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Abstract. Crop water productivity is a key element of water and food security in the world and can be quantified by the 

water footprint (WF). Previous studies have looked at the spatially explicit distribution of crop WFs but little is known about 

the temporal dynamics. We develop a new global gridded crop model – AquaCrop-Earth@lternatives (ACEA) – that can 10 

simulate three consumptive WF components: green (WFg), blue from irrigation (WFbi), and blue from capillary rise (WFbc) 

at high temporal and spatial resolutions. The model is applied to analyse global maize production during 1986-2016 at 5 x 5 

arc minute grid. Our results show that in 2012-2016, the global average unit WF of maize is 723.2 m3 t-1 y-1 (89.5 % WFg, 8.3 

% WFbi, 2.2 % WFbc) with values varying greatly around the world. Regions characterised by high agricultural development 

generally show a small unit WF and its interannual variation, such as Western Europe and Northern America (WF < 500 m3 15 

t-1 y-1, CV < 15%). On the contrary, regions with low agricultural development show opposite outcomes, such as Middle and 

Eastern Africa (WF > 2500 m3 t-1 y-1, CV > 40%). Since 1986, the global unit WF of maize has reduced by 34.6 % mainly 

due to the historical decrease in yield gaps. However, due to the rapid expansion of rainfed and irrigated cropland, the global 

WF of maize production has increased by 48.8 % peaking at 762.9 x 109 m3 y-1 in 2016. As many regions still have a high 

potential in decreasing yield gaps, the unit WF of maize is likely to continue reducing, whereas the WF of maize production 20 

is likely to continue growing as humanity’s rising appetite can lead to further cropland expansion. The simulation of other 

crops with ACEA is necessary to assess the pressure of overall crop production on ecosystems and freshwater resources 

worldwide. 

1 Introduction 

The ever-increasing demand for crops pushes humanity towards the environmental limits of our planet (Campbell et al., 25 

2017; Jaramillo and Destouni, 2015). In particular, crop production is responsible for around 87 % of total water 

consumption in the world (Hoekstra and Mekonnen, 2012) which, in many places, already exceeds the sustainable limits 

posing risks to local water security (Hoekstra et al., 2012b; Schyns et al., 2019) and further deterioration can be expected in 

the future (Wada and Bierkens, 2014; Greve et al., 2018). 
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One way to minimize the pressure on water resources posed by crop production is to increase crop water productivity, i.e. 30 

have “more crop per drop” (Giordano et al., 2006). The volume of water needed to produce a unit of a crop can be measured 

by the water footprint (WF). The consumptive WF of a crop is calculated as the ratio of crop water use (CWU) to crop yield 

(Hoekstra, 2011). CWU reflects the amount of accumulated evapotranspiration (ET) over the crop’s growing season and can 

be attributed to two water types: green – water from rainfall, and blue – water from capillary rise and/or irrigation. ET is 

usually modelled rather than measured in the field, especially if the focus of studies covers large areas or several alternative 35 

crop management practices are assessed (e.g. different irrigation strategies or mulches). Crop yields are commonly measured 

during the harvest but can be also modelled together with ET to explore feedback loops between crop growth and water 

availability (Hoekstra, 2011). 

Since its introduction in 2002, the WF concept has been widely applied to analyse water use in crop production (Feng et al., 

2021; Lovarelli et al., 2016). However, most studies either focus on a small geographical extent (e.g. specific watersheds or 40 

administrative units) or consider a short time period. The only few global studies focus on the average year 2000 (Mekonnen 

and Hoekstra, 2011; Siebert and Döll, 2010; Tuninetti et al., 2015), and thus they lack the analysis of historical trends and 

interannual variability in crop WFs. Moreover, the methods used to estimate the green and blue WFs in these studies can be 

improved in various aspects: (i) they apply a crop water requirement approach which does not simulate crop growth and its 

response to abiotic stresses (e.g. from extreme temperatures or water deficits); (ii) the water balance is simulated without 45 

considering capillary rise that can be quite relevant in areas with shallow groundwater (Hoekstra et al., 2012a); (iii) green-

blue water separation is performed in post-processing rather than tracing it directly during the modelling, which leads to the 

lower accuracy of WF estimates (Hoekstra, 2019). Alternatively to these studies, crop WFs can be calculated at high spatial 

and temporal resolutions with process-based global gridded crop models (GGCMs). These models (such as LPJmL, EPIC, 

and DSSAT) typically simulate crop growth and water use from the underlying biophysical processes in the atmosphere-50 

plant-soil continuum for each grid cell independently or with couplings between grid cells (Müller et al., 2017). Due to high 

computational demands, there is a limited body of literature that applies GGCMs, with topics varying from irrigation 

demand estimation (McNider et al., 2015), climate change impact assessment (Rosenzweig et al., 2014; Ruane et al., 2018), 

and yield gap analysis (Wang et al., 2021). To our knowledge, global crop WFs have never been studied with GGCMs. 

In this paper, we present a new GGCM – AquaCrop-Earth@lternatives (ACEA) – with a primary focus on crop water 55 

productivity. ACEA is a gridded version of FAO’s standalone process-based and water-driven crop growth model AquaCrop 

(Steduto et al., 2009). This model is widely applied for crop water productivity studies because it requires a small number of 

inputs to produce reliable estimates of crop yields as well as CWU under different agro-climatic conditions (Araya et al., 

2016; Greaves and Wang, 2016; Karandish and Hoekstra, 2017; Maniruzzaman et al., 2015; Chukalla et al., 2015; Zhuo et 

al., 2016). In recent years, several studies applied originally site-based AquaCrop at the regional scale by coupling it with a 60 

GIS software (Lorite et al., 2013; Huang et al., 2019; Han et al., 2020). However, in this implementation, AquaCrop 

demands inputs for each simulation site as separate files, which increases modelling complexity and makes global crop 

simulations extremely demanding on computational resources. To overcome this limitation in ACEA, we utilise the open-
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source version of AquaCrop developed by Foster et al. (2017) – AquaCrop-OS. We optimise AquaCrop-OS for 

computationally efficient large scale simulations by minimising the number of input and output files and by parallelising the 65 

modelling procedure. Furthermore, we implement the daily tracing of green and blue water fluxes in each grid cell to allow 

accurate estimation of green and blue crop water productivity. 

To demonstrate its performance, we apply ACEA to simulate maize WFs during 1986-2016 at 5 x 5 arc minute resolution 

(~8.3 km x 8.3 km), while accounting for historical changes in cropland extent. We focus on maize because it is the most-

produced crop in the world (FAOSTAT, 2021) and its WFs are not as extensively researched as WFs of other major crops, 70 

such as rice and wheat (Chapagain and Hoekstra, 2011; Mekonnen and Hoekstra, 2010). In our analysis, we reveal temporal 

and spatial patterns in both unit WFs of maize (in m3 t-1 y-1) and total WFs of maize production (in m3 y-1) at global and 

regional levels. In the end, we compare our results to estimates from previous studies and discuss both limitations and 

advantages of crop water productivity analysis with ACEA. 

2 Data and methods 75 

2.1 Global gridded crop model ACEA 

2.1.1 General model description 

The AquaCrop-Earth@lternatives (ACEA) model is a process-based global gridded crop model (GGCM) specifically 

developed to calculate crop water productivity at high spatial and temporal resolutions while requiring a minimum set of 

input data. Each grid cell is simulated independently via a three-stage procedure as shown in Fig. 1. 80 

 
Figure 1: Schematic representation of ACEA’s simulation procedure in each grid cell. 

In the first stage, ACEA collects crop and environmental input data for each grid cell within the study area. The resolution of 

input data determines the size of grid cells, and the geographical extent of rainfed and irrigated crop production systems 

determines the number of grid cells. Depending on the production system, one or multiple simulation scenarios are selected. 85 

The rainfed scenarios include rainfed (scenario 1) and rainfed with a presence of shallow groundwater (scenario 2). The 
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irrigation scenarios include surface irrigation (scenario 3), sprinkler irrigation (scenario 4), drip irrigation (scenario 5), and 

surface irrigation with a presence of shallow groundwater (scenario 6). Besides the simulation scenarios, field management 

practices (mulches, weed control, and bunds) and customized irrigation strategies are chosen if appropriate. A detailed 

simulation setup for this study is provided in Sect. 2.1.4. 90 

In the second stage, ACEA runs the AquaCrop-OS crop model (see Sect. 2.1.2) by iterating the grid cells within the study 

area. AquaCrop-OS simulates the crop growth and soil water balance on a daily time step without considering lateral flows 

to other grid cells. Thus, the grid cells are independent from each other and can be run in parallel depending on the available 

computational resources. Main output variables are crop yield and CWU that is attributed to one of the three water types: 

green, blue from irrigation, and blue from capillary rise. More information about the output variables is provided in Sect. 95 

S1.1.  

In the third stage, ACEA aggregates the raw outputs from each grid cell into gridded datasets. Then, it runs optional post-

processing procedures, such as WF calculation (see Sect. 2.1.3), crop yield scaling (see Sect. 2.1.4), and statistical analyses 

(see Sect. 2.1.5). The final gridded datasets are saved in a NetCDF format, which allows further crop water productivity 

analysis in any programming language or GIS software. 100 

2.1.2 AquaCrop-OS 

We use AquaCrop-OS version 6.0 (Foster et al., 2017) which is an open-source implementation of FAO’s standalone 

AquaCrop application (Vanuytrecht et al., 2014; Steduto et al., 2009). This crop model is process-based and uses crop, soil, 

climate, field and irrigation management data to simulate daily crop growth and the soil water balance. The soil water 

balance is calculated as the sum of water inflow (rainfall, irrigation, and capillary rise) and outflow fluxes (runoff, 105 

evapotranspiration, and deep percolation) among soil compartments. Crop development is temperature-driven via growing 

degree days (GDDs) and is ultimately expressed in biomass build-up. At the end of the growing season, the accumulated 

biomass is converted into a simulated crop yield via the harvest index, which is affected by water and temperature stresses. 

Note that AquaCrop-OS v6.0 cannot simulate the nutrient cycle or water salinity. For more information about AquaCrop, 

please refer to the associated literature (Raes et al., 2009; Steduto et al., 2009; Hsiao et al., 2009). 110 

We have implemented several changes to the original code (see Sect. S1.2). The most important change is the direct 

separation between green and blue water fluxes based on the method suggested by Hoekstra (2019). On a daily time step, all 

inflow and outflow water fluxes are accounted separately for every soil compartment. Each of these fluxes is attributed to 

one of three water types: green, blue from irrigation, and blue from capillary rise. Thus, it is possible to know the 

composition of soil moisture in terms of these three types when soil evaporation and root water abstraction (equal to crop’s 115 

transpiration) are calculated. The composition of consumed water is proportional to the water types stored in each soil 

compartment on a specific time step. 
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2.1.3 Water footprint calculation 

ACEA calculates the annual consumptive unit WF (m3 t-1 y-1) of a crop as the sum of three WF components (Hoekstra, 120 

2011): 
𝑊𝑊𝑊𝑊 = 𝑊𝑊𝑊𝑊𝑔𝑔 + 𝑊𝑊𝑊𝑊𝑏𝑏𝑏𝑏 + 𝑊𝑊𝑊𝑊𝑏𝑏𝑏𝑏 (1) 

where WFg is the green WF, WFbc is the blue WF from capillary rise, and WFbi is the blue WF from irrigation. Each WF 

component is calculated as the ratio of crop water use CWUx (mm y-1) of a water type x (g, bc, or bi) to crop yield Y (t ha-1 y-

1). To convert from mm y-1 into m3 ha-1 y-1, CWUx is multiplied by 10: 125 

𝑊𝑊𝑊𝑊𝑥𝑥 =
𝐶𝐶𝑊𝑊𝐶𝐶𝑥𝑥 ∗ 10

𝑌𝑌
(2) 

To obtain Y, the simulated crop yield Ys in AquaCrop-OS is corrected by two coefficients. The first one is a conversion 

coefficient from dry to fresh crop yield Kf (0.87 for maize); the second one is a yield scaling factor S, which is introduced to 

account for external developments not modelled by ACEA (explained in Sect. 2.1.4): 

𝑌𝑌 =
𝑌𝑌𝑠𝑠 ∗ 𝑆𝑆
𝐾𝐾𝑓𝑓

(3) 130 

The simulated rainfed and irrigated scenarios are combined to analyse rainfed and irrigated production systems. In the case 

of rainfed systems, the WFs of a water type x from scenario 1 (s1) and 2 (s2) are simply summed up as rainfed grid cells 

always have only one of those two scenarios. On the other hand, in irrigated systems, the same grid cell can have several 

irrigated scenarios at once (s3 to s6). Therefore, the WF of a water type x from each of the scenarios is multiplied by 

irrigation factor Ki. The latter is the fraction of irrigated harvested area under the respective irrigation method obtained from 135 

Jägermeyr et al. (2015): 

�

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑊𝑊𝑊𝑊𝑥𝑥 = 𝑊𝑊𝑊𝑊𝑥𝑥,𝑠𝑠1 + 𝑊𝑊𝑊𝑊𝑥𝑥,𝑠𝑠2

𝐼𝐼𝐼𝐼𝐼𝐼𝑅𝑅𝐼𝐼𝑅𝑅𝐼𝐼𝑅𝑅𝑅𝑅 𝑊𝑊𝑊𝑊𝑥𝑥 =  �𝑊𝑊𝑊𝑊𝑥𝑥,𝑏𝑏 ∗ 𝐾𝐾𝑏𝑏

𝑠𝑠6

𝑏𝑏=𝑠𝑠3

(4) 

2.1.4 Crop yield scaling 

Crop yield is scaled to incorporate external developments that cannot be modelled in ACEA. Some developments affect 

long-term trends in crop yields, such as changes in agricultural inputs (e.g. fertilizers, better crop varieties, machinery) or in 140 

environmental conditions (e.g. irrigation water quality). Some developments are short-term and cause interannual variability, 

such as disruptions due to political (e.g. civil wars), economic (e.g. food prices), and natural reasons (e.g. locust plague, 

flooding). Since these developments are not modelled in ACEA, Ys represents the maximum attainable values under water 

and temperature stresses only. Therefore, following previous studies (Mekonnen and Hoekstra, 2011; Siebert and Döll, 

2010), we use yield scaling factors to scale Ys to the official annual statistics reported by FAO (FAOSTAT, 2021). Because 145 

FAO reports crop production at the national scale, these factors are the same for all grid cells within one country regardless 

of the production system (see Fig. 2). 
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Figure 2: Calculation procedure of yield scaling factor at the national level. 

The yield scaling factors S are calculated per country per year as the ratio of the official crop production PFAO (t y-1) reported 150 

by FAO to the simulated crop production PACEA in ACEA. The latter is calculated as the sum of rainfed and irrigated 

production: 

𝑆𝑆 =
𝑃𝑃𝐹𝐹𝐹𝐹𝐹𝐹

∑  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑃𝑃𝐹𝐹𝐴𝐴𝐴𝐴𝐹𝐹 + ∑ 𝐼𝐼𝐼𝐼𝐼𝐼𝑅𝑅𝐼𝐼𝑅𝑅𝐼𝐼𝑅𝑅𝑅𝑅 𝑃𝑃𝐹𝐹𝐴𝐴𝐴𝐴𝐹𝐹
(5) 

⎩
⎪
⎨

⎪
⎧ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑃𝑃𝐹𝐹𝐴𝐴𝐴𝐴𝐹𝐹 =

(𝑌𝑌𝑠𝑠,𝑠𝑠1 + 𝑌𝑌𝑠𝑠,𝑠𝑠2) ∗ 𝐴𝐴𝑟𝑟𝑟𝑟𝑏𝑏𝑟𝑟𝑓𝑓𝑟𝑟𝑟𝑟
𝐾𝐾𝑓𝑓

𝐼𝐼𝐼𝐼𝐼𝐼𝑅𝑅𝐼𝐼𝑅𝑅𝐼𝐼𝑅𝑅𝑅𝑅 𝑃𝑃𝐹𝐹𝐴𝐴𝐴𝐴𝐹𝐹 = ��
𝑌𝑌𝑠𝑠,𝑏𝑏 ∗ 𝐾𝐾𝑏𝑏
𝐾𝐾𝑓𝑓

𝑠𝑠6

𝑏𝑏=𝑠𝑠3

� ∗ 𝐴𝐴𝑏𝑏𝑟𝑟𝑟𝑟𝑏𝑏𝑔𝑔𝑟𝑟𝑖𝑖𝑟𝑟𝑟𝑟

(6) 

where Ys is the simulated crop yield (t ha-1 y-1) in a specific scenario (rainfed: s1 and s2, irrigated: s3 - s6), Arainfed and Airrigated 155 

are historical rainfed and irrigated harvested areas (ha y-1), Ki is the fraction of irrigated harvested area covered by the 

respective irrigation method in each scenario, and Kf is the conversion coefficient from dry to fresh crop yield.  

To account for the historical changes in harvested areas, we extrapolate the MIRCA2000 data to the period of 1986-2016. 

The extrapolation is performed using two historical datasets on cropland extent HYDE 3.2 and HID (see Table 1) under the 

assumption that maize harvested areas experienced the same dynamics as the croplands did. A detailed description of the 160 

extrapolation procedure is provided in Sect. S1.7. 

The interannual variability in S can lead to large interannual variability in crop yields, and hence in WFs. However, we aim 

to capture the effect of long-term external conditions while maintaining the modelled climate-related interannual variability. 

Therefore, we take a three year moving average of scaling factors for each country (using the previous, current, and next 

year’s factors). This allows to keep the overall trend in historical crop yields and attenuate extreme responses to short-term 165 

external developments. 
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2.1.5 Statistical analyses of results 

The statistical analyses in our study are performed at several spatial scales according to the UN classification (UNSD, 2021): 

global, (sub)regional, and national. To obtain representative values for each scale, the WFs are averaged based on the 

production amounts, and related WF variables (Y, CWU, and S) are averaged based on the harvested areas in each grid cell. 170 

For the trend analysis of WFs and related variables, we use the Mann–Kendall test (Hussain and Mahmud, 2019), which 

identifies the direction and significance of a trend in time series. We further detrend the variables with significant trends to 

analyse interannual variations by removing a linear trend. The interannual variability is measured by estimating the 

coefficient of variation (CV) of detrended timeseries and the dependency between different variables is determined by the 

Pearson linear correlation coefficient (Brown, 1998). 175 

2.2 Simulation setup 

Data needed to run ACEA for global maize production during 1986-2016 are summarised in Table 1. We run ACEA at 30 x 

30 arc minute resolution (~50 km x 50 km), which is a common resolution in many GGCMs (Franke et al., 2020). The grid 

cells are selected according to the location of maize production systems obtained from MIRCA2000 (Portmann et al., 2010). 

We consider one growing season per year and simulation scenarios s1 to s4 (see Sect. 2.1.1) as s5 and s6 are not common in 180 

maize production. 

Table 1: Summary of input data used for maize crop modelling and post-processing in ACEA. 

Type Period Timestep Resolution Source 

Data for crop modelling in AquaCrop-OS (1984-2016) 

Climate inputs 1984-2016 daily 30 x 30 arc minutes GSWP3-W5E5 composite product (Lange, 2019) 

Atmospheric CO2 concentration 1984-2016 annual Global average NOAA (Dlugokencky and Tans, 2020) 

Crop parameters - - - AquaCrop's manual and crop files 

Crop calendar - - 30 x 30 arc minutes ISIMIP3 project (ISIMIP, 2020) 

Soil composition - - 30 x 30 arc minutes 
ISIMIP3 project (ISIMIP, 2020) based on 
Harmonized World Soil Database 1.12 

(Nachtergaele et al., 2008) 

Groundwater levels Average of 
2004-2014 monthly 5 x 5 arc minutes Fan et al. (2013) 

Data for setup and post-processing (1986-2016) 

Harvested areas Around 2000 annual 5 x 5 arc minutes MIRCA 2000 (Portmann et al., 2010) 

Irrigated cropland 1985-2005 5 year 5 x 5 arc minutes HID (Siebert et al., 2015) 

Irrigated and rainfed cropland 1980-2017 10 year till 2000 
then annual 5 x 5 arc minutes HYDE 3.2 (Klein Goldewijk et al., 2017) 

Maize production statistics 1986-2016 annual National FAO (FAOSTAT, 2020) 

 

Climate inputs for AquaCrop-OS are obtained from the GSWP3-W5E5 composite product (Lange, 2019) which provides 

historical daily rainfall, temperature, surface shortwave radiation, wind speed, and relative humidity. These variables (except 185 
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rainfall) are used together with a global elevation model (Amante, 2009) to estimate the potential evapotranspiration 

according to the Penman-Monteith equation (Allen et al., 1998). 

Crop parameters are obtained from the AquaCrop manual (Raes et al., 2018) and default maize crop file provided with 

AquaCrop-OS. In case of inconsistencies among these two sources, priority is given to data from the manual. The resulting 

set of maize parameters is generic, and thus crop development stages (in GDDs) for every grid cell are recalculated to ensure 190 

that the average growing season duration is similar to the one from the crop calendar (ISIMIP, 2020). This calendar is a 

composite of multiple recent data sources that rely on national and subnational statistics, remote sensing products, and 

modelling. Additional information on crop parametrisation is provided in Sect. S1.3. 

The soil profile is defined as one layer of 3 m depth with eight compartments ranging from 0.1 to 0.7 m in thickness. The 

selection of soil compartments is based on the analysis described in Sect. S1.4. Sand, silt, and clay fractions for each grid cell 195 

are obtained from the ISIMIP3 project (ISIMIP, 2020) which provides the fractions from the Harmonized World Soil 

Database 1.12 (Nachtergaele et al., 2008) upscaled to 30 x 30 arc minutes. The soil composition is then converted into 

hydraulic parameters using a pedotransfer function (Saxton and Rawls, 2006) provided in AquaCrop-OS. To ensure realistic 

initial soil moisture values, we run the model two years in advance of our study period (as described in Sect. S1.5).  

The average monthly groundwater levels are taken from Fan et al. (2013) and initially upscaled to 5 x 5 arc minutes using a 200 

resample function in QGIS (QGIS, 2021). We further upscale them to 30 x 30 arc minutes by taking average monthly values 

over underlying 5 x 5 arc minute grid cells where maize production and shallow groundwater (0-3 m in depth) are present. 

The final groundwater levels are lowered to 1 m depth under the assumption that farmers drain the agricultural field to avoid 

aeration stress (see Sect. S1.6).  

Following previous studies (Andarzian et al., 2011; Khoshravesh et al., 2013), irrigation events are triggered as soon as the 205 

soil moisture drops below 50 % of the maximum available soil water within the root zone. The amount of irrigated water in 

each of the irrigated scenarios is limited to field capacity and depends on the percentage of wetted area by the respective 

irrigation method (Chukalla et al., 2015). The conveyance efficiency is set to 100 % to provide the net irrigation 

requirement. No particular field management practices are activated due to a lack of data on where they are applied. 

The simulation results are downscaled to 5 x 5 arc minutes according to the location of rainfed and irrigated maize 210 

production systems in MIRCA2000 and location of shallow groundwater levels (only for sc2) of the same resolution. 

3 Results 

3.1 Average maize water footprints in 2012-2016 

The global average unit WF of maize is 723.2 m3 t-1 y-1 in 2012-2016. The share of green water (WFg) is 89.5 %, while the 

shares of blue water from capillary rise (WFbc) and irrigation (WFbi) are 2.2 % and 8.3 %, respectively. The distribution of 215 

WF around the world is shown in Fig. 3. The map indicates a distinct latitudinal distribution, which corresponds to a similar 

one in maize yields (see Fig. S1). Small WF values north of 20°N are mainly due to the high yields in main producing 
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regions: Northern America (WF is 481.2 m3 t-1 y-1; yield is 10.1 t ha-1), Europe (581.5 m3 t-1 y-1; 6.2 t ha-1), and Eastern Asia 

(624.6 m3 t-1 y-1; 5.9 t ha-1). On the other hand, the regions with low maize yields have substantially larger WF values and are 

mostly located in arid parts of the world that mainly rely on rainfed production systems (e.g. Middle and Eastern Africa). 220 

Rainfed systems (741.9 m3 t-1 y-1) show a 10 % larger unit WF than irrigated systems (674.1 m3 t-1 y-1). However, both the 

smallest and the largest regional WF (among regions with at least 0.5 % of global maize production) are located in areas 

dominated by rainfed production (see Table 2), with the largest one in Middle Africa (3379 m3 t-1 y-1) and the smallest one in 

Western Europe (416.2 m3 t-1 y-1). The smaller WF in the latter region can be explained by both a smaller CWU (i.e. lower 

ET rates) and a higher crop yield (see Fig. S1). The WF values also vary among areas dominated by irrigated production. For 225 

example, Eastern Asia (624.6 m3 t-1 y-1) has a twice smaller WF than Northern Africa (1170 m3 t-1 y-1) due to a smaller CWU 

while the yields in both regions are similar. The global maps with separated rainfed and irrigated maize WF can be found in 

Fig. S2.  

 
Figure 3: Average unit water footprint of maize in m3 t-1 y-1 as the average over 2012-2016 at 5 x 5 arc minute resolution. The grey area in the side 230 

chart represents the median of all data points along the respective latitude and the black line is the 10 % percentile of them. 

Table 2: Overview of global maize production and water footprint statistics as the average over 2012-2016 (except the coefficient of variation (CV) 
which is estimated for 1986-2016). CWU is crop water use and WF is water footprint (g - green, bc - blue from capillary rise, bi - blue from 
irrigation). The selection of regions is based on the UN classification (UNSD, 2021). 

Region 
Maize 

production 
(% of global) 

Irrigated 
[% of 

production] 

WF of 
production 
(% of global) 

Crop 
yield 

(t ha-1 y-1) 

Yield 
gap* 

CWU 
(mm y-1) 

WFg WFbc WFbi Unit WF 
(m3 t-1 y-1) 

Change in 
unit WF (relative 

to 1986-1990) 

CV of 
unit WF 

(% of unit WF) 

Eastern Africa 3.0% 3.7% 11.3% 1.8 88.1% 505.8 98.3% 0.2% 1.5% 2746.4 -24.3% 55.4% 
Middle Africa 0.6% 1.0% 2.9% 1.1 90.6% 375.0 99.2% 0.4% 0.3% 3378.9 -34.9% 41.8% 

Northern Africa 0.8% 98.6% 1.3% 5.8 64.2% 674.7 15.1% 0.0% 84.9% 1170.1 -29.4% 8.1% 
Southern Africa 1.2% 20.0% 1.6% 4.2 35.4% 429.7 95.7% 0.0% 4.3% 949.3 -65.2% 83.5% 
Western Africa 1.9% 0.7% 5.4% 1.6 85.2% 335.8 99.5% 0.3% 0.2% 2066.4 -22.8% 46.4% 

Africa 7.4% 15.2% 22.5% 2.0 84.5% 435.5 93.7% 0.3% 6.1% 2169.7 -28.1% 51.3% 
             

Caribbean 0.1% 56.6% 0.2% 1.3 86.4% 299.7 95.3% 0.1% 4.6% 2233.5 -25.3% 25.7% 
Central America 2.7% 26.4% 4.5% 3.3 74.7% 364.7 91.4% 0.4% 8.2% 1179.1 -42.7% 16.1% 

Northern America 35.3% 18.4% 23.1% 10.1 30.5% 478.1 86.8% 4.0% 9.3% 481.2 -28.6% 13.9% 
South America 11.9% 4.7% 12.2% 5.2 63.4% 386.4 96.6% 2.2% 1.2% 741.5 -57.2% 20.5% 

Americas 50.0% 15.6% 40.0% 7.4 47.4% 430.6 90.3% 3.0% 6.7% 583.8 -37.1% 15.6% 
             

Central Asia 0.2% 100.0% 0.2% 6.1 46.7% 478.3 31.9% 0.0% 68.1% 778.9 -43.2% 22.4% 
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Eastern Asia 23.1% 61.0% 19.9% 5.9 55.7% 367.4 82.3% 2.7% 15.0% 624.6 -28.6% 14.4% 
South-eastern Asia 4.0% 10.4% 3.6% 4.3 59.5% 277.6 98.2% 0.9% 0.9% 653.9 -59.9% 24.1% 

Southern Asia 3.4% 38.3% 4.3% 2.9 71.8% 265.4 87.4% 0.4% 12.2% 906.9 -52.6% 26.4% 
Western Asia 0.7% 38.9% 0.5% 7.0 31.6% 394.2 63.1% 0.4% 36.5% 562.4 -41.1% 33.8% 

Asia 31.4% 51.7% 28.6% 5.1 58.4% 335.1 84.4% 2.1% 13.6% 658.6 -39.1% 17.4% 
             

Eastern Europe 6.5% 5.2% 5.8% 5.3 52.7% 342.2 94.4% 4.0% 1.5% 655.0 -28.0% 53.6% 
Northern Europe 0.015% 12.0% 0.1% 6.4 37.5% 255.0 95.6% 3.5% 1.0% 401.7 -50.2% 56.2% 
Southern Europe 2.4% 51.8% 1.8% 7.9 41.3% 427.5 79.5% 5.1% 15.4% 543.2 -28.2% 17.7% 
Western Europe 2.2% 21.4% 1.3% 9.1 32.3% 379.4 95.6% 1.3% 3.0% 416.2 -19.7% 9.5% 

Europe 11.1% 18.5% 8.9% 6.2 47.2% 361.0 91.6% 3.9% 4.5% 581.5 -24.2% 37.1% 
             

Australia & New Zealand 0.1% 95.4% 0.04% 8.2 30.8% 399.5 66.8% 0.0% 33.1% 490.9 -41.7% 10.5% 
Melanesia 0.001% 0.0% 0.001% 5.1 66.1% 320.7 99.2% 0.8% 0.0% 636.6 -72.0% 15.6% 

Oceania 0.1% 93.5% 0.04% 8.1 32.1% 397.0 67.6% 0.1% 32.3% 493.7 -42.3% 10.6% 
             

Average world - 27.3% - 5.4 58.3% 392.7 89.5% 2.2% 8.3% 723.2 -34.6% 21.3% 
* yield gap is estimated as: 100 % - yield scaling factor. 235 
Zooming to the national level, the average unit WF of maize of the nine biggest producing nations plus the EU 27 is 592.3 

m3 t-1 y-1 (88.3 % WFg, 2.9 % WFbc, and 8.9 % WFbi). Together, they produce 84.3 % of maize globally. The WF values 

range from 485.3 m3 t-1 y-1 in the USA to 1244 m3 t-1 y-1 in Mexico (see Fig. 4). The contribution of blue water from capillary 

rise WFbc is substantial in Argentina (7.6 % of WF), the USA (3.9 %), and the EU 27 (3.4 %). Among the EU 27 countries, 

the largest WFbc shares are in the Netherlands (26.1 %), Slovakia (13.7 %), and Hungary (9.6 %). The complete table with 240 

maize WFs of 148 countries can be found in Table S2. 

 
Figure 4: Average unit water footprint (g - green, bc - blue from capillary rise, bi - blue from irrigation) in m3 t-1 y-1 and percentage of global 

production of maize in the ten biggest maize producers during 2012-2016. 

In terms of the global WF of maize production (i.e. total water consumption), more than 91 % of water is consumed in 245 

Americas (40.0%), Asia (28.6%), and Africa (22.5%) as shown in Table 2. The shares of global production in Americas 

(50.0%) and Asia (31.4%) are larger than the shares of global WF, which indicates high crop water productivities. On the 

contrary, Africa’s share of global production is three times smaller than its share of the global WF, which indicates a low 

crop water productivity. 
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3.2 Historical trends in maize water footprints 

The global average unit WF of maize has reduced over the last decades as shown in Fig. 5. When compared to 1986-1990, 

the average WF of 2012-2016 is 34.6 % smaller. However, not all WF components reduce by the same magnitude. WFg and 

WFbc have reduced by more than one third between the two periods (-35.8 % and -39.4 %, respectively), while WFbi has 

reduced by 14.4 %. To explain the decreasing trend in WF, the main contributing factors (see Sect. 2.1.3)  – simulated yield 255 

(Ys), crop water use (CWU), and yield scaling factor (S) – are analysed with the Mann–Kendall trend test (Hussain and 

Mahmud, 2019). This test detects significant increasing trends in S (+56.1 % since 1986; p = 1.35 x 10-14) and CWU (+0.1 % 

since 1986; p = 5.90 x 10-3), and no significant trend in Ys (p = 0.29). Subsequent correlation analysis shows that WF 

significantly correlates only with S (r = -0.97, t = -20.64) and CWU (r = -0.51, t = -3.19). Hence, the reduction in WF can be 

mainly attributed to the increase in S, which is a factor that reflects external developments that cannot be modelled with 260 

ACEA (see Sect. 2.1.4). Once detrended, WF correlates significantly only with Ys (r = -0.73; t = -5.69), and thus the 

interannual variations in WF are mainly driven by crop response to climatic variability reflected in Ys. For example, the WF 

peaks around 1988 and 2012 (see Fig. 5) are likely due to extreme La Nina-driven droughts in major maize producing areas 

which caused substantial drops in crop yields (Iizumi et al., 2014; Rippey, 2015). A summary of global annual WFs and 

main contributing factors during 1986-2016 is provided in Table S3. 265 

 
Figure 5: Global trends in average unit water footprints of maize (g - green, bc - blue from capillary rise, bi - blue from irrigation) in m3 t-1 y-1 and 

yield scaling factors from 1986 to 2016.  

All major maize producing areas show a smaller unit WF of maize (i.e. increase in crop water productivity) in 2012-2016 

compared to 1986-1990 (see Fig. 6). The regions with the largest WF reductions are Melanesia (-72.0 %), Southern Africa (-270 

65.2 %), and South-eastern Asia (-59.9 %), which indicates substantial increases in their maize yields. On the other hand, the 

regions with the smallest reductions are Western Europe (-19.7 %) and Western Africa (-22.8 %). In the case of Western 

Europe, this is a result of already small WF in 1986-1990 (518.4 m3 t-1 y-1), and thus there was a low potential for WF 

reduction. In the case of Western Africa, there was a high reduction potential, but it was barely realised likely due to 

underlying socio-economic limitations (Smale et al., 2011). 275 
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Figure 6: Relative change of unit water footprint of maize from the average of 1986-1990 to the average of 2012-2016 at 5 x 5 arc minute resolution. 

At the national scale, countries that together account for 95 % of global maize production show a 32.9 % smaller unit WF of 

maize in 2012-2016 compared to 1986-1990 (see Fig. 7). Reductions of more than 50 % are in Brazil, Indonesia, South 

Africa, the Philippines, Vietnam, Pakistan, and Paraguay (see Table S2). These countries mostly rely on rainfed systems, and 280 

thus the WF reduction is mainly due to a smaller WFg. On the other hand, there are three countries with a WF increase: +10.0 

% in the Democratic Republic of Congo, +13.1 % in Kenya, and +33.1 % in the Democratic People's Republic of Korea. In 

total, these three countries produce only 0.77 % of maize globally. 

  
Figure 7: Comparison of the national unit water footprints of maize (m3 t-1 y-1) between the average of 1986-1990 and the average of 2012-2016. The 285 

black line represents no change and the grey dotted lines show +30 % and -30 % changes in unit water footprint. 

The global WF of maize production has increased by 48.8 % since 1986 peaking at 762.9 x 109 m3 y-1 in 2016 (see Fig. 8). 

This increase differs among rainfed and irrigated systems. In rainfed systems, the consumption of green water and blue water 

from capillary rise have increased by 36.3 % and 33.8%, respectively. In irrigated systems, the consumption of green water 

and blue water from irrigation have increased by 114.4 % and 76.4%, respectively. The Mann–Kendall trend test detects 290 
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significant increasing trends in the two main contributing factors to the global WF of maize production: rainfed harvested 

area (+36.7 % since 1986; p = 2.48 x 10-8) and irrigated harvested area (+110.0 % since 1986; p = 1.55 x 10-14). Subsequent 

correlation analysis shows significant correlation with both factors (r = 0.98 each). Hence, the expansion of maize cropland 

increases global maize water consumption despite the reduction in unit WF. The detrended WF of maize production correlate 

significantly with the detrended harvested areas (rainfed r = 0.95; irrigated r = 0.88), which means that historical changes in 295 

maize cropland are responsible for its interannual variations. 

 
Figure 8: Regional trends in the water footprints of maize production (109 m3 y-1) and harvested areas (106 ha y-1) from 1986 to 2016. Oceania is not 

shown due to its negligible contribution. 

Most of the maize cropland expansion has occurred in Asia and Africa (+81.6 % and +76.5 %, respectively), which led to 300 

substantial increases in the WFs of maize production (+94.4 % and +60.2 %). At the same time, Americas and Europe have 

also increased their WFs of production (+27.1 % and +24 %), but the cropland expanded moderately (+25.7 % and +15.4 %). 

One of the main reasons behind a larger increase in WFs of production than in harvested areas lies in the substantial 

expansion of irrigated systems. They have a larger CWU than rainfed systems (+14 % on average), and hence the regions 

with a rapid expansion of them, such as +175.9 % in Asia (compared to +37.1 % in rainfed systems), experience an increase 305 

in the average CWU. As a result, the share of irrigated maize in the global WF of maize production has increased from 

19.1% in 1986 to 26.0% in 2016. 

3.3 Interannual variability in maize water footprints 

The interannual variability in unit WF of maize is analysed using the coefficient of variation (CV) estimated for the 

detrended values during 1986-2016. The global average CV for this period is 21.3 %: 8.4 % in irrigated systems and 28.8 % 310 

in rainfed systems. The variability in rainfed systems differs around the world depending on maize yield response to water 

availability. For instance, the average CV of regions with capillary rise contribution is 14.7 %, while many arid parts of Sub-

Saharan Africa that completely rely on rainfall have CV values higher than 100 % (see Fig. 9). On the other hand, the WF 

variability in irrigated systems is generally low in all regions as also suggested by previous studies (Kucharik and 
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Ramankutty, 2005; Osborne and Wheeler, 2013). The interannual variability also depends on the level of agricultural 315 

development and socio-economic stability (as reflected by yield scaling factors). In Western Europe, the average CV is 9.5 % 

despite being mostly rainfed, while in Central Asia the average CV is 22.4 % despite being 100 % irrigated. The CV values 

of other regions are listed in Table 2. 

 
Figure 9: Coefficient of variation of the detrended unit water footprints of maize during 1986-2016 at 5 x 5 arc minute resolution. The grey area in 320 

the side chart represents the median of all data points along the respective latitude and the black line is the 10 % percentile of them. 

4 Discussion 

4.1 Comparison of results with literature 

4.1.1 Average maize water footprints around 2000 

Three previous studies have estimated maize WFs at the global scale with a distinction between green and blue water (see 325 

Table 3). All three focus on the period around the year 2000, and thus we average our results for a similar period to make the 

comparison (1996-2005). Both our and previous studies agree on the dominant role of green water in the global average unit 

WF of maize (~90%). However, previous studies show larger unit WF estimates compared to the present study: +24 % by 

Siebert and Döll (2010), +20 % by Mekonnen and Hoekstra (2011), and +12 % by Tuninetti et al. (2015). These WF 

differences are likely caused by different methods applied to estimate CWU since the differences in the global average crop 330 

yields are relatively small (-4 % to +12 %). 
Table 3: Comparison of ACEA results for maize with other global gridded studies. Numbers in brackets indicate the difference compared to the 
results of ACEA. 

Source Water footprint calculation approach Shallow 
groundwater 

Averaging 
period 

Crop yield [t-1 ha-1] Average unit water footprint 
[m3 t-1 y-1] 

Rainfed Irrigated Green Blue Total 

Our study 
Process-based and water-driven model 
in growing degree days with incorporated 
green-blue separation 

Considered 1996-2005 
(with trend) 4.3 5.4 792 88 880 
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Siebert and 
Döll (2010) 

Daily soil water balance model and crop 
coefficient approach with green-blue 
separation in post-processing 

Not Considered 1998-2002 
(with trend) 

4.1 
(-4%) 

5.7 
(+6%) 

969 
(+22%) 

120 
(+36%) 

1089 
(+24%) 

Mekonnen and 
Hoekstra 
(2011) 

Similar to Siebert and Döll (2010), but for one 
representative year Not Considered 1996-2005 

(no trend) 
4.1 

(-4%) 
6 

(+12%) 
947 

(+20%) 
81 

(-8%) 
1028 

(+17%) 

Tuninetti et al. 
(2015) 

Crop coefficient approach with 
evapotranspiration and crop yields from 
literature 

Not Considered 1996-2005 
(with trend) - - 886* 

(+12%) 
47* 

(-47%) 
933 

(+6%) 

* approximate estimates from the reported total water consumption as unit water footprint components were not explicitly provided. 

The study by Siebert and Döll (2010) estimates a larger green (+22 %) and blue CWU (+36 %) compared to our study. One 335 

of the reasons for these higher estimates is that the authors assume a pre-defined root depth and canopy development (linear 

interpolation between crop factors in the initial, mid and late season stages), whereas in our study both of them are driven by 

daily temperature and water availability. The latter is particularly important since water stress leads to stomatal closure, 

which reduces crop transpiration. Therefore, crop transpiration and root water uptake in ACEA are likely to be smaller 

leading to reduction in CWU values. There are several other reasons for differences in CWU between the two studies, but to 340 

what degree they explain the lower estimates in ACEA is difficult to answer. Siebert and Döll (2010) consider a constant 

growing season duration using the crop calendar based on the year 2000, while in our model the growing season duration is 

temperature-dependent and the crop calendar is a composite of multiple recent data sources (see Sect. 2.1.4). Consequently, 

crop calendar days differ among the two studies leading to different daily weather conditions and growing season durations. 

This results in different ET rates accumulated over the crop cycle, and hence different CWU values. Moreover, the authors 345 

estimate green and blue CWU in post-processing, which is less accurate than tracing it directly during the modelling as in 

ACEA (see Sect. 2.1.2). The authors also cover a shorter historical period and use two older input datasets: climatic data that 

directly affects water availability and ET rates, and harvested area data that results in different sizes of rainfed and irrigated 

systems, which are important in the global averaging of results. 

The study by Mekonnen and Hoekstra (2011) also shows a larger green CWU (+20 %) but a blue CWU is smaller (-8 %). 350 

The authors use a relatively similar modelling approach as Siebert and Döll (2010), but they simulate only one representative 

year, which neglects the interannual variability in climatic variables as well as trends in agricultural development and 

harvested areas. Therefore, CWU estimates do not capture years with abnormal weather (wet, dry, cold, warm). 

Tuninetti et al. (2015) also report a larger green CWU (+12 %) but smaller blue CWU (-47 %). The authors do not model the 

reference evapotranspiration and crop yields (as the other studies do) but take them from literature instead. Moreover, they 355 

equalize blue CWU to irrigation supply which is calculated using independent data sources of different temporal and spatial 

resolutions. 

Due to limitations on data availability, we only compare our national unit WF estimates to Mekonnen and Hoekstra (2011). 

Both studies correlate well (r = 0.95) as shown in Fig. 10. Among 148 considered countries, 52 have a unit WF difference of 

more than 30 % and countries that produce 95 % of maize globally have on average the difference of 15.3 %. 360 
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Figure 10: National comparison of unit water footprints of maize (m3 t-1 y-1) around 2000 with Mekonnen and Hoekstra (2011). The black line 

represents no difference and the grey dotted lines show +30 % and -30 % differences in unit water footprint. 

The methodological differences among these three studies also lead to different estimates of the global WFs of maize 

production. Compared to our study, Siebert and Döll (2010) and Mekonnen and Hoekstra (2011) show similar directions and 365 

magnitudes of differences and report 17-19 % larger estimates (37-40 % larger green but 43-60 % smaller blue), while 

Tuninetti et al. (2015) report a 50 % larger estimate (85 % larger green but 68 % smaller blue). 

4.1.2 Historical trends and variability in maize water footprints 

We are not aware of any other study that simulates maize WFs for the same time period as our study. However, the 

comparisons of WFs and main contributing factors can be done for a few historical periods. For example, the recent 370 

literature review of 70 related studies (during 2002-2018) by Feng et al. (2021) reports a global average unit WF of maize of 

730 m3 t-1 y-1 with a CV of 15.9 %. This aligns well with our estimate of 723.2 m3 t-1 y-1 with a CV of 21.3%. Approximate 

comparisons can be also done for maize yield gaps. Three studies estimate the global yield gaps around 2000 in a range of 

50-64 % (Licker et al., 2010; Mueller et al., 2012; Neumann et al., 2010). Our estimate of the water-limited yield gap for 

1996-2005 in ACEA is 67%. Two more recent studies report yield gaps around 2010 for several locations in different 375 

regions (Hoffmann et al., 2018; Edreira et al., 2018). Their estimates show similarities to our study (calculated for 2012-

2016): 80 % yield gap in Sub-Saharan Africa (75 % in ACEA), 20 % in Northern America (30.5 % in ACEA), and 38 % in 

East Asia (55.7 % in ACEA). More pessimistic results of our study are likely due to differences in yield-limiting factors and 

cropland extents. 
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4.2 Strengths and weaknesses of ACEA 380 

4.2.1 Advancing crop water productivity research 

ACEA is the first process-based GGCM that can trace the fluxes of green water, blue water from capillary rise, and blue 

water from irrigation within the soil profile on a daily time step. This allows to accurately distinguish between green and 

blue crop water productivity (Hoekstra, 2019). To demonstrate usefulness of this distinction, we highlight the importance of 

accounting blue water from capillary rise as its contribution to the national WF of maize production can amount to 25 % (see 385 

Sect. 3.1). Furthermore, the open-source nature and advanced functionality of ACEA facilitates simulations of various 

alternative management packages (e.g. field management practices, irrigation methods and strategies). This allows studying 

responses of crop water productivity to various environmental and managerial changes. 

4.2.2 Uncertainties in global crop modelling 

Global gridded crop modelling is a complex process that contains several uncertainties (Folberth et al., 2019) and ACEA is 390 

not an exception. Most of uncertainties originate from spatial and temporal resolutions of input datasets rather than from the 

model itself. In our study, we model maize production at 30 x 30 arc minute resolution meaning that input datasets with finer 

resolutions have to be upscaled, such as soil characteristics and shallow groundwater levels (see Sect. 2.2). Then, we 

downscale simulation results to 5 x 5 arc minute resolution, which leads to uncertainty in crop yields and CWU estimates as 

they do not reflect the exact environmental conditions in each 5 x 5 arc minute grid cell. Alternatively, ACEA can be run at 5 395 

x 5 arc minutes but this is not feasible for our study due to high computational requirements and input data limitations (see 

Sect. 2.2). 

Next, maize crop parameters are based on a single cultivar calibrated for several agro-climatic conditions by FAO (Hsiao et 

al., 2009). Therefore, the regional and historical differences in crop genetics such as water productivity, root depth, and 

abiotic stress responses are not considered. Moreover, the lack of subnational data needed to generate reliable crop calendars 400 

results in a poor representation of spatial variability in planting and harvest dates. Thus, the start and duration of growing 

seasons might be miscalculated which, again, leads to uncertainties in simulated crop yields and CWU. We also assume the 

same soil moisture-based rule for irrigation application in all grid cells. In reality, farmers decide when and how much to 

irrigate based on site-specific conditions such as access to water and technological inputs. Note that the current version of 

ACEA does not consider chemical cycles between a crop and the environment. Therefore, the biomass accumulation stresses 405 

from water salinity and insufficient nutrient intake are not simulated but captured in the national yield scaling factors (see 

Sect. 2.1.4).  

The post-processing of results also contains uncertainties. In particular, the geographical extent of maize production plays an 

important role during spatial averaging. To our knowledge, we make the first-ever attempt to temporally extrapolate maize 

harvested areas (see Sect. S1.6); hence, our gridded estimates for rainfed and irrigated systems are only approximate. These 410 

uncertainties are particularly relevant when zooming to smaller geographical scales (e.g. analysis of small countries). 
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4.2.3 Future prospects 

In this paper, we apply ACEA to study the historic and current state of maize WFs in the world. However, maize covers only 

a fraction of overall crop production globally, and hence WFs of other crops should be analysed to provide a complete 

overview of developments in crop water productivity and water consumption worldwide. Furthermore, regional impacts of 415 

crop production on ecosystems and freshwater resources can only be assessed by relating the total WF of production 

(agricultural, industrial, and domestic) to maximum sustainable levels within a given geographical unit (Bunsen et al., 2021; 

Hoekstra et al., 2012b; Liu et al., 2017; Hogeboom et al., 2020). WFs in crop growing areas that already overshoot (or soon 

to overshoot) these levels can be further assessed in ACEA to propose potential measures of WF reduction, such as more 

efficient irrigation and field management (Chukalla et al., 2015, 2017; Campbell et al., 2017; Nouri et al., 2019) or change of 420 

cropping patterns (Chouchane et al., 2020). 

5 Conclusions 

This study introduces a new process-based global gridded crop model – AquaCrop-Earth@lternatives (ACEA) – that can 

simulate crop water productivity at high spatial and temporal resolutions. The main novelty of ACEA lies in its ability to 

trace fluxes of green water, blue water from capillary rise, and blue water from irrigation within the soil profile on a daily 425 

time step. This allows to estimate the precise contribution of these three water types to the final crop WF. 

We apply ACEA to analyse global maize WFs during 1986-2016 at 5 x 5 arc minute resolution. Our results show that, in 

2012-2016, the global average unit WF of maize is 723.2 m3 t-1 y-1 with a dominant role of green water (89.5 % of total), 

followed by blue water from irrigation (8.3%), and blue water from capillary rise (2.2%). Despite being minor at the global 

scale, the role of blue WF from capillary rise becomes substantial when zooming to regions with a wide presence of shallow 430 

groundwater tables. We also find that rainfed areas with capillary rise contribution have a twice lower interannual variability 

in unit WF (CV of 14.7%) than rainfed areas without such contribution (28.8%). However, the lowest interannual variability 

is found in irrigated areas (8.4%).  

Spatial and temporal patterns in maize unit WFs are mostly determined by crop yields. Regions with small yield gaps and/or 

favourable climate conditions (e.g. low ET rates, sufficient rainfall) have a small unit WF and its interannual variation, such 435 

as Western Europe and Northern America (WF < 500 m3 t-1 y-1, CV < 15%). Regions with large yield gaps have opposite 

outcomes, such as Middle and Eastern Africa (WF > 2500 m3 t-1 y-1, CV > 40%). Consequently, these regions have potential 

to substantially reduce their unit WFs of maize, and hence to improve local food and water security. 

Our results also reveal a rebound effect of global crop water productivity gains: the average unit WF of maize has decreased 

by one third since 1986, but the WF of maize production has increased by almost one half reaching 762.9 x 109 m3 y-1 in 440 

2016. This dynamic is mainly driven by two factors: decreasing yield gaps and expanding croplands. Since decreasing yield 

gaps are insufficient to satisfy the global maize demand, farmers started expanding both rainfed and irrigated croplands. 
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Consequently, more and more maize is cultivated which increases maize’s water consumption worldwide (mostly in Asia 

and Africa).  

As maize production consumes more water than ever before, it is important to evaluate other crops in ACEA too. This would 445 

advance the understanding of temporal and spatial patterns in WFs of crops as well as allow assessing the pressure of crop 

production on ecosystems and freshwater resources worldwide. 
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