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Abstract. Crop water productivity is a key element of water and food security in the world and can be quantified by the water 

footprint (WF). Previous studies have looked at the spatially explicit distribution of crop WFs but little is known about thetheir 

temporal dynamics. We develop a new global gridded crop model –Here, we present AquaCrop-Earth@lternatives (ACEA) – 10 

a new process-based global gridded crop model that can simulate three consumptive WF components: green (WFg), blue from 

irrigation (WFbi), and blue from capillary rise (WFbc) at high temporal and spatial resolutions.). The model is applied to analyse 

global maize production duringin 1986-2016 at 5 x 5 arc minute grid.spatial resolution. Our results show that inover the 2012-

2016 period, the global average unit WF of maize is 723.2728.0 m3 t-1 y-1 (89.591.2 % WFg, 8.37.6 % WFbi, 21.2 % WFbc) with 

values varying greatly around the world. Regions characterised by high agricultural development generally show a small unit 15 

WF and its interannual variation, such aswith high-input agriculture (e.g. Western Europe and Northern America (WF < 500 

m3 t-1 y-1, CV < 15%). On the contrary,) show small unit WFs and low interannual variability, while low-input regions with 

low agricultural development show opposite outcomes, such as (e.g. Middle and Eastern Africa (WF > 2500 m3 t-1 y-1, CV > 

40%). Since). From 1986 to 2016, the global average unit WF of maize has reduced by 34.6 %a third, mainly due to the 

historical decreaseincrease in yield gapsmaize yields. However, due to the rapid expansion of rainfed and irrigated 20 

croplandareas, the global WF of maize production has increased by 48.8 %half, peaking at 762.9768.3 x 109 m3 y-1 in 2016. 

As many regions still have a high potential in decreasingclosing yield gaps, the unit WF of maize is likely to continue reducing, 

whereas the WF of maize production isWFs are likely to continue growing asreduce further. Simultaneously, humanity’s rising 

appetite can leaddemand for food and biofuels may further expand maize areas, hence increase WFs of production. Thus, it is 

important to further cropland expansion. The simulation of other crops with ACEA is necessary to assess the pressure of overall 25 

crop production onaddress the sustainability and purpose of maize production, especially in those regions where it might 

endanger ecosystems and freshwater resources worldwidehuman livelihoods. 

1 Introduction 

The ever-increasing demand for crops pushescrop production is one of the reasons why humanity towards the environmental 

limits of our planettransgresses planetary boundaries (Campbell et al., 2017; Jaramillo and Destouni, 2015). In particular, crop 30 
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production is responsibleestimated to account for around 87 % of humanity’s total water consumption in the world (Hoekstra 

and Mekonnen, 2012) which, in many places, already exceeds the sustainable limits posing risks to local water security 

(Hoekstra et al., 2012b; Schyns et al., 2019) and further deterioration can be expected in the future, which in some places 

already exceeds the environmental limits endangering local ecosystems and water security (Hoekstra et al., 2012b; Schyns et 

al., 2019; Verones et al., 2017). Moreover, the situation is likely to worsen in the future as crop water consumption continues 35 

to grow (Wada and Bierkens, 2014; Greve et al., 2018). 

One way to minimize thecrops’ pressure on water resources posed by crop production is to increase crop water productivity, 

i.e. have “more crop per drop” (Giordano et al., 2006). The volume of water needed to produce a unit of a crop can be measured 

by the consumptive water footprint (WF). The consumptive WF of a cropIt is calculated as the ratio of crop water use (CWU) 

toover crop yield (Hoekstra, 2011). CWU reflects the amount of accumulated evapotranspiration (ET) over the crop’s growing 40 

season and can be attributed to two water types: green – water from rainfall, and blue – water from capillary rise and/or 

irrigation. ET is usually modelled rather than measured in the field, especially if the focus of studies covers large areas or 

several alternative crop management practices are assessed (e.g. different irrigation strategies or mulches). Crop yields are 

commonly measured during the harvest but can be also modelled together with ET to explore feedback loops between crop 

growth and water availability (Hoekstra, 2011).CWU reflects the amount of accumulated evapotranspiration (ET) over the 45 

growing season and can be attributed to green (from precipitation) and blue water (from capillary rise (CR) and irrigation). 

Crop yield reflects the harvestable part of crop biomass. 

Since its introduction in 2002, the WF concept has been widely applied to analyse crop water use in crop 

productionproductivity (Feng et al., 2021; Lovarelli et al., 2016). However, most studies either focus on a small geographical 

extent (e.g. specific watershedscatchments or administrative units) or consider a short time period. The only few existing global 50 

studies focus on the average year 2000 (Mekonnen and Hoekstra, 2011; Siebert and Döll, 2010; Tuninetti et al., 2015), and 

thus they lack the analysis of historical trends and interannual variability in crop WFs. Moreover, thetheir methods used to 

estimate the green and blue WFs in these studies can be improved in various aspectscrop WFs have several limitations: (i) they 

apply athe applied crop water requirement approach which does not simulate crop growth and its response to abioticthermal 

stresses (e.g. from extreme temperatures or water deficits);; (ii) the water balance is simulated without considering capillary 55 

riseCR that can be quite relevant in areas with shallow groundwater (Hoekstra et al., 2012a); (iii) the green-blue water 

separationpartitioning is performed in post-processing rather than tracing it directly during the modelling, which leads todoes 

not account for the lower accuracyfull dynamics of WF estimatesgreen and blue water fluxes in the soil water balance 

(Hoekstra, 2019). Alternatively to these studies, crop WFs can be calculated at high spatial and temporal resolutionssimulated 

with process-based global gridded crop models (GGCMsGGCM). These models (such ase.g. LPJmL, EPIC, and DSSAT) 60 

typically simulate crop growth and water use from the underlying biophysical processes in the atmosphere-plant-soil 

continuum forin each grid cell independently or with couplings between grid cells (Müller et al., 2017). Due to high 

computational demands, there is a limited body of literature that applies GGCMs, with topics varying from irrigation demand 

estimation (McNider et al., 2015), climate change impact assessment (Rosenzweig et al., 2014; Ruane et al., 2018), and yield 
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gap analysis (Wang et al., 2021). To our knowledge, global crop WFs have never been studied with GGCMs.a limited body 65 

of literature applies GGCMs. The most prominent studies come from the Global Gridded Crop Model Intercomparison 

(GGCMI) within the Agricultural Model Intercomparison and Improvement Project (Rosenzweig et al., 2013; Elliott et al., 

2015) that mainly uses ensembles of GGCMs to analyse climate change impacts on crop production (Ruane et al., 2018; 

Jägermeyr et al., 2021a; Minoli et al., 2019; Zabel et al., 2021; Deryng et al., 2016). Besides GGCMI, several studies look into 

spatial patterns of crop water productivity but not into historical dynamics (Liu et al., 2009; Fader et al., 2010; Liu et al., 2016). 70 

In this paper, we present a new GGCM – AquaCrop-Earth@lternatives (ACEA) – with a primary focus on crop water 

productivity. ACEA is a gridded version of FAO’s standalone process-based and water-driven crop growth model AquaCrop 

(Steduto et al., 2009). This model is widely applied for crop water productivity studies because it requires a small number of 

inputs to produce reliable estimates of crop yields as well as CWU under differentIn this paper, we present AquaCrop-

Earth@lternatives (ACEA) – a global gridded version of FAO’s water-driven, process- and site-based crop growth model 75 

AquaCrop (Vanuytrecht et al., 2014; Steduto et al., 2009). We use AquaCrop because it requires a small number of inputs to 

produce reliable estimates of crop yield and CWU under various agro-climatic conditions (Araya et al., 2016; Greaves and 

Wang, 2016; Karandish and Hoekstra, 2017; Maniruzzaman et al., 2015; Chukalla et al., 2015; Zhuo et al., 2016). In recent 

years, several studies applied originally site-based AquaCrop it at the regional scale by coupling it with avia GIS software 

(Lorite et al., 2013; Huang et al., 2019; Han et al., 2020). However, in this implementation, AquaCrop demands inputs for 80 

each simulation site asin separate files, which increases modelling complexity and makes global crop simulations extremely 

demanding on computational resources.can be computationally inefficient. To overcome this limitation in, ACEA, we utilise 

utilises the open-source version of AquaCrop developed by Foster et al. (2017) – AquaCrop-OS.Kelly and Foster (2021) – 

AquaCrop-OSPy. We optimise AquaCrop-OS for computationally efficientACEA for large scale simulations by minimising 

the number of input and output files and by parallelising the modelling procedure. Furthermore, we implement the daily 85 

tracingaccounting of green and blue water fluxes in each grid cell to allow accurate estimation of green and blue crop water 

productivitythe soil profile, including CR contributions from shallow groundwater. 

To Although ACEA can be applied to simulate all crops that are compatible with AquaCrop, we demonstrate itsACEA’s 

performance, we apply ACEA to simulate  by simulating global WFs of maize WFs during 1986-2016 (Zea mays L.) at 5 x 5 

arc minute resolution (~8.3 km x 8.3 km), while accounting for). We cover the 1986-2016 period, considering historical 90 

changes in cropland extent.harvested areas and crop yields. We focus on maize because of several reasons. First, it is the most-

produced cropgrain in the world (FAOSTAT, 2021) and its WFs are not as extensively researched as WFs of other major 

crops. Second, it plays a major role in the global economy by being used not only as food for animals (including humans) but 

also to produce biofuels and other biochemicals (Ranum et al., 2014). Finally, maize WFs are not as extensively researched as 

WFs of other major grains, such as rice and wheat (Chapagain and Hoekstra, 2011; Mekonnen and Hoekstra, 2010). In our 95 

analysis, we reveal temporal and spatial patterns in both unit WFs of maize (in m3 t-1 y-1) and total WFs of maize production 

(in m3 y-1) at global and regional levels. In the end, we compareWe conclude by comparing our results to estimates from 
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previous studies and discuss, discussing both limitations and advantages of crop water productivity analysis with ACEA, and 

addressing the sustainability of maize production. 

2 Data and methods 100 

2.1 Global gridded crop model ACEA 

2.1.1 General model description 

The AquaCrop-Earth@lternatives (ACEA) model is a process-based global gridded crop model (GGCM) specifically 

developed to calculate crop water productivity at high spatial written in Python and temporal resolutions while requiring a 

minimum set of input data. Each grid cell is simulated independently via a three-stage procedureits simulation procedure has 105 

three main stages as shown in Fig. 1. 

 

Figure 1: Schematic representation of ACEA’s simulation procedure in each grid cell. 

 In the first stage, ACEA collects crop and environmental input data for each grid cell within the study area. The  (elaborated 

in Sect. 2.2). The spatial resolution of input data determines the size of grid cells, andwhile the geographical extent of rainfed 110 

and irrigated crop production systems determines the number of grid cells. Depending on the production system, one or 

multiple simulation scenarios arewater availability, several rainfed and irrigation setups can be selected. The rainfed 

scenariossetups include fully rainfed (scenario 1s1) and rainfed with a presence of shallow groundwater (scenario 2s2). The 

irrigation scenariossetups include surface irrigation (scenario 3s3), sprinkler irrigation (scenario 4s4), drip irrigation (scenario 

5s5), and surface irrigation with a presence of shallow groundwater (scenario 6s6). Besides the simulation scenarios, field 115 

water availability setups, crop management can be customised by selecting field practices (mulches, weed control, and bunds) 

and customizedadjusting irrigation strategies are chosen if appropriate. A detailed simulation setup for this study is provided 

in Sect. 2.1.4. 

. In the second stage, ACEA runs the AquaCrop-OS crop model (seeOSPy (described in Sect. 2.1.2) by iterating the grid cells 

within the study area. AquaCrop-OS simulates the crop growth and soil water balance on a daily time step without considering 120 
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in each grid cell independently, meaning that lateral flows to other grid cells. Thus, the grid cells are independent from each 

other and can be run in parallel depending on the available computational resources.processes, such as water inflow from 

adjacent cells, are not considered. Main output variables are crop yield and CWU that is attributed to one of the three water 

types: green, blue from irrigation, and blue from capillary rise. More information about the output variables is provided (see 

all outputs in Sect. S1.1.  125 

). In the third stage, ACEA aggregates the raw outputs from each grid cell into global gridded datasets. in NetCDF format. 

Then, it runs optional post-processing procedures, such as WF calculation (see Sect. 2.1.3), including crop yield scaling (see 

Sect. 2.1.4), and WF calculation (Sect. 2.1.3), statistical analyses (see Sect. 2.1.5). The final gridded datasets are saved in a 

NetCDF format, which allows further crop water productivity analysis in any programming language or GIS software.(see 

Sect. 2.1.5) and visualisation.  130 

 

Figure 1: Schematic representation of ACEA’s simulation framework. 

2.1.2 AquaCrop-OSOSPy and green-blue water accounting 

We use AquaCrop-OS version 6.0 (Foster et al., 2017) which is an open-source implementation of FAO’s standalone 

AquaCrop application (Vanuytrecht et al., 2014; Steduto et al., 2009). This crop model is process-based and uses crop, soil, 135 

climate, field and irrigation management data to simulate daily crop growth and the soil water balance. The soil water balance 

is calculated as the sum of water inflow (rainfall, irrigation, and capillary rise) and outflow fluxes (runoff, evapotranspiration, 

and deep percolation) among soil compartments. Crop development is temperature-driven via growing degree days (GDDs) 

and is ultimately expressed in biomass build-up. At the end of the growing season, the accumulated biomass is converted into 

a simulated crop yield via the harvest index, which is affected by water and temperature stresses. Note that AquaCrop-OS v6.0 140 

cannot simulate the nutrient cycle or water salinity. For more information about AquaCrop, please refer to the associated 

literatureWe use AquaCrop-OSPy (Kelly and Foster, 2021) which is a Python implementation of FAO’s AquaCrop application 

version 6.1. This crop model uses crop, soil, climate, field and irrigation management data (see Fig. 1) to simulate daily crop 

growth and the soil water balance (Vanuytrecht et al., 2014). The latter includes water input (precipitation, irrigation, and CR) 

and output (runoff, evaporation (E), transpiration (T), and deep percolation) fluxes as well as upward and downward fluxes 145 

between soil compartments (see Fig. 2). Crop growth is temperature-driven via growing degree days (GDDs) and expressed 

by the variable effective rooting depth and canopy cover. Canopy cover is used to convert the potential evapotranspiration 
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(ET0) into T which drives dry above-ground biomass growth via a CO2-adjusted water productivity factor. At the end of the 

growing season, the accumulated biomass is converted into a dry crop yield via a harvest index. The crop growth is affected 

by thermal and water stresses. For example, the latter can induce stomatal closure and constrain canopy expansion which 150 

would lead to reduced T and biomass growth. Note that the nutrient cycle and water salinity are not simulated in AquaCrop-

OSPy. For more information on AquaCrop, please refer to user manuals (Raes et al., 2009; Steduto et al., 2009; Hsiao et al., 

2009). 

We have implemented several changes to the original code (see Sect. S1.2). The most important change is the direct separation 

between green and blue water fluxes based on the method suggested by Hoekstra (2019). On a daily time step, all inflow and 155 

outflow water fluxes are accounted separately for every soil compartment. Each of these fluxes is attributed to one of three 

water types: green, blue from irrigation, and blue from capillary rise. Thus, it is possible to know the composition of soil 

moisture in terms of these three types when soil evaporation and root water abstraction (equal to crop’s transpiration) are 

calculated. The composition of consumed water is proportional to the water types stored in each soil compartment on a specific 

time step. 160 

 

 

Figure 2: AquaCrop simulation scheme. Green, blue, and cyan boxes represent variables related to the soil water balance, brown boxes to crop 

growth, and grey boxes to climate. We only abbreviate the terms that are often used in the text. 

The green-blue water accounting is our most important addition to the AquaCrop-OSPy code (see other changes in Sect. S1.2). 165 

According to Hoekstra (2019), each of the input fluxes is attributed to one of the three water types: green from precipitation, 

blue from CR, or blue from irrigation (see the respective coloured boxes in Fig. 2). Once entered, these fluxes are assumed to 

mix evenly with moisture in soil compartments at the top or the bottom of the soil profile. Then, the mixed water is partly 

redistributed via the upward and downward fluxes between the compartments due to gravitational and capillary forces. The 
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mixed water is taken up for ET – from the upper part of the soil profile for E and from all compartments within the effective 170 

rooting depth for T. Therefore, the volumes of the three water types stored in each soil compartment constantly change. This 

implies that the composition of ET varies per day too, and, consequently, we can estimate precise CWU for each of the three 

water types. For more details about green-blue water accounting, please refer to Hoekstra (2019).  

2.1.3 Water footprint calculation 

ACEA calculates the annual consumptive unit WF (m3 t-1 y-1) of a crop as the sum of three WF components (Hoekstra, 2011): 175 

𝑊𝐹 = 𝑊𝐹𝑔 +𝑊𝐹𝑏𝑐 +𝑊𝐹𝑏𝑖 (1) 

where WFg is the green WF, WFbc is the blue WF from capillary riseCR, and WFbi is the blue WF from irrigation. Each WF 

component is calculated as the ratio of crop water use CWUx (mm y-1) of a water type x (g, bc, or bi) toover crop yield Y (t ha-

1 y-1). To convert from mm y-1 into m3 ha-1 y-1, CWUx is multiplied by 10: 

𝑊𝐹𝑥 =
𝐶𝑊𝑈𝑥 ∗ 10

𝑌
(2) 180 

To obtain Y, the simulated crop yield Ys in AquaCrop-OSOSPy is corrected by two unitless coefficients. The first one is a 

conversion coefficient from dry to fresh crop yield Kf (0.87 for maize); the second one is a yield scaling factor S, which is 

introduced to account for external developments not modelled byin ACEA (explained in Sect. 2.1.4): 

𝑌 =
𝑌𝑠 ∗ 𝑆

𝐾𝑓
(3) 

The simulated rainfed and irrigated scenarioswater availability setups are combined to analyse rainfed and irrigated production 185 

systems. In the case of rainfed systems, the WFs of a water type x from scenario 1 (setups s1) and 2 (s2) (defined in Sect. 2.1.1) 

are simply summed up as rainfed grid cells always have only one of those two scenarios.setup. On the other hand, in irrigated 

systems, the same grid cell can have several irrigated scenarios at oncesetups (s3 to s6).) at once. Therefore, the WF of a water 

type x from each of the scenarios isirrigated WFs are multiplied by irrigation factor Ki. before being summed. The latter is 

thereflects a fraction of irrigated harvested area under the respective irrigation method obtained from Jägermeyr et al. (2015): 190 

{

𝑅𝑎𝑖𝑛𝑓𝑒𝑑 𝑊𝐹𝑥 = 𝑊𝐹𝑥,𝑠1 +𝑊𝐹𝑥,𝑠2

𝐼𝑟𝑟𝑖𝑔𝑎𝑡𝑒𝑑 𝑊𝐹𝑥 = ∑𝑊𝐹𝑥,𝑖 ∗ 𝐾𝑖

𝑠6

𝑖=𝑠3

(4) 

Note that we differentiate between the unit WF (always written in italic) and the WF of crop production. The latter is calculated 

by multiplying WF with the annual crop production, and thus it is measured in m3 y-1. 

2.1.4 Crop yield scaling 

Crop yield is scaled to incorporate external developments that cannot be modelled in ACEA. Some developments affect long-195 

term trends in crop yields, such as changes in agricultural inputs (e.g. fertilizers, better crop varieties, machinery) or in 

environmental conditions (e.g. irrigation water quality). Some developments are short-term and cause interannual variability, 
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such asDuring the last decades, maize yields have increased globally due to various long-term agricultural developments, 

namely advances in agricultural inputs (e.g. irrigation, fertilizers, machinery, chemical control of weeds and insects) and better 

crop varieties (e.g. higher plant density, improved biotic and abiotic stress resistance) (Duvick, 2005; Lorenz et al., 2010). At 200 

the same time, there have been short-term developments that caused interannual variability in maize yields, namely disruptions 

due to political (e.g. civil wars), economic (e.g. food prices), and natural reasons (e.g. locust plague, flooding). Since these 

developments are not modelled in ACEA, Ys represents the maximum attainable values under water and temperature stresses 

only. Therefore, following) (Woo-Cumings, 2002; Smale et al., 2011). Both long-term and short-term developments are not 

modelled in ACEA, either because of input data limitations or because required processes are not included in AquaCrop-OSPy. 205 

However, following the logic of previous studies (Mekonnen and Hoekstra, 2011; Siebert and Döll, 2010), we useattempt to 

represent the combined effect of these developments via yield scaling factors to(S) that scale Ys to the official annual statistics 

reported byfrom FAO (FAOSTAT, 2021). Because FAO reports crop production at the national scale, these factors are the 

same for all grid cells within one country regardless of the production system (see Fig. 2). 

 210 

Figure 2: Calculation procedure of yield scaling factor at the national level. 

The yield scaling factors S areBecause FAO reports the total crop production at the national scale, S values are the same for 

each grid cells within a country (see Fig. 3). S is calculated per country per year as the ratio of the official crop production 

PFAO (t y-1) reported by FAO to the simulated crop production PACEA in ACEA. The latter is calculated as the sum of rainfed 

and irrigated production: 215 

 

Figure 3: Calculation procedure of yield scaling factors at the national level. 
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𝑆 =
𝑃𝐹𝐴𝑂

∑  𝑅𝑎𝑖𝑛𝑓𝑒𝑑 𝑃𝐴𝐶𝐸𝐴 + ∑ 𝐼𝑟𝑟𝑖𝑔𝑎𝑡𝑒𝑑 𝑃𝐴𝐶𝐸𝐴
(5) 

{
 
 

 
 𝑅𝑎𝑖𝑛𝑓𝑒𝑑 𝑃𝐴𝐶𝐸𝐴 =

(𝑌𝑠,𝑠1 + 𝑌𝑠,𝑠2) ∗ 𝐴𝑟𝑎𝑖𝑛𝑓𝑒𝑑

𝐾𝑓

𝐼𝑟𝑟𝑖𝑔𝑎𝑡𝑒𝑑 𝑃𝐴𝐶𝐸𝐴 = (∑
𝑌𝑠,𝑖 ∗ 𝐾𝑖
𝐾𝑓

𝑠6

𝑖=𝑠3

) ∗ 𝐴𝑖𝑟𝑟𝑖𝑔𝑎𝑡𝑒𝑑

(6) 

where Ys is the simulated crop yield (t ha-1 y-1) in a specific scenariowater availability setup (rainfed: s1 and s2, irrigated: s3 - 220 

s6), Arainfed and Airrigated are historical rainfed and irrigated harvested areas (ha y-1), Ki is the fraction of irrigated harvested area 

covered by the respective irrigation method in each scenario, and Kf is the conversion coefficient from dry to fresh crop 

yieldand Kf are defined in Sect. 2.1.3.  

To account for the historical changes in harvested areas, we extrapolate the MIRCA2000 data to the period of 1986-2016. The 

extrapolation is performed using two historical datasets on cropland extent HYDE 3.2 and HID (see Table 1) under the 225 

assumption that maize harvested areas experienced the same dynamics as the croplands did. A detailed description of the 

extrapolation procedure is provided in Sect. S1.7. 

The interannualInterannual variability in S can leadleads to large interannual variability in crop yields, and hence in WFs. 

However, we aim to capture the effect of long-term external conditions while maintaining the modelled climate-related 

interannual variability. Therefore, we take a three -year moving average of scaling factors for each country (using the previous, 230 

current, and next year’s factors). This allows to keepkeeping the overall trend and variability in historical crop yields and 

attenuatewhile attenuating extreme responses to short-term external developments. 

One could argue to scale CWU as well. However, we only scale Ys due to several reasons. First, improvements in crop varieties 

(e.g. angle and size of leaves) can change the ratio of T to E, but this has minor effects on CWU as an increase (or decrease) 

in T is compensated by a decrease (or increase) in E (Xu et al., 2018; Nagore et al., 2014). Both E and T consume green and 235 

blue water, and thus we do not expect major changes in green and blue CWUs either. Second, the historical increase in plant 

density mainly increases maize yields while CWU values stay relatively similar for the same reasons as mentioned above. A 

sensitivity analysis with our model (see Sect. S1.3) confirms this. Third, an input of nitrogen fertilizer can marginally increase 

CWU when first applied, but additional fertilizer amounts would not always lead to a larger CWU (Rudnick et al., 2017). In 

our study, we have to assume no nutrient stress (i.e. optimal nutrient supply) as AquaCrop-OSPy cannot simulate the nutrient 240 

cycle. This might lead to an overestimation of CWU in places that do not use fertilizers. However, we assume that the majority 

of maize is produced by high-input farms with sufficient nutrient supply, and thus our CWU estimates over large scales should 

be hardly affected. To sum up, the literature indicates that historical changes in crop varieties and agricultural inputs have only 

minor effects on maize CWU compared to yields. Therefore, scaling the yields should be sufficient to represent historical 

dynamics in maize WFs. 245 
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2.1.5 Statistical analysesanalysis of results 

The statistical analyses in our study areStatistical analysis is performed at several spatial scales according to the UN 

classification (UNSD, 2021): global, (sub)regional, and national. To obtain representative values for each scale, the WFs are 

averaged based on the production amounts, and related WF variables (Y, CWU, and S) are averaged based on the harvested 

areasarea in each grid cell. 250 

 We also focus on two timeframes: i) the last five-year period (2012-2016) as a proxy for the current state of WFs, and ii) the 

whole 1986 to 2016 period to analyse historical changes. For the trend analysis of WFs and related variables, we use the Mann–

Kendall test, which identifies the direction and significance of a trend in time series (Hussain and Mahmud, 2019), which 

identifies the direction and significance of a trend in time series.. We further detrend the variables with significant trends to 

analyse interannual variations by removing a linear trend. The interannual variability is measured by estimating the coefficient 255 

of variation (CV) of detrended timeseries and the dependency between different variables is determined by the Pearson linear 

correlation coefficient (Brown, 1998). 

2.2 Simulation setup 

Data needed to run ACEA for global maize production during 1986-2016 are summarised in Table 1. We run ACEAsimulate 

maize WFs over the 1986-2016 period at 30 x 30 arc minute resolution (~50 km x 50 km), which is aalso common resolution 260 

in many GGCMsfor GGCMI studies (Franke et al., 2020). The grid cells are selected according to the location of maize 

production systems obtained from MIRCA2000 (Portmann et al., 2010). We consider one growing season per year and 

simulation scenarios s1 to s4 (see Sect. 2.1.1) as s5 and s6 are not common in maize production. 

. The maize-growing grid cells are selected according to the location of maize production systems obtained from SPAM2010 

(Yu et al., 2020). Note that we do not differentiate between the various types of maize (e.g., pop, dent, flour, and sweet corns) 265 

due to a lack of input data. We consider only one growing season per year, as double cropping of maize is negligible at the 

global scale (Portmann et al., 2010). The periods between growing seasons are also simulated to account for soil moisture 

changes. We exclusively use water availability setups s1 to s4 (defined in Sect. 2.1.1), as s5 and s6 are not common for maize 

production. The 30 x 30 arc minute modelling outputs are distributed among its underlying 5 x 5 arc minute grid cells from 

SPAM2010, and hence the post-processing (see Sect. 2.1.1) is performed at 5 x 5 arc minute resolution. 270 

Table 1: Summary of input data used for maize crop modelling and post-processing in ACEA. 

Type Period Timestep Resolution Source 

Data for crop modelling in AquaCrop-OSOSPy (1984-2016) 

Climate inputs 1984-2016 daily 30 x 30 arc minutes 
GSWP3-W5E5 v1.0 (Lange, 2019)GSWP3-W5E5 

composite product (Lange, 2019) 

Atmospheric CO2 concentration 1984-2016 annual Global average 
NOAA (Dlugokencky and Tans, 2020)NOAA 

(Dlugokencky and Tans, 2020) 

Crop parameters - - - AquaCrop's manual and crop files 

Crop calendar - - 30 x 30 arc minutes 
ISIMIP3 project (ISIMIP, 2020)Jägermeyr et al. 

(2021b) 



11 

 

Soil composition - - 30 x 30 arc minutes 

ISIMIP3 project (ISIMIP, 2020) based on 
Harmonized World Soil Database 1.12 

(Nachtergaele et al., 2008)ISIMIP3 project (ISIMIP, 

2020) based on Harmonized World Soil Database 1.12 
(Nachtergaele et al., 2008) 

Groundwater levels 
Average of 
2004-2014 

monthly 5 x 5 arc minutes Fan et al. (2013)Fan et al. (2013) 

Data for setup and post-processing (1986-2016) 

Harvested areas 
Around 

20002010 
annual 5 x 5 arc minutes 

MIRCA 2000 (Portmann et al., 2010)SPAM2010 

(Yu et al., 2020) 

Irrigated cropland 1985-2005 5 -year 5 x 5 arc minutes HID (Siebert et al., 2015)HID (Siebert et al., 2015) 

Irrigated and rainfed cropland 1980-2017 
10 -year till 2000 

then annual 
5 x 5 arc minutes 

HYDE 3.2 (Klein Goldewijk et al., 2017)HYDE 3.2 

(Klein Goldewijk et al., 2017) 

Maize production statistics 1986-2016 annual National FAO (FAOSTAT, 2020)FAO (FAOSTAT, 2021) 

 

Climate inputs for AquaCrop-OS are obtained from the GSWP3-W5E5 composite productClimate inputs for AquaCrop-OSPy 

are obtained from the bias-corrected reanalysis product GSWP3-W5E5 v1.0 (Lange, 2019) (Lange, 2019) whichthat provides 

historical daily rainfall, temperature, surface shortwave radiation, wind speed, and relative humidity. These variables (except 275 

rainfall) are used together with a global elevation model (Amante, 2009) to estimate the potential evapotranspirationET0 

according to the Penman-Monteith equation (Allen et al., 1998). 

Crop parameters are obtained from the AquaCrop manual (Raes et al., 2018) and default maize crop file provided with 

AquaCrop-OS. In case of inconsistencies among these two sources, priority is given to data from the manual. The resulting set 

of maize parameters is generic, and thus crop development stages (in GDDs) for every grid cell are recalculated to ensure that 280 

the average growing season duration is similar to the one from the crop calendar (ISIMIP, 2020). This calendar is a composite 

of multiple recent data sources that rely on national and subnational statistics, remote sensing products, and modelling. 

Additional information on crop parametrisation is provided in Sect. S1.3the default maize crop file provided with AquaCrop-

OSPy. In case of inconsistencies among these two sources, priority is given to data from the manual. The considered crop 

calendar (Jägermeyr et al., 2021b) is a composite of multiple recent data sources that rely on national and subnational statistics, 285 

remote sensing products, and modelling. The planting and harvest dates from the crop calendar are used to calculate GDDs 

with the third calculation method from AquaCrop (Raes et al., 2018). Crop development stages (in GDDs) for each grid cell 

are recalculated with the method of Minoli et al. (2019) to ensure that the average growing season duration is similar to the 

one from the crop calendar. Since some growing seasons are colder than average, they are allowed to be up to 15 % longer for 

the crop to reach maturity. Additional information on maize parametrisation is provided in Sect. S1.4. 290 

The soil profile is defined as one layer of 3 m depth with eight compartments ranging from 0.1 to 0.7 m in thickness. The 

selection of soil compartments is based on the analysis described in Sect. S1.45. Sand, silt, and clay fractions for each grid cell 

are obtained from the ISIMIP3 project (ISIMIP, 2020)(ISIMIP, 2020) which provides the fractions from the Harmonized 

World Soil Database 1.12 (Nachtergaele et al., 2008)(Nachtergaele et al., 2008) upscaled to 30 x 30 arc minutes. The soil 

composition is then converted into hydraulic parameters using a pedotransfer function (Saxton and Rawls, 2006) 295 

providedincluded in AquaCrop-OSOSPy. To ensure realistic initial soil moisture values, we run the model two years in 

advance of our study period (as described in Sect. S1.56).  
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The average monthly groundwater levels are taken from Fan et al. (2013)Fan et al. (2013) and initially upscaled to 5 x 5 arc 

minutes using a resample function in QGIS (QGIS, 2021). We further upscale them to 30 x 30 arc minutes by taking average 

monthly values over underlying 5 x 5 arc minute grid cells where maize production and shallow groundwater (0-3 m in depth) 300 

are present. The final groundwater levelsThen, the near-to-surface values are lowered to 1 m depth under the assumption that 

farmers drain the agricultural field to avoid aeration stress (see Sect. S1.6).S1.7). We further upscale monthly groundwater 

levels to 30 x 30 arc minutes by taking an average over the underlying 5 x 5 arc minute grid cells where maize production and 

shallow groundwater (< 3 m in depth) are present. Finally, we interpolate the monthly values to obtain daily groundwater 

levels. Note that Fan et al. (2013) report values in a natural state for only one year, and thus short- and long-term effects of 305 

groundwater pumping and natural annual fluctuations are not considered.  

Following previous studies (Andarzian et al., 2011; Khoshravesh et al., 2013), irrigation events are triggered as soon as the 

soil moisture drops below 50 % of the maximum available soil water within the root zone. The amount of irrigated water in 

each of the irrigated scenariossetups is limited toby field capacity and depends on the percentage of wetted area by the 

respective irrigation method (Chukalla et al., 2015). The conveyance efficiency is set to 100 % to provide the net irrigation 310 

requirement. No particular field management practices are activated due to a lack of data on where they are applied. 

The simulation results are downscaled to 5 x 5 arc minutes according to the location of rainfed and irrigated maize production 

systems in MIRCA2000 and location of shallow groundwater levels (only for sc2) of the same resolution. 

To account for the historical changes in harvested areas, we extrapolate SPAM2010 to the 1986-2016 period. The extrapolation 

is performed using two historical datasets on rainfed and irrigated cropland extent, i.e. HYDE 3.2 (Klein Goldewijk et al., 315 

2017) and HID (Siebert et al., 2015), under the assumption that maize harvested areas from SPAM2010 experienced the same 

dynamics as the croplands did. Then, the extrapolated areas are scaled to FAOSTAT (2021). A detailed description of the 

extrapolation and scaling procedures are provided in Sect. S1.8. 

3 Results 

3.1 Average maize water footprints in 2012-2016 320 

The global average unit WF of maize is 723.2728.0 m3 t-1 y-1 inover the 2012-2016 period. The share of green water (WFg) is 

89.591.2 %, while the shares of blue water from capillary riseCR (WFbc) and irrigation (WFbi) are 21.2 % and 8.37.6 %, 

respectively. The distribution of WF around the world is shown in Fig. 3. The map indicateshas a distinct latitudinal 

distribution, which corresponds to  (see Fig. 4a similar one in maize ) following the same patterns as crop yields (see Fig. S1). 

SmallS1a). High yields and small WF values north of 20°N are mainly due to the high yields-input production systems in the 325 

main producingmaize-growing regions: Northern America (WF is 481.2483.1 m3 t-1 y-1; yield is 10.1 t ha-1), Europe (581597.5 

m3 t-1 y-1; 6.2 t ha-1), and Eastern Asia (624.6615.7 m3 t-1 y-1; 5.9 t ha-1). On the other hand, the regions with low maize yields 

have substantially larger WF values and are mostly located in arid parts of the world that mainly rely on low-input rainfed 

production systems (e.g. Middle and Eastern Africa). 
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Rainfed systems (741.9 m3 t-1 y-1)produce 76.5 % of maize and show on average a 10.5 % larger unit WF (744.9 m3 t-1 y-1) 330 

than irrigated systems (674.1 m3 t-1 y-1). However, both the smallest and the largest regional WF (among regions with at least 

0.5 % of global maize production) are located in areas dominated by rainfed production (see Table 2), with the largest one in 

Middle Africa (33793157.9 m3 t-1 y-1) and the smallest one in Western Europe (416433.2 m3 t-1 y-1). The smaller WF in the 

latter region can be explained by both a smaller CWU (i.e. lower ET rates) and a higher crop yield (see Fig. S1). The WF 

values also vary among areas dominated by irrigated production. For example, Easternthe WF in Western Asia (624569.6 m3 335 

t-1 y-1) has a twice smaller WF than is almost half of that in Northern Africa (11701035.5 m3 t-1 y-1) due to a smaller CWU, 

while themaize yields in both regions are similar. The global maps with separated rainfed and irrigated maize WF can be found 

in Fig. S2.  
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 340 

Figure 4: Average unit: Unit water footprint (a) (m3 t-1 y-1) and water footprint of production (b) (103 m3 y-1) of maize in m3 t-1 y-1 as the average 

over 2012-2016 at 5 x 5 arc minute resolution. The grey area in the side chart represents the median of all data points along the respective latitude 

and the black line is the 10 %10th percentile of them. 

Table 2: Overview of global maize production and water footprint statistics as the average over 2012-2016 (except the coefficient of variation (CV) 

which is estimated for 1986-2016). CWU is crop water use and WF is water footprint (g - green, bc - blue from capillary rise, bi - blue from irrigation). 345 
The selection of regions is based on the UN classification (UNSD, 2021). 

Region 
Maize 

production 
(% of global) 

Irrigated 
[%(% of 

production]) 

WF of 
production 
(% of global) 

Crop 
yield 

(t ha-1 y-1) 

Yield 
gap* 

CWU 
(mm y-1) 

WFg WFbc WFbi Unit WF 

(m3 t-1 y-1) 

Change in 
unit WF (relative 

to 1986-1990) 

CV of 
unit WF 

(% of unit WF) 

EasternNorthern Africa 
3.0.8 % 3.798.6 % 11.31.1 % 1.86.7 

88.158.7 
% 

505.869
1.9 

98.35.1 
% 0.21 % 

1.594.8 
% 

2746.4103
5.5 -24.334.0 % 

55.47.5 
% 

MiddleEastern Africa 
3.0.6 % 1.04 % 2.911.4 % 1.18 

90.688.7 
% 

375.051
3.3 99.24 % 0.41 % 0.34 % 

3378.9276
3.5 -34.922.8 % 

41.833.9 
% 

NorthernMiddle Africa 
0.86 % 98.61.4 % 1.32.8 % 5.81.1 

64.289.7 
% 

674.736
3.5 

15.198.9 
% 0.07 % 

84.90.4 
% 

1170.1315
7.9 -29.430.1 % 830.1 % 

Southern Africa 
1.21 % 20.032.9 % 1.67 % 4.21 

35.446.6 
% 

429.745
6.5 

9588.7 
% 0.0 % 411.3 % 9491067.3 -65.260.3 % 

8374.5 
% 

Western Africa 
1.9 % 0.7 % 5.43 % 1.6 85.20 % 

335.833
2.5 99.57 % 0.31 % 0.21 % 

2066.4200
8.9 -22.83 % 

46.440.0 
% 

Africa 
7.4 % 15.29 % 22.54 % 2.0 84.58 % 

435.543
7.2 93.79 % 0.32 % 6.10 % 

2169.7215
7.0 -28.126.6 % 

51.338.5 
% 

             

Caribbean 
0.1 % 56.69.1 % 0.2 % 1.3 

86.487.0 
% 

299.730
8.1 

95.398.6 
% 0.12 % 4.61.2 % 

2233.5229
9.8 -25.35 % 

25.722.9 
% 

Central America 
2.78 % 26.424.3 % 4.58 % 3.31 

74.778.4 
% 

364.739
4.9 91.40 % 0.41 % 8.29 % 

1179.1127
8.7 -42.73 % 

16.113.2 
% 

NorthernSouth America 
35.311.9 % 18.4.5 % 23.112.2 % 10.15.2 

30.564.2 
% 

478.138
9.8 

8696.8 
% 

4.01.3 
% 1.9.3 % 

481.2746.
6 -28.657.7 % 13.97 % 

SouthNorthern America 
11.935.1 % 4.717.0 % 12.222.9 % 5.210.1 

63.431.0 
% 

386.447
6.8 

96.690.3 
% 

2.21.7 
% 1.28.0 % 

741.5483.
1 -57.228.8 % 

20.516.1 
% 
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Americas 
50.049.9 % 15.614.4 % 40.02 % 7.4 

47.448.8 
% 

430.643
5.0 

90.392.4 
% 

3.01.4 
% 6.72 % 

583.8592.
6 -37.14 % 15.64 % 

             

Central Asia 
0.2 % 100.088.3 % 0.2 % 6.12 

46.747.4 
% 

478.345
6.5 

31.936.1 
% 0.09 % 

68.163.0 
% 

778.9756.
4 -4345.2 % 

22.418.8 
% 

Eastern Asia 
23.12 % 61.046.4 % 19.95 % 5.9 55.7 % 

367.436
2.3 

82.385.6 
% 

2.71.9 
% 

15.012.5 
% 

624.6615.
7 -28.629.5 % 

14.419.3 
% 

South-eastern Asia 
4.01 % 10.49.3 % 3.6 % 4.32 

59.560.6 
% 

277.627
3.8 98.24 % 0.93 % 0.91.3 % 

653.9643.
5 -59.91 % 

24.115.7 
% 

Southern Asia 
3.4 % 38.30 % 4.35 % 2.9 

71.872.5 
% 

265.427
6.8 87.41 % 0.42 % 12.27 % 

906.9941.
8 -52.649.1 % 

26.421.3 
% 

Western Asia 
0.7 % 38.949.3 % 0.5 % 7.01 

31.622.1 
% 

394372.
2 

6365.1 
% 0.45 % 

36.534.4 
% 

562.4569.
6 -41.136.9 % 

33.836.7 
% 

Asia 
31.45 % 51.741.0 % 28.63 % 5.1 58.47 % 

335.133
3.0 

84.486.8 
% 2.1.4 % 

13.611.9 
% 

658.6654.
7 -39.138.5 % 

1719.4 
% 

             

Eastern Europe 
6.5 % 5.23.8 % 5.86.0 % 5.3 

52.753.4 
% 

342.235
1.6 

94.496.7 
% 

4.02.2 
% 1.51 % 

655.0669.
5 -28.030.1 % 

53.644.9 
% 

Northern Europe 
0.015 % 12.0.0 % 0.10 % 6.43 

37.539.4 
% 

255.024
7.6 

95.699.0 
% 

3.51.0 
% 1.0.0 % 

401.7392.
1 -50.254.5 % 

56.252.3 
% 

Southern Europe 
2.4 % 51.843.5 % 1.8 % 7.9 

41.344.7 
% 

427.544
2.1 79.58 % 

5.13.6 
% 

15.416.6 
% 

543.2562.
5 -28.230.3 % 

1714.7 
% 

Western Europe 
2.2 % 21.439.7 % 1.3 % 9.1 

32.335.9 
% 

379.439
4.6 

95.694.3 
% 

1.30.4 
% 5.3.0 % 416433.2 -19.720.5 % 

9.58.8 
% 

Europe 
11.12 % 1819.5 % 8.9.1 % 6.2 

47.248.9 
% 

361.037
2.9 

91.693.0 
% 

3.92.2 
% 4.58 % 581597.5 -24.226.4 % 

37.131.2 
% 

             

Australia & New Zealand 
0.1 % 95.457.0 % 0.0405 % 8.21 

30.834.6 
% 

399.542
6.7 

66.872.3 
% 0.03 % 

33.127.4 
% 

490.9529.
8 -41.732.8 % 

10.514.3 
% 

Melanesia 
0.001 % 0.0 % 0.001 % 5.13.4 

66.165.2 
% 

320.719
1.6 

99.2100.
0 % 0.80 % 0.0 % 

636.6572.
7 -72.060.1 % 

15.618.1 
% 

Oceania 
0.1 % 93.555.9 % 0.0405 % 8.17.9 

32.135.8 
% 

397.041
5.4 

67.672.9 
% 0.13 % 

32.326.8 
% 493530.7 -42.333.2 % 

10.614.3 
% 

             

Average world - 27.323.5 % - 5.4 
58.359.0 

% 
392.739

5.3 
89.591.2 

% 
1.2.2 % 8.37.6 % 

723.2728.
0 

-34.65 % 
21.319.8 

% 

* yield gap is estimated as: 100 % - yield scaling factor. 

Zooming to the national level, the average unit WF of maize of the nine biggest producing nationscountries plus the EU 27 is 

592.3591.0 m3 t-1 y-1 (88.390.5 % WFg, 2.91.6 % WFbc, and 87.9 % WFbi). Together, they produce 84.3 % of maize globally. 

The WF values range from 485.3487.2 m3 t-1 y-1 in the USA to 12441252.4 m3 t-1 y-1 in Mexico (see Fig. 45). The contribution 350 

of blue water from capillary rise). WFbc is substantial in Argentina (74.6 % of WF), the USA (3.9 %), and the EU 27 (32.4 %). 

Among the EU 27 countries, the largest WFbc shares are in Slovakia (8.1 %), the Netherlands (26.1 %), Slovakia (13.7.2 %), 

and Hungary (9.6 %).6.9 %). Together, these ten biggest producers account for 68.1 % of the global WF of maize production 

with the USA (22.5 %) and China (19.3 %) contributing the most (see Fig. 4b). The complete table with maize WFs of 148149 

countries can be found in Table S2S3. 355 
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Figure 5: Average unit water footprint of maize (g - green, bc - blue from capillary rise, bi - blue from irrigation) in m3 t-1 y-1 and percentage of 

global production of maize in the ten biggest maize producers during 2012-2016. 

In terms of the global WF of maize production (i.e. total water consumption), more than 91 % of water is consumed in Americas 360 

(40.0%), Asia (28.6%), and Africa (22.5%) as shown in Table 2. The shares of global production in Americas (50.0%) and 

Asia (31.4%) are larger than the shares of global WF, which indicates high crop water productivities. On the contrary, Africa’s 

share of global production is three times smaller than its share of the global WF, which indicates a low crop water productivity. 

 

3.2 Historical trends in maize water footprints 365 

The global average unit WF of maize has reduced over the last decades as shown in Fig. 56. When compared to 1986-1990, 

the average WF of 2012-2016 is 34.65 % smaller. However, not all WF components reducehave reduced by the same 

magnitude. WFg and WFbc have reduced by more thannearly one third between the two periods (-35.87 % and -39.431.0 %, 

respectively), while WFbi has reduced by 14only 16.6 %. Therefore, the fraction of blue water in total unit WF has increased 

by 23.9 % (+5.4 % for WFbc and +27.4 %. % for WFbi). 370 

To explain the decreasing trend in WF, the main contributing factors – Ys, CWU, and S (see Sect. 2.1.3)  – simulated yield (Ys), 

crop water use (CWU), and yield scaling factor (S) – are analysed with the Mann–Kendall trend test (Hussain and Mahmud, 

2019). This test detects significant We detect significantly increasing trends in S (+56.151.5 % since 1986; p = 1.355.74 x 10-

1413) and CWU (+(-0.137 % since 1986; p = 2.5.90 x 10-32), and no significant trend in Ys (p = 0.2954). Subsequent correlation 

analysis shows that WF significantly correlates only with S (r = -0.9796, t = -20.6419.5) and CWU (r = -0.5145, t = -3.192.7). 375 

Hence, the reduction in WF can be mainly attributed to the increase in S, which is a factor that reflects external developments 

that cannot be modelled with ACEAthe historical agricultural advances (see Sect. 2.1.4). Once detrended, WF correlates 

significantly only with Ys (r = -0.7377; t = -5.696.4), and thus the interannual variations in WF are mainly driven by cropYs 

response to climatic variability reflected in Ys.. For example, the WF peaks around 1988 and 2012 (see Fig. 56) are likely due 

to extreme La Nina-driven droughts in major maize producing areas which caused substantial drops in crop yields (Iizumi et 380 

al., 2014; Rippey, 2015). A summary of global annual WFs and main contributing factors during 1986-2016 is provided in 

Table S3S4. 
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Figure 6: Global trends in average unit water footprints of maize (g - green, bc - blue from capillary rise, bi - blue from irrigation) in m3 t-1 y-1 and 385 
yield scaling factors of maize from 1986 to 2016. Note that both y-axes do not start at zero. 

All major maize producing areas show a smaller unit WF of maize (i.e. increase in crop water productivity)WF in 2012-2016 

compared to 1986-1990 (see Fig. 67). The regions with the largest WF reductions are Melanesia (-72.0 %), Southern Africa (-

65.260.3 %), Melanesia (-60.1 %), and South-eastern Asia (-59.91 %), which indicates substantial increases in their maize 

yields. On the other hand, the regions with the smallest reductions are Western Europe (-19.7 %) and20.5 %), Western Africa 390 

(-22.3 %), and Eastern Africa (-22.8 %). In the case of Western Europe, this is a result ofdue to the already small WF in 1986-

1990 (518.4545.1 m3 t-1 y-1), and thus there was a low potential for WF reduction. In the case of Western and Eastern Africa, 

there was a high reduction potential, but it was barely realised likely due to underlying socio-economic limitations (Smale et 

al., 2011). 
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 395 

 

Figure 7: Relative change ofin unit water footprint of maize from the average of 1986-1990 to the average of 2012-2016 at 5 x 5 arc minute 

resolution. 

AtAmong the national scale, countries that together account for 95 % of global maize production show a 32.9 % smaller unit 

WF of maize in 2012-2016 compared to 1986-1990 (see Fig. 7). Reductions, reductions of more than 50 % are in Brazil, 400 

Indonesia, South Africa, the Philippines, Vietnam, Pakistan, and Paraguay (see Table S2). These countries mostly rely on 

rainfed systems, and thus the WF reduction is mainly due to a smaller WFg.S3). On the other hand, there are three countries 

with a WF increase: +10.0 % in that have increases in WFs (see Fig. 8), but together produce only 0.77 % of maize globally, 

are the Democratic Republic of Congo, +13.1 % in (+9.7 %), Kenya, (+12.7 %), and +33.1 % in the Democratic People's 

Republic of Korea. In total, these three countries produce only 0.77 % of maize globally. (+32.2 %). In the first two countries, 405 

this is due to an overall decreasing trend in maize yields and high interannual variability (see Sect. 3.3). Different dynamics 

can be observed in North Korea where maize yields have dropped dramatically since the mid-1990s – the period known as 

“The North Korean famine” (Woo-Cumings, 2002). The yields have not yet recovered resulting in a larger unit WF.  
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Figure 8: Comparison of the national unit water footprints of maize (m3 t-1 y-1) between the average of 1986-1990 and the average of 2012-2016. The 410 
black line represents no change and the grey dotted lines show +30 % and -30 % changes in unit water footprint. 

The global WF of maize production has increased by 48.849.6 % since 1986 (see Fig. 9) peaking at 762.9768.3 x 109 m3 y-1 in 

2016 (see Fig. 8).. This increase differs among rainfed and irrigatedproduction systems. In rainfed systems, the consumption 

of green water and blue water from capillary rise have CR has increased by 36.339.9 % and 33.867.0 %, respectively. In 

irrigated systems, the consumption of green water and blue water from irrigationthey have increased by 114108.4 % and 415 

76.472.5 %, respectively. The Mann–Kendall trend test detects significant significantly increasing trends in the two main 

contributing factors to the global WF of maize production: rainfed harvested area (+36.739.5 % since 1986; p = 2.485.0 x 10-

89) and irrigated harvested area (+110.0107.2 % since 1986; p = 1.552 x 10-14). Subsequent correlation analysis shows a 

significant correlation with both factors (r = 0.98 each). Hence, the expansion of maize cropland harvested areas increases 

global maize water consumption despite the reduction in unit WF. The detrended WF of maize production correlateglobal WF 420 

correlates significantly with the detrended harvested areas (rainfed r = 0.95; irrigated r = 0.8886), which means that historical 

changes in maize cropland the harvested areas are responsible for its interannual variations in the global WF. 
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Figure 9: Regional trendsTrends in the regional water footprints of maize production (109 m3 y-1) and global harvested areas (106 ha y-1) of maize 425 
from 1986 to 2016. Oceania is not shown due to its negligible contribution. Note that right y-axis does not start at zero. 

Most of the maize croplandharvested area expansion since 1986 has occurred in Asia and Africa (+81.67 % and +76.51 %, 

respectively), which has led to substantial increases in the WFs of maize production (+94.496.8 % and +60.267 %). At the 

same time, Americas and Europe have also increased their WFs of production (+27.126.3 % and +2420.8 %), but the cropland 

harvested areas have expanded moderately (+25.7 % and +1514.4 %). One of the main reasons behind a larger increase in 430 

WFs of production than in harvested areas lies in the substantial expansion of irrigated systems. They have a larger CWU than 

rainfed systems (+1417.3 % on average), and hence the regions with a rapidlarger expansion of themirrigated systems, such 

as +175.9204.7 % in Asia (compared to +37.145.0 % in rainfed systems), experience an increase in the average CWU. As a 

result, the share of irrigated maize in the global WF of maize production has increased from 19.116.8 % in 1986 to 2622.0 % 

in 2016. Besides the increase in feed demand, one of the main driving forces for maize area expansion is biofuel production. 435 

For example, nearly 40 % of maize in the USA is grown to produce bioethanol (Ranum et al., 2014). 
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3.3 Interannual variability in maize water footprints 

The interannual variability in detrended unit WFWFs of maize is analysed using the coefficient of variation (CV) estimated for 

the detrended values during 1986-2016.). The global average CV for thisover the 1986-2016 period is 21.3 %: 8.4 % in irrigated 

systems and 28.8 % in rainfed systems.19.8 %. The variability in rainfed systems (average CV of 26.1 %) differs around the 440 

world depending on maize yield response to water availability. For instance, the average CV of regions with capillary riseCR 

contribution is 14.716.8 %, while many arid parts of Sub-Saharan Africa that completely rely on rainfall have CV values higher 

than 10070 % (see Fig. 910).). As a result, some years may have extremely low yields leading to WF peaks of more than 5000 

m3 t-1 y-1 (see Fig. 4a). On the other hand, the WF variability in irrigated systems (average CV of 8.2 %) is generally low in all 

regions as also suggested by previous studies (Kucharik and Ramankutty, 2005; Osborne and Wheeler, 2013). The interannual 445 

variability also depends on the level of agricultural development and socio-economic stability (as reflected by yield scaling 

factors). In Western Europe. For example, the average CV is 9.5 % despite being of the mostly rainfed, maize in Western 

Europe is 8.8 %, while in Central Asia the average CV is 22.4 % despite being 100 %of the mostly irrigated. maize in Central 

Asia is 18.8 %. The CV values of other regions are listed in Table 2. 

 450 

 
Figure 10: Coefficient of variation of the detrended unit water footprints of maize during 1986-2016 at 5 x 5 arc minute resolution. The grey area 

in the side chart represents the median of all data points along the respective latitude and the black line is the 10 %10th percentile of them. 
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4 Discussion 

4.1 Comparison of results with literature 455 

4.1.1 Average maize water footprints around 2000 

Three previous studies have estimated maize WFs at the global scale with a distinction between green and blue water (see 

Table 3). All three focus on the period around the year 2000, and thus we average our results for a similar period to make the 

comparison (1996-2005). Both our and previous studies agree on the dominant role of green water in the global average unit 

WF of maize (~90%). However, previous studies show larger unit WF estimates compared to the present study: +24 % by 460 

Siebert and Döll (2010), +20 % by Mekonnen and Hoekstra (2011), and +12 % by Tuninetti et al. (2015). These WF differences 

are likely caused by different methods applied to estimate CWU since the differences in the global average crop yields are 

relatively small (-4 % to +12 %). 

). All three focus on the period around year 2000. Therefore, we average our results over the 1996-2005 period to make the 

comparison. The previous studies agree with ours on the dominant role of green water. They also show larger global average 465 

unit WF estimates (ranging from +5 % to +23 %). Since the differences in the global average crop yields are relatively small 

(-4 % to +12 %), these larger WF estimates are likely caused by different methods of CWU estimation. 

Table 3: Comparison of ACEA results for maize with other global gridded studies. Numbers in brackets indicate the difference compared to the 

results of ACEA. 

Source Water footprint calculation approach 
Shallow 

groundwater 
Averagin
g period 

Crop yield [(t-1 ha-1]) 
Average unit water footprint 

[(m3 t-1 y-1]) 

Rainfed Irrigated Green Blue Total 

Our study 
Process-based and water-driven model 
in growing degree days with incorporated 
green-blue separation 

Considered 
1996-2005 
(with trend) 

4.3 5.45 792812 8875 880887 

Siebert and 
Döll (2010) 

Daily soil water balance model and crop 
coefficient approach with green-blue 
separation in post-processing 

Not Considered 
1998-2002 
(with trend) 

4.1 
(-43 %) 

5.7 
(+63 %) 

969 
(+2219 %) 

120 
(+3660 %) 

1089 
(+2423 %) 

Mekonnen 
and Hoekstra 
(2011) 

Similar to Siebert and Döll (2010), but for one 
representative year 

Not Considered 
1996-2005 
(no trend) 

4.1 
(-4 %) 

6 
(+129 %) 

947 
(+2017 %) 

81 
(-(+8 %) 

1028 
(+1716 %) 

Tuninetti et al. 
(2015) 

Crop coefficient approach with 
evapotranspiration and crop yields from 
literature 

Not Considered 
1996-2005 
(with trend) 

- - 
886* 

(+129 %) 
47* 

(-4738 %) 
933 

(+65 %) 

* approximate estimates from the reported total water consumption as unit water footprint components were not explicitly provided. 470 

The study by Siebert and Döll (2010) estimates aestimate larger global average green (+22 %) and blue CWU (+36 %)WFs 

compared to our study. One of the reasons for these higher estimates is that theThe authors assume a pre-defined root depth 

and canopy development (linear interpolation between crop factors in the initial, mid-, and late -season stages), whereas in). 

In our study, both of them are driven by daily temperature and water availability. The latter is particularly important since, and 

thus the ability of maize to take up water stress leads to and to transpire it can be limited by abiotic stresses (e.g. constrained 475 

root and canopy expansion, induced stomatal closure, which reduces crop transpiration.). Therefore, crop transpiration and 
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root water uptake in ACEA arewe likely to besimulate a smaller leadingCWU compared to reduction in CWU values. There 

are several other reasons for differences in CWU between the two studies, but to what degree they explain the lower estimates 

in ACEA is difficult to answer. Siebert and Döll (2010). There are several other reasons for differences in CWU, but to what 

degree they explain the smaller estimates in ACEA is difficult to answer. Siebert and Döll (2010) consider a constant growing 480 

season duration using the crop calendar based on the year 2000, while in our model the growing season duration is temperature-

dependent and the crop calendar is a composite of multiple recent data sources (see Sect. 2.1.4). Consequently, crop calendar 

days differ among the two studies leading to different daily weather conditions and growing season durations. This results in 

different ET rates accumulated over the crop cycle, and, hence different CWU valuesCWUs. Moreover, the authors estimate 

green and blue CWU in post-processing, which is with methods that are less accurateprecise than tracing it directly during the 485 

modelling asthe daily green-blue accounting in ACEA (see Sect. 2.1.2). The authorsSiebert and Döll (2010) also cover a shorter 

historical period and use two older input datasets:, i.e. climatic data that directly affects water availability and ET rates, and 

harvested area data that results in different sizes of rainfed and irrigated systems, which are important in the globalaffects the 

averaging of results. 

The study by Mekonnen and Hoekstra (2011) also shows ashow larger green CWU (+20 %) but aand blue CWU is smaller (-490 

8 %).WFs. The authors use a relatively similar modelling approach as Siebert and Döll (2010), but they simulate only one 

representative year, which neglects the interannual variability in climatic variables as well as trends in agricultural 

developmentdevelopments and harvested areas. Therefore, CWU estimates do not capture years with abnormal weather (wet, 

dry, cold, warm). Nevertheless, at the national level, both studies correlate well (r = 0.95). 

Tuninetti et al. (2015) also report a larger green CWU (+12 %) but smaller blue CWU (-47 %).WFs. The authors do not model 495 

the reference evapotranspiration and crop yields (as the other studies do) but take themboth from literature instead. Moreover, 

they equalize the blue CWU to irrigation supply which is calculated using independent data sources of different temporal and 

spatial resolutions. 

Due to limitations on data availability, we only compare our national unit WF estimates to Mekonnen and Hoekstra (2011). 

Both studies correlate well (r = 0.95) as shown in Fig. 10. Among 148 considered countries, 52 have a unit WF difference of 500 

more than 30 % and countries that produce 95 % of maize globally have on average the difference of 15.3 %. 
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Figure 10: National comparison of unit water footprints of maize (m3 t-1 y-1) around 2000 with Mekonnen and Hoekstra (2011). The black line 

represents no difference and the grey dotted lines show +30 % and -30 % differences in unit water footprint. 

The methodological differences among these three studies also lead to different estimates of the global WFsWF of maize 505 

production. Compared to our study, Siebert and Döll (2010) and Mekonnen and Hoekstra (2011) show similar directions and 

magnitudes of differences and report 17-1916-18 % larger estimates (37-40global WFs (15-17 % larger green and 8-53 % 

larger blue), while Tuninetti et al. (2015) report a half larger global WF (55 % larger green but 43-6012 % smaller blue), while 

Tuninetti et al. (2015) report a 50 % larger estimate (85 % larger green but 68 % smaller blue).). 

4.1.2 Historical trends and variability in maize water footprints 510 

We are not aware of any other study that simulates maize WFs for the same time period as our study. However, 

theOther comparisons of WFs and main contributing factors can be done for a few historical periods. For example, the 

The recent literature review of 70 related studies (during 2002-2018) by Feng et al. (2021) reports a global average unit WF of 

maize of 730 m3 t-1 y-1 with a CV of 15.9 %. This aligns well with our estimate of 723.2 m3 t-1 y-1 with a CV of 21.3%. the 

global average unit WF of maize of 730 m3 t-1 y-1 (CV of 15.9 %) in 2002-2018. This aligns well with our estimate of 728.0 m3 515 

t-1 y-1 (CV of 19.8 %) in 2012-2016. Our estimates of maize CWU and yields also align well with the literature. Jägermeyr et 

al. (2021) simulate CWU for both rainfed and irrigated maize with multiple GGCMs at 30 x 30 arc minute resolution. The 

global medians are similar to ours as can be observed in Fig. S3. Moreover, we compare our maize CWU estimates to several 

field studies in various years and locations (see Table 4). The differences between ACEA’s values and the ones reported in 

literature vary between -9.4 % to +14.8 %. Irrigated maize shows smaller differences than rainfed maize for most of the 520 

considered studies. This may not be a model but rather a data accuracy issue. It is likely that the gridded meteorological data 

we use with a spatial resolution of 30 x 30 arc minutes (see Sect. 2.2) deviates from measured data at the fields in the other 

studies. This is particularly relevant for rainfall which shows strong spatial variability at small scales. 
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Table 4: Comparison of crop water use (CWU) of rainfed and irrigated maize with field studies. 

 Location Period Country 
Production 

system 
Evapotranspiration 
measuring method* 

Average maize CWU 
difference relative to 

ACEA (range of values)** 
Reference 

1 40°39 N, 104°59 W 2006-2010 USA Irrigated Soil water balance -5.4 % (-13.3 % to +4.7 %) DeJonge et al. (2012) 

2 36°69 N, 108°31 W 2011-2014 USA Irrigated Meteorological  -8.5 % (-12.4 % to -5.8 %) Djaman et al. (2018) 

3 41°09 N, 96°28 W 
2002-2006 USA 

Irrigated 
Energy balance 

+9.4 % (+1.6 % to +24.4 %) Suyker and Verma 
(2009) 4 41°10 N, 96°26 W Rainfed -7.8 % (-22.6 % to +20.6 %) 

5 42°24 N, 85°24 W 2010-2016 USA Rainfed Meteorological +14.8 % (+7.2 % to +24 %) Abraha et al. (2020) 

6 40°43 N, 98°8 W 2011-2012 USA Rainfed Soil water balance -9.4 % (-19.9 % to +1.1 %) 
Irmak and Djaman 

(2016) 

7 37°45 S, 58°18 W 1995/1996 Argentina Irrigated Energy balance -0.9 % Gardiol et al. (2003) 

8 45°10 N, 12°13 E 2011-2012 Italy Rainfed Remote sensing +11.9 % (+3.1 % to +20.7 %) Grosso et al., (2018) 

* according to FAO classification (Allen et al., 1998), ** estimated as: (Observed CWU in a study / ACEA’s CWU) - 100 % 525 

Approximate comparisons can be also done for maize yield gaps. Three studies estimate the global yield gaps around 2000 in 

a range of 50-64 % (Licker et al., 2010; Mueller et al., 2012; Neumann et al., 2010). Our estimate of the water-limited yield 

gap for 1996-2005 in ACEA is 67.3 %. Two more recent studies report yield gaps around 2010 for several locations in different 

regions (Hoffmann et al., 2018; Edreira et al., 2018). Their estimates show similarities to our study (calculated for 2012-2016): 

80 % yield gap in Sub-Saharan Africa (7577.5 % in ACEA), 20 % in Northern America (30.531.0 % in ACEA), and 38 % in 530 

East Asia (55.7 % in ACEA). MoreThe more pessimistic results of our study are likely due to differences in yield-limiting 

factors and cropland extentsharvested areas. 

4.2 Strengths and weaknesses of ACEA 

4.2.1 Advancing crop water productivity research 

ACEA is the first process-based GGCM that can trace the fluxes of green water, blue water from capillary rise, and blue water 535 

from irrigation within the soil profile on a daily time step. This allows to accurately distinguish between green and blue crop 

water productivity (Hoekstra, 2019). To demonstrate usefulness of this distinction, we highlight the importance of accounting 

blue water from capillary rise as its contribution to the national WF of maize production can amount to 25 % (see Sect. 3.1). 

Furthermore, the open-source nature and advanced functionality of ACEA facilitates simulations of various alternative 

management packages (e.g. field management practices, irrigation methods and strategies). This allows studying responses of 540 

crop water productivity to various environmental and managerial changes. 

ACEA is a new GGCM that can estimate crop yield and CWU distinguishing three water types: green water, blue water from 

CR, and blue water from irrigation. The open-source nature and easy customisation in ACEA facilitate the analyses of crop 

water productivity responses to various environmental and managerial changes. Furthermore, the optimised modelling 

procedure allows computationally-efficient large scale simulations. In our case, ACEA took 12 hours to simulate 57 000 545 

combinations of grid cells and setups (34-year long each, see Sect. 2.2) on a working station with 12 CPUs. This corresponds 

to 160 000 simulated years per computational hour. Compared to the reported performance of AquaCrop-GIS (Lorite et al., 
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2013), ACEA is up to 25 times faster. Simulation inputs for this study take more than 27.3 GB of space and outputs more than 

30.2 GBs. 

4.2.2 Uncertainties in global crop modelling 550 

Global gridded crop modelling is a complex process that contains severalmany uncertainties (Folberth et al., 2019) and ACEA 

is not an exception. Most of the uncertainties likely originate from spatial and temporal resolutions of input datasets rather 

than from the model itself. In our study, we modelWe simulate maize production at 30 x 30 arc minute resolution meaning 

that input datasets with finer resolutions have to be upscaled, such as soil characteristics and shallow groundwater levels (see 

Sect. 2.2). Then, we downscale simulationdistribute the results toamong 5 x 5 arc minute resolution, whichgrid cells according 555 

to the spatial distribution of harvested areas. This leads to uncertainty in crop yields and CWU estimates as theythe distributed 

results do not reflect the exact environmental conditions in each 5 x 5 arc minute grid cell. Alternatively, we could run ACEA 

can be run at 5 x 5 arc minutesa finer resolution, but this iswas not feasible for our study due to input data limitations and high 

computational requirements and input data limitations (see Sect. 2.2).. 

Next, maizeselected crop parameters are based on a single maize cultivar calibrated for several agro-climatic conditions byfrom 560 

FAO (Hsiao et al., 2009). Therefore, the regional and historical differences in crop genetics such as water productivity, root 

depth, and abiotic stress responsesvariety are not directly considered. but incorporated in yield scaling factors (see Sect. 2.1.4). 

Moreover, the lack of subnational data needed to generate reliable crop calendars results in a poorrough representation of 

spatial variability in planting and harvest dates. Thus, the start and duration of growing seasons might be miscalculated. As 

the current version of ACEA does not consider chemical cycles between a crop and the environment, the biophysical stresses 565 

from water salinity and insufficient nutrient intake are not simulated, which, again, leads to uncertainties in simulated crop 

yields and CWU. our results. 

We also assume the same soil moisture-based rule for irrigation application in all grid cells. In reality, farmers decide when 

and how much to irrigate based on site-specific conditions such as access to water and technological inputs. Note that the 

current version of ACEA does not consider chemical cycles between a crop and the environment. Therefore, the biomass 570 

accumulation stresses from water salinity and insufficient nutrient intake are not simulated but captured in the national yield 

scaling factors (see Sect. 2.1.4). Furthermore, the water consumed by irrigation conveyance is not accounted for. Therefore, 

the timing and volume of irrigation events simulated in ACEA can deviate from the actual ones. As for CR, we consider neither 

interannual variations in groundwater levels nor the effects of pumping, and thus our WFbc estimates rather reflect potential 

values under steady-state conditions. 575 

TheFinally, the post-processing of results also contains uncertainties. In particular, the geographical extentdistribution of maize 

productionextrapolated harvested areas (see Sect. 2.2) plays an important role during spatial averaging. To our knowledge, we 

make the first-ever attempt to temporally extrapolate maize harvested areas (see Sect. S1.6); hence, our gridded estimates for 

rainfed and irrigated systems are only approximate. TheseThe resulted uncertainties are particularly relevant when zooming 

to smaller geographical scales (e.g. analysis of small countries).  580 
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4.2.3 Future prospects 

In this paper, we apply ACEA to study the historic and current stateSustainability of maize WFs in the world. However, 

maize covers only a fraction of overall crop production globally, and hence WFs of other crops should be analysed to 

provide a complete overview of developments in crop water productivity and water consumption worldwide. 

Furthermore, regional impacts of crop production on ecosystems and freshwater resources can only be assessed by 585 

relating the total WF of production (agricultural, industrial, and domestic) to maximum sustainable levels within a 

given geographical unit (Bunsen et al., 2021; Hoekstra et al., 2012b; Liu et al., 2017; Hogeboom et al., 2020). WFs in 

crop growing areas that already overshoot (or soon to overshoot) these levels can be further assessed in ACEA to 

propose potential measures of WF reduction, such as more efficient irrigation and field management (Chukalla et al., 

2015, 2017; Campbell et al., 2017; Nouri et al., 2019) or change of cropping patterns (Chouchane et al., 2020).production 590 

Global maize production has soared in recent decades due to high demands from livestock and biofuel industries. For example, 

in the USA, these industries consume almost 90% of all domestically produced maize (Ranum et al., 2014), and thus only a 

small fraction ends up on human’s plates. This does not only lead to debates of “food versus fuel” and “food versus feed” but 

also raises the question of environmental impacts of maize production (Wallington et al., 2012). Although assessing the latter 

is out of the scope of our study, we highlight several sustainability aspects of maize production that could be addressed in 595 

further research. Concerning water resources, there are three key aspects: 

• To what extent WFs of maize production contribute to local green (Schyns et al., 2019) and blue water scarcity 

(Mekonnen and Hoekstra, 2016). For example, WFs of production can be compared to local time‐specific 

environmental limits of water consumption (Hogeboom et al., 2020; Mekonnen and Hoekstra, 2020). 

• How local unit WFs of maize compare to appropriate benchmarks. These benchmarks refer to WFs that are either 600 

obtained by the best producers in other areas with similar agro-environmental conditions or can be achieved using 

best available practices (Mekonnen and Hoekstra, 2014). Examples of such practices are the application of mulches, 

selection of better crop varieties, optimization of irrigation and nutrient supply (Chukalla et al., 2015; Rusinamhodzi 

et al., 2012). 

• To what extent maize production pollutes the local water resources via applied fertilisers, herbicides, and pesticides. 605 

This pollution can be quantified by water quality indicators, such as the grey WF (Chukalla et al., 2018a; Mekonnen 

and Hoekstra, 2010; Liu et al., 2017), which refers to the volume of water needed to assimilate a load of pollutants to 

freshwater bodies. This load can be minimised with agroecological practices, such as the application of organic 

alternatives to agrochemicals and intercropping (or crop rotation) with nitrogen-fixing plants (e.g. alfalfa, soybeans) 

(Capellesso et al., 2016). In this context, it is also worthwhile to study the trade-offs between the consumptive (green 610 

plus blue) and grey WFs, as the alternative agroecological practices also affect the former (Chukalla et al., 2018b). 

The sustainability of maize production can be also assessed from other than water perspectives, e.g. by addressing questions 

around impacts on ecosystems (Fletcher et al., 2011; Immerzeel et al., 2014), associated GHG emissions (Yang and Chen, 

2013; Dias De Oliveira et al., 2005), equitable crop markets (Marenya et al., 2017; Mmbando et al., 2015), and economic value 

(Wallington et al., 2012; Baffes et al., 2019). 615 
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5 Conclusions 

This study introduces ACEA is a new process-based global gridded crop model – AquaCrop-Earth@lternatives (ACEA) – that 

can simulate allows the assessment of green and blue crop water productivity at highlarge spatial and temporal resolutions. 

The main novelty of ACEA lies in its ability to trace fluxes of green water, blue water from capillary rise, and blue water from 

irrigation within the soil profile on a daily time step. This allows to estimate the precise contribution of these three water types 620 

to the final crop WF. 

We apply ACEA to analysescales, which we demonstrate by simulating global maize WFs duringover the 1986-2016 at 5 x 5 

arc minute resolution.period. Our results show that, in 2012-2016, the current global average unit WF of maize is 723.2728.0 

m3 t-1 y-1 with a dominant role of . The WF composition is dominated by green water (89.5 % of total), followed by but the 

share of blue water from irrigation is increasing. The share of blue water from irrigation (8.3%), and blue water from capillary 625 

rise (2.2%). Despite being CR is minor at the global scale, the role of blue WF from capillary rise becomes but can be 

substantial when zooming to regionsin areas with a wide presence of shallow groundwater tables. We also find that rainfed 

areas with capillary rise contribution have a twice lower interannual variability in unit WF (CV of 14.7%) than rainfed areas 

without such contribution (28.8%). However, the lowest interannual variability is found in irrigated areas (8.4%).  

Spatial and temporal patterns in maize unit. Unit WFs are mostly determined by crop yields. vary greatly around the world. 630 

Regions with characterised by high-input agriculture generally have a small yield gaps and/or favourable climate conditions 

(e.g. low ET rates, sufficient rainfall) have a small unit WF and its interannual variationWF and its CV, such as Western Europe 

and Northern America (WF < 500 m3 t-1 y-1, CV < 15%). Regions with large yield gaps have17 %). On the contrary, low-input 

regions show opposite outcomes, such as Middle and Eastern Africa (WF > 2500 m3 t-1 y-1, CV > 40%). Consequently, 

these30%). Nevertheless, we observe WF reductions in most regions have potential to substantially reduce their unit WFs of 635 

maize, and hence to improve local food and water security. 

Our results also reveal a rebound effect of global crop water productivity gains: due to the historical increase in maize yields. 

As a result, the global average unit WF of maize has decreasedreduced by one third34.5 % since 1986, but the . Despite this 

productivity gain, the global WF of maize production has increased by almost one half reaching 762.9 x 109 m3 y-1 in 2016. 

This dynamic is mainly driven by two factors: decreasing yield gaps and expanding croplands. Since decreasing 49.6 % due 640 

to the expansion of rainfed and irrigated areas. Both trends are likely to continue as the yield gaps are insufficient to satisfy 

the global maize demand, farmers started expanding both rainfed and irrigated croplands. Consequently, more and more maize 

is cultivated which increases maize’s water consumption worldwide (mostly in Asia and Africa).  

As maize production consumes more water than ever beforeclosing and maize areas are further expanding driven by demands 

from food, livestock, and biofuel industries. Therefore, it is important to evaluate other crops in ACEA too. This would advance 645 

the understanding of temporal and spatial patterns in WFs of crops as well address the sustainability and purpose of maize 

production as allow assessing the pressure of crop production on it might endanger local ecosystems and freshwater human 

livelihoods, e.g. by polluting water resources worldwideand contributing to water scarcity. 
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