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Abstract 9 

High resolution and accurate precipitation data is significantly important for 10 

numerous hydrological applications. To enhance the spatial resolution and accuracy of 11 

satellite-based precipitation products, an easy-to-use downscaling-calibration method 12 

based on spatial Random Forest (SRF) is proposed in this paper, where the spatial 13 

autocorrelation between precipitation measurements is taken into account. The 14 

proposed method consists of two main stages. Firstly, the satellite-based precipitation 15 

was downscaled by SRF with the incorporation of some high-resolution covariates 16 

including latitude, longitude, DEM, NDVI, terrain slope, aspect, relief, and land 17 

surface temperatures. Then, the downscaled precipitation was calibrated by SRF with 18 

rain gauge observations and the aforementioned high-resolution variables. The 19 

monthly Integrated MultisatellitE Retrievals for Global Precipitation Measurement 20 

(IMERG) located in Sichuan province, China from 2015 to 2019 was processed using 21 

our method and its results were compared with those of some classical methods 22 
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including geographically weighted regression (GWR), artificial neural network 23 

(ANN), random forest (RF), kriging interpolation only on gauge measurements, 24 

bilinear interpolation-based downscaling and then SRF-based calibration (Bi-SRF), 25 

and SRF-based downscaling and then geographical difference analysis (GDA)-based 26 

calibration (SRF-GDA). Results show that: (1) the proposed method outperforms the 27 

other methods as well as the original IMERG; (2) the monthly-based SRF estimation 28 

is slightly more accurate than the annual-based SRF fraction disaggregation method; 29 

(3) SRF-based downscaling and calibration preforms better than bilinear downscaling 30 

(Bi-SRF) and GDA-based calibration (SRF-GDA); (4) kriging seems more accurate 31 

than GWR and ANN in terms of quantitative accuracy measures, whereas its 32 

precipitation map cannot capture the detailed spatial precipitation patterns; and (5) 33 

among the predictors for calibration, the precipitation interpolated by kriging on the 34 

gauge measurements is the most important variable, indicating the significance for the 35 

inclusion of spatial autocorrelation information in gauge measurements. 36 

Keywords: IMERG; Downscaling; Calibration; Machine learning; Interpolation 37 

1. Introduction 38 

Precipitation is an important variable for promoting our understanding of 39 

hydrological cycle and water resource management (Chen et al., 2010). Previous 40 

studies showed that about 70-80% of hydrological modeling errors were caused by 41 

precipitation data uncertainties (Gebregiorgis and Hossain, 2013). However, 42 

precipitation is also the most difficult meteorological factor to estimate due to its high 43 
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spatial and temporal heterogeneity (Beck et al., 2019). Although rain gauge 44 

observations are reliable and accurate, it is difficult to reflect the spatial precipitation 45 

pattern with the sparse and uneven distribution and limited coverage, especially in 46 

remote and mountainous areas (Ullah et al., 2020).  47 

During the past decades, plenty of satellite-based precipitation datasets have been 48 

produced at regional, quasi-global and fully global scales, such as the Climate 49 

Hazards Group Infrared Precipitation with Station data (CHIRPS, 0.05°) (Funk et al., 50 

2015), the Precipitation Estimation from Remotely Sensed Information using 51 

Artificial Neural Networks-Climate Data Record (PERSIANN-CDR, 0.25°) (Ashouri 52 

et al., 2015), the Climate Prediction Center (CPC) morphing technique (CMORPH, 53 

0.25°) (Haile et al., 2013), the Multi-Source Weighted-Ensemble Precipitation 54 

(MSWEP, 0.1°) (Beck et al., 2017), the Tropical Rainfall Measuring Mission (TRMM) 55 

Multi-satellite Precipitation Analysis (TMPA, 0.25°) (Huffman et al., 2007) and the 56 

Integrated MultisatellitE Retrievals for Global Precipitation Measurement (GPM) 57 

mission (IMERG, 0.1°) (Hou et al., 2014). Nevertheless, these products are 58 

characterized by considerable systematic biases due to the shortcomings of retrieval 59 

algorithms, sensor capability and spatiotemporal collection frequency (Chen et al., 60 

2018; Wu et al., 2018; Yang et al., 2017). Moreover, their resolutions (from 0.05° to 61 

2.5°) are too coarse to describe meso- and micro-scale precipitation patterns for 62 

hydrological studies at local and basin scales (Immerzeel et al., 2009). Hence, 63 

downscaling and calibration with the intention of improving the resolution and quality 64 

of satellite-based precipitation datasets has become an essential step prior to various 65 

https://doi.org/10.5194/hess-2021-332
Preprint. Discussion started: 1 July 2021
c© Author(s) 2021. CC BY 4.0 License.



4 
 

hydrological applications at local scales (Bhuiyan et al., 2018). 66 

  Downscaling provides an effective way to derive high resolution precipitation 67 

products, which is generally achieved by constructing the relationship between 68 

precipitation and environmental variables at a coarse scale, and then putting the 69 

high-resolution variables into the constructed model to downscale the precipitation 70 

data from the coarse resolution to the fine (Chen et al., 2010; Immerzeel et al., 2009). 71 

At present, many downscaling models have been proposed. For example, Immerzeel 72 

et al. (2009) employed an exponential regression (ER) to describe the relationship 73 

between Tropical Rainfall Measuring Mission (TRMM) and Normalized Difference 74 

Vegetation Index (NDVI). Jia et al. (2011) used a multiple linear regression model 75 

(MLR) to establish the relationship between TRMM, digital elevation model (DEM) 76 

and NDVI. Duan and Bastiaanssen (2013) proposed a downscaling model based on 77 

the second-order polynomial relationship between TRMM and NDVI. Considering 78 

the heterogeneous relationship between precipitation and the land surface variables 79 

across the study areas, geographically weighted regression (GWR) was commonly 80 

adopted (Chen et al., 2015; Chen et al., 2014; Chen et al., 2020c; Li et al., 2019; Lu et 81 

al., 2020; Xu et al., 2015), and showed more accurate results than ER and MLR. In 82 

the recent decade, some data-driven machine learning (ML) methods such as random 83 

forests (RF) (Shi et al., 2015; Zhang et al., 2021), support vector machine (SVM) 84 

(Chen et al., 2010; Jing et al., 2016) and artificial neural network (ANN) (Elnashar et 85 

al., 2020) were employed to capture the complex nonlinear relationship between 86 

precipitation and the predictors. However, the downscaled precipitation products 87 
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inevitably contain large systematic biases. 88 

To alleviate the inherent biases, many calibration methods have been proposed for 89 

merging gauge observations and satellite-based precipitation to improve the accuracy 90 

and spatial coverage of precipitation, such as nonparametric kernel smoothing method 91 

(Li and Shao, 2010), geographical difference analysis (GDA) (Cheema and 92 

Bastiaanssen, 2012), geographical ratio analysis (GRA) (Duan and Bastiaanssen, 93 

2013), conditional merging (CM) (Berndt et al., 2014), quantile mapping (Chen et al., 94 

2013; Zhang and Tang, 2015), optimal interpolation (Lu et al., 2020; Wu et al., 2018; 95 

Xie and Xiong, 2011), GWR (Chao et al., 2018; Chen et al., 2018; Lu et al., 2019) and 96 

geostatistical interpolation (Park et al., 2017). However, these methods are based on 97 

some strict assumptions which might not be satisfied in practice (Wu et al., 2020; 98 

Zhang et al., 2021). Moreover, the precipitation-related environmental variables were 99 

not taken into account. To this end, ML-based calibration methods have become 100 

popular, such as Quantile Regression Forests (QRF) (Bhuiyan et al., 2018), ANN 101 

(Pham et al., 2020; Yang and Luo, 2014), deep neural network (Tao et al., 2016), RF 102 

(Baez-Villanueva et al., 2020), convolutional neural network (CNN) (Wu et al., 2020), 103 

SVM and extreme learning machine (Zhang et al., 2021). In contrast, RF with 104 

excellent results has been widely adopted in plenty of studies (Baez-Villanueva et al., 105 

2020; Bhuiyan et al., 2020). 106 

In the context of downscaling and calibration of precipitation data, the merits of the 107 

ML-based methods include (Hengl et al., 2018; Zhang et al., 2021): (i) they require no 108 

strict statistical assumptions; (ii) they can capture complex nonlinear relationship 109 
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between precipitation and the environmental variables; (iii) they can include various 110 

types of predictors, without suffering from the collinearity problem and (iv) they are 111 

generally more accurate than the classical regression methods. However, there are at 112 

least two limitations: (i) the ML algorithms were simply taken as a statistical tool 113 

without considering the spatial autocorrelation between precipitation measurements; 114 

and (ii) the ML algorithms were adopted in either downscaling or calibration, without 115 

being used in both downscaling and calibration. More specifically, some (Jing et al., 116 

2016; Karbalaye Ghorbanpour et al., 2021; Yan et al., 2021) attempted to use the ML 117 

methods for downscaling and then use the classical method (e.g. GDA and cokriging) 118 

for calibration, while some (Zhang et al., 2021) employed the classical interpolation 119 

methods (e.g. bilinear interpolation and kriging) for downscaling and then used the 120 

ML methods for calibration. However, we regard that the use of ML methods in both 121 

of downscaling and calibration could further improve the accuracy of precipitation, 122 

since the high resolution environmental variables with valuable information can be 123 

fully used in the two stages. To the best of our knowledge, no previous studies have 124 

used the ML technique in both downscaling and calibration with the consideration of 125 

high resolution environmental variables, simultaneously. 126 

Based on aforementioned discussion, the objectives of this study are twofold: (i) to 127 

develop an easy-to-use spatial RF (SRF) by taking into account the spatial 128 

autocorrelation between adjacent gauge measurements, and (ii) to propose a 129 

downscaling-calibration method based on SRF for producing high resolution and 130 

accurate precipitation data. The use of RF as the basic model in our study is mainly 131 
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due to its high interpolation accuracy and low computational cost (Belgiu et al., 2016; 132 

Mohsenzadeh Karimi et al., 2020).  133 

 Overall, the proposed method consists of two main steps. First, the precipitation 134 

data is downscaled by SRF with the incorporation of some environmental variables 135 

including DEM, NDVI, land surface temperatures (LSTs), terrain parameters, latitude 136 

and longitude as recommended in previous studies (Jing et al., 2016; Li et al., 2019). 137 

Second, SRF and the environmental variables were further used for merging the 138 

downscaled precipitation data and gauge observations to boost the accuracy of the 139 

precipitation data. The merit of the proposed method is that a new spatial RF is 140 

developed for both downscaling and calibration of precipitation products, with the 141 

incorporation of high-resolution environmental variables. 142 

2 Study area and dataset 143 

2.1. Study area 144 

Sichuan province between 97°21'-108°31'E and 26°03'-34°19'N was selected as the 145 

study area (Fig. 1). It is situated between the Qinghai-Tibet Plateau and the Plain of 146 

the Middle-and-lower Reaches of Yangtze River, with an area of 486,000 km2. 147 

Sichuan province has a complex and varied topography consisting of mountains, hills, 148 

plain basins and plateaus with the elevation ranging from approximately 180 m in the 149 

east to 7100 m in the west. Due to the different topographies in the west and east, the 150 

climate has a significant difference. The east basin has subtropical monsoon climate. 151 

The weather is generally warm, humid and foggy with much cloud, fog and rain but 152 
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less sunshine. Most rain gathers from July to September, accounting for 80% of total 153 

annual precipitation. While in the west plateau, the weather is relatively cool or cold. 154 

The climate is featured by a long cold winter, a very short summer and rich sunshine 155 

but less rainfall. Thus, annual precipitation shows significant spatial heterogeneity, 156 

varying from about 400 mm in the west to 1800 mm in the east and with the average 157 

annual precipitation of about 1000 mm. Overall, the high spatial and temporal 158 

variability of precipitation with the complex topography makes the study site ideally 159 

suitable for the evaluation of satellite-based precipitation estimates.  160 

 161 

Fig. 1 Topography, distribution of rain gauges and geographic location of Sichuan 162 

province in China 163 

2.2. Dataset 164 
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2.2.1. Rain gauge observations 165 

The study region has 156 rain gauge stations, which shows an unevenly distribution 166 

with high density in the east and low density in the west (Fig. 1). On average, the 167 

cover area of one rain gauge observation is about 3115 km2. Daily precipitation data 168 

from all the stations for the period 2015–2019 were collected from the China 169 

Meteorological Data Service Center (CMDSC, http://data.cma.cn/). The data quality 170 

was guaranteed based on some strict quality controls, such as manual inspection, 171 

outlier check and spatiotemporal consistency verification (Zhao and Yatagai, 2014). 172 

After that, the monthly precipitation was produced by aggregating the daily 173 

precipitation of rain gauges for each month. 174 

2.2.2. Integrated MultisatellitE Retrievals for Global Precipitation Measurement 175 

(IMERG) 176 

As the successor of TRMM, the National Aeronautics and Space Administration 177 

(NASA) and the Japan Aerospace Exploration Agency (JAXA) initiated the 178 

next-generation global precipitation observation mission (Hou et al., 2014). The 179 

IMERG products were produced by assimilating all microwave and infrared (IR) 180 

estimates, together with gauge observations (Huffman et al., 2019). It has the spatial 181 

resolution of 0.1° × 0.1° with the coverage from 60°S-60°N. IMERG provides three 182 

different products including Early, Late, and Final Runs, which were computed about 183 

4 hours, 14 hours, and 3.5 months after observation time, respectively. Due to the 184 

incorporation of the Global Precipitation Climatology Centre (GPCC) rain gauge data, 185 

IMERG Final Run is more accurate than the others (Lu et al., 2019). Thus, the 186 
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monthly IMERG V06B Final Run product was adopted in the study. It was 187 

downloaded from https://gpm.nasa.gov/data.  188 

The mean monthly precipitations based on all rain gauges and IMERG during 189 

2015-2019 are shown in Fig. 2. Obviously, IMERG has an overestimation in most 190 

months and the wettest month is July 2018. 191 

 192 

Fig. 2 Mean monthly precipitation based on rain gauges and IMERG from 2015-2019 193 

over Sichuan province 194 

2.2.3. Environmental variables 195 

The Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the 196 

NASA’s Terra and Aqua platforms provides plenty of products in global dynamics, 197 

oceans and land processes. The MODIS monthly NDVI with the resolution of 1 km 198 
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(MOD13A3) from 2015 to 2019 was used in the study and downloaded from 199 

International Scientific and Technical Data Mirror Site, Computer Network 200 

Information Center of the Chinese Academy of Sciences (http://www.gscloud.cn/). 201 

MODIS 8-day LST with the resolution of 1 km (MOD11A2) from 2015 to 2019 was 202 

obtained from https://ladsweb.modaps.eosdis.nasa.gov and then temporally averaged 203 

into the monthly LST products. In the study, the daytime LST (LSTD), nighttime LST 204 

(LSTN) and the difference between daytime and nighttime LSTs (LSTD-N) at the 205 

monthly scale were used. 206 

The Shuttle Radar Topography Mission (SRTM) cooperated by the National 207 

Geospatial Intelligence Agency (NGA) and the National Aeronautics and Space 208 

Administration (NASA) provides high resolution DEMs. The SRTM DEM with the 209 

spatial resolution of 90 m was downloaded from http://srtm.csi.cgiar.org/ and then 210 

resampled to 1 km by the pixel averaging method. Moreover, topographical factors 211 

including slope, aspect and terrain relief (Chen et al., 2020a) were extracted from the 212 

SRTM DEM in ArcGIS 10.3. 213 

The detailed information of the datasets used in the study is shown in Table 1. 214 

Table 1 Datasets used in the study 215 

Data Type Product 
Spatial 

resolution 

Temporal 

resolution 
Source 

Meteorological 

data 

GPM IMERG 10 km Monthly https://gpm.nasa.gov/data. 

Rain gauge 

observations 
- Daily http://data.cma.cn/ 

Land surface SRTM DEM 30 m - http://srtm.csi.cgiar.org/ 
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data slope, aspect, 

terrain relief 
30 m - Derived from SRTM DEM 

NDVI 1 km Monthly http://www.gscloud.cn/ 

LST 1 km 8-days https://ladsweb.modaps.eosdis.nasa.gov

3. Methodology 216 

  The flowchart of our method is demonstrated in Fig. 3, which includes three main 217 

stages: (i) data processing; (ii) IMERG downscaling and (iii) downscaled IMERG 218 

calibration. It is noted that downscaling before calibration is to avoid scale mismatch 219 

between satellite-based areal precipitation and gauge-based point measurements.  220 
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 221 

Fig. 3 Flowchart of the proposed method 222 

3.1. Random Forest 223 

RF is an ensemble of several tree predictors such that each tree relies on a random 224 

and independent selection of features but with the same distribution (Breiman, 2001). 225 

Specifically, each decision tree is constructed by randomly collecting some training 226 

data with replacement while the other is used to assess the tree (sample bagging). 227 

Moreover, while constructing each tree, only a random subset of features is selected at 228 

each decision node (feature bagging). In the end, the majority vote for classification 229 
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or the average prediction of all trees for regression is used to obtain the final output. 230 

Meanwhile, RF can evaluate the relative importance of the predictors by means of 231 

out-of-bag (OOB) observations. With the OOB error, the importance of each variable 232 

can be ranked. Many benchmarking researches have proven that RF is one promising 233 

ML technique currently available (Hengl et al., 2018). The general framework of RF 234 

is shown in Fig. 4. 235 

 236 

Fig. 4 General framework of RF 237 

3.2. Spatial Random Forest (SRF) 238 

In essence, the classical RF is a non-spatial statistical technique for spatial 239 

prediction since it neglects sampling locations and general sampling pattern (Hengl et 240 

al., 2018). This can potentially cause sub-optimal estimations, especially when the 241 

spatial autocorrelation between dependent variables is high. To this end, a spatial RF 242 

is proposed in this paper. The general formulation of SRF is as follows: 243 
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   0ˆ ,s nsp f e s X X  244 

where p̂ is the estimated precipitation at the location s0, e is the fitting residual, and Xs 245 

and Xns are the spatial and non-spatial covariates, respectively.  246 

  In addition to spatial coordinates, one spatial covariate (Xs) is estimated to account 247 

for the spatial autocorrelation between neighboring precipitation measurements, i.e. 248 

   0
1

n

s i i
i

X w z


s s  249 

where z(si) is the ith neighboring precipitation data of the unknown point s0, wi is its 250 

weight and n is the number of known data used for the estimation.  251 

  In previous studies (Li et al., 2017; Zhang et al., 2021), the inverse distance weights 252 

(IDW) were commonly used. However, the IDW method only resorts to the spatial 253 

distance between the estimated point and the adjacent known points, and does not 254 

consider the spatial autocorrelation between the known points. To overcome this 255 

limitation, the ordinary kriging-based variogram is adopted to estimate the 256 

interpolation weights, which are obtained by solving the following linear system:  257 
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 258 

where is Lagrange parameter and    is the semivariogram.  259 

It can be concluded that the variogram-based weights consider the spatial 260 

autocorrelation not only between the adjacent known points but also between the 261 

known points and the interpolated point (Berndt and Haberlandt, 2018). Thus, it 262 

seems more accurate than IDW. In practice, the experimental semivariogram is 263 
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estimated from sample data with the following equation (Goovaerts, 2000): 264 

      2

1

1
ˆ

2

n

i i
i

h z z h
n




   x x  265 

where n is the number of data pairs with the attribute z separated by distance h.  266 

Generally, a theoretical semivariogram model was fitted to the experimental values 267 

to obtain the semivariogram at any h. There are four commonly used theoretical 268 

semivariogram models: the spherical, Gaussian, exponential, and power models. In 269 

our study, the spherical model was used since it shows better results than the others in 270 

the experiments. 271 

3.3. Working procedure of the proposed method 272 

The detailed steps of the proposed method are as follows (Fig. 3): 273 

(1) Each pixel value of the 10 km IMERG was re-estimated by ordinary kriging  274 

interpolation with its k nearest neighbors (e.g. k=8) to obtain the interpolated 275 

IMERG (termed as 10km
sI ),  the 10 km IMERG was interpolated by kriging to 276 

obtain the interpolated 1 km IMERG ( 1km
sI ), and the gauge observations are 277 

interpolated by kriging to produce the 1 km precipitation map ( 1km
sP ). It is noted 278 

that the semivariogram model cannot be accurately estimated from the sparse 279 

gauge measurements. Hence, it is difficult to accurately show the spatial 280 

autocorrelation between the precipitation estimates. Motivated by the idea of Chen 281 

et al. (2020c) that the satellite-based precipitation can show the spatial distribution 282 

of precipitation, we used the satellite-based precipitation to estimate the 283 

experimental semivariogram for interpolating gauge measurements.  284 
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(2) The negative NDVI values were excluded from the original data, which mainly 285 

belong to snow and water bodies in the study site. The removed ones were 286 

estimated by kriging with their neighbors, which can avoid much information loss. 287 

(3) The 1 km environmental variables 1km
nsX (i.e. NDVI, LSTD, LSTN, LSTD-N, DEM, 288 

slope, aspect, terrain relief, latitude and longitude) were resampled to the 10 km 289 

resolution 10km
nsX by the pixel averaging method. 290 

(4) The relationship between 10km
nsX , 10km

sI  and the 10 km IMERG ( 10kmIMERG ) 291 

was constructed by SRF: 292 

        10km 10km 10km 10km
0 downscale 0 0 0,s nsIMERG f I e s s X s s  293 

where e is the fitting residual. 294 

(5) The IMERG was downscaled to 1 km ( 1kmD̂ ) by the constructed relationship in 295 

step (4) with 1km
nsX  and 1km

sI : 296 

 1km 1km 1km
downscale

ˆ ,s nsD f I X  297 

(6) The relationship between the 1 km predictors and the gauge observations (G) are 298 

constructed by SRF: 299 

          1km 1km 1km 1km
0 calibrate 0 0 0 0

ˆ, ,s nsG f P D e s s s X s s  300 

(7) The 1 km high quality precipitation data ( 1kmC ) are produced based on the 301 

constructed relationship in step (6): 302 

 1km 1km 1km 1km
calibrate

ˆ, ,s nsC f P D X  303 

  In our study, residual correction was ignored during downscaling and calibration, 304 

since many previous studies (Karbalaye Ghorbanpour et al., 2021; Lu et al., 2019) 305 

demonstrated that residual correction on the ML-based technique decreased the 306 
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prediction accuracy. 307 

3.4. Comparative methods 308 

In the study, the performance of our method was comparatively assessed using 309 

three manners. Firstly, we compared the results of the proposed method with those of 310 

the classical methods including GWR, RF and BPNN. Secondly, our methodology 311 

was compared with two classical frameworks: (i) the IMERG was downscaled by the 312 

bilinear interpolation and then calibrated by SRF (termed as Bi-SRF), and (ii) the 313 

IMERG was downscaled by SRF and then calibrated by GDA (termed as SRF-GDA). 314 

Thirdly, our monthly-based estimation method was compared with the annual-based 315 

SRF fraction disaggregation method (termed as SRFdis). Finally, the results of our 316 

method were compared with that from ordinary kriging interpolation only on gauge 317 

measurements (termed as kriging). Overall, the proposed method was compared with 318 

seven classical methods in our study, including GWR, RF, BPNN, Bi-SRF, SRF-GDA, 319 

SRFdis and kriging.  320 

Note that the parameters of all the methods were tuned based on the trial-and-error 321 

scheme under the l-fold cross validation technique (An et al., 2007). Specifically, all 322 

gauge measurements were first divided into l folds. The prediction function was 323 

trained using l-1 folds, and the remainder was used for validation. The process is 324 

repeated l times until all folds were used for validation. Here, we set l=10. For each 325 

group of specified parameters, the 10-fold cross validation was repeated for one time, 326 

and the optimized parameters correspond to the minimized fitting error. Thus, the 327 
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overfitting problem could be avoided. 328 

3.5. Accuracy measures 329 

Three accuracy measures were adopted in the quantitative accuracy evaluation, 330 

including root mean square error (RMSE), mean absolute error (MAE) and correlation 331 

coefficient (CC) (Jing et al., 2016; Sharifi et al., 2019). They are respectively 332 

expressed as 333 
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 336 

where n is the number of testing stations, Ei and Oi are the estimated and observed 337 

precipitations at station i, respectively. 338 

Generally, CC is used to measure the consistency between the estimated and 339 

observed precipitations, while RMSE and MAE can assess the absolute deviation 340 

between the estimated and observed values. 341 

4. Results and analysis 342 

  We analyzed the results of the proposed method and the other methods on different 343 

temporal scales including monthly, seasonal and annual ones, where the latter two 344 
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scales were averagely computed from the monthly one. 345 

4.1. Monthly scale 346 

Fig. 5 illustrates the scatterplots between the predicted and observed precipitations 347 

on a monthly scale from 2015 to 2019. Results demonstrate that regardless of 348 

accuracy measures, BPNN and GWR produce worse results than the original IMERG. 349 

This is mainly owed to the complex relationship between the precipitation and the 350 

predictors, which was not accurately captured by the two methods. RF performs better 351 

than IMERG, yet worse than kriging. By contrast, the four SRF-based methods 352 

including the proposed method, Bi-SRF, SRF-GDA and SRFdis outperform the other 353 

methods. This reflects the significant effect of spatial autocorrelation between the 354 

gauge measurements on capturing the complex predictors-precipitation relationship. 355 

Moreover, the proposed method with the RMSE, MAE and CC of 33.22 mm, 19.22 356 

mm and 0.933 produces the best result. Thus, it can be concluded that (i) SRF-based 357 

downscaling and calibration is more effective than bilinear downscaling (Bi-SRF) and 358 

GDA-based calibration (SRF-GDA) and (ii) there is no obvious time latency for 359 

vegetation response to precipitation in the study site, since the proposed method is 360 

slightly more accurate than SRFdis. 361 
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 362 

Fig. 5 Scatterplots between the estimated and the observed precipitation on a monthly 363 

scale from 2015 to 2019 364 

Fig. 6 shows the boxplots of the four accuracy measures. Obviously, BPNN obtains 365 

the poorest results, with the median RMSE, MAC and CC of 30.48 mm, 22.66 mm 366 

and 0.64, respectively. It is followed by GWR, RF and kriging. The accuracy rank is 367 

consistent with that shown in Fig. 5. The four methods based on SRF seem more 368 

accurate than the classical methods. SRFdis, Bi-SRF and SRF-GDA have the median 369 

RMSEs of 21.41, 21.44 and 22.27 mm, respectively, while the proposed method has 370 

the value of 21.03 mm. In other words, the proposed method outperforms the other 371 

methods, which further highlights the benefit of including spatial autocorrelation 372 

information for downscaling and calibration of satellite-based precipitation.  373 
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 374 

Fig. 6 Boxplots of RMSE, MAE and CC for the precipitation estimation methods on a 375 

monthly scale during 2015-2019 376 

   Fig. 7 shows the RMSE spatial distribution of all gauge stations for the proposed 377 

method, SRFdis, RF, BPNN, kriging and GWR. Overall, the RMSEs tend to be larger 378 

in the middle part, since the precipitation is higher in the middle part than in the other 379 

parts (Fig. 1). BPNN (Fig. 7d) yields the poorest results, where many stations have the 380 

RMSEs greater than 60 mm. It is followed by GWR (Fig. 7f). RF (Fig. 7c) and 381 

kriging (Fig. 7e) seem better than GWR and BPNN at most stations. The proposed 382 
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method (Fig. 7a) and SRFdis (Fig. 7b) are more accurate than the classical methods, 383 

especially at the stations in the middle area. Moreover, the proposed method performs 384 

better than SRFdis at some stations, such as those in the right-top. 385 

 386 

Fig. 7 RMSE distribution of all gauge stations for the proposed method and some 387 

representative methods on a monthly scale during 2015-2019 388 
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4.2. Seasonal scale 389 

  The estimation errors of all the methods on a seasonal scale (i.e. spring, summer, 390 

autumn and winter) are provided in Table 2. Results indicate that regardless of 391 

accuracy measures, all methods obtain the best and the worst results in winter and in 392 

summer, respectively. This conclusion is consistent with the results yielded by 393 

(Baez-Villanueva et al., 2020; Chen et al., 2020c; Zambrano-Bigiarini et al., 2017). 394 

This could be due to the facts that (i) winter has the lowest precipitation and summer 395 

has the highest one (Fig. 2), and (ii) the large precipitation in summer was caused by 396 

complex conditions, like climatic anomaly and encounter of the cold and warm air 397 

masses, which cannot be accurately explained by the predictors (Chen et al., 2015). 398 

The accuracy rank for all the methods in the four seasons is similar. More specifically, 399 

BPNN yields worse results than IMERG in spring, summer and autumn, and a better 400 

result in winter. GWR is slightly more accurate than BPNN in the four seasons. 401 

Kriging with a similar accuracy to RF obviously outperforms BPNN and GWR. The 402 

four SRF-based methods seem more accurate than the classical methods in almost all 403 

seasons, expect for SRF-GDA in winter. Moreover, the proposed method consistently 404 

performs the best in the four seasons. Taking winter as an example, our method is 405 

about 11.44%, 8.59%, 4.77% and 2.89% more accurate than kriging, RF, BPNN and 406 

GWR, respectively.  407 

Table 2 RMSEs, MAEs and CCs of all the estimation methods on a seasonal scale 408 

during 2015-2019 (RMSE: mm; MAE: mm) 409 
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Season Index Proposed Bi-SRF SRF-GDA SRFdis Kriging RF BPNN GWR IMERG

Spring 

RMSE 21.99 22.19 23.03 22.04 23.38 23.67 30.71 25.97 25.97 

MAE 15.36 15.52 15.93 15.48 16.14 16.64 22.48 18.24 19.30 

CC 0.889 0.887 0.882 0.888 0.876 0.870 0.793 0.841 0.855 

Summer 

RMSE 56.13 57.06 59.27 57.51 61.07 61.83 74.46 65.49 64.46 

MAE 39.92 40.44 41.77 40.63 43.16 43.66 54.55 46.32 47.30 

CC 0.857 0.851 0.845 0.849 0.832 0.824 0.745 0.795 0.818 

Autumn 

RMSE 27.50 28.06 29.23 28.24 29.49 29.48 39.70 31.63 32.19 

MAE 17.51 17.89 18.53 17.96 18.42 19.25 26.67 20.79 21.98 

CC 0.928 0.925 0.920 0.924 0.918 0.917 0.864 0.902 0.905 

Winter 

RMSE 6.29 6.54 7.70 6.51 7.01 6.83 9.29 8.11 11.28 

MAE 4.11 4.25 4.97 4.26 4.36 4.65 6.64 5.66 6.93 

CC 0.853 0.839 0.790 0.841 0.823 0.826 0.688 0.735 0.595 

To further illustrate the distributions of each accuracy measure, the boxplots of 410 

RMSEs, MAEs and CCs in each season are provided in Figs. 8, 9 and 10, respectively. 411 

Obviously, BPNN has the largest accuracy range in the four seasons, indicating its 412 

instability for precipitation estimation. Moreover, it produces the largest median 413 

RMSEs and MAEs with the values of 9.23-71.25 mm and 6.90-55.42 mm, 414 

respectively, and the smallest median CCs with the values of 0.61-0.66. Compared to 415 

BPNN, the RMSEs of RF and GWR are decreased to 6.90-54.92 mm and 7.04-58.17 416 

mm, respectively, MAEs to 4.67-40.10 mm and 5.02-41.48 mm, respectively, while 417 

CCs are increased to 0.76-0.80 and 0.39-0.73, respectively. Kriging performs better 418 
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than RF and GWR in almost all seasons, except for summer. Except for SRF-GDA, 419 

the other SRF-based methods are more accurate than the classical methods. On the 420 

whole, the proposed method produces the best results, with the median RMSEs, 421 

MAEs and CCs of 6.35-52.08 mm, 4.18-38.94 mm and 0.78-0.84 in the four seasons.  422 
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 423 

Fig. 8 Boxplots of RMSEs of all the methods on the seasonal scale during 2015-2019 424 
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 425 

Fig. 9 Boxplots of MAEs of all the methods on the seasonal scale during 2015-2019 426 

https://doi.org/10.5194/hess-2021-332
Preprint. Discussion started: 1 July 2021
c© Author(s) 2021. CC BY 4.0 License.



29 
 

 427 

Fig. 10 Boxplots of CCs of all the methods on the seasonal scale during 2015-2019 428 

4.3. Annual scale 429 
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  Fig. 11 illustrates the accuracy measures of all the methods on an annual scale from 430 

2015 to 2019. Results demonstrate that all methods produce the worst results in 2018. 431 

This is because this year has the largest precipitation (Fig. 2). In comparison, BPNN 432 

produces the poorest results in all years, which is followed by IMERG and GWR. RF 433 

and kriging are consistently more accurate than BPNN, IMERG and GWR, especially 434 

in 2017-2019. The proposed method always performs better than the other methods in 435 

the five years, which is closely followed by Bi-SRF and SRFdis. SRF-GDA produces 436 

worse results than the other SRF-based methods. 437 
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 438 

Fig. 11 Accuracy measures of all the methods on an annual scale from 2015 to 2019 439 

Since the wettest month was July 2018 (Fig. 2), it was taken as an example to show 440 

the precipitation estimates of the proposed method and some classical methods. 441 

Results (Fig. 12) indicate that all the estimated precipitation maps have a similar 442 

spatial distribution and pattern to IMERG, yet the former have more detailed 443 

information than the latter due to the inclusion of the high-resolution predictors. 444 

However, there exist some differences between the methods. Specifically, the kriging 445 
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map (Fig. 12b) loses many details of spatial precipitation patterns. This is expected as 446 

it only uses ground measurements for the interpolation. RF (Fig. 12c) shows obvious 447 

unnatural discontinuity. GWR (Fig. 12d) suffers from more variations and fractions 448 

compared with neighbors. In comparison, the proposed method (Fig. 12a) produces a 449 

good precipitation map. 450 

 451 

Fig. 12 Downscaled and calibrated precipitation comparison between the proposed 452 
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method and some representative methods on the wettest month 453 

5. Discussion 454 

For downscaling and calibration of satellite-based precipitation, the three most 455 

important factors are model, predictors and temporal scale used for constructing 456 

predictors-precipitation relationship (Chen et al., 2020b). Thus, they should be 457 

carefully selected to produce accurate precipitation data. 458 

5.1. Model  459 

In previous studies, the most commonly adopted model is GWR (Chen et al., 2015; 460 

Xu et al., 2015), since it has the merit of taking the spatial variation between the 461 

predictors and precipitation into account. However, the performance of GWR 462 

seriously depends on the density of rain gauge stations, and large interpolation errors 463 

can be found in areas with sparse gauge stations and complex terrain characteristics 464 

(Lu et al., 2019). Ma et al. (2017) indicated that GWR-based downscaled TRMMs 465 

before and after residual correction for the period 2000 to 2013 at an annual scale are 466 

less accurate than the original TRMM over the Tibet Plateau. Karbalaye Ghorbanpour 467 

et al. (2021) showed that GWR has poorer downscaling results than the original 468 

TRMM for 2012 and 2013 on an annual scale over Lake Urmia Basin. Our results 469 

demonstrated that on a monthly scale (Fig. 5), GWR produces worse results than the 470 

original IMERG, with the RMSE, MAE and CC values of 38.77 mm, 22.71 mm and 471 

0.907, respectively. On a seasonal scale (Table 1), GWR is less accurate than IMERG 472 
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in summer, with the RMSE, MAE and CC values of 65.49 mm, 46.32 mm and 0.795, 473 

respectively. On an annual scale (Fig. 11), compared to IMERG, the performance of 474 

GWR is unsatisfactory in terms of CC. Moreover, the precipitation map of GWR 475 

shows some larger values compared to their neighbors (Fig. 12d). 476 

In contrast, the ML methods including RF and SRF are always more accurate than 477 

GWR due to their merits for handling the complex nonlinear predictors-precipitation 478 

relationship. This conclusion agrees well with previous studies (Karbalaye 479 

Ghorbanpour et al., 2021; Sachindra et al., 2018). In addition, the ML methods do not 480 

require residual correction (Jing et al., 2016; Shi et al., 2015). However, as a statistical 481 

tool, the classical ML methods neglected the spatial autocorrelation between the 482 

gauge measurements. Thus, a spatial RF (SRF) with the consideration of the spatial 483 

autocorrelation information was constructed. SRF was used in both downscaling and 484 

calibration in our study, where the original IMERG and the gauge data were 485 

interpolated to produce input predictors for the first and second stages, respectively. 486 

The results on the three scales demonstrated the higher accuracy of SRF than RF (see 487 

Figs. 5-11, Table 1). Note that although kriging interpolation based on only gauge 488 

measurements is more accurate than IMERG, BPNN and GWR, its precipitation map 489 

is so smooth that many detailed precipitation patterns are lost (Fig. 12b).  490 

5.2. Environmental predictors 491 

NDVI, latitude, longitude and DEM-based parameters were commonly adopted 492 

environmental variables for estimating precipitation (Shi et al., 2015). However, 493 
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satellite-based precipitation across regions with no relationship with NDVI and DEM 494 

could not be estimated. For example, in barren or snow areas, the precipitation does 495 

not influence NDVI due to the sparse distribution of vegetation (Xu et al., 2015). 496 

Jing et al. (2016) indicated that the downscaled models including LST features (LSTs) 497 

performed better those without LSTs. Thus, in addition to NDVI and DEM-related 498 

parameters, daytime LST (LSTD), nighttime LST (LSTN), and difference between 499 

day and night LSTs (LSTD-N) were also used in our study.  500 

Based on RF (Breiman, 2001), the relative importance of each predictor (i.e. 501 

predictor importance estimate) is shown in Fig. 13. Results show that precipitation 502 

from kriging interpolation has the most importance, which indicates the significance 503 

of the spatial autocorrelation between gauge measurements. Kriging estimation is 504 

followed by downscaled precipitation. The three LSTs also have a great impact on 505 

the precipitation estimation, where LSTD seems more important than LSTN and 506 

LSTD-N. NDVI has a slight effect on the precipitation, which ranks last but one. This 507 

might be due to the fact that NDVI is influenced by both precipitation and 508 

temperature in the study site, and the low temperature above certain elevations 509 

hinders the vegetation growth. Motivated by this idea, Wang et al. (2019) first 510 

removed the influence of temperature on NDVI, and then used the processed NDVI 511 

for downscaling TRMA in Qilian Mountains. Different from the aforementioned 512 

scheme, we took both LSTs and NDVI as the predictors, and then the complex 513 

predictors-precipitation relationship was captured by RF based on its powerful 514 

learning ability. Among the 12 predictors, aspect has the least importance. This 515 

https://doi.org/10.5194/hess-2021-332
Preprint. Discussion started: 1 July 2021
c© Author(s) 2021. CC BY 4.0 License.



36 
 

conclusion was also obtained by Ma et al. (2017) for downscaling TMPA 3B43 V7 516 

data over the Tibet Plateau. Compared to aspect, DEM and terrain slope seem more 517 

important. 518 

 519 

Fig. 13 Predictor importance estimates (Lat: latitude; Lon: longitude; DS: downscaled 520 

precipitation; kriging: interpolated precipitation based kriging on gauge data) 521 

5.3. Temporal scale  522 

Temporal scale has a great effect on the selection of predictors for precipitation 523 

estimation. There is a debate on whether NDVI should be taken as a predictor for 524 

downscaling and calibration of monthly precipitation. Some (Duan and Bastiaanssen, 525 

2013; Immerzeel et al., 2009) argued that NDVI cannot be used for monthly 526 
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precipitation estimation since the response of NDVI to precipitation usually delayed 527 

for two or three months. Hence, one effective solution is to perform downscaling at 528 

the annual scale, and then use the monthly fractions derived from the original 529 

precipitation data to disaggregate the annual precipitation to the monthly one (i.e. 530 

annual-based fraction disaggregation) (Duan and Bastiaanssen, 2013). However, some 531 

(Brunsell, 2006; Chen et al., 2020c; Lu et al., 2019; Xu et al., 2015) stated that the 532 

precipitation-NDVI relationship is hardly time-delayed, since vegetation could 533 

influence precipitation by adjusting temperature and air moisture during the growing 534 

seasons. Thus, it is possible to estimate precipitation with NDVI at the monthly scale. 535 

In our study, we found that the proposed method on the monthly scale is slightly more 536 

accurate than that on the annual scale (i.e. SRFdis) in all seasons (see Figs. 8-10), 537 

indicating that NDVI could be used for monthly precipitation estimates in the study 538 

site.  539 

5.4. Easy-to-use feature 540 

  Since the classical RF does not consider the spatial information in the modeling 541 

process, Hengl et al. (2018) proposed an improved RF for spatial estimation, where 542 

the buffer distances from the point-based measurements were taken as the predictors. 543 

Motivated by this idea, Baez-Villanueva et al. (2020) presented a RF-based method 544 

(RF-MEP) for merging satellite precipitation products and rain gauge measurements, 545 

where the spatial distances from all rain gauges to the grid cells in the study site were 546 

used as the variables. RF-MEP performed better than all precipitation products and 547 
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some merging methods. However, as stated by Baez-Villanueva et al. (2020), 548 

RF-MEP has a huge computational cost, since the number of extra input features 549 

equals to that of gauge measurements. Moreover, RF-MEP ignored the spatial 550 

autocorrelation between the gauge measurements. In comparison, our SRF only 551 

requires one extra feature that is estimated by kriging interpolation on the 552 

precipitation measurements. Compared to the buffer distance layers, it is much more 553 

computationally effective. Moreover, with the variogram-based kriging interpolation, 554 

the spatial autocorrelations between the gauge measurements and between the 555 

estimated precipitation and gauge measurements are taken into account. Thus, the 556 

aforementioned features make our method accurate, effective and easy-to-use. 557 

  Recently, Georganos et al. (2019) proposed a geographical RF to overcome spatial 558 

heterogeneity in remote sensing and population modelling. The geographical RF is 559 

essentially a local interpolation method, where only the n nearest observations around 560 

the interpolated point is used. However, this kind of methods has the tendency to 561 

produce discontinuity maps due to the local interpolation nature (Chen and Li, 2019). 562 

Moreover, the global information inherent in the dataset cannot be used, which might 563 

result in biased results. In comparison, our method with the aforementioned features is 564 

highly recommended. 565 

5.5. Further researches 566 

In the further studies, we will focus on the following directions. Firstly, other land 567 

surface variables such as soil moisture (Brocca et al., 2019; Fan et al., 2019), and  568 
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meteorological conditions such as cloud properties (Sharifi et al., 2019) could be 569 

adopted to enhance the predictors-precipitation relationship, thereby further 570 

improving IMERG quality. Secondly, the correction of satellite-based precipitation on 571 

higher-temporal scales (e.g. daily or hourly) is challenging and valuable (Chen et al., 572 

2020b; R. Lima et al., 2021; Sun and Lan, 2021; Wu et al., 2020). Whether our 573 

method could be applied on these scales might need validation. Thirdly, in our 574 

experiments, all rain gauge measurements were used to improve the quality of 575 

satellite-based precipitation. However, it is generally accepted that sample density has 576 

a significant effect on the accuracy of the classical calibration methods 577 

(Baez-Villanueva et al., 2020; Bai et al., 2019; Lin and Wang, 2011; Wang and Lin, 578 

2015; Zhang et al., 2021). Thus, its influence on the results of our method should be 579 

quantitatively assessed, thereby determining the most suitable gauge density in 580 

different hydrological applications. Finally, numerous satellite-based precipitation 581 

products have been available, and each one has its shortcomings and advantages for 582 

the capture of spatial precipitation patterns (Baez-Villanueva et al., 2020; Chen et al., 583 

2020c). Thus, the fusion of multiple precipitation products based on our methodology 584 

is a promising alternative to improve the quality of precipitation data. Thus, its 585 

performance requires further assessment. 586 

6. Conclusions 587 

  To enhance the resolution (from 0.1° to 1 km) and accuracy of the monthly IMERG 588 

V06B Final Run product, a spatial RF (SRF)-based downscaling and calibration 589 
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method is proposed in this paper. The merits of the proposed method are twofold: (i) 590 

SRF takes the spatial autocorrelation between the precipitation measurements into 591 

account when constructing the predictors-precipitation relationship and (ii) the SRF 592 

model is used not only in downscaling but also in calibration of IMERG, with the 593 

incorporation of some precipitation-related high-resolution variables. The 594 

performance of the proposed method was compared with those of seven methods 595 

including GWR, RF, BPNN, Bi-SRF, SRF-GDA, SRFdis and kriging for enhancing 596 

the quality and resolution of monthly IMERG across Sichuan province, China from 597 

2015 to 2019. The main findings and conclusions can be summarized as follows: 598 

(1) The SRF-based methods including the proposed method, Bi-SRF, SRF-GDA and 599 

SRFdis are more accurate than the classical methods on all temporal scales. 600 

Moreover, the proposed method ranks the first, indicating that SRF-based 601 

downscaling and calibration is more promising than bilinear-based downscaling 602 

and GDA-based calibration.  603 

(2) The comparison between the monthly-based and annual-based estimation 604 

demonstrates that there is no statistically significant difference between them, 605 

indicating that NDVI can be used for monthly precipitation estimation in the study 606 

site. 607 

(3) Kriging outperforms the original IMERG, BPNN and GWR in terms of RMSE, 608 

MAE and CC. However, its interpolation map suffers from serious loss of spatial 609 

variation of precipitation, since it only uses the gauge measurements.  610 

(4) Based on the variable importance assessment of RF, the precipitation interpolated 611 
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by kriging on the gauge measurements is the most important variable, whereas 612 

terrain aspect is the least one. 613 

Overall, the proposed methodology is general, robust, accurate and easy-to-use, 614 

since its promising performance in the study area with an obvious heterogeneity in 615 

terrain morphology and precipitation. Thus, it can be easily applied to other regions, 616 

where high resolution and accurate precipitation data is urgently required. 617 
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