in different seasons, depending on the stations location. This effect is further emphasized in Fig. B1.

Modeling the monthly maxima, on the other hand, avoids this problem. Therefore, in the following chapter we compare the

annual IDF curves derived from annual maxima with those derived from monthly maxima.

3.2 Annual IDF curves

We obtain the annual IDF curves and their confidence intervals from modeling annual and monthly maxima, using the respec-400

tive methods described in Sect. 2.6. We compare the estimated quantiles from both models along with the QSI described in

Sect. 2.7. Figure 6 presents the IDF curves (lower panels) together with the QSI (upper panels) for three example stations. In

addition to the station Bever-Talsperre (1), with the longest time series, we present the results for the stations Saarbrücken-

Ensheim (2) and Cuxhaven (3), since these three stations cover a broad spectrum in terms of differences between the quantile
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Figure 6. Annual IDF curves for three example stations estimated via two models: modeling annual maxima with the d-GEV distribution and

modeling monthly maxima using the d-GEV distribution with monthly covariates. The shaded areas represent the respective 95% confidence

intervals. The distributions of the observed annual maxima are shown as box-whisker plots, where the whiskers cover the complete data

range. In the upper panels the corresponding QSI values are presented, indicating the comparison of the models’ performances, where

positive values indicate an increase in the skill of the monthly d-GEV model compared to the annual d-GEV model.

estimates obtained by both models as well as their uncertainties. The QSI is used to compare the performance of both models.405

Positive values (red) indicate an increase in the skill of the monthly d-GEV model compared to the annual d-GEV model, while

negative values (blue) indicate that the annual model is superior. The result of the QSI may be less reliable if the length of the

time series T is shorter than the period corresponding to the non-exeedance probability p= 1−1/T being verified. Therefore,

we indicate the length of the time series available for verification by dots in the upper panels in Fig. 6.

For the station Bever-Talsperre, the IDF curves resulting from the two different models are almost identical over a long410

duration range d < 8h. Therefore, in this duration range the models performances differ only marginally, indicated by |QSI| ≤
0.05 for almost all probabilities. For high probabilities p≥ 0.98, the QSI suggests a slightly better performance of the monthly

model for durations 4 min≤ d. 2h. At d≈ 8h the IDF curves of the monthly model start to deviate from those of the annual

model. More precisely, the IDF curves of the monthly model no longer exhibit a power-law behavior for d > 8h but decrease

more gradually. Due to the larger differences in the IDF curves, the models performances vary considerably (|QSI|> 0.05) in415

this range. However, the sign of the QSI differs for d. 34h and d& 68h: For d. 34h, the data are better represented by the

annual model, as indicated by the negative values of the QSI in this range. For d& 68h and p≥ 0.95, however, the monthly
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model is a considerable improvement over the annual model. This is evident both from the strongly positive QSI values in this

range as well as directly from the data, shown as box-whisker-plots, as the maximum of the observations extends above the

modeled 0.99-quantile. The models do not differ much with respect to the width of the 95% confidence intervals.420

At station Saarbrücken-Ensheim, the differences in the IDF curves of the two models are more pronounced throughout the

entire duration range: the estimated quantiles of the monthly model are higher for very small and very large durations, but

lower in the range 8 min. d. 48h than those of the annual model. Thus, again the monthly model does not comply with

a power law. The QSI indicates that the monthly model is mostly an improvement, except for smaller probabilities at longer

durations. Since this station provides a shorter time series than station Bever-Talsperre, i.e. only 24 years, the 95% confidence425

intervals of the annual model are wider, especially for short durations and high probabilities. This indicates that the monthly

model benefits from utilizing more data regarding the uncertainties.

This appears even more prominent at the Cuxhaven station. Since the high-resolution time series at this station covers only

19 years, the uncertainties of the annual model are considerably wider than those of the monthly model. The estimates of

the monthly model for the 0.9- quantile and the 0.99-quantile are below the respective estimates of the annual model. The430

estimates for the 0.5-quantile differ only slightly. The quantiles of the monthly model roughly parallel those of the annual

model for longer durations. Thus, the monthly model does not deviate essentially from a power-law at this station. The QSI

does not provide a clear indication regarding which model better represents the data, but fluctuates between positive and

negative values. This seems to be in agreement with the observations. The spread of the boxes and whiskers first increases and

then decreases over duration. As a result, in the duration ranges with narrower box-whisker plots, the monthly model better435

represents the data, especially for higher quantiles, while the annual model is more suitable particularly for 8 min≤ d. 1h,

where the boxes and whiskers are rather broad.

Overall, we find that the differences between the annual and the monthly model are very heterogeneous for individual

stations. However, two general statements can be made:

1. Modeling monthly maxima provides a clear improvement in terms of the quantile estimates’ uncertainties, especially for440

stations with short observational time series.

2. Although a power-law behavior for long durations is assumed for the monthly IDF relations, the resulting annual IDF

curves can deviate from this behavior and are therefore more flexible.

This deviation from a simple power law behavior for long durations is consistent with the findings of Willems (2000) who

observes a decrease in the rate of exponential decline of intensity with increasing duration. We observe this decrease particularly445

pronounced at the station Bever-Talsperre, where we also find a clear shift of the seasons in which extreme events of different

durations occur. We therefore suspect that the lower slope of the annual IDF curves at long durations is related to this shift.

Since we aim to better understand this deviation from the original assumptions in Eqs. (5)-(7), in the following section we

examine the relationships between the GEV parameters and duration that follow from modeling monthly maxima.

In terms of model performance, we likewise cannot draw general conclusions. At some stations, such as Cuxhaven, we find450

that modeling monthly maxima improves the estimates of the annual IDF curves for almost all probabilities and durations.
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Figure 7. Annual GEV parameters µ,σ,ξ for station Bever-Talsperre estimated via four different models along with bootstrapped 95%

confidence intervals shown as error bars and shaded areas.

However, at many stations the improvement in the estimation is limited to a selected range of probabilities and durations, and

there also exist stations at which the estimated quantiles of the monthly model are always worse than those of the annual model.

Since the objective of this study is to model the seasonal variations at all stations by applying a uniform framework, the model

selection was performed identically for all stations, e.g. choosing θ(doy) = const. and ξ(doy) = const.. This results in varying455

quality of representation of the parameters at different stations. We expect that parameter estimation for rare events should

generally improve, as the introduction of smooth variation during the year allows for the inclusion of additional information.

Therefore we assume that with more focus on estimating the IDF curves of a single station, and thus a more targeted choice of

model selection approach and initial conditions, the model performance of the monthly model at this station can be considerably

improved.460

3.3 Duration dependence

To model the IDF relationship, we have so far assumed that the GEV parameters depend on duration according to Eqs. (5)-(7).

This results in a power law behavior, or so-called simple scaling, of intensity with duration except for short durations d < 1h.

The curvature of the IDF curves for short durations (in a double-logarithmic plot) is controlled by the parameter θ. Fig. 3 (a)

illustrates that the IDF curves for each month follow this imposed pattern. However, the resulting annual IDF curves, shown465

in Fig. 6 in green, deviate from this behavior and thus from the assumptions in Eqs. (5)-(7). To investigate this deviation in

more detail, we estimate the annual GEV parameters resulting from modeling monthly maxima, using nonlinear regression

according to Eq. (15) separately for each duration. We use the obtained parameters only to compare them with those estimated

directly from modeling the annual maxima. They are not intended as a basis of any further analysis. We compare the following

four models:470

– modeling annual maxima using
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– a separate GEV distribution for each duration (annual GEV)

– one d-GEV distribution (annual d-GEV)

– modeling monthly maxima using

– a separate GEV distribution with monthly covariates for each duration (monthly GEV)475

– one d-GEV distribution with monthly covariates (monthly d-GEV).

The annual GEV parameters µ,σ,ξ estimated via these models are presented depending on duration for the station Bever-

Talsperre in Fig. 7 including their respective 95% confidence intervals. Although the uncertainties of the parameters estimated

directly from the annual maxima can be derived using the Fisher information matrix, for comparability, the uncertainties of the

parameter estimates are obtained using the bootstrap method described in Sect. 2.6 for all models.480

For the location parameter µ (Fig. 7 (a)), the estimates of both annual models (red squares and black line) agree well, i.e.

µ follows a power-law for durations d≥ 1h, while the curve decreases more gradually for shorter durations. The estimates of

the monthly models (purple triangles and green line) are consistent with those of the annual models for durations d. 24h,

however, both monthly models agree on a slower decline of µ for longer durations d& 24h and thus a deviation from simple

scaling. We observe a quite similar behavior of the model estimates for the scale parameter σ (Fig. 7 (b)): The estimates of485

all models agree relatively well for short durations d. 1h and both monthly models show an upwards deviation from simple

scaling for longer durations d& 24h. However, the estimates of both GEV models (squares and triangles) deviate noticeably

from simple scaling towards smaller values in the range 1h . d. 24h. Regarding the uncertainties for the estimates of µ

and σ, the annual GEV model (red) is associated with the largest uncertainties. By considering more data, the parameters can

be estimated more accurately using the monthly GEV model (purple). Similarly, the annual d-GEV model (black) exhibits490

considerably smaller uncertainties than the annual GEV model because here the addition of data from other aggregation levels

leads to a more confident estimate. Consequently, the joint use of data from all months and durations in the monthly d-GEV

model results in the smallest uncertainties regarding parameter estimation. The estimates for µ and σ obtained from all four

models agree relatively well at most of the other stations (not presented). Similar to the station Bever-Talsperre, at several

stations the estimates of the monthly models show an upward deviation from simple scaling for long durations. The estimates495

are associated with considerably larger uncertainties for most other stations, where shorter time series are available.

The shape parameter ξ determines the tail of the distribution and its estimation is therefore subject to relatively large uncer-

tainties depending on the length of the time series. This is similarly the case for the station Bever-Talsperre (Fig. 7 (c)) with a

time series of 51 years, where the estimates of ξ based on annual maxima of a single duration (red squares) vary in the range

0.09 to 0.4, but since the 95% confidence intervals are very broad, it is challenging to derive a relationship between ξ and500

duration. For the d-GEV we therefore assume a constant shape parameter (Eq. (7)), which for the annual d-GEV model (black

line) is estimated to be 0.11. Compared to the separate estimates of the annual GEV for each duration (red squares), this value

appears reasonable. Additionally, the uncertainties decrease significantly when modeling the annual maxima of all durations

simultaneously. For the monthly d-GEV, ξ is also assumed to remain constant over duration for each month. In addition, we
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Figure 8. Distribution of shape parameter ξ estimated using four different models (columns) at all 132 stations. The shaded areas present the

percentage of stations for which the estimated value lies within the respective range while the line depicts the median value.

hypothesize that ξ does not change throughout the year either, as described in Sect. 2.5. Interestingly, ξ(d) resulting from505

the monthly d-GEV model (green line) nevertheless deviates slightly from being constant. The estimated values are slightly

higher than that of the annual d-GEV model and vary between 0.12 and 0.14, with the minimum at about d≈ 17h. Similarly

to µ and σ, the uncertainties of the monthly d-GEV model (green) for the estimation of ξ are even smaller than those of the

annual d-GEV model (black). When we model the monthly maxima for each duration separately, we benefit from being able

to estimate the shape parameter with smaller uncertainties without constraining the relation between ξ and duration. Thus, we510

observe a distinct variation of ξ estimated via the monthly GEV model (purple triangles) over duration. The estimated values

exhibit a minimum, similar to those of the monthly d-GEV model (green line), at d≈ 8h and vary in the range -0.08 to 0.24.

To evaluate this result, we can visually examine the distribution of annual maxima for different durations, seen in Fig. B1 and

in Fig. 6 (bottom left) as box-whisker plots. It is noticeable that the observations for d≈ 8h actually cover the smallest range,

thus agreeing with the results for the shape parameter.515

Since the shape parameter estimates of the four different models vary substantially at the individual stations, we summarize

the information for all stations in Fig. 8. For each model, the distribution of the estimated value over all stations is plotted with

respect to duration. We observe that ξ estimated using the annual GEV model (red) varies widely among stations. The model

seems to only provide estimates in a reasonable range at 75% of the stations based on the small amount of data. The median of

all stations appears to oscillate around a constant value. For the annual GEV model (black), the range in which the estimates520

vary among stations is narrower, but implausibly high values still occur at some stations. The median is consistent with the

median of the annual GEV model (red). In comparison, the range in which the estimated values of the monthly d-GEV model

(green) vary is much smaller and the values are within a reasonable range at all stations. Although in this model ξ is assumed

to be constant over duration and months, we see a subtle decrease in the median with duration. Likewise, the variation for ξ

between individual stations is smaller for the monthly GEV model (purple) than for either of the annual models (red and black).525
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Additionally, we can see a clear decrease of the shape parameter with duration for this model, since in this case no relation

between ξ and duration is predefined.

To summarize, we find that modeling the monthly maxima allows drawing new conclusions about the behavior of the

parameters of the distribution of annual maxima depending on duration. Instead of using the more complex modeling of

monthly maxima to estimate annual IDF curves, one might also try to implement the resulting characteristics directly into the530

model for annual maxima. We find that for some stations the location µ and scale σ parameters deviate from the assumption of

simple scaling toward higher values for long durations. Fauer et al. (2021) showed that this behavior of the parameters can be

modeled by an additional parameter τ , called intensity offset. They report that the addition of this parameter for the stations of

the Wupper-Catchment, in which the example station Bever-Talsperre is located, leads on average to an improved estimation of

the annual IDF curves for medium to long durations. Regarding the shape parameter ξ, we observe that the reduced uncertainties535

in the estimation of ξ, resulting from modeling monthly maxima, allow further investigation of the dependence of ξ on duration.

We find that ξ decreases with duration when taking the average of the investigated stations in Germany, reaching values around

zero for most stations at long durations. We believe that this finding provides a good basis to explore a potentially more suitable

formulation of ξ(d) in future studies. We could imagine that the explicit modeling of this decrease of ξ yields similar results to

assuming a different duration exponent for the parameters µ and σ of the d-GEV, so called multi-scaling (Gupta and Waymire,540

1990; Van de Vyver, 2018). Possibly the latter implementation could be beneficial, since the estimation of these parameters is

associated with less uncertainty than that of ξ.

4 Conclusions

This study focuses on modeling the intra-annual variations of extreme precipitation on different time scales. For this purpose,

we employ a duration-dependent generalized extreme value (d-GEV) distribution with monthly covariates. Using this approach545

allows for

– investigating seasonal variations in the intensity–duration–frequency (IDF) relationship,

– obtaining more reliable estimates for the annual IDF curves by utilizing information on extreme events more efficiently,

– a better understanding of the underlying processes, i. e. the dependence of the parameters on the duration.

Regarding the seasonal variations, we find that everywhere in Germany the short convective extreme events are most likely550

to occur in the summer months, whereas there are regional differences for the seasonality of long-lasting stratiform extreme

events. Our findings will allow future studies to identify meaningful factors accounting for these regional differences.

Furthermore, our results show that the annual IDF curves based on the monthly maxima constitute a major improvement

in terms of uncertainties of the estimates. Using the quantile skill index (QSI), we compare the performance of the models

based on the annual and monthly maxima and show that, for some stations, modeling the monthly maxima also leads to a555

considerable improvement in this regard. A limitation of this study are the strict assumptions that are imposed on the seasonal

variations of the distribution parameters. Subsequent studies should therefore investigate the degree to which relaxing these
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assumptions might further improve the performance of the model based on monthly data. For example, in the framework of

a vector generalized additive model (Yee and Stephenson, 2007) it would be possible to model these smooth variations in

a non-parametric form. Based on our results, it might be beneficial to model the monthly maxima for obtaining annual IDF560

curves, when there are large differences in the seasonality of extreme events on different time scales, such as at the station

Bever-talsperre, or for stations where only short observation time series are available. However, it must be considered that a

misspecification of the seasonal variations of the parameters can lead to poor results. Moreover, modeling monthly precipitation

maxima with the GEV may not be possible in regions with very small precipitation amounts during some months of the year.

Therefore, the applicability of the model to the data should always be verified.565

Finally, we can demonstrate that at some stations the annual IDF curves based on the monthly maxima deviate from the as-

sumption of scale invariance for long durations. We illustrate that this behavior can be captured by a different parameterization

of the location and scale parameter. For future research, it might be of interest to compare the monthly model employed in

this study with an annual model that uses different parameterization, e.g. the one proposed by Fauer et al. (2021). Moreover,

by including additional information in the form of smooth variations during the year, we observe that the shape parameter570

decreases with duration when averaged over all stations. Based on this result, future research should investigate whether the

assumption of a constant shape parameter is appropriate for a wide range of durations from minutes to several days, or whether

a more appropriate explicit relationship can be identified.

In conclusion, the use of monthly maxima can be beneficial in several respects when estimating IDF curves, even when

information on seasonal variations is not required.575

Code and data availability. The station data are mostly publicly available via the climate data center of the DWD (ftp://ftp-cdc.dwd.de/

climate_environment/CDC/observations_germany/climate). We provide the monthly maxima for 14 aggregation times at all 132 stations,

serving as the basis for the analysis, online (Ulrich et al., 2021). The statistical analysis was performed using the package IDF for the R

environment (Ulrich et al., 2020; R Core Team, 2020). The package is available for download at https://cran.r-project.org/web/packages/IDF.

Appendix A: Model diagnosis for station Bever-Talsperre580

The distribution of monthly maxima for a range of durations is modeled using the d-GEV distribution. We visually inspect,

whether the d-GEV distribution is a reasonable approximation for the distribution of monthly maxima at the considered stations

using quantile-quantile (q-q) plots. As an example, we present the q-q plots for the station Bever-Talsperre with respect to each

month in Fig. A1. The different aggregation times are indicated by different colors. We find that the d-GEV distribution

describes the monthly maxima sufficiently well for each month. There are few outliers that correspond to the limits of the585

duration range, i.e. very short or very long durations.

23

ftp://ftp-cdc.dwd.de/climate_environment/CDC/observations_germany/climate
ftp://ftp-cdc.dwd.de/climate_environment/CDC/observations_germany/climate
ftp://ftp-cdc.dwd.de/climate_environment/CDC/observations_germany/climate
https://cran.r-project.org/web/packages/IDF


●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●
●
●
●●

●

●

 

 

Jan

−2

2

6

10

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●
●●●
●●●

●●

 

 

Feb

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●
●●●
●
●

●

●

●

 

 

Mar

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●
●●●●
●●●
●●●●●

●

 

 

Apr

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●
●●●●●●
●●●
●●●

●●

 

 

May

−2

2

6

10

E
m

pi
ric

al

●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●
●●●●●●
●
●●●●

●●
●

 
 

Jun

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●

●●●
●

●
●●

 

 

Jul

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●

●●●●
●
●

●

●

 

 

Aug

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●

●●●●

 

 

Sep

−2

2

6

10

−2 2 6 10

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●
●●●●●●●
●●●●●
●●
●●●●●

 

 

Oct

−2 2 6 10
Model

●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●
●●●
●●●●

●
●●

 
 

Nov

−2 2 6 10

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●
●●●
●●●●

●

●

 

 

Dec

−2 2 6 10
rep(1, length(ds))

1:
le

ng
th

(d
s)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

8192

4096

2048

1024

512

256

128

64

32

16

8

4

2

1

D
ur

at
io

n 
[m

in
]

Figure A1. Diagnostic q-q plots of the d-GEV model for each month at station Bever-Talsperre. The observations and the modeled quantiles

are transformed to standard Gumbel G(µ= 0,σ = 1, ξ = 0) to remove the duration dependency. Dashed lines represent 95% confidence

intervals.
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Figure B1. Annual intensity maxima for different durations at station Bever-Talsperre. The months in which the respective maxima occurred

are represented by colors.

Appendix B: Annual maxima station Bever-Talsperre

The annual maxima of different durations for the station Bever-Talsperre are presented in Fig. B1. The colors indicate the

month in which the respective maxima occurred. It is evident that at this station the maxima of short durations occur mostly in

summer, while from d& 8h the maxima originate from different seasons, especially autumn and winter. This is in agreement590
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Figure C1. Parameter estimates for fixed durations modeling monthly maxima using (1) a GEV with monthly covariates (purple lines)

and (2) a separate GEV model for each month (dots). The error bars and shaded areas show the 95% confidence intervals obtained via the

estimated Fisher information matrix.

with the results presented in Fig. 4 (top left). In addition, we find that the span of the data exhibits a minimum at d≈ 8h. This

is consistent with the minimum value of the shape parameter ξ at this duration observed in Fig. 7 (right).

Appendix C: Phase difference in seasonal variations of location and scale parameter

From the parameter estimates of µ̃ in Fig. 2, it can not be clearly determined whether modeling variations of µ̃ throughout the

year is a reasonable choice. Since the modified location parameter is defined as µ̃= µ(d)/σ(d), setting µ̃(doy) = const. would595

result in not allowing a phase difference in the annual cycle of the location parameter µ and the scale parameter σ for any

fixed duration d. Maraun et al. (2009) investigated this relationship for daily precipitation sums in the UK and found that this

assumption is not justified, because the annual cycles of these two parameters are slightly out of phase. We investigate this in

an exploratory analysis by modeling the individual durations. For this purpose, we model the monthly maxima of each duration

separately using a GEV distribution with monthly covariates. Fig. C1 shows the resultig parameter estimates µ and σ for some600

durations at station Bever-Talsperre in the first two columns as lines. For comparison, the estimates resulting from separately

modeling the maxima of each duration and month with a GEV distribution are shown as dots. The right column presents the

resulting estimates for µ/σ for each duration. Since µ/σ shows a clear variation for each duration, we conclude that assuming

no phase shift in the annual cycle of µ and σ for each duration may restrict the model too much.
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