
Authors’ Response to Editor and Reviewers of “Guidance on evaluating parametric model 

uncertainty at decision-relevant scales” by Smith et al. 

Editor and Reviewer comments are in black. Note that many of the actual changed text edits are 

the same as proposed in our replies to reviewer comments. We have noted new edits with 

{highlighted text} preceding the reviewer comment. Line numbers in our replies correspond to 

the revised manuscript PDF without tracked changes in it. 

Author responses are in blue 

Text edits are in red 

 

Editor: 

Dear authors, 

The manuscript has now received two reviews. Both reviewers see merit in this manuscript, 

though both have raised several points needing clarification. 

 

I've thoroughly read the responses and proposed revisions from the authors, and find them to be a 

thoughtful treatment of planned changes. I appreciate that the authors separated their responses 

and their proposed text edits. 

 

A majority of the comments from the reviewers, especially reviewer 2, encourage being explicit 

around the framing of the manuscript and the major outcomes from the manuscript. I encourage 

the authors to place particular effort to clarify these points of confusion raised by the reviewers. 

Overall, the manuscript is well written, and minor clarifications encouraged by the reviewers will 

improve its impact. 

 

I do think that the major points outlined by the authors in their abstract and throughout the 

manuscript make a notable contribution to the literature, particularly the literature connecting 

sensitivity analysis and decision-making. However, I agree with the reviewers that it is worth 

investing time to ensure that these key messages are clear, and can be interpreted through your 

figures. As pointed out by one reviewer, it can be challenging to interpret the figures. One option 

may be to add a visual guide within each figure on how to read/interpret some of your figures 

(e.g., Fig 4, Fig 5), to reduce the amount of information shown (e.g., reduce the numbers 

included in Figure 5 to highlight key information), and/or to simply show larger figures or break 

subplots up (e.g., Figure 2, Figure 5). I really want to dissect Figure 2 and Figure 5, but am 

struggling to extract information from these given there is so much information packed in, as 

noted by one of the reviewers. 

 

I encourage the authors to proceed with a thorough revision and I look forward to reading an 

updated manuscript. 



 

Thank you for your review of our manuscript. We have implemented the proposed changes in 

response to reviewers and documented them in this response. There are other minor text edits as 

tracked changes in the PDF.  Additionally, we adopted several figure changes to improve their 

presentation: 

Figure 2: Font size for the numbers and legend labels have been increased by 50%, and the figure 

is now on a full page. The legend has been moved outside of the plot area. A table has been 

added for the parameters corresponding to the numbers above the error bars. 

Figure 4: y axis labels were removed for all but one sub-plot. Increased image size. 

Figure 5: The original Figure 5A and 5B were split into Figure 5 and 6. Both figures were 

enlarged relative to 5A and 5B. The new Figure 5 x and y axes’ labels were improved.  

 

RC1 

I have read with interest the manuscript entitled ‘Guidance on evaluating parametric model 

uncertainty at decision-relevant scales’. The study examines the sensitivity of the simulations of 

a spatially distributed ecohydrological model to the model parameters for calibration purposes. 

Sensitivity is considered with respect to different model output metrics that correspond not only 

to performance metrics assessed at the basin outlet, but also statistics of the model output 

calculated for the different hillslopes of the basin where no output observations are available. 

The study is a welcome contribution to the field of sensitivity analysis of spatially distributed 

models, which is challenging due to the high dimensionality of the parameter space of these 

models and which requires further investigations. The study discusses the issue of calibration and 

uncertainty estimation in absence of output observations, in particular at internal locations of a 

river basin where model-based information is critically needed to support decision making. 

Overall, the manuscript is well written, the analyses were performed with care and the 

experiments are well documented in the supplements. However, I have a number of suggestions 

and I think that a number of points need clarification, in particular regarding the choice of 

(output) sensitivity metrics and the analysis of the multipliers, as detailed below. 

Thank you for reviewing our manuscript and for your suggestions. We adopted many of them 

into our revised version, as explained below. 

 

p1 L8 ‘parameter multipliers‘: I suggest adding ‘for spatially distributed parameters’ for clarity. 

We changed this sentence to: 

L7-9: 



We use global sensitivity analysis to screen parameters for model calibration, and to 

subsequently evaluate the appropriateness of using multipliers to adjust the values of spatially 

distributed parameters to further reduce dimensionality.  

 

p1 L15-16 ‘for some parameter multipliers […] reducing dimensionality.’: This needs 

clarification. 

We agree this was confusing as written. Including the word “adjust” in the edit above should 

help to interpret this sentence. Additionally, we revised this sentence to directly reference the SA 

results, and also added a second key point that we make about the use of multipliers. 

L15-17: 

3) for some multipliers, calibrating all parameters in the set being adjusted may be preferable to 

using the multiplier if they have significantly different parameter sensitivity values, while for 

others, calibrating only a subset of the parameters in the set may be preferable if they are not all 

influential. 

 

p2 L31 ’sensitivity metrics’: I suggest specifying what this term refer to for clarity (e.g. 

performance measure or statistics o the simulated model output). 

We removed “metrics” from this sentence. The next paragraph details what is meant by 

sensitivity metrics.  

L32-33: 

For studies that aim to use the resulting model to spatially optimize decisions, sensitivity should 

be defined for the decision objective values.  

 

p2 L34-35: Could you provide some references/examples for this? 

We now cite studies from within the existing reference list as examples at the end of the 

sentence. Gupta and Razavi (2018) in section 1.2 describe different model performance metrics, 

and they cite many more studies as examples of each type of metric. 

L39-40: 

(e.g., Herman et al., 2013; van Griensven et al., 2006; Chen et al., 2020) 

 



p2 L37-39 ‘Matching […] with controlling extremes.’: A link between this sentence and the rest 

of the paragraph is missing. 

We changed the previous sentence to: 

L40-44: 

Common calibration performance measures are used to quantify model performance across all 

flow magnitudes, yet some measures like the Nash-Sutcliffe Efficiency (NSE) lump several 

features of the hydrologic time series together (Gupta et al., 2009) and specific features can 

govern the resulting performance value (e.g., peak flows for NSE in Clark et al., 2021). 

The abuse of popular performance metrics in hydrologic modeling - Clark - - Water Resources 

Research - Wiley Online Library 

Because our finding that the parameters selected by NSE more closely resemble 5th-95th 

percentile flow parameters than the 95th percentile parameters, contrary to what might be 

expected by the results of the Clark et al. study, we also added this sentence to the discussion: 

L490-492: 

Another possibility is that in the Baisman Run watershed, flows greater than the 95th percentile 

are still relatively small, and so the model residuals are a similar order of magnitude for peak 

flows and other flows. 

 

p3 L92-93 ‘will be evaluated […] error model’: The authors should clarify whether they refer 

here to future studies that may use the guidance presented in the manuscript. 

Sorry for the confusion; we should have used the present tense as we evaluate sensitivity at 

ungauged locations in this paper. We propose modified this sentence to: 

L97-98: 

We do not consider stochastic methods because we evaluate sensitivity in ungauged locations 

where no data are available to inform an error model. 

 

{new analysis, paragraph, and supplementary figure} p4 L107 ‘performance measure’: Consider 

revising the terminology. The metric of Eq. (2) is not really a performance measure, as it does 

not use observed values. 

That is correct that Eq. 2 is not actually error, so SAE is not an appropriate name for this. This 

should be sum of absolute median deviation (SAMD). We changed this terminology throughout 

https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2020WR029001
https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2020WR029001


the text. We also called this a “relative variability measure” instead of a performance measure. 

For completeness, we computed the SAMD for the basin outlet as well, and compared results to 

the SAE (supplementary figure below in low res). 

L117-124: 

For the basin outlet, we used the sum of absolute error (SAE) as the performance measure for 

decision-relevant sensitivity metrics. Because performance measures require an observation time 

series to compute, we needed a different approach to measure relative variability for hillslope 

sensitivity analysis. We used the sum of absolute median deviation (SAMD), where the median 

value was computed across all model simulations of each hillslope. For completeness, we also 

used the SAMD for the basin outlet and compared to the SAE results in supplementary material 

(item S9). We found similar parameter selection and sensitivity ranking results for each method, 

which demonstrates that an observation time series is not necessary to obtain the parameter set to 

calibrate, although observations help to check that SA model simulations are reasonable. In this 

paper, we present basin outlet results for the SAE. The SAE and SAMD expressions are shown 

in Equations 1 and 2. 



 



p5 L130-131 ‘Therefore, […] the TN estimation method’: This sentence is not clear to me. 

Observed data are also used for the streamflow objectives (Eq. (1)). In addition, does the water 

quality objective only consider the basin outlet or also hillslopes? 

We do not use an error model for streamflow, but WRTDS as a regression model does have an 

error model (normal distribution for log[TN]). So, we could simulate the quantile estimates of 

TN in addition to the regression-predicted mean, and do sensitivity analysis on those quantiles. 

We modified the existing text and added a clarifying sentence to explain this more clearly:  

L141-147: 

As described in Section 3.1, we used a linear regression model with normal residuals to estimate 

the log-space TN concentration at the outlet as a function of time, season, and streamflow at the 

same location. As such, we could compute water quality sensitivity metrics for estimated 

quantiles from the regression error model, in addition to the regression-predicted mean. The 

water quality sensitivity metrics corresponded to 1) the 95th percentile of the distribution of 

estimated TN concentration, 2) the 5th percentile, and 3) the log-space mean (real-space median) 

on each of the days on which TN was sampled. 

Yes, the water quality objectives are only evaluated at the basin outlet. This is solely because the 

WRTDS regression is valid only for the outlet. With a better spatial prediction model for TN, 

sensitivity could and should be evaluated across the catchment, as we do for streamflow. 

 

p5 Section 2.3 A justification for the choice of the four calibration performance measures is 

missing (e.g. a justification could be that these metrics are typically used in previous studies, and 

in this case some references to some of these studies should be provided).  

These are typical calibration metrics in hydrology. Later in the paragraph, we state that these 

metrics are used to represent different features of the hydrologic time series. We changed the 

first sentence to: 

L151: 

Four performance measures that are typically used to calibrate hydrologic models are used... 

And added the following citations for NSE, pBias, and log-likelihood metrics: 

Moriasi, D., Arnold, J., Van Liew, M., Bingner, R., Harmel, R., & Veith, T. (2007). Model 

evaluation guidelines for systematic quantification of accuracy in watershed simulations. 

Transactions of the ASABE, 50, 885. 

Smith, T., Marshall, L., & Sharma, A. (2015). Modeling residual hydrologic errors with 

Bayesian inference. Journal of Hydrology, 528, 29-37. 

https://doi.org/10.1016/j.jhydrol.2015.05.051. 

https://doi.org/10.1016/j.jhydrol.2015.05.051


 

{new paragraph}In addition, I think that the metric of Eq. (1) could also be used for calibration 

purposes. Therefore the difference between the decision-relevant and calibration-relevant 

sensitivity metrics is fuzzy. 

Equation 1 is a performance measure, and that could be used for calibration. Decision relevance 

vs. calibration relevance is determined by which metrics are used (e.g., using only the lower 5th 

percentile of flows). We have described this more clearly by making section 2.2 “Sensitivity 

Metrics” with two sub-sections for decision-relevant (2.2.1) and calibration-relevant (2.2.2) 

metrics (these were formerly sections 2.2 and 2.3). The following paragraph composes Section 

2.2, which defines performance measures and decision- and calibration-relevant metrics: 

L105-115: 

In many hydrological studies, sensitivity analysis is used to understand how input parameters 

influence model performance measures (Jackson et al., 2019), such as the Nash-Sutcliffe 

efficiency. Performance measures are a way to temporally aggregatea time series into a single 

value that is indicative of model fit to the observed data (e.g., Moriasi et al., 2007). Gupta and 

Razavi(2018) note that using such performance measures as sensitivity metrics amounts to a 

parameter identification study to discoverwhich parameters may be adjusted to improve model 

fit. Therefore, the calibration-relevant sensitivity metrics in this paper usesuch performance 

measures on the full time series. Evaluating performance measures for subsets of the time series 

that describe specific features of interest (Olden and Poff, 2003) should identify those parameters 

that control processes that generate thosefeatures (e.g., timing vs. volume metrics in Wagener et 

al., 2009). Therefore, decision-relevant sensitivity metrics are evaluatedon subsets of the time 

series that are relevant to decision objectives. While these metrics could be used for model 

calibration,that is an uncommon choice because the model would be unlikely to perform well on 

other data subsets (e.g., Efstratiadis andKoutsoyiannis, 2010). The following subsections present 

the decision- and calibration-relevant sensitivity metrics. 

Efstratiadis, A. & Koutsoyiannis, D. (2010) One decade of multi-objective calibration 

approaches in hydrological modelling: a review, Hydrological Sciences Journal, 55:1, 58-78, 

DOI: 10.1080/02626660903526292 

 

p6 L170 ‘EEs for each parameter […] in the parameter domain.’: Please add a reference for this 

(e.g. Pianosi et al. (2016)). 

We cited the original methods paper (Morris, 1991) in the paragraph above the equation.  

 

p6 L178 ‘Step changes’: Does this refer to the quantity Delta_{s+1,s,p} of Eq. (7)? Please 

clarify. 



Yes, these are the deltas. We changed this to: 

L196: 

Step changes, Δ, 

 

p6 L178-179 ‘to allow for a uniform […] within the specified bounds.’: This needs to be better 

explained. 

We do not know of a reference that explains this numerical method, so we added a 

supplementary figure that illustrates this. We also changed the sentence to: 

L196-198: 

Step changes, Δ, in parameter values were set to 50 levels (i.e. 50% of their range). For each 

parameter, this allows for a uniform distribution of parameter values across all samples (example 

sampling distributions for other percentages are provided in supplementary item S8). 

 

Histograms for the Morris trajectory samples for parameter X as a function of the delta step size. 

Percentages are relative to the range of X. 

 

p8 L217 ‘mean EE value’: Clarify whether this refers to the metric defined in Eq. (8). 

We changed this to: 

L236: 

mean EE value (Eq. 8) 

 



p8 Sect. 2.6: I do not understand this point. The use of a multiplier for a certain parameter type is 

based on the assumptions that the value of the parameters of this type vary in the same 

proportions in different locations of the basin, and I do not understand why these parameters 

should have similar sensitivity (here EEs). 

Now Section 2.5 

If the parameters truly have a proportional adjustment, then it is still fine to use the multiplier 

even if the sensitivities are significantly different. We edited this section and parts of the results 

to say that parameters with significantly different sensitivity values are candidates for being 

calibrated individually. More investigation on the cause for their difference in sensitivity could 

inform the decision to calibrate individually or using a multiplier (e.g., is the difference in 

sensitivity caused by the parameters acting in vastly different proportions of the watershed area?) 

 

p11 L300-303: This is based on a rather strong assumptions that the C-Q relationship obtained 

using the WRTDS regression method can be extrapolated to other flow conditions. This may not 

be appropriate for in-depth nitrogen study, in particular in agricultural areas with highly varying 

nitrogen inputs. I understand that it is not the point of this study to have a sophisticated nitrogen 

routine. However, I think that some comments should be added to further highlight the 

simplifications/limitations of the data-driven nitrogen routine used. My comment also refers to 

the sentence p21 L503-505. 

Note that our study watershed is not agricultural and N loads appear to be dominated by septic 

systems. We edited this to: 

L322-327: 

Simulated flows that were outside of the observed range of values were assigned the parameters 

for the nearest flow value in the table. Extrapolation of the concentration-flow relationship to 

more extreme flows than were historically observed may provide inaccurate TN estimates, which 

is a limitation of this statistical prediction method. We expect the error from extrapolation in this 

basin to be low, as N loads appear to be dominated by effluent from septic systems as evidenced 

by isotopic sourcing (Kaushal et al., 2011, p. 8229), and septic effluent supply should be fairly 

steady over time. 

Kaushal, S.S., Groffman, P.M., Band, L., Elliott, E.M., Shields, C.A., and Kendall, C. (2011). 

Tracking nonpoint source nitrogen pollution in human-impacted watersheds. Environmental 

Science & Technology, 19(45), pp. 8225-8232. https://doi.org/10.1021/es200779e 

 

p13 L359 ‘healthy ecosystem’: I suggesting replacing this expression by something like ‘more 

humid ecosystem’ for clarity. 

https://doi.org/10.1021/es200779e


We changed “compared to a healthy ecosystem” to:  

L383: 

compared to non-drought conditions 

 

p14 L373-374: ‘This result demonstrates […] to calibrate.’: This sentence needs clarification. 

We changed this to: 

L396-401: 

The reason for differences in which parameters are selected for calibration using the three TN 

metrics is uncertainty in the mean EE. EE error bars tend to be larger for the upper 95th 

percentile TN estimate, which results in the selection of more parameters to calibrate. This result 

demonstrates the value of considering both model error (different TN quantile estimates) and 

uncertainty in sensitivity (bootstrapped EE estimates) when selecting which parameters to 

calibrate. More parameters are found to be potentially influential when considering these sources 

of uncertainty. 

p21 L511-514: The authors could refer to the study by Cuntz et al. (2016), which also 

demonstrates the importance of including in the calibration some parameters that are typically set 

to fixed values and in particular hard-coded parameters, using the NOAH-MP land surface 

model. 

We have cited this paper here. 

 

p22 L553-555: I think that it should also be emphasized that, because of the issue equifinality, 

calibration strategies that identify an ensemble of possible parameter sets (as compared to a 

unique ‘best’ solution) and that therefore consider parameter uncertainty are more appropriate. 

We modified this sentence to: 

L585-587: 

Thus, due to equifinality, calibration methods that estimate parameter distributions are preferable 

to relying upon a single “best” parameter set; considering such parametric uncertainty in 

optimizations of engineering control measures should help to discover solutions that are robust to 

it. 

 



Minor edits 

p3 L61: I suggest replacing ‘will’ that ‘are typically’. 

Changed to “are used to inform” 

p7 L192: replace ‘smaller’ by ‘smallest’. 

Accepted suggestion 

 

References: 

Cuntz, M., Mai, J., Samaniego, L., Clark, M., Wulfmeyer, V., Branch, O., et al. (2016). The 

impact of standard and hard-coded parameters on the hydrologic fluxes in the Noah-MP land 

surface model. Journal of Geophysical Research, 121(18), 10,676-10,700. 

https://doi.org/10.1002/2016JD025097 

Pianosi, F., Beven, K., Freer, J., Hall, J. W., Rougier, J., Stephenson, D. B., & Wagener, T. 

(2016). Sensitivity analysis of environmental models: A systematic review with practical 

workflow. Environmental Modelling & Software, 79, 214–232. 

https://doi.org/10.1016/j.envsoft.2016.02.008 

 

 

RC2 

1. L8-10: “We evaluate six sensitivity metrics that align with four decision objectives; two 

metrics consider model residual error that would be considered in spatial optimizations of 

engineering designs.” This sentence is confusing -- do the six sensitivity metrics add up 

to the four decision objectives + two model residual error metrics? 

Yes, that is correct. We modified the sentence to: 

L9-10: 

We evaluate six sensitivity metrics, four of which align with decision objectives and two 

of which consider model residual error…  

 

2. L39: extremes or high flows? 



Engineering controls can work to lower high flows and raise low flows. We changed this 

to: 

L45: 

Extreme high and low flows 

 

3. It would be helpful to somewhere define “engineering controls”. 

We added examples to the first sentence in the introduction. 

(e.g., green and gray infrastructure) 

 

4. L 116: here are you write flooding, low flow, reservoir water supply objectives, but 

earlier you wrote flooding, low flow, and all other flows. If these are the same, that 

should be explicitly stated. 

We changed L131 to: 

flooding, low flow, and all other flow objectives 

 

5. L320: “The goal of this sensitivity analysis is to inform the selection of parameters to 

calibrate a RHESSys model that could be used in such a reforestation optimization.” is 

this the overall goal of this paper? If so, this should be stated in the introduction section 

much earlier. 

We added the following sentence at the end of the first paragraph of the introduction: 

L35-37: 

In this paper, we evaluate the influence of decision-relevant and calibration-relevant 

sensitivity metrics on parameter selection for calibration, and discuss the potential 

implications on subsequent model calibration and optimization of water management 

decisions. 

 

6. L 328: are the elementary effects for all the parameters normalized on a percentage basis? 

Why compare the 95th percentile for the elementary effects to the overall mean of all 



parameters’ elementary effects, if that is what is being explained in this sentence? What 

does the 95th percentile estimate for the elementary effects mean? 

As explained in Section 2.4, we completed bootstrapping of the elementary effects to 

generate a distribution of mean absolute values of elementary effects for each parameter. 

This recognizes that there is uncertainty in our estimate of a parameter’s mean absolute 

elementary effect. From that distribution, we obtain the 95th percentile estimate of the 

mean absolute value EE for each parameter. Normalization in each panel of figure 2 is 

completed by taking the maximum 95th percentile EE value across all parameters and 

setting that to 1 (i.e., all EEs are divided by this value). The minimum is 0. So, the figure 

normalization is not on a percentage basis. It should also be noted that the EE is a 

normalized metric to begin with, as it is the absolute value of the change in the output 

metric per change in the input parameter, where the change in the input parameter is 50% 

of its range in our study.  

Also stated in Section 2.4, we do not compare 95th percentile EEs to the overall mean 

across all parameters EEs. We sort the mean absolute EE values across parameters from 

largest to smallest and find the top X%. We then compare each parameter’s 95th 

percentile estimate of its mean absolute EE to the X%-ile. Any parameter whose 95th 

percentile mean absolute EE estimate is above that threshold is selected for calibration. 

 

7. Figure 3 seems to be referred to before figure 2 (L335). 

This reference to Figure 3 is to state that we will discuss a point in more detail later in the 

same section. We plan to leave this as-is unless asked to change. 

 

8. L349: does an elementary effect value of exactly 0 mean that this parameter has no effect 

on the stream flow or hillslope metric? It would be helpful to state this explicitly. 

Yes, it does. We added the following to the end of the sentence: 

L373-374: 

(i.e., these parameters do not affect model-predicted streamflow) 

 

9. {new table} The text discussing figure 2 is useful, (line 348 in the rest of this paragraph), 

but without knowing what the specific parameter numbers are in figure 2, I'm not sure 

what to take from this graphic. 



The supplementary material provides the full list in number order in a spreadsheet. We 

discuss the parameters with the largest elementary effects within the text that you 

mention. 

We have also included a table of the numbered parameters within Figure 2. 

Number Parameter Name 

1 H: GW Loss Coef. 

13 L4: Septic Water Load 

55 Riparian Soil (S8+S108): m 

57 S9: Soil Thickness 

70 S9: Pore Size 

71 S9: Air Entry Pres. 

73 S9: Sat. to GW Coef. 

77 S109: Soil Thickness 

91 S109: Air Entry Pres. 

93 S109: Sat. to GW Coef. 

97 Other Soil (S9+S109): Ksat 

98 Other Soil (S9+S109): m 

99 Other Soil (S9+S109): Poro. 

110 Tree: Day Leaf On 

118 Tree: Leaf Cuticular Cond. 

119 Tree: Max Stomatal Cond. 

154 Tree: Stomatal Fraction 

162 Tree: Rainwater Capacity 

232 Z: Avg. Temp. Coef. 

234 Z: Atm. Trans. Coef. 2 

236 Z: Wind Speed 

 

10. Line 480: I see now that engineering designs are not explicitly evaluated in this paper. 

My earlier comment (comment 3), asked about what engineering controls meant. The 

focus on engineering controls in the introduction section led me to believe that this paper 

would be about engineering controls. Rather it seems that this paper has implications for 

where to locate engineering controls but does not directly investigate this placement. If 

this is accurate, then I would suggest deemphasizing engineering controls from the 

introduction section. 

This is correct that we use siting of engineering controls as a motivating reason for doing 

a spatially distributed sensitivity analysis. Calibrated models are used to optimize these 

and other water management decisions, and parameter screening is used to reduce the 



dimensionality of the search to make the calibration more tractable. We propose 

broadening the introduction to say “engineering controls and water management 

decisions” to be more applicable. We changed the first sentence of the introduction to: 

Spatially distributed hydrologic models are commonly employed to inform water 

management decisions across a watershed, such as the optimization of locations of 

engineering control measures. 

11. From what I understood of this article, the first main finding was that parameters 

describing watershed characteristics are sometimes important for modeling hillslope 

hydrologic response even though they do not affect the streamflow at the model outlet 

much. The authors state that this might be important in the spatial location of engineering 

controls. There are many other reasons why getting the hydrology right within the 

watershed is important (modeling of spatially distributed soil moisture, etc.), but a major 

limitation is that we don't normally have data to compare to within the watershed, so in 

practice it would be hard to calibrate these parameters that don't affect streamflow much. 

The second main finding was that commonly used metrics (e.g., NSE) are not as sensitive 

to the decision relevant streamflows that we would want them to be. These are both 

important findings and points to make, but I found the article overall hard to read and 

understand. The authors may be served by focusing the text on the main findings and 

reducing discussion of peripheral topics. 

These are two key points of the article. Because there are so few papers on decision-

relevant sensitivity metrics, we thought it would be useful to provide an extended 

discussion that describes the importance of having the decision objectives in mind when 

completing a sensitivity analysis and subsequent calibration and optimization. Spatial 

sensitivity analysis is also often limited by data in sub-catchments and can lead to 

calibration challenges. We think it is important to discuss how the resulting parametric 

uncertainty can be used in robust optimizations.  

We propose a better framing of the intent to use SA results to inform calibration of a 

model that is used to optimize decisions. We propose adding this sentence to the end of 

the first paragraph (same sentence as mentioned in reply to comment 5): 

In this paper, we evaluate the influence of decision-relevant and calibration-relevant 

sensitivity metrics on parameter selection for calibration, and discuss the potential 

implications on subsequent model calibration and optimization of water management 

decisions. 

 


