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Abstract. A climatic anomaly can potentially affect on the hydrological behaviour of a catchment for several years. This

article presents a new approach to quantify this multi-year hydrological memory, using exclusively streamflow and climate

data. Rather than providing a single value of catchment memory, we aim to describe how this memory fades over time. The

precipitation–runoff relationship is analyzed through the concept of elasticity. Elasticity measures the change in one quantity

caused by the change in another quantity. We analyse the elasticity of the relation between the annual anomalies of runoff5

yield and humidity index. We identify Catchment Forgetting Curves (CFC) to quantify multi-year catchment memory, consid-

ering not only the current year’s humidity anomaly but also the anomalies of the preceding years. CFCs are derived from the

calibration of Gamma distributions.

The variability of CFCs is investigated on a set of 158 Swedish and 527 French catchments. As expected, French catchments

overlying large aquifers exhibit a long memory, i.e. with the impact of climate anomalies detected over several years. In10

Sweden, the expected effect of the lakes is less clear. For both countries, a relatively strong relationship between the humidity

index and memory is identified, with drier regions exhibiting longer memory. Taking into account the multi-year memory has

significantly improved the elasticity analysis for 15% of the catchments. Our work thus underlines the need to account for

catchment memory in order to produce meaningful and geographically coherent elasticity indices.

1 Introduction15

1.1 Catchment memory

A catchment receives precipitation from the atmosphere, a water amount that is either stored in soils, vegetation, snow/glaciers,

lakes/wetlands, and aquifers, or returned to the atmosphere (evaporated), exported by the river (as streamflow), or exported to

regional aquifers (as intercatchment groundwater flow). The relative distribution between these fluxes depends not only on the

physical characteristics of the catchment, but also on the recent climatic sequence: The response of a catchment to incoming20

precipitation depends largely on its wetness (i.e. on the more or less saturated state of soils and wetlands within the catchment;
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Andréassian and Perrin (see e.g. 2012) for a Turc-Budyko explanation framework). One can thus talk of catchment memory, in

that in its reaction to the incoming precipitation, a catchment remembers the past to some extent.

The objective of this paper is to characterize catchment memory, in order to understand the time during which one climatic

anomaly will affect catchment response. We wish here to follow the experimental psychologist Ebbinghaus (1885) in proposing25

forgetting curves, which describe the decline of memory in time. To make this discussion of a complex matter simple, we

distinguish short-term memory from long-term memory. We consider the short-term memory to be seasonal, and because we

decided to work on an annual time step, this will not be addressed in this paper. We rather focus on the long-term (multi-year)

memory effects, where instead of analysing each year independently (see e.g., Risbey and Entekhabi, 1996), we aim to take

into account previous years to better explain inter-annual variability (following McDonnell, 2017).30

In what follows, we will consider catchment memory from the point of view of annual precipitation yield (i.e., the ratio

of annual discharge to annual precipitation) and will research the different climatic factors explaining its spatial variability.

We aim in particular to assess the cumulative effect of wet and dry years, i.e., how successions of relatively wet or dry years

within a climatic sequence affect the rainfall yield over subsequent years. While catchment memory is obviously a function of

catchment storage (in groundwater aquifers, wetlands, lakes or glaciers), the originality of this paper will be in the quantification35

of forgetting curves at catchment scale (rather than memory indices or single value usually found in literature, see section 1.3):

We will identify them from annual data series and, only then, attempt a physical interpretation.

1.2 Catchment memory vs. water age

A distinction that we believe is necessary from the onset is the one between catchment memory and water age. Indeed, because

catchment memory reflects a temporal aspect, the difference between these two notions might look tenuous, and it is important40

to clarify it:

water age describes the time that the water takes to travel through the catchment. It can describe the actual age of the water

storage (residence time distribution) or the age of the water when it reaches the outlet (travel time distribution). This

is a primary focus when it comes to water quality modeling, where flow paths and travel time have to be understood

for tracking nutrients within the catchment (Hrachowitz et al., 2016). As summarized in the recent review by Sprenger45

et al. (2019), these investigations will generally rely on tracers and on a physical understanding that would explain how

catchment storage is sampled by different hydrological processes to generate streamflow. Because we do not use any

tracers in this study, we cannot check any hypothesis about water age and we will not discuss this topic further;

catchment memory, as defined in this paper, describes the period of time during which we manage to detect a significant

dependency between two signals: the past climatic inputs and the current ability of the catchment to transform precipita-50

tion into river flow. The scientific literature sometimes addresses catchment memory also through “flow persistence” (see

e.g., Svensson, 2015; Quinn et al., 2021) or “flow predictability” (see e.g., Bierkens and van Beek, 2009; van Dijk et al.,

2013). Compared with a description of water age, the ambition to physically understand the system is more limited and

restricted to explaining catchment behavior from the perspective of an operational flow prediction model. Our study is
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thus more in line with conceptual modeling, where we focus more on the concept of celerity (pressure wave propagation)55

rather than on velocity (mass flux of water) to describe the hydrological response (McDonnell and Beven, 2014).

This distinction may also be linked to the different perceptual storages of water in a catchment. "Mobile storage", which

controls transport in a catchment is more linked to water age, whereas "dynamic storage" which controls streamflow dynamics

is more in line with our definition of catchment memory (see e.g. Staudinger et al., 2017).

1.3 How to describe catchment memory?60

There is a broad literature dealing with catchment memory. Among the authors who have discussed related topics in the past,

the contribution of Hurst (1951) is one of the earliest (see also the review by O’Connell et al., 2016). He was followed by many

hydrologists who studied the auto-regressive properties of annual flows (e.g. Lins, 1985; Montanari et al., 1997; Vogel et al.,

1998; Rao and Bhattacharya, 1999; Wang et al., 2007; Mudelsee, 2007; Szolgayova et al., 2013).

Spectral analysis can be used to provide insight into catchment memory. It is regularly used for stream chemistry (see e.g.65

Kirchner et al., 2000), in order to understand travel time distributions. Despite being out of the scope of this study (see section

1.2), these spectral analyses generally highlight that catchments do not exhibit a particular flushing time of a contaminant, but

instead a rapid flush followed by a low level of contamination that could be surprisingly long.

Simple correlations are a common method for quantifying the dependence on the past. Nippgen et al. (2016) studied the lag

correlation between precipitation and runoff ratio, from monthly to annual time steps, and demonstrated that the precipitation70

of the previous year was equally correlated to the year’s runoff ratio in five North Carolina catchments studied. Iliopoulou

et al. (2019) computed a lagged seasonal correlation between selected river flow signatures and the average river flow in the

antecedent months. They found higher correlations with low-flow signatures than with high-flow signatures.

Gharari and Razavi (2018) analyzed the memory of hydrological systems from the point of view of hysteretic systems, using

“path-dependent systems” as a synonym of “systems with memory”, and precising that unlike a system in which the future75

state depends only upon its present state and forcings, the future of a path-dependent system depends on the sequence of states

preceding the present state.

Catchment memory can also be approached by quantifying water storage. Creutzfeldt et al. (2012) used a 10-year time series

of high-precision gravimetric measurements to follow the evolution of catchment-scale water storage, as well as the long-term

recovery of a particularly strong drought event in 2003, and found that the catchment remembers the event over several years.80

Orth and Seneviratne (2013) explain streamflow and evapotranspiration memory as a propagation of soil moisture memory.

Instead of quantifying memory using a lag correlation, they proposed calculating the mean time required to recover from

anomalous conditions. This enabled them to highlight a longer memory for the more extreme anomalies.

Multi-year memory can also be analyzed through the residuals of annual water balance. Trask et al. (2017) proposed different

statistical techniques to account for these residuals of the previous years. It enables one to improve each annual water balance85

evaluation and to account for inter-annual changes of water storage.
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Any hydrological model must, in one way or another, conceptualize the hydrological memory by parameters that govern the

behavior of model states. Kratzert et al. (2019) proposed a data-driven approach using Long Short-Term Memory networks

(LSTMs) to simulate discharge. LSTM is a class of neural network where each cell has a memory coming from long-term

dependencies between input and output features. This memory conceptualization is quite similar to a state in a hydrologi-90

cal model. Memory can also be derived from a digital filter applied on the hydrograph. Pelletier and Andréassian (2020b)

introduced a memory-based approach for determining the parameters of a conceptual baseflow separation method.

In summary, it appears that most existing methods aiming to analyze memory either summarize the memory by a single

value and/or provide an index that cannot be directly interpreted as duration. In this study, we seek to describe memory in the

form of duration but also to understand how this memory fades over time, i.e., how the catchment forgets.95

1.4 Why describe catchment memory?

The concept of catchment memory is used with intra-annual objectives to qualify the predictability linked with past precipita-

tion and temperatures, leading to the hydrological storage states when a forecast is issued (e.g., Svensson, 2015; van Dijk et al.,

2013; Quinn et al., 2021). So far, short-term memory (seasonal storage) has often been the main focus in these studies(e.g.,

Yossef et al., 2013; Shukla et al., 2013). Multi-year memory has been explicitly distinguished only recently with advances in100

decadal forecasting (Yuan and Zhu, 2018).

Catchment memory also has a long history when it comes to water quality modeling or tracer analysis, as past pollution

inputs can influence water quality in rivers for several years or decades, creating a legacy that is often difficult to estimate (e.g.,

Hrachowitz et al., 2015; Van Meter et al., 2016). The time lag to achieve water quality goals, such as nitrogen reduction, thus

have to be efficiently captured by the models (e.g., Ilampooranan et al., 2019). However, as discussed above, this definition of105

memory is more in line with the studies of travel time, which is not the direction adopted in this paper (see section 1.2).

Catchment memory is sometimes seen as a way to understand the nonlinearity of streamflow response to precipitation

(Risbey and Entekhabi, 1996), and some authors see a better characterization of catchment memory as essential for model

structure improvement. For instance, Fowler et al. (2020) analyzed the slow dynamics observed in catchments and argue that

streamflow may depend not only on the climatic conditions of the preceding weeks or months, but also on past years or even110

decades. They consider that hydrological models often lack an explicit description of these long-term effects. Grigg and Hughes

(2018) analyzed memory effects caused by multidecadal changes in catchment groundwater storage and showed that the GR4J

model requires a complexification to account for these effects. The modification they propose is shown to be coherent with

groundwater observations.

Catchment memory is also studied to understand how catchments recover from climatic extremes, such as multiyear droughts115

(Creutzfeldt et al., 2012; Hughes et al., 2012; Yang et al., 2017). Merz et al. (2016) hypothesized that catchment memory, along

with intra- to inter-annual climate variability, could be responsible for temporal clustering of floods in Germany.
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1.5 What drives catchment memory?

Several studies have linked catchment memory to catchment size, generally showing that memory increases with catchment size

(see e.g., Mudelsee, 2007; Hirpa et al., 2010; Szolgayova et al., 2013; Iliopoulou et al., 2019). This is usually explained by the120

increase of storage in larger catchments. Mudelsee (2007) also explained the Hurst index through catchment geomorphology

and the cascade produced by spatial aggregation along the river network.

Other physical descriptors, such as topography, soil and geology, are regularly used to provide a physical explanation of

catchment memory. Staudinger et al. (2017) found the largest dynamic and mobile storage estimates in high-elevation catch-

ments. Merz et al. (2016) noted that catchments with deep soils and/or saprolite zones and large aquifers have a higher catch-125

ment state persistence and thus a longer memory. Orth and Seneviratne (2013) showed that soil moisture to some extent serves

as an upper bound for streamflow and evapotranspiration memory.

Some authors also assessed whether memory can be identified through hydrological signatures. Szolgayova et al. (2013)

found that the Hurst index generally increases with mean discharge, but decreases with specific discharge. Memory is often

related to groundwater storage through indicators such as baseflow index (Grigg and Hughes, 2018; Fowler et al., 2020;130

Pelletier and Andréassian, 2020a). Several papers have shown that a long seasonal predictability is often correlated with the

importance of baseflow (Harrigan et al., 2018; Lopez et al., 2021; Iliopoulou et al., 2019). Tomasella et al. (2008) described

a strong memory effect in a small 6-km2 Amazonian catchment that impacts the hydrological response of the catchment well

beyond the time span of the seasonal climatic anomalies. The authors attribute this memory to storage in the groundwater and

unsaturated zone, and warn against the impact of this memory effect on the closure of water balance by models. However,135

when it comes to short-term memory, Lo and Famiglietti (2010) showed that the presence of a groundwater aquifer can either

increase or decrease land surface hydrological memory and this depends on the depth of the water table.

Memory is also often related to different dryness indices. Szolgayova et al. (2013) found that memory increases with mean

air temperature. In dry regions, the past generally weighs more on the predictability of seasonal forecasting than it does in wet

regions (Harrigan et al., 2018; Pechlivanidis et al., 2020; Lopez et al., 2021). Iliopoulou et al. (2019) showed that memory140

decreases with increased wetness conditions.

Humans also affect the memory of hydrological systems: One can cite, for instance, the Sahelian paradox where runoff has

increased since the 1970s, despite decreases and sustained low levels of rainfall (e.g., Amogu et al., 2010; Descroix et al.,

2009) probably due to land degradation and soil crusting resulting in Hortonian overland flow instead of infiltration. Similarly,

tile drainage of arable land has had large effects on soil storage in Sweden, providing a shorter catchment memory (Andersson145

and Arheimer, 2003). When building reservoirs, on the contrary, the memory is extended.

1.6 Scope of the paper

A concept that seemed particularly handy to describe synthetically the relationship between two variables is elasticity. Taken

from economics (Marshall, 1890), it has been applied in hydrology to describe the sensitivity of the changes in streamflow to

changes in a climate input variable without requiring a precipitation–runoff model (Schaake and Liu, 1989; Andréassian et al.,150
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2016). To our knowledge, it has never been applied with explicit consideration of catchment memory. The goal of our paper is

threefold:

1. To present a method, based on the concept of elasticity, that not only can provide an index relevant to catchment memory,

but can also characterize its dynamic in a manner analogous to a forgetting curve (Ebbinghaus, 1885);

2. To disentangle catchment memory and catchment elasticity;155

3. To provide some physical indicators of the main drivers of memory and elasticity for France and Sweden.

2 Material and Methods

2.1 Catchment data

A total of 685 catchments are used in this study: 527 French catchments and 158 Swedish catchments.

In France, discharge series (Q) were extracted at a daily time step from the French Hydro database (Leleu et al., 2014). Only160

catchments that are not regulated (according to the classification within this database) were selected. Corresponding catchment

areas vary between 5 km2 and 26,900 km2. Precipitation (P ) and temperature (T ) data were extracted from the SAFRAN

atmospheric reanalysis produced by Météo-France (8x8 km and averaged over the catchment upstream areas; Vidal et al.,

2010).

In Sweden, discharge series were extracted at a daily time step from the SMHI database. Only stations having less than 5%165

of their area regulated are used (information extracted from www.smhi.se). The degree of regulation is the percentage of the

volume of the mean annual flow that can be stored in reservoirs located upstream of the gauged catchment outlet. Catchment

areas vary between 1 km2 and 14,400 km2. Precipitation and temperature data were extracted at a daily time step from the

PTHBV database (4x4 km; Johansson, 2002).

For all stations, potential evaporation (E0) was estimated from daily mean air temperature and daily extraterrestrial radiation170

following Oudin et al. (2005). Daily hydroclimatic data were aggregated at the annual scale for the purpose of this study, with

the hydrological year starting on October 1st. By defining the start of the year in this way, rather than by a calendar year, we

aim to minimise a water volume that could be carried over two calendar years. This start date is a compromise across our entire

data set and a sensitivity analysis has shown little influence of choosing earlier or later start months. Moreover, as this study

aims to emphasize, a water balance at the annual scale can seldom be comprehensive. We accepted a maximum of 10% of175

missing data per year: the annual average can therefore be calculated over fewer days but is then rescaled to 365 days. All 685

stations also observe a period of at least 10 years of hydroclimatic data without any gaps to capture long-term memory. In the

end, between 23 and 59 gauged years were available for our catchments.

These time series are also used to build five hydroclimatic descriptors for each catchment with the average of the annual

values of Q and P , E0, Q/P and P/E0. In addition, the percentage of the watershed area covered by lakes is used as a180

supplementary descriptor. This information is provided by SMHI for Swedish catchments (extracted from www.smhi.se).
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For France, the Lake Water Bodies according to the Water Framework Directive is used (extracted from geo.data.gouv.fr).

Finally, the contribution of groundwater is assessed by a baseflow index (BFI) calculated according to the work of Pelletier

and Andréassian (2020a) where the baseflow is estimated from the outflow of a quadratic reservoir. The approach has two

parameters (calibrated for each catchment): The reservoir capacity and the time depth over which past effective precipitations185

filling this reservoir are taken into account. This baseflow filtering was performed with the associated “baseflow” R package

(Pelletier et al., 2021).

2.2 Memory conceptualization

Our memory conceptualization starts discretely, i.e., on a year-by-year basis, and uses the concept of catchment elasticity

(Schaake and Liu, 1989; Andréassian et al., 2016). Elasticity describes the sensitivity of the changes in streamflow related to190

changes in a climate input variable. More precisely for this study, we focus on the sensitivity of the changes in runoff yield

(Y =Q/P ) related to changes in humidity index (H = P/E0) computed at the annual time step for each hydrological year i,

as described by equation 1.

∆Yi

Y
= ε1

∆Hi

H

with ∆Yi = (Yi −Y ) and ∆Hi = (Hi −H)

(1)

where Y and H are long-term average values of catchment yield and humidity indices, respectively, the operator ∆ indicates195

the difference between a given annual value and its long-term average value, and ε1 is the elasticity index.

In order to investigate memory effects, we need to add a temporal dimension i to the traditional relation defined in equation

1: Instead of trying to explain the yield anomaly of year i from the climatic anomaly of the same year i, we allow for the use of

several past climatic anomalies. The influence of each past anomaly is quantified by an additional parameter ωi, with i varying

from 0 (the current year) to n preceding years (fixed to n= 5). By estimating the different values of ω over the past years, we200

will be able to construct the (discrete) Catchment Forgetting Curve (CFC): It describes how quickly a catchment forgets past

anomalies and when it starts to behave independently from past years’ events. The elasticity index ε2 is still quantified (as in

equation 1) and distinguished from catchment memory ω.

∆Y0

Y
= ε2

n∑
i=0

(
ωi ·

∆Hi

H

)

with
n∑

i=0

ωi = 1

(2)

As we chose to work with dimensionless variables Y and H , one should notice that P appears on both sides of equation 2.205

However, they do have different time index i. Moreover, in order to avoid the detection of a memory in the signal Y that would

have been contained in the climatic input signal H , we checked that no highly significant auto-correlation was found in H .

7

https://geo.data.gouv.fr/fr/datasets/cc23e393dc05180892f2bf04f0be0423b62ebd86


Graphically, the memory effect can be visualized by a series of plots showing the runoff yield anomaly as a function of

the climate anomaly of the preceding years (Figure 1, top). Figure 1 shows a real example with a rather peculiar behavior: a

catchment where past climatic anomalies are much better related to the past yield anomaly (i ∈ {1,2,3}) than the current year210

anomaly (i= 0).
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(a) Medstugůan River (225 km2), Sweden
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(b) Petit Thérain River (212 km2), France

Figure 1. Elasticity analysis example on two catchments. No multi-year memory is detected on this Swedish catchments: a climatic anomaly

P/E0 is directly affecting Q/P of the same year but not later. In opposition, a multi-year memory is detected on this French catchment:

the effect of a climatic anomaly P/E0 on the hydrology (Q/P ) only starts after 1 year, before slowly decreasing (according to r Pearson

correlation values).
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2.3 Parametrisation of the CFCs

A CFC, as formulated in the equation 2, requires the calibration of n+1 values of ω. In order to limit the number of parameters

and to avoid having to calibrate each ω value independently, we hypothesized (after many attempts that we cannot report here)

that the shape of the shape of the CFC is similar to the shape of a Gamma distribution. This assumption is not uncommon215

among studies that focus on describing transit time distribution (see for instance: Kirchner et al., 2000, 2001; Dunn et al.,

2010; Hrachowitz et al., 2010; Godsey et al., 2010; Tetzlaff et al., 2011; Heidbüchel et al., 2012; Berghuijs and Kirchner,

2017). This choice was also driven by visualizing all the plots obtained for our catchment set (see, e.g., Figure 1): We found

that a simple exponential parameterization would not be flexible enough as it does not allow lags would not allow to describe

a maximum at time steps different from zero, i.e. not allow to describe a lag between Q/P and P/E0. A Gamma distribution220

(Equation 3) requires the calibration of two parameters: a shape parameter α and a scale parameter β:

ω(i) =
iα−1

βαΓ(α)
e−

i
β (3)

where Γ(α) is the Gamma function evaluated at α. The different values of ω for each year i are estimated by integrating

the Gamma density function between i and i+1. These ω values are rescaled so that their sum is equal to 1, according to the

equation 2, and to provide the final values of the CFC. In summary, a CFC is built from the optimisation of equation 2 using225

three parameters (ε2, α and β).

For the sake of simplicity, before calibrating a CFC, we first fit a simple annual elasticity model (a zero-memory model), and

use a statistical significance test (Student’s t-Test with pvalue < 0.01), to decide whether equation 2 improves significantly on

equation 1. If the improvement is not significant, we conclude on the absence of multi-year memory for that catchment, and

keep the simplest representation (that of equation 1). The objective function is a root mean square error (RMSE) of the Q/P230

anomalies: it is used for the optimization of the parameter values and for this model selection. Parameters of both equations

were calibrated using particle swarm optimization (PSO) through the hydroPSO R package (Zambrano-Bigiarini and Rojas,

2013).

2.4 Summary of the CFCs

In order to quantify catchment memory, we assume that the Gamma distribution, from which ω values have been extracted,235

can be used to extrapolate a continuous temporal distribution of catchment memory. We extract two characteristic times from

this temporal distribution (Figure 2). Firstly, we extract the time when the temporal distribution is at its maximum value. This

allows us to describe a possible lag between the climatic anomaly and the main resulting hydrological anomaly (called tp). In

addition, to describe the speed of memory loss, we extracted the time when the cumulative distribution reaches 75% (called

t75), but any other percentage could be easily extracted in a similar way.240
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Figure 2. Extraction of two characteristic values from an example of a Gamma distribution.

3 Results and discussion

3.1 Is multi-year memory a rare phenomenon?

Approximately 80% of the Swedish catchments and 89% of the French catchments showed no significant multi-year memory

(significant in terms of the aforementioned Student’s t-Test): This shows that multi-year catchment memory is not the most

common situation. We present in Figure 3 the CFCs identified for the Swedish and French catchments separately. In Sweden,245

many of the catchments with multi-year memory exhibit a lag of 1 year (Figure 3). This lag also appears in France where it

sometimes reaches values of up to 3 years.
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Figure 3. Catchment Forgetting Curves identified for the catchments on our French (left) and Swedish (right) dataset. The black lines

represent the catchments where the multi-year CFC is very significant, and the color gradient represents, for the rest of the catchments, the

p-value of the t-Test.

In France, the weight of year 0 (ω0) can frequently be equal to 0 (Figure 3): This lag effect means that a climatic anomaly

will not have an impact until the next year (as in the example presented in Figure 1). By contrast, Sweden rarely shows such

an extreme temporal disconnection, and the climatic anomaly of year 0 is most of the time already affecting catchment yield250

during the current year.

In France, the calibration of the CFC sometimes yields a slow decrease, from year 0 to year 5, without any lag. But this shape

does not really appear in Sweden, where the decrease of the memory is usually fast, with most ω values becoming negligible

already after 2 or 3 years (Figure 3). In France, the ω values become negligible after 4 or 5 years (which is why we retained 5

years as maximum duration for the CFC).255

3.2 Where do catchments exhibit a multi-year memory?

A spatial analysis of the catchments with significant multi-year memory allows us to already identify some spatial patterns

(Figure 4). In France, the Paris basin with its large chalk aquifer is the region where the most significant multi-year memory

exists. In the rest of France, multi-year memory is generally not significant. In Sweden, long-term memory is mainly detected

in the south of the country. Some hydroclimatic characteristics of these regions could explain these spatial patterns (see section260

3.3 below). No spatial pattern appears in snow-covered regions (e.g., the Alps and northern Sweden). This shows that snow

melt affects mostly the seasonal memory with no significant impact on Q/P over several years.
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(a) p-value of the t-Test (b) Model selection

(c) Memory lag tp (d) Catchment memory t75

Figure 4. Spatial distribution of catchment memory over France and Sweden. Note that the model describing multi-year catchment memory

(equation 2) is used only when the p-value of the t-Test is below 0.01. Memory values are extracted from the Gamma distribution (see section

2.4): tp is the time when the Gamma density function is maximum, and t75 is the time when the cumulative distribution reaches 75%.
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By extracting the quantile 75% of the cumulated Gamma distribution (t75 which we use to characterize the CFC, see section

2.4), it is possible to quantify the duration of catchment memory. For these multi-year memory catchments, t75 is often between

2 and 3 years in France, whereas it never exceeds 2 years in Sweden (Figure 4).265

3.3 Can multi-year memory be explained by hydroclimatic descriptors?

Figure 5 links catchment memory (t75) to a few hydroclimatic characteristics commonly identified as the main drivers in the

literature. Larger catchments tend to have longer memory in France, whereas in Sweden the memory does not seem to be

related to catchment area.

For both countries, the memory increases in drier hydro-climatic conditions (as characterized by either lower discharge and270

precipitation, lower Q/P or lower P/E0). However, the effect of potential evaporation does not appear clearly. It thus appears

that the hydrological behaviour of the driest catchments is more dependent on past climatic conditions than that of humid

catchments. It can be hypothesized that in wetter conditions, water storage is renewed more often and the memory therefore

tends to decrease.

In France, a higher baseflow index (BFI) is associated with catchments with a longer memory. This confirms the predominant275

role of powerful aquifers in catchment memory. It also corroborates the spatial analysis of Figure 4, where long memory is

mainly located within the Paris basin where groundwater contributes significantly to total discharge. For France, this spatial

organization is thus very consistent with the memory estimates of Pelletier and Andréassian (2020a).

In Sweden, the percentage of the catchment area covered by lakes (lake cover, Figure 5) does not indicate a longer memory

for catchments with larger lake cover. Compared with France, much of Sweden has thinner soils (as expressed by the available280

water capacity, Ballabio et al., 2016), which may account for a lower storage capacity and thus a shorter memory. Hydrocli-

matic characteristics with long memory in Sweden are consistent with catchments having higher seasonal prediction potential

identified by Lopez et al. (2021) such as a high BFI and a low amount of precipitation.
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Figure 5. Distribution of hydroclimatic characteristics according to three classes of memory (described by t75). The first class corresponds to

catchments with no significant multi-year memory, the remaining catchments are split into two groups (shorter memory and longer memory)

according to the median value of their memory. The numbers within each boxplot describe the number of catchments. The boxes are delimited

by quantiles 0.25 and 0.75; whiskers by quantiles 0.1 and 0.9.

3.4 What do we miss in catchment elasticity analysis when not accounting for multi-year memory?

Equations 1 and 2 both quantify the elasticity ε in the relation between Q/P and P/E0, but equation 1 does not account285

for multi-year memory effects, while equation 2 does. Figure 6 compares these two elasticity indices and highlights that the

elasticity of equation 2 is always higher than the elasticity obtained with equation 1 and generally slightly exceeds the value of

1.

The numerical values of the elasticities obtained with equation 1 and 2 should not be compared (the fact that one is lower

than the other has no meaning): Equation 1 uses annual P/Eo anomalies whereas equation 2 uses a weighted average value290

of past P/Eo anomalies. The averaging of past P/Eo anomalies will inevitably smooth the extremes and will give a value

generally closer to zero (which is the long-term average value of P/Eo anomalies). These lower anomalies of P/Eo are

logically compensated by higher elasticity values during calibration (ε2 ≥ ε1).

Figure 6 also shows that catchments with multi-year memory usually have higher relative differences between ε1 and ε2

(in the sense of distance to the bisector) than the rest of the catchments. This highlights that, despite the numerical artefact295
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previously discussed, elasticity of catchments with multi-year memory is often under-estimated if this memory is not explicitly

considered. A climatic anomaly will thus affect runoff yield more strongly than expected by equation 1, but with a delay.

By considering catchment memory, the elasticity values are thus changed. However, no strong relations were found between

elasticity values and memory values (see Appendix A).
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Figure 6. Comparison of elasticity indices found when ignoring multi-year memory effects (equation 1) and when explicitly accounting for

them (equation 2) for all catchments (France and Sweden).

3.5 Can elasticity values be explained by hydroclimatic descriptors?300

Similarly to catchment memory, we can try to link elasticity indices to some classic hydroclimatic characteristics. Figure 7

illustrates these relations for the elasticity indices of equation 2 (i.e., the equation accounting explicitly for the memory effect).

The relation between elasticity and catchment area is inverted between France and Sweden: In France, large catchments have

larger elasticity, but in Sweden large elasticity is observed in smaller catchments. Our conclusion is that catchment size is not a

first-order determining factor of memory and elasticity, and this likely reflects some more regional relation between catchment305

size and hydrology: For instance, specific discharge tends to increase with catchment size in Sweden, whereas it decreases in

France (not shown here).

The stronger trends are found between catchment humidity and elasticity indices. Similarly to catchment memory (Figure 5),

elasticity increases with humidity-related indicators: lower humidity index P/E0, lower discharge and precipitation, higher E0,

lower Q/P . This suggests that water-limited catchments not only have a longer memory, but that their hydrological behavior is310

also more sensitive to climatic inputs. The low values of elasticity in wet areas can also be explained by the fact that the runoff

yield, although generally higher, is less variable, thus leading to a lower slope in the Q/P versus P/E0 relationship (Figure 8).
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Higher BFI values coincide with lower elasticity values in both France and Sweden. This suggests that a large contribution of

groundwater attenuates the sensitivity to climatic anomalies: Even though these catchments have a longer memory of climatic

anomalies, the impact of these anomalies is distributed and smoothed over the years. In Sweden, lakes also smooth the effect315

of climatic anomalies, but not as much as humid conditions or large baseflow contributions.
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The elasticity is also quite well structured in space (Figure 9): This spatial organization reflects the climatic conditions of

each region, as already described by Figure 7. The two elasticity indices (ε1 and ε2) generally have the same spatial patterns,

except for the catchments with a significant multi-year memory: The very low elasticity values that they obtained with equation

1 (that can even be negative) were due to the impossibility to link correctly Q/P and P/E0 without considering the memory320

effect. Because it considers explicitly catchment memory, equation 2 yields elasticity values that are more coherent in space

(and avoids the negative values that indicated a lack of hydrological understanding).
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(a) ε1: Elasticity index of equation 1 (b) ε2: Elasticity index of equation 2

Figure 9. Comparison of elasticity index values obtained by optimizing equation 1 (which does not account for memory effects) and equation

2 (which does account for memory effects). The classes are delimited by quantile values to make a relative comparison of spatial patterns

easier.

4 Conclusions

4.1 Synthesis

In this article, we proposed a new approach to quantifying catchment multi-year memory, requiring only the knowledge of325

annual discharge data and climatic inputs. Catchment memory is conceptualized in the form of a Forgetting Curve (Ebbinghaus,

1885), characterizing how rapidly a catchment forgets past climatic inputs.

The precipitation–runoff relationship is analyzed through the concept of elasticity, linking the anomalies of runoff yield

(Q/P ) to the anomalies of humidity index (P/E0). In this work, we added a new dimension to the elasticity concept by

considering past anomalies and by weighting these anomalies using a Gamma distribution, which gives the shape of the CFC.330

Last, memory is characterized by the 75% quantile of this Gamma distribution.

As expected, catchments with significant multi-year memory are dominated by groundwater in France. In Sweden, the

expected effect of the lakes does not appear clearly. Instead, the humidity index appears to be one of the main drivers of
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catchment memory in both countries. Catchment area, often referred to in the literature, does not seem to play a first-order role.

The elasticity indices were also well related to humidity, with humid catchments showing lower elasticity. We show that not335

accounting for multi-year memory may yield elasticity indices with erratic values (that can even be negative). Introduction of

the memory component produces a much more spatially coherent organization of the elasticity.

4.2 Limits

Our methodology relies on a simplifying assumption where short-term and long-term memories are distinguished. It was thus

tempting to quote Klemeš et al. (1981), who, at the end of their paper (where they discussed short- and long-memory models),340

wrote:

As a scientific hypothesis about streamflow series behavior, neither the short-memory nor the long-memory model

can be falsified on the basis of historic flow records of a typical length. Hydrologically, they thus both remain, in

Popper’s sense, within the realm of metaphysics, and the choice between them is a matter of value judgement. The

only arguments that can be advanced for either of them are operational and subjective: Occam’s razor and lack345

of hard evidence to the contrary for short-memory models, hedging against a suspected possibility of a slightly

higher risk for the long-memory ones.

In our case, we would argue that the behavior described in this paper contributes some "hard evidence" on the behavior of

hydrological systems, without any unneeded complexity. We agree that a more comprehensive approach that would not need

to distinguish between short and long memory (using a relatively arbitrary p-value, Figure 4) would probably be preferable, if350

it could be achieved with the same parsimony.

It would also be tempting to directly relate our CFC to distributions of travel time (see the discussion in section 1.2). But

this is clearly out of the scope of our method: We do not follow any water particle from its entry to its exit as a tracer would

do. Thus, the values of memory that we obtained may not reflect water ages.

4.3 Perspectives355

In order to be used operationally, it would be interesting to predict catchment memory without the need for model calibration

against long time-series of discharge observation. An efficient regionalization of the approach could rely on defining relations

between the characteristics of the CFC and hydroclimatic characteristics. This study shows that elasticity may be regionalized

properly, as it is mainly driven by climatic conditions. However, the parameters of the Gamma distribution seem less easy to

regionalize, especially the scale parameter β (see Appendix B). One perspective would be to better relate the two parameters360

of the Gamma distribution to catchment characteristics or to try other distribution assumptions that would allow for this more

easily.

The parsimony of the proposed approach allows us to consider large-scale implementation on well-gauged territories. From a

hydrological forecasting perspective, the maps thus produced can be used to better identify the predictability of the hydrological

behavior of a catchment through the knowledge of past climatic inputs. From a changing climate perspective, they also provide365
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an initial understanding of the sensitivity of watersheds to climatic anomalies and their effect on a multi-year time scale. We

have proposed a static description of the CFC, future work could also examine how climate anomalies might alter the shape of

the CFC over time.

Catchment memory is fundamental for hydrological understanding, especially of regional hydrological processes. We need

to learn more about this phenomenon for efficient water management and landscape planning. To better understand the causes370

of differences in catchment memory and elasticity, we recommend a more thorough analysis against physiographical con-

ditions, including different catchment characteristics mentioned in section 1.5. This could, for instance, be geomorphology,

geology, vegetation, soil type and depth, aquifer interactions, groundwater levels, and human modifications (tile drainage, land

degradation, reservoirs).

Data availability. French climatic and hydrological data are provided by Météo-France and SCHAPI. French discharge time series are375

available from the French Hydro database (hydro.eaufrance.fr). Swedish climatic and hydrological time series are provided by the SMHI

(https://www.smhi.se/data/hydrologi/vattenwebb).

Appendix A: Relations between elasticity and catchment memory

One objective of this study is to disentangle catchment memory from catchment elasticity. This appendix illustrates that no

strong relations were found between these two indexes, neither for catchments with nor for catchments without multi-year380

memory.
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Figure A1. Relation between elasticity index (ε2) of equation 2 to catchment memory assessed by t75 and tp

Appendix B: Regionalization of Gamma distribution parameters

In this work, we assumed that the CFC can be described by a Gamma distribution. This appendix provides the spatial visual-

ization of the two parameters of this Gamma distribution (α and β) optimized for each catchment (Figure B1). Figures B2 and

B3 illustrate the challenge of regionalizing these CFCs, with opposite relationships between France and Sweden when relating385

these parameters to hydroclimatic characteristics.
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(a) α (shape parameter) (b) β (scale parameter)

Figure B1. Map of the parameters of the Gamma distribution (equation 3) calibrated inside equation 2. The classes are delimited by quantile

values.
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Figure B2. Distribution of hydroclimatic characteristics according to three classes of the shape parameter α of the Gamma distribution

(equation 3) calibrated inside equation 2. The classes are delimited by quantile values. The numbers within each boxplot describe the number

of catchments.
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Figure B3. Distribution of hydroclimatic characteristics according to three classes of the scale parameter β of the Gamma distribution

(equation 3) calibrated inside equation 2. The classes are delimited by quantile values. The numbers within each boxplot describe the number

of catchments.
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