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Abstract. Climate change may significantly increase flood risk across Great Britain (GB), but there are large uncertainties in 15 

both future climatic changes and how these propagate into changing river flows. Here, the impact of climate change on the 16 

magnitude and frequency of high flows is modelled for 346 larger (>144km2) catchments across GB using the latest UK 17 

Climate Projections (UKCP18) and the DECIPHeR hydrological modelling framework. This study provides the first spatially 18 

consistent GB projections including both climate ensembles and hydrological model parameter uncertainties.  19 

Generally, results indicated an increase in the magnitude and frequency of high flows (Q10, Q1 and annual maximum) along 20 

the west coast of GB in the future (2050-2075), with increases in annual maximum flows of up to 65% for west Scotland. In 21 

contrast, median flows (Q50) were projected to decrease across GB. All flow projections contained large uncertainties, and 22 

while the RCMs were the largest source of uncertainty overall, hydrological modelling uncertainties were considerable in east 23 

and south-east England. Regional variation in flow projections were found to relate to i) differences in climatic change and ii) 24 

catchment conditions during the baseline period as characterised by the runoff coefficient (mean discharge divided by mean 25 

precipitation). Importantly, increased heavy-precipitation events (defined by an increase in 99th percentile precipitation) did 26 

not always result in increased flood flows for catchments with low runoff coefficients, highlighting the varying factors leading 27 

to changes in high flows.  28 
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These results provide a national overview of climate change impacts on high flows across GB, which will inform climate 29 

change adaptation, while also highlighting the need to account for uncertainty sources when modelling climate change impact 30 

on high flows.  31 

 32 

1 Introduction 33 

Climate change will likely significantly alter hydrological regimes in many parts of the world, with vast implications for water 34 

resource planning and policy (Brown et al., 2015; IPCC, 2014; Wagener et al., 2010). Projections indicate an intensification 35 

of the hydrological cycle, with a warmer climate leading to more rain falling in high-intensity events (Eicker et al., 2016; 36 

Huntington, 2006; IPCC, 2014; Trenberth, 2011). This increase in the frequency and severity of extreme rainfall events is 37 

likely to increase flood risk in many regions. However, the conversion of rainfall to runoff is not straightforward, as changes 38 

in river flows result from complex and non-linear interactions between changing precipitation and evapotranspiration, and the 39 

influence of basin properties (Arnell, 2011; Laizé and Hannah, 2010; Sawicz et al., 2014). There are also many uncertainties 40 

surrounding future climate projections. While climate models show general agreement on rising temperatures and increasing 41 

extreme precipitation throughout the 21st century, they differ in the magnitude and spatial patterns of change (Fowler and 42 

Ekström, 2009; Met Office, 2019; Nikulin et al., 2011). To guide water-related policy and decision making and to ensure 43 

adequate adaptation to future changes in flooding, we therefore need hydrological modelling studies to help understand and 44 

quantify climate change impacts on the hydrological regime, and the uncertainties surrounding these projections (Reynard et 45 

al., 2017).  46 

 47 

Hydrological climate change impact studies often use information from global climate models or regional climate models (e.g., 48 

rainfall and temperature projections) to drive hydrological models. Throughout this modelling chain there are many 49 

uncertainties, which cascade from one step through to another. These include uncertainties in global climate model (GCM) 50 

structure and sub-grid parameterisations, uncertainties in regional climate model (RCM) structure and parameterisations, 51 

uncertainties in the chosen downscaling and bias correction techniques, and uncertainties in the selection of hydrological model 52 

structures and their parameters (Clark et al., 2016; Kundzewicz et al., 2018). Many studies have attempted to quantify the 53 

impact of these uncertainties by using multiple GCMs/RCMs, bias correction techniques, hydrological model structures and/or 54 

hydrological model parameter sets and propagating these uncertainties through the modelling chain. However, these studies 55 

are often focused on small catchment samples as the large numbers of simulations needed are computationally demanding 56 

(e.g., Bosshard et al., 2013; De Niel et al., 2019; Kay et al., 2009; Smith et al., 2014; Wilby & Harris, 2006). Studies generally 57 

agree that modelling of the future climate presents the largest source of uncertainty (Engin et al., 2017; Kay et al., 2009; Meresa 58 

and Romanowicz, 2017; De Niel et al., 2019). However, hydrological modelling uncertainties are not negligible. The relative 59 

contribution of hydrological modelling uncertainties to total uncertainty has been shown to vary depending on catchment 60 
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characteristics (Addor et al., 2014) and for different aspects of the flow regime (Meresa and Romanowicz, 2017). 61 

Understanding and communicating modelling uncertainties has been widely recognised as important to inform robust decision-62 

making (Clark et al., 2016; Reynard et al., 2017). 63 

 64 

Many water-related policy decisions are made at the regional to national scale. For example, England has a national flood and 65 

coastal erosion risk management strategy (Environment Agency, 2020b). To inform these regional to national policy decisions, 66 

hydrological modelling studies which apply a consistent methodology across a large domain / large sample of catchments are 67 

most valuable, as they (i) provide a broad overview of future changes, (ii) provide locally relevant information, in contrast to 68 

global impact studies, and (iii) enable direct comparison between catchments to identify regions that will experience the most 69 

significant climate change impacts (Watts et al., 2015). Using a large sample of catchments also ensures a more robust 70 

evaluation of the relationship between climate change impacts and hydrological response.  71 

 72 

Over the last decade, large-scale studies evaluating climate change impacts on hydrology have emerged, facilitated by the 73 

increased availability of data and computational resources. For example, Köplin et al. (2014) evaluated the changing 74 

seasonality and magnitude of floods for 189 catchments covering Switzerland, Thober et al. (2018) modelled changing river 75 

floods across Europe, Wang et al. (2012) evaluated changing water resources using the distributed VIC model across China, 76 

and a national grid-based model has been applied to explore climate change impact on floods and droughts across Great Britain 77 

(Bell et al., 2007, 2016; Kay and Crooks, 2014; Lane and Kay, 2021; Rudd et al., 2019). While the use of a GCM/RCM 78 

ensemble to evaluate climate uncertainties has become increasingly common (e.g., Bell et al., 2016; Lane and Kay, 2021; 79 

Prudhomme et al., 2012; Rudd et al., 2019), the inclusion of hydrological model parameter uncertainties at the national scale 80 

is still rare for Great Britain. A notable exception is Christierson et al. (2012), who modelled the impact of changing climate 81 

for 70 catchments across the UK using two different hydrological model structures and ensembles of model parameters. 82 

However, this study was based on probabilistic climate projections which were not spatially coherent (i.e., projected variables 83 

were not consistent over space, and rainfall and precipitation products were not produced from the same simulation), and 84 

therefore did not present possible GB-wide changes but rather individual scenarios for each catchment. Incorporating 85 

hydrological model parameter uncertainties is important, as it has been shown that very different projections for future 86 

catchment behaviour can be provided by parameter sets with similar performance over a baseline period (Mendoza et al., 2015; 87 

Singh et al., 2014). However, there are currently no studies providing spatially coherent projections of future changes in 88 

flooding across entire Great Britain, which include both RCM and hydrological model parameter uncertainties.      89 

 90 

An updated set of national climate projections has recently been released for the UK, UKCP18 (Lowe et al., 2019; Murphy et 91 

al., 2018). These have advanced upon previously available national projections (UKCP09) through (1) increased resolution of 92 

global climate model from ~300km to ~60km providing better representation of synoptic-scale weather systems, mountains 93 

and coastlines, (2) increased resolution of regional climate model from 25km to 12km, which may improve the representation 94 
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of extreme precipitation, (3) updated atmosphere model and improved parameterisations of many sub-grid scale processes, 95 

and (4) improved representation of dynamical influences on regional climate variability such as improvements in predictions 96 

of the winter North Atlantic Oscillation (NAO) (Murphy et al., 2018). Preliminary analysis has shown that probabilistic 97 

projections produced as part of UKCP18 result in greater uncertainty ranges than the comparable UKCP09 projections (Kay 98 

et al., 2020). The UKCP18 projections include a perturbed physics ensemble of regional climate model (RCM) projections at 99 

12km resolution, providing 12 possible climate futures varying due to RCM parameter uncertainties. The implications of these 100 

new climate simulations for river flows are of great interest, as the improved simulation of precipitation may improve 101 

projections of future flooding.  102 

 103 

This paper aims to explore the impact of the new UKCP18 climate projections for high flows across Great Britain (GB). A 104 

climate-hydrological model cascade was employed, with output from an ensemble of 12 RCM projections used to drive a 105 

nationally applied hydrological model with 30 distributed parameter fields. The resulting 360 future flow scenarios were 106 

analysed to answer the following research questions: 107 

1. What is the range in potential changes to median and higher flows (including median flows (Q50), high flow quantiles 108 

(Q10 and Q1), annual maximum flows (AMAX) and number of peaks over threshold) across GB, due to parameter 109 

uncertainties in climate and hydrological modelling? 110 

2. How will changes in the magnitude and frequency of high flows vary spatially and by region? 111 

3. What is the relationship between changing climate (precipitation and potential evapotranspiration) and high flow 112 

response, and how does this vary by region?  113 

Our study presents the first consistent climate change projections for high flows across GB (i.e., using spatially coherent 114 

climate projections) to include both climate model and hydrological model parameter uncertainties. The incorporation of a 115 

large sample of catchments also enabled robust and generalisable analysis on the relationship between climate forcing, 116 

catchment characteristics and hydrological response, which will be relevant to future studies in GB and elsewhere.   117 

2 Methods and data 118 

2.1 Overview 119 

This paper uses a climate-hydrological modelling chain to assess the implications of the UKCP18 climate projections for river 120 

high flows across 346 catchments covering GB (see section 2.2 for catchment selection). An ensemble of 12 spatially coherent 121 

regional climate model (RCM) projections are first bias-corrected (see section 2.3), and then used directly as inputs to the 122 

DECIPHeR hydrological modelling framework to produce flow projections (see section 2.4). For each RCM ensemble 123 

member, DECIPHeR simulations are carried out using 30 nationally consistent hydrological model parameter fields (see 124 

section 2.4). The use of 12 RCMs and 30 hydrological model parameter sets results in 360 national simulations, representing 125 

uncertainty due to RCM and hydrological model parameterisation.  126 
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 127 

To explore climate change impacts on high flows, flow metrics were selected to assess median flows (Q50), high flow quantiles 128 

(Q10 and Q1), the magnitude of peak flows (AMAX), and the frequency of peak flows (see section 2.5). The skill of the 129 

climate-hydrological modelling chain was first evaluated relative to observed flow metrics, and then changes in flow metrics 130 

between the baseline (1985 –2010) and future (2050 –2075) periods were evaluated.  131 

2.2 Catchment selection 132 

A large sample of 346 catchments covering GB was selected for this study. This sample provides a dense coverage across GB, 133 

with catchments in all river basin districts, as shown in Figure 1. Gauging stations were selected from the UK National River 134 

Flow Archive (NRFA) Service Level Agreement (SLA) Network (Centre for Ecology and Hydrology, 2016; Dixon et al., 135 

2013). This network of 715 gauges forms a subset of strategically valuable NRFA catchments, where additional validation and 136 

quality testing procedures have been carried out (Dixon et al., 2013). As hydrometeorological data were available on 12km 137 

grids at daily resolution, we chose to exclude catchments that were smaller than 144km2 (i.e., one RCM grid), because for 138 

these small catchments local variation in precipitation could be problematic for the RCM ensemble scale, and for small flashy 139 

catchments sub-daily data would be required to capture high flow and peak responses effectively.    140 

2.3 Climate model data 141 

Climate scenarios representing changes in precipitation and potential evapotranspiration (PET) were derived from the UKCP18 142 

regional climate projections (Murphy et al., 2018). These comprised a perturbed-physics ensemble of 12 regional climate 143 

model simulations, run at 12km resolution with daily output from 1981 to 2080 (Met Office Hadley Centre, 2019). These  144 

projections were chosen because they have many advantages over other available products for UK impact assessments, 145 

including 1) they were the highest resolution (12km) RCM climate model outputs available for a continuous run period over 146 

GB, 2) they were specifically developed for the UK and form the basis of UK climate policy (Murphy et al., 2018), 3) they 147 

included a measure of climate uncertainty through the use of an RCM ensemble, 4) they are UK specific climate projection 148 

tools designed to help decision-makers assess their risk exposure to climate and thus will for the first time inform important 149 

discussions of the uncertainty within climate impacts across GB, 5) they were the newest national climate projections for GB, 150 

including the latest developments in climate modelling capability and scientific understanding, and therefore have not yet been 151 

comprehensively analysed in other impact studies. A key advantage of the RCM data over other UKCP18 products is that it 152 

has full spatial and temporal coherence and therefore allows for the assessment of interactions between changes in precipitation 153 

and PET as well as providing a nationally consistent picture of future changes (Met Office, 2020). 154 

 155 

The 12 RCM projections were all driven by the same GCM (GC3.05), and only the RCP8.5 emissions scenario was provided. 156 

We considered this to be the most important emissions scenario to look at for two reasons; 1) it shows the ‘worst case’ and so 157 

will most likely show the largest expected changes, and 2) the emissions in RCP8.5 are in close agreement with historical total 158 
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cumulative CO2 emissions and are therefore increasingly looking like a plausible future (Schwalm et al., 2020).  The GC3.05 159 

GCM has been shown to sample the warmer range of global outcomes (Lowe et al., 2019), and so combined with a single 160 

emissions scenario, it is important to note that we only sample the warmer range of possible climate outcomes.        161 

 162 

While precipitation data were available as an RCM output variable, PET time series needed to be derived from other relevant 163 

UKCP18 model outputs. There are many possible approaches to calculating PET from climate model data, with the choice of 164 

PET equation shown to impact the subsequent changes in PET over time (Kay & Davies, 2008; Prudhomme & Williamson, 165 

2013). Here, PET was calculated to be consistent with the CHESS-PE dataset used for hydrological model parameterisation 166 

(Robinson et al., 2015). The CHESS-PE dataset uses the Penman-Monteith equation, calculating PET as a function of air 167 

temperature, specific humidity, wind speed, shortwave radiation, longwave radiation, and air pressure. These variables were 168 

all available as UKCP18 output apart from air pressure, which was calculated using the integral of the hypsometric equation 169 

with modelled temperature as an input (Shuttleworth, 2012) 170 

 171 

Bias correction of climate model output data is often required for hydrological impact studies due to the occurrence of 172 

considerable biases in hydrologically relevant variables (Addor and Seibert, 2014; Cloke et al., 2013; Ning et al., 2012; 173 

Teutschbein and Seibert, 2012). An analysis of biases in the UKCP18 regional projections identified systematic biases in the 174 

model output precipitation and model-derived PET data (see Supplement S1 for more information). For precipitation, RCM 175 

biases included overpredictions of mean annual precipitation across GB by up to 50%, underpredictions of rainfall in wetter 176 

areas along the west coast, and an increased number of wet days (an average of around 15% more rainy days per year than 177 

observations). RCMs tend to overpredict the variance in PET, resulting in overestimations of PET in the south-east, where 178 

observed PET is high, and underestimations in Scotland as well as an incorrect seasonal variation with overestimations in 179 

summer (up to around +40%) and underestimations in winter (up to -100%). A bias correction method was required to reduce 180 

these biases in RCM precipitation and PET, so that they were suitable for hydrological modelling.  181 

 182 

The choice of bias correction has been shown to impact the magnitude and spread of projected changes in flood-producing 183 

flows (Cloke et al., 2013; Smith et al., 2014), and should, therefore, be carefully considered. Techniques to directly adjust 184 

RCM simulations range from relatively simple linear scaling to more complex approaches such as quantile mapping 185 

(Teutschbein and Seibert, 2012). The delta change method, which modifies historical time series based on RCM-simulated 186 

changes, is commonly applied (e.g., Veijalainen et al., 2010). However, this method cannot change the temporal sequencing 187 

of events, so it cannot evaluate changes in flood timing. The quantile mapping bias-correction approach was selected here for 188 

both precipitation and PET (this method has also been referred to as distribution mapping, probability mapping, model output 189 

statistics, or histogram equalisation). The quantile mapping approach accounts for errors in the variability of PET, and ensures 190 

that heavy precipitation events important for high flows were appropriately corrected as well as mean precipitation. It also 191 

corrected for biases in the number of wet days in the RCM data.       192 
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 193 

Observed precipitation and PET data used for bias correction came from the CEH-GEAR (Keller et al., 2015; Tanguy et al., 194 

2014) and CHESS-PE (Robinson et al., 2015) datasets respectively. For each grid-cell and month for precipitation the 195 

following steps were performed: 196 

1. Empirical Cumulative Distribution Functions (CDFs) were calculated for the observed precipitation, and RCM 197 

simulated precipitation for the control/baseline period (all dates where observed and simulated precipitation were 198 

available).  199 

2. The fractional change in precipitation between the observed and control/baseline simulated was calculated for each 200 

cumulative probability.  201 

3. The whole simulated precipitation series was then bias-corrected. The cumulative probability of each precipitation 202 

value was calculated, and the value was modified by the fractional change for that cumulative probability.  203 

The same method was carried out for PET, with a minor modification. It was found that for some Scottish catchments, 204 

fractional changes could become very large when PET values were low (<0.1mm/day) as a result of dividing by values close 205 

to 0. To prevent unrealistic spikes in future PET at low cumulative probabilities, a check was added to ensure that PET values 206 

at a low cumulative probability were always smaller than values at a higher cumulative probability. This bias correction 207 

methodology successfully reduced biases in RCM data over the observational period (see Supplement S1 for more 208 

information). However, it is important to note that bias correction assumes that (i) despite biases in hydrometeorological 209 

variables, the RCM output is still meaningful and changes in hydrometeorological variables are well simulated, and (ii) biases 210 

in RCM output are stationary and so methods of bias correcting baseline data also hold into the future, (iii) the observed data 211 

used in bias correction is not erroneous. The quantile mapping bias correction approach is also limited because there will be 212 

few observations to constrain the CDF at the extreme high end of observations (e.g., exceptionally heavy rainfall events), and 213 

therefore bias correction is likely to be less robust for the rarest events. Whilst potentially another interesting avenue of research 214 

in bias correction, namely wet/dry persistence bias, we decided not to pursue this analyses. Because we feel the matter is 215 

complex and requires a more dedicated paper on these issues and potential impacts, for example Moon et al. (2019) showed 216 

more wet/dry persistence biases between observed gridded rainfall products than between those and climate model outputs. 217 

 218 

The bias-corrected RCM data was used directly as hydrological model input, with no further downscaling. This was possible 219 

due to the size of the catchments we have chosen to analyse coupled with the high resolution (12km) of the RCM data, which 220 

is a key advantage of the UKCP18 climate product over previous climate projections.  221 

2.4 Hydrological modelling 222 

The DECIPHeR hydrological modelling framework was selected to transform precipitation and PET into river flows (Coxon 223 

et al., 2019). DECIPHeR is a semi-distributed hydrological modelling framework which discretises the modelling domain into 224 

hydrological response units (HRUs). Here, the model was configured to be consistent with the 12km UKCP18 data, with HRUs 225 
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defined by splitting the landscape into 12km input grids which were further sub-divided by accumulated area classes, slope 226 

classes and sub-catchment boundaries to capture topographic and catchment attribute controls in hydrological processes. This 227 

HRU-based approach enabled representation of the spatial variation of input time series, while being computationally efficient 228 

to facilitate the use of multiple hydrological and RCM parameter sets across the large sample of catchments. Here, we have 229 

selected the default model structure, which is based on the widely used TOPMODEL, and has previously been shown to 230 

perform well across GB and selected catchments (Coxon et al., 2019; Lane et al., in review). This model structure does not 231 

include a snow module, as snow processes were assumed not to substantially impact many GB catchments (95% of the 232 

catchments included in this study have less than 6% of precipitation falling as snow).   233 

 234 

National fields of model parameters have been generated using the multiscale parameter regionalisation technique (Samaniego 235 

et al., 2010), as described in Lane et al., (2021). This method relates model parameters to spatial catchment attribute data 236 

(including soil texture, land-use, and hydrogeology) via transfer functions. The coefficients of the transfer functions were then 237 

constrained simultaneously on a large sample of 437 British catchments, instead of directly constraining model parameters. 238 

Over 3500 possible parameter fields were produced, and of these, the top 30 parameter fields were selected for this study to 239 

explore the uncertainty due to model parameter selection. These parameter fields were selected as they produced non-240 

parametric KGE scores (Pool et al., 2018) above 0.8, when taking the average value across the large sample of catchments in 241 

GB (Lane et al., 2021). Using catchment attribute data to define the spatial distribution of model parameters means that 242 

parameter fields are spatially coherent with no artificial discontinuities  (Mizukami et al., 2017; Samaniego et al., 2017). This 243 

is advantageous when modelling climate impacts for larger regions or entire countries, as it has been shown that artificial 244 

discontinuities in parameter fields can lead to discontinuities in modelled variables (Mizukami et al., 2017). 245 

 246 

The DECIPHeR framework requires inputs of precipitation and PET, as well as spatial catchment attribute data for 247 

parameterisation. The model was driven continuously with climate data over the period 01/01/1981 – 30/12/2075, with 248 

01/09/1985 – 30/8/2010 extracted as the baseline period and 01/09/2050 – 30/08/2075 being used as the future period in all 249 

further analysis. These 25-year baseline and future periods were selected to allow the maximum distance between the baseline 250 

and future. The choice to start the baseline period in 1985 was due to the need for a long hydrological model spin-up period 251 

(1981-1985), which is required for some catchments in the south-east of England. Hydrological simulations were also carried 252 

out using observed data over the period 01/01/1981 – 30/08/2010, to provide a benchmark of model performance which the 253 

RCM-driven simulations could be compared against over the baseline. For these simulations, potential evapotranspiration data 254 

from the CHESS-PE dataset (Robinson et al., 2015) and precipitation data from CEH-GEAR (Keller et al., 2015) were re-255 

gridded to match the UKCP18 12km data. All observed river flow data were from the UK National River Flow Archive 256 

(NRFA) (Centre for Ecology and Hydrology, 2016).  257 
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2.5 Hydrological indicators 258 

To explore changes in the magnitude of high flows, we calculated the percentage changes in four different flow metrics 259 

between the baseline (1985-2010) and future (2050-2075) periods. Flow metrics calculated were 1) the average annual 260 

maximum (AMAX) flow, 2) Q1, the flow value exceeded 1% of the time, 3) Q10, the flow value exceeded 10% of the time, 261 

and 4) Q50, the median flow or flow value exceeded 50% of the time. These were selected to give a broad overview of future 262 

higher flow changes, ranging from flood flows (AMAX and Q1) to median flows (Q50).  263 

 264 

To analyse changes in the frequency of high flows, a peaks-over-threshold (POT) analysis was carried out. Thresholds were 265 

defined for each catchment to extract an average of three peaks per year over the baseline period. To ensure flood events were 266 

independent, no peak was selected within seven days of a larger peak. This selection was consistent with previous studies, for 267 

example, Svensson et al. (2005) used a five-day window for catchments smaller than 45,000 km2 (the largest catchments in 268 

the UK are ~10,000 km2), while Petrow & Merz, (2009) used ten days for catchments across Germany. Having found a POT 269 

threshold for each catchment over the baseline that resulted in an average of 3 peaks per year, the number of peaks exceeding 270 

this threshold in the future period was counted. The percentage change between the count of 75 peaks total gained in the 271 

baseline and peaks gained in the future was then calculated as an indication of changes in the frequency of flood events.     272 

3 Results 273 

3.1 Meteorological changes 274 

Median precipitation is projected to decrease almost everywhere. GB-average median precipitation is projected to decrease by 275 

31-61% between the different RCMs, with the only exception being in west Scotland (Figure 3a). This decreasing median 276 

precipitation contrasts with very high precipitation (99th percentile), which is expected to increase across most of GB, by an 277 

average of 5-20%. The 90th percentile precipitation shows a more mixed picture, with GB-average changes of -9% to +6%. 278 

Generally, increases were simulated for areas along the west coast and in western Scotland, while decreases can be seen across 279 

southern England and Wales.   280 

 281 

All RCMs indicate increasing PET over the modelled period (Figure 3b-c). These broadly align with observed PET across GB 282 

between 1980-2010, although it is difficult to distinguish an upward trend in the observed PET data over such a short period. 283 

GB-average PET values show increases of 23-38% between the baseline and future period, with the largest PET increases (33-284 

50%) seen in the south, and the smallest PET increases (11-19%) simulated for north-west Scotland. Note that these increases 285 

in PET are likely linked to the fact that the UKCP18 projections sample the warmer range of possible climate outcomes (Lowe 286 

et al., 2019).  287 
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3.2 Evaluation of climate-hydrological modelling chain 288 

Overall, the simulations of the climate-hydrological modelling chain across GB bounded the observations (Figure 2). Our 289 

evaluation focused on the performance for hydrological indicators relevant for higher flows, namely flow quantiles Q50, Q10, 290 

and Q1 and AMAX flows. Catchments where storage reservoirs and regulated flow regimes impacted runoff were removed 291 

for the model performance evaluation, as these processes are not included in the model meaning any errors in these catchments 292 

would not be due to the driving data. However, the presence of reservoirs was not found to lead to a reduction in model 293 

performance (see Supplement S2). The maps in Figure 2a show biases in the highest (i.e., wettest) and lowest (i.e., driest) 294 

simulation for each individual catchment from the ensemble of 12 RCMs and 30 hydrological model parameter sets compared 295 

to observed flows. For catchments which are well represented by the modelling chain, we would expect simulated flows to 296 

bound the observations. Therefore the highest simulation would show a small positive bias, and the lowest simulation would 297 

show a small negative bias. For the majority of catchments (75% for Q50, 64% for Q10 and 65% for Q1) the model simulations 298 

bound observed discharge. The model tends to underestimate AMAX flows in north-west England and Wales, and overestimate 299 

in the south-east, with only 47% of simulations bounding the observed AMAX. For at least 70% of catchments median biases 300 

are less than 30% for Q50, Q10 and Q1, and less than 36% for AMAX flows. However, the modelling chain overestimated 301 

flows in the south-east across all high flow metrics. The difficulties of modelling catchments in south-east England has been 302 

documented in previous studies (Coxon et al., 2019; Lane et al., 2019; Seibert et al., 2018), and is likely due to complex aquifer 303 

systems facilitating inter-catchment groundwater flow. These catchments should, therefore, be treated with caution when 304 

interpreting the results. 305 

 306 

Model performances are shown in more detail for a selection of catchments covering a variety of error characteristics (Figure 307 

2b). Here, error (i.e., bias) in modelled flow driven by RCM output (green) is compared to modelled flows driven by 308 

observations (yellow) using the same 30 hydrological model parameter sets. For most gauges, simulated flows bound the 309 

observations, even when driven by the RCM meteorological data. This result was expected as the RCM data has been bias-310 

corrected against observations, and therefore the RCM data will be similar to observations in magnitude, albeit with different 311 

sequencing of events. There is no consistent relationship between model biases and flow percentiles, with gauge 9002 showing 312 

an increased tendency to overestimate higher flows, while gauge 83013 showed a decreased tendency to overestimate higher 313 

flows.  314 

 315 

3.3 Spatial changes in high flows across GB  316 

Maps showing the spatial pattern of changes in high flow magnitude and frequency are presented for three example simulations 317 

in Figure 4. As the spatial pattern was similar between the ensemble members, we have focused on RCMs 13, 8 and 4 which 318 

represent low, average, and high GB-average projections respectively (calculated based on GB-average Q10 changes). These 319 



11 

 

projections were selected to indicate the range in flow changes across GB, but plots for a larger number of scenarios, and 320 

showing absolute changes as well as percentage changes, are given in Supplement S3     . It is important to note that the maps 321 

in Figure 4 are spatially coherent futures from single RCM ensemble projections and a single hydrological model parameter 322 

set. Therefore they do not reflect the full range of flow changes for each individual catchment that would be obtained by 323 

evaluating the entire RCM ensemble driven by all hydrological model parameter sets. Plots showing the ensemble range for 324 

each catchment are therefore also given in Supplement S3     .   325 

 326 

Despite differences between the example projections, there is a clear east/west divide for high flow magnitude metrics (AMAX, 327 

Q1 and Q10) with increased flows for catchments in the west and decreasing flows in the east. The largest percentage decreases 328 

in high flows are in eastern England, particularly in the Anglian river basin district, while the largest increases in flow are 329 

along the west coast. It is important to note that the large percentage changes in flows for the south-east could be due to the 330 

low baseline flow values, so small absolute changes will result in larger percentage changes (see Supplement S3 for 331 

presentation of absolute and percentage change maps). Median flow (Q50) projections indicate reductions in flow almost 332 

everywhere, but these reductions are generally lower for catchments in western Scotland. The frequency of high flow events, 333 

represented by changes to the number of peaks over threshold events, also shows general increases in the west and reductions 334 

in the south-east. The spatial pattern is very similar to the changes to high flow magnitude, indicating that western catchments 335 

could experience larger annual maximum floods combined with more frequent high flow events.  336 

3.4 Regional changes and uncertainties 337 

Changes for the hydrological indices for the different RCMs and across regions were visualized by heatmaps to enable easy 338 

comparison (Figure 5). These heatmaps present the median flow values from the sample of hydrological model parameters for 339 

each flow statistic, with the full range of regional projections presented in Table 1. They highlight similarities between RCM 340 

members: most RCM ensembles result in increasing AMAX flows in Scotland, northern England, and west Wales, and 341 

decreasing AMAX flows in the Anglian river basin district. Most RCM ensembles also result in decreasing Q50 flows 342 

everywhere except for the Argyll and West Highland districts in west Scotland. However, there are also important differences 343 

between the different RCM projections, including; i) differences in the spatial variation of changes across GB, for example 344 

RCM 15 shows relatively little variation between regions (range of 28% between AMAX projections) while RCM 11 shows 345 

a large variation (range of 104%), ii) differences in the magnitude of projected changes for each region, for example NW 346 

England projections for Q10 range from -16% to +20% between RCMs, and iii) the tendency for some RCMs to simulate 347 

increases in flow (e.g., RCM 04) while others tend towards decreases (e.g., RCM 13) which relates to relative change in 99 th 348 

percentile precipitation (see Figure 3). These differences demonstrate the importance of considering multiple RCMs, to show 349 

a more complete picture of potential future changes.   350 

 351 
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RCM parameters were a larger source of uncertainty in median and high flow changes than hydrological model parameters 352 

(see Figure 6). This finding agrees with previous studies that have investigated high flows, which generally find climate models 353 

to be the largest source of uncertainty in hydrological climate impact assessments (Addor et al., 2014; Bosshard et al., 2013; 354 

Kay et al., 2009). However, hydrological model parameters selection is a large source of uncertainty in the south-east, 355 

especially in the Anglian river basin region. This region receives relatively little precipitation compared to the rest of GB. 356 

Previous studies have shown that drier catchments are more sensitive to parameter selection, with fewer good parameter sets 357 

for drier than for wet catchments (Lane et al., 2019). It is however possible that high percentage differences in the south-east 358 

are due to the lower river flow values magnifying the percentage value of any changes.   359 

3.5 Relationship between climate changes, flow changes and catchment characteristics 360 

The relationship between precipitation change (95th precipitation percentile) and change in flood flows (Q1) across all 361 

catchments and RCMs is presented in Figure 7. Additional plots showing this relationship for other precipitation change 362 

metrics, flow change metrics and hydrological model parameter selections are given in Supplement S4. This shows that there 363 

is a strong positive correlation between precipitation change and flood response, albeit with a large variation between 364 

catchments. The non-linearity between changing precipitation and changing Q1 flows can be seen, with a 25% increase in 365 

precipitation leading to a 20-50% increase in Q1. Surprisingly, for some catchments, heavy precipitation increases yet there is 366 

a reduction in Q1 flows (i.e., catchments in the bottom right quadrant of Figure 7). This flow reduction could be due to the 367 

contrasting effect of increasing PET, resulting in generally drier antecedent conditions for catchments and thus reduced flows 368 

due to the increases in soil moisture storage deficits.  369 

 370 

The relationship between change in 95th percentile precipitation, total PET and Q1 is given in Figure 8; other variations of 371 

precipitation, PET and flow changes produced similar results (but are not shown). There is a clear relationship between climate 372 

forcing and hydrological response. Increased heavy precipitation tends to lead to increased Q1, while decreased or unchanged 373 

heavy precipitation, combined with increasing PET, leads to reduced Q1 flows. The range in climatic changes is different for 374 

each region (see Figure 8b), which is a key reason for the regional differences in Q1 changes. However, the hydrological 375 

response differed between regions for the same climate forcing. For example, a 6% decrease in 95 th percentile precipitation 376 

and over 45% increase in total PET leads to an average 53% reduction in Q1 in the Anglian river basin district, but only an 377 

average 15% decrease in Q1 in the Thames region in the South-east. These results highlight the importance of how multiple 378 

climatic factors impact regional flow responses differently due to the non-linearity within the hydrological processes.   379 

 380 

The observed runoff coefficient (runoff divided by precipitation) helped to explain these regional differences in catchment 381 

flow response to climatic change inputs. Figure 9 shows the relationship between 95th precipitation, PET and Q1 changes, with 382 

catchments grouped by Runoff Coefficient classes. Catchments with relatively low runoff coefficients tend to show a higher 383 

sensitivity to the increasing PET. They are therefore more likely to see decreasing Q1 flows even with small (<5%) increases 384 
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in heavy precipitation. These catchments are often drier catchments, and so heavy precipitation events may fill storage deficits 385 

rather than result in increased river flow. Other catchment properties, such as deep soils or permeable geology may also 386 

contribute to water being retained in the catchment. By contrast, catchments with high runoff coefficients show more sensitivity 387 

to changes in heavy precipitation, and very small (5%) increases in precipitation can lead to increases in Q1 of up to 25%. 388 

These are often wetter catchments, or catchments with other properties such as steep slopes or impermeable soils, where 389 

increases in heavy rainfall will directly result in increases in flood flows.    390 

4 Discussion 391 

4.1 Future changes to high flows across GB 392 

Despite large uncertainties, some clear patterns of climate change impact on flooding across GB emerged. Projections indicated 393 

decreasing median flows (Q50) across all regions except for the Clyde and West Highland river basin regions where Q50 394 

changes ranged between -42% to +19%. The overall decrease in Q50 was likely due to reduced average precipitation and 395 

nationwide increases in PET projected by all the RCMs.  396 

 397 

Increased flood flow magnitudes (AMAX) and frequency were projected for all RCMs along the west coast (excluding the 398 

south-west) and across most of Scotland, while decreasing flood flows were projected for the Anglian river basin region in 399 

east England using the median of all hydrological model parameter sets. These results are consistent with Collet et al. (2018), 400 

who found that hydro-hazard hotspots were likely to develop along the west coast and north-eastern Scotland. Kay et al. (2014) 401 

also modelled large increases to flood peaks in north-west Scotland. However, our results contrast with Bell et al. (2016) and 402 

Kay, et al. (2014), which both found relatively large increases in flood flows in the south-east and Anglian in particular. This 403 

contrast could be due to the different metric studied (Bell et al. (2016) and Kay, et al. (2014) both showed percentage changes 404 

in 20-year return period floods, while we show changes in AMAX floods), or other methodological differences such as 405 

hydrological model or climate projections. However, we found hydrological modelling studies to be particularly large for the 406 

Anglian region and therefore increases in AMAX flows were within the total uncertainty range of a -74% to +19% change, in 407 

line with these previous studies.   408 

 409 

Our modelled changes in AMAX and high flow magnitudes (Table 1) will be useful to inform climate change adaptation, for 410 

example in ensuring correct allowances are made for changing fluvial flood risk in new developments. To account for the 411 

potential impact of changing flood risk, the national planning policy for England requires that developments are safe from 412 

flood risk throughout their lifetime by applying an allowance for the potential impact of climate change (Reynard et al., 2017). 413 

These have evolved from a simple 20% allowance applied nationally, to a range of allowances for each river basin district that 414 

represent the central (50th percentile), the higher central (70th percentile), the upper end (90th percentile) and the H++ (highest) 415 

projections of changes to peak river flows (Environment Agency, 2020a). Our highest regional projections are within the H++ 416 
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government allowances for southern and central England, but our highest projections exceed the government H++ peak flow 417 

allowances for northern England (Solway, Tweed, Northumbria and North-west England river basin districts). In particular, 418 

the H++ allowance for peak flow changes in the Tweed river basin is 35% for the 2050s (Environment Agency, 2020a), but 419 

our projections include peak flow changes of up to 59%. Therefore, our projections indicate that current guidance could be 420 

underestimating the potential risks from climate change for northern England. However, the use of different time-periods (we 421 

modelled changes by 2050-2075 whereas the government allowances cover the period 2040-2069) restricts the comparability 422 

of these results.  423 

4.2 Relationship between climate changes and hydrological response 424 

It is often assumed that increases in extreme precipitation will lead to increases in flood flows (Sharma et al., 2018). However, 425 

while there is observational evidence of increasing precipitation extremes, there is no compelling evidence for any systematic 426 

increases in flooding which can be attributed to climate change (Hannaford, 2015; Watts et al., 2015). Understanding the link 427 

between changing precipitation and changing floods has, therefore, been highlighted as an important challenge for the 428 

hydrologic community (Sharma et al., 2018). Here we found that while there was a strong positive relationship between 429 

changes in heavy precipitation (as characterised by changes in the 95th percentile precipitation) and changes in high flows 430 

(Q1), there were catchments where precipitation was increasing yet modelled flood flows were decreasing. These catchments 431 

were found to have large increases in PET – and therefore the impact of drier soils and increased storage deficits could have 432 

moderated the impact of increased heavy precipitation on river flows.  433 

We found that the relationship between changes in heavy precipitation, total PET and changes to flood flows varied between 434 

river basin regions. The catchment runoff coefficient (average river flow divided by average precipitation) helped to explain 435 

this variation; for catchments with high runoff coefficients precipitation increases most directly related to increased flood 436 

flows, while catchments with low runoff coefficients showed a greater response to increasing PET. This in part relates to 437 

previous studies finding that there is a more direct link between heavy rainfall and high flows in wetter catchments (Charlton 438 

and Arnell, 2014; Ivancic and Shaw, 2015), as there is a general relationship between the runoff coefficient and catchment 439 

wetness. It’s important to realise that the interplay between general runoff co-efficients of different catchment typologies and 440 

the amount they are impacted by changes in both evaporation and precipitation to Q1 high flow sensitivity is not consistent, 441 

as shown in Figure 9. Therefore we recognise that impacts to high flows are multifaceted and the uniqueness of catchment 442 

characteristics and climatological differences needs to be taken into account when quantifying climate change impacts. This 443 

result highlights that it is important to recognise the complexities of flow change resulting from multiple climatic drivers and 444 

non-linear hydrological processes. 445 
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4.3 Uncertainties in climate impacts on high flows 446 

Our results highlight the importance of considering uncertainty in projections of climate change on flood flows. The selection 447 

of RCM parameters impacted not only the range of future changes for each region (often disagreeing on the direction of 448 

change), but also variation in changes between regions, and to some extent the spatial pattern of changes across GB. This, 449 

combined with hydrological modelling uncertainties, resulted in the large ranges in future changes given in Table 1. The overall 450 

picture of climate change impact on flows differed between the four selected metrics, showing the importance of metric 451 

selection and consideration of multiple metrics in model evaluation and impact studies. The incorporation of multiple 452 

uncertainty sources, therefore, prevents an overconfident portrayal of climate change impacts on high flows, which could be 453 

misleading if used to inform future planning or policy decisions (Buurman and Babovic, 2016; Kundzewicz et al., 2018).  454 

 455 

Previous studies found hydrological modelling uncertainties to be small relative to climate modelling uncertainties, especially 456 

when considering high flows (Chegwidden et al., 2019; Chen et al., 2011; Velázquez et al., 2013). For example, Chegwidden 457 

et al., (2019) used an ensemble of two RCPs, 10 GCMs, two downscaling methods and four hydrological model structures in 458 

their analysis of climate change impacts on annual streamflow across the Pacific Northwest of North America, finding that 459 

GCMs were overall the dominant contributor to the variance in projected changes. Our results generally support these previous 460 

findings, showing that the variation in future changes between RCMs is much larger than the variation between behavioural 461 

hydrological model parameter sets. However, we observed substantial hydrological modelling uncertainties for catchments in 462 

England, particularly for the Anglian river basin and drier catchments in the south-east. It is likely that interactions between 463 

the RCMs and hydrological model parameters also contribute to the total uncertainty where behaviour is not linear. For 464 

example, the AMAX variation between different hydrological model parameter sets may depend on the winter rainfall 465 

projection from the driving RCM, where certain RCM projections may lie on a threshold which produces a large difference in 466 

hydrological response between models. It has previously been shown that interactions between uncertainty sources can account 467 

for 5-40% of the total uncertainty in hydrological climate change impacts studies (Bosshard et al., 2013).  This emphasized 468 

that while uncertainties in future climate may dominate, uncertainties due to hydrological model parameters are not negligible.   469 

 470 

There are many uncertainty sources that we were not able to incorporate. In addition to RCM and hydrological model 471 

parameters, sources of uncertainty in hydrological climate impact studies include the future emissions scenario, structure and 472 

parameterisation of the global climate model (GCM), bias correction methods, PE estimation equation, and hydrological model 473 

structure (Bosshard et al., 2013; Kay et al., 2009; Prudhomme and Davies, 2009; Wilby and Harris, 2006). The RCM ensemble 474 

projections applied here were all driven by the same GCM and emissions scenario, and so do not sample the full range of 475 

climate uncertainty. Other GCMs may have resulted in different precipitation trends into the future. Therefore, while our results 476 

provide a useful indication of the range in future changes to high flow metrics across GB the true uncertainty ranges are likely 477 

to be much larger.  478 
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 479 

A further limitation of this study is that the hydrological modelling framework did not include snow accumulation and melt 480 

processes. However, snow fractions are generally very low across GB, with a median snow fraction of 0.01, except for 481 

catchments in north-east Scotland where it reaches a maximum of 0.17 (Coxon et al., 2020). The impact of including a snow 482 

module on climate change projections for peak flows was investigated by Bell et al. (2016). They found that across most of 483 

GB the inclusion of a snowmelt regime led to small percentage differences in peak flow changes of less than 6%. However, 484 

snowmelt processes were shown to be important for upland parts of GB, mainly in East Scotland, where the reduced presence 485 

of snow in the future could have a large impact on river flows. Therefore, the results of our study need to be interpreted with 486 

caution in these upland catchments.   487 

5 Conclusions 488 

In this study we modelled climate change impact on the magnitude and frequency of high flows across 346 catchments in GB, 489 

considering both RCM and hydrological model parameter uncertainties for the first time at the national scale. The latest UK 490 

Climate Projections (UKCP18) were used to generate 12 spatially coherent and equally plausible time-series of precipitation 491 

and PET. These were then used to drive the DECIPHeR hydrological modelling framework, using 30 nationally consistent 492 

parameter fields. The resultant 360 future flow projections were used to investigate the range of changes in high flow 493 

magnitude and frequency between baseline (1985 - 2010) and future (2050 - 2075) scenarios, as well as the relationship 494 

between climatic change and hydrological response. 495 

 496 

Generally, results indicated increasing magnitude and frequency of flood flows for catchments along the west coast of GB, 497 

and across most of Scotland. For western Scotland, region-average increases in annual maximum flows of up to 65% were 498 

projected. The Anglian and Thames river basins in eastern England generally showed decreasing flood magnitude and 499 

frequency. However, hydrological modelling uncertainty was high for these areas and therefore increases in flood magnitude 500 

were also within the ensemble range.  501 

 502 

Regional differences in high flow changes were related to i) differences in climatic change signals and ii) differences in 503 

catchment conditions during the baseline period as characterised by the runoff coefficient (total discharge/precipitation). A 504 

strong relationship was found between increasing heavy precipitation and increasing flood flows, alongside the moderating 505 

impact of increased PET. This relationship differed between catchments; catchments with high runoff coefficients were found 506 

to have a more direct response of flood flows to precipitation change, while catchments with low runoff coefficients were more 507 

responsive to increased PET often resulting in very large reductions in Q1 flows (-50%) in areas with small (-5%) reductions 508 

in 95th percentile precipitation.  509 

 510 
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Our results highlight the importance of considering uncertainties in climate impact studies. The variation between RCMs was 511 

the largest source of uncertainty, with differences in both the magnitude of projected changes for individual regions and the 512 

variability between regions. Hydrological modelling uncertainties were smaller, but still considerable for catchments in east 513 

and south-east England.   514 

 515 

This paper provides a national overview of projected future changes in median and higher flows across GB, with the full 516 

ensemble range in projected changes given for each region. This information will be useful for decision-makers who have a 517 

role in managing or planning water in GB, for example in water companies, regulators and government.  518 
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Figures 758 

 759 

Figure 1: Locations of the catchments used in this study, grouped according to the so-called ‘river basin districts’.  760 
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 761 

Figure 2: Evaluation of model performance, showing how well the modelled flow statistics from the climate-hydrological cascade 762 
bound the observed flow statistics over the baseline period. The maps (a) show error in RCM-driven simulations compared to the 763 
observed. The top row shows the highest positive error from the 360 simulations, while the bottom row shows the lowest negative 764 
error, calculated separately for each catchment. When considered together, these show how well the RCM-driven simulations bound 765 
the observed flows. Four gauges are shown in more detail (b), giving error across median and higher flow percentiles compared to 766 
observations, showing both simulations driven by observations and simulations driven by RCM data.  767 

 768 
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 769 

Figure 3: precipitation (a) and PET (b-c) change. GB-maps are presented for each ensemble member in order. Top row: RCM01, 770 
RCM04, RCM05, RCM06, RCM07 and RCM08, bottom row: RCM09, RCM10, RCM11, RCM12, RCM13, RCM15.  771 

 772 

 773 
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 774 

 775 

Figure 4: Maps showing changes in the magnitude and frequency of peak flows between the baseline and future periods for example 776 
simulations. Each row shows a nationally coherent projection, with plots of changes in five flow metrics (AMAX, Q1, Q10, Q50 and 777 
the number of peak flows above a threshold). This combination of RCMs and hydrological parameter sets were selected from the 778 
ensemble of 360 simulations to give an indication of the ensemble spread, as they provided the highest, median, and lowest GB-779 
average change in Q10, but they do not show the full range of possible changes for individual catchments or all flow metrics.   780 
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 782 

 783 

Figure 5: Heatmaps showing region-average changes in flow magnitude between the baseline and future periods, for all 12 RCMs. 784 
Regions have been ordered by location, with the relative position within GB given on the left. To focus on differences between RCMs, 785 
the median flow value from the hydrological model parameter sets is presented.  786 

 787 

 788 

Figure 6: Relative uncertainties from inclusion of different RCM and hydrological model (HM) parameter sets. The RCM range 789 
was calculated as the full range in regional-average changes between the RCMs, using the median of all HM parameter sets. 790 
Similarly, the HM range was calculated using the median output of all RCMs.  791 
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 792 

Figure 7: Relationship between precipitation change and Q1 change across all catchments. Results are presented for all RCMs using 793 
the median of all hydrological parameter sets.  794 

 795 



31 

 

 796 

Figure 8: Relationship between changing climate and changing high flows (Q1), shown for all catchments nationally (a) and by 797 
region (b).  Plots show climatic changes from all RCMs, coloured by the median change in Q1 flows from the ensemble of hydrological 798 
model parameter sets. Regions which are shown together, exhibited similar patterns.   799 
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 802 

 803 

Figure 9: Runoff Coefficient (runoff divided by precipitation) vs flow sensitivity to climatic changes.  804 
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Tables 807 

Table 1: Ensemble range in projected changes for each flow metric. All changes are given as percentage differences between the 808 
baseline and future periods. Low, Med and High refer to the lowest, median, and highest region-average changes from the ensemble 809 
of RCM and hydrological model parameters.  810 

Region 

AMAX 

change (%) 

Low, Med, 

High 

Q1 change 

(%) 

Low, Med, 

High 

Q10 change 

(%) 

Low, Med, 

High 

Q50 change 

(%) 

Low, Med, 

High 

N. peaks change 

(%) 

Low, Med, High 

Solway 7 18 49 1 13 37 -4 4 24 -49 -26 -4 4 24 79 

Clyde -10 15 29 -9 11 27 -8 5 28 -42 -20 5 -28 23 77 

W Highland 3 18 65 -7 14 46 -4 9 31 -17 1 19 -16 35 113 

N Highland -15 4 39 -17 -1 33 -27 -6 18 -41 -20 0 -41 -5 68 

NE Scotland -7 8 45 -15 0 19 -27 -13 9 -56 -33 -12 -41 -12 33 

Tay 1 13 36 -3 11 36 -9 2 25 -43 -26 -3 -7 17 75 

Forth 6 17 40 1 11 37 -5 3 22 -49 -23 -3 -5 23 73 

Tweed -14 6 59 -14 1 19 -20 -5 14 -69 -41 -19 -37 -3 52 

Northumbria -11 3 38 -20 2 17 -32 -16 8 -69 -44 -24 -39 -16 26 

Humber -21 4 27 -18 0 17 -33 -11 9 -71 -42 -23 -53 -12 31 

Anglian -74 -21 19 -68 -22 8 -80 -41 3 -85 -50 -9 -99 -55 13 

Thames -50 -10 15 -44 -10 18 -59 -24 4 -72 -41 -11 -78 -34 16 

SE England -30 -3 37 -26 -2 32 -38 -15 13 -64 -40 -7 -64 -20 32 

SW England -18 5 29 -18 1 20 -32 -10 5 -70 -47 -22 -49 -10 21 

Severn -25 0 26 -20 0 16 -39 -11 6 -68 -43 -21 -55 -13 19 

W Wales 3 21 42 3 12 36 -14 4 15 -67 -35 -12 -9 25 59 

Dee -6 13 26 -7 8 25 -21 -4 10 -62 -38 -21 -25 6 39 

NW England -1 18 57 -4 13 48 -18 2 29 -71 -33 -15 -21 24 76 
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