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Abstract.  15 

Climate change may significantly increase flood risk globally, but there are large uncertainties in both future climatic changes 16 

and how these propagate into changing river flows. Here, the impact of climate change on the magnitude and frequency of 17 

high flows is analysed for Great Britain (GB) to provide the first spatially consistent GB projections to include both climate 18 

ensembles and hydrological model parameter uncertainties. We use the latest high-resolution (12km) regional climate model 19 

ensemble from the UK Climate Projections (UKCP18). These projections are based on a perturbed-physics ensemble of 12 20 

regional climate model simulations and allow exploration of climate model uncertainty beyond the variability caused by the 21 

use of different models. We model 346 larger (>144km22) catchments across GB using the DECIPHeR hydrological modelling 22 

framework. Generally, results indicated an increase in the magnitude and frequency of high flows (Q10, Q1 and annual 23 

maximum) along the west coast of GB in the future (2050-2075), with increases in annual maximum flows of up to 65% for 24 

west Scotland. In contrast, median flows (Q50) were projected to decrease across GB. Even when using an ensemble based on 25 

a single RCM structure, all flow projections contained large uncertainties. While the RCM parameters were the largest source 26 

of uncertainty overall, hydrological modelling uncertainties were considerable in east and south-east England. Regional 27 

variation in flow projections were found to relate to i) differences in climatic change and ii) catchment conditions during the 28 

baseline period as characterised by the runoff coefficient (mean discharge divided by mean precipitation). Importantly, 29 

increased heavy-precipitation events (defined by an increase in 99th percentile precipitation) did not always result in increased 30 
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flood flows for catchments with low runoff coefficients, highlighting the varying factors leading to changes in high flows. 31 

These results provide a national overview of climate change impacts on high flows across GB, which will inform climate 32 

change adaptation, and highlight the impact of hydrological model parameter uncertainties when modelling climate change 33 

impact on high flows. 34 

1 Introduction 35 

Climate change will likely significantly alter hydrological regimes in many parts of the world, with vast implications for water 36 

resource planning and policy (Brown et al., 2015; IPCC, 2014; Wagener et al., 2010). Projections indicate an intensification 37 

of the hydrological cycle, with a warmer climate leading to more rain falling in high-intensity events (Eicker et al., 2016; 38 

Huntington, 2006; IPCC, 2014; Trenberth, 2011). This increase in the frequency and severity of extreme rainfall events is 39 

likely to increase flood risk in many regions. However, the conversion of rainfall to runoff is not straightforward, as changes 40 

in river flows result from complex and non-linear interactions between changing precipitation and evapotranspiration, and the 41 

influence of basin properties (Arnell, 2011; Laizé and Hannah, 2010; Sawicz et al., 2014). There are also many uncertainties 42 

surrounding future climate projections. While climate models show general agreement on rising temperatures and increasing 43 

extreme precipitation throughout the 21st century, they differ in the magnitude and spatial patterns of change (Fowler and 44 

Ekström, 2009; Met Office, 2019; Nikulin et al., 2011). To guide water-related policy and decision making and to ensure 45 

adequate adaptation to future changes in flooding, we therefore need hydrological modelling studies to help understand and 46 

quantify climate change impacts on the hydrological regime, and the uncertainties surrounding these projections (Reynard et 47 

al., 2017).  48 

 49 

Hydrological climate change impact studies often use information from global climate models or regional climate models (e.g., 50 

rainfall and temperature projections) to drive hydrological models. Throughout this modelling chain there are many 51 

uncertainties, which cascade from one step through to another. These include uncertainties in global climate model (GCM) 52 

structure and sub-grid parameterisations, uncertainties in regional climate model (RCM) structure and parameterisations, 53 

uncertainties in the chosen downscaling and bias correction techniques, and uncertainties in the selection of hydrological model 54 

structures and their parameters (Clark et al., 2016; Kundzewicz et al., 2018). Many studies have attempted to quantify the 55 

impact of these uncertainties by using multiple GCMs/RCMs, bias correction techniques, hydrological model structures and/or 56 

hydrological model parameter sets and propagating these uncertainties through the modelling chain. However, these studies 57 

are often focused on small catchment samples as the large numbers of simulations needed are computationally demanding 58 

(e.g., Bosshard et al., 2013; De Niel et al., 2019; Kay et al., 2009; Smith et al., 2014; Wilby & Harris, 2006). Studies generally 59 

agree that modelling of the future climate presents the largest source of uncertainty (Engin et al., 2017; Kay et al., 2009; Meresa 60 

and Romanowicz, 2017; De Niel et al., 2019). However, hydrological modelling uncertainties are not negligible. The relative 61 

contribution of hydrological modelling uncertainties to total uncertainty has been shown to vary depending on catchment 62 
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characteristics (Addor et al., 2014) and for different aspects of the flow regime (Meresa and Romanowicz, 2017). 63 

Understanding and communicating modelling uncertainties has been widely recognised as important to inform robust decision-64 

making (Clark et al., 2016; Reynard et al., 2017). 65 

 66 

Many water-related policy decisions are made at the regional to national scale. For example, England has a national flood and 67 

coastal erosion risk management strategy (Environment Agency, 2020b). To inform these regional to national policy decisions, 68 

hydrological modelling studies which apply a consistent methodology across a large domain / large sample of catchments are 69 

most valuable, as they (i) provide a broad overview of future changes, (ii) provide locally relevant information, in contrast to 70 

global impact studies, and (iii) enable direct comparison between catchments to identify regions that will experience the most 71 

significant climate change impacts (Watts et al., 2015). Using a large sample of catchments also ensures a more robust 72 

evaluation of the relationship between climate change impacts and hydrological response.  73 

 74 

Over the last decade, large-scale studies evaluating climate change impacts on hydrology have emerged, facilitated by the 75 

increased availability of data and computational resources. For example, Köplin et al. (2014) evaluated the changing 76 

seasonality and magnitude of floods for 189 catchments covering Switzerland, Thober et al. (2018) modelled changing river 77 

floods across Europe, Wang et al. (2012) evaluated changing water resources using the distributed VIC model across China, 78 

and a national grid-based model has been applied to explore climate change impact on floods and droughts across Great Britain 79 

(Bell et al., 2007, 2016; Kay and Crooks, 2014; Lane and Kay, 2021; Rudd et al., 2019). While the use of a GCM/RCM 80 

ensemble to evaluate climate uncertainties has become increasingly common (e.g., Bell et al., 2016; Lane and Kay, 2021; 81 

Prudhomme et al., 2012; Rudd et al., 2019), the inclusion of hydrological model parameter uncertainties at the national scale 82 

is still rare. A notable exception is Christierson et al. (2012), who modelled the impact of changing climate for 70 catchments 83 

across the UK using two different hydrological model structures and ensembles of model parameters. However, this study was 84 

based on probabilistic climate projections which were not spatially coherent (i.e., projected variables were not consistent over 85 

space, and rainfall and precipitation products were not produced from the same simulation), and therefore did not present 86 

possible GB-wide changes but rather individual scenarios for each catchment. Incorporating hydrological model parameter 87 

uncertainties is important, as it has been shown that very different projections for future catchment behaviour can be provided 88 

by parameter sets with similar performance over a baseline period (Mendoza et al., 2015; Singh et al., 2014). However, there 89 

is still a lack of studies providing spatially coherent projections of future changes in flooding across national domains while 90 

including both RCM and hydrological parameter uncertainties, and no studies for Great Britain.  91 

  92 

An updated set of national climate projections has recently been released for the UK, UKCP18 (Lowe et al., 2019; Murphy et 93 

al., 2018). These have advanced upon previously available national projections (UKCP09) through (1) increased resolution of 94 

global climate model from ~300km to ~60km providing better representation of synoptic-scale weather systems, mountains 95 

and coastlines, (2) increased resolution of regional climate model from 25km to 12km, which may improve the representation 96 
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of extreme precipitation, (3) updated atmosphere model and improved parameterisations of many sub-grid scale processes, 97 

and (4) improved representation of dynamical influences on regional climate variability such as improvements in predictions 98 

of the winter North Atlantic Oscillation (NAO) (Murphy et al., 2018). Preliminary analysis has shown that probabilistic 99 

projections produced as part of UKCP18 result in greater uncertainty ranges than the comparable UKCP09 projections (Kay 100 

et al., 2020). The UKCP18 projections include a perturbed physics ensemble of regional climate model (RCM) projections at 101 

12km resolution, providing 12 possible climate futures varying due to RCM parameter uncertainties. The implications of these 102 

new climate simulations for river flows are of great interest, as the improved simulation of precipitation may improve 103 

projections of future flooding.  104 

 105 

This paper aims to explore the impacts of climate change and hydrological model uncertainties on high flows using the new 106 

UKCP18 climate projections across GB. A climate-hydrological model cascade was employed, with output from  a perturbed-107 

physics ensemble of 12 regional climate model simulations. These ensemble members were used to drive a nationally applied 108 

hydrological model with 30 distributed parameter fields. The resulting 360 future flow scenarios were analysed to answer the 109 

following research questions: 110 

1. What is the range in potential changes to median and higher flows (including median flows (Q50), high flow quantiles 111 

(Q10 and Q1), annual maximum flows (AMAX) and number of peaks over threshold) across GB, due to parameter 112 

uncertainties in climate and hydrological modelling? 113 

2. How will changes in the magnitude and frequency of high flows vary spatially and by region? 114 

3. How large is the hydrological variability resulting from different realisations of the same climate model structure? 115 

4. What is the relationship between changing climate (precipitation and potential evapotranspiration) and high flow 116 

response, and how does this vary by region?  117 

Our study presents the first consistent climate change projections for high flows across GB (i.e., using spatially coherent 118 

climate projections and spatially consistent hydrological model parameter fields) to include both climate model and 119 

hydrological model parameter uncertainties. The incorporation of a large sample of catchments also enabled robust and 120 

generalisable analysis on the relationship between climate forcing, catchment characteristics and hydrological response, which 121 

will be highly relevant to future studies in GB and elsewhere.   122 

2 Methods and data 123 

2.1 Overview 124 

This paper uses a climate-hydrological modelling chain to assess the implications of the UKCP18 climate projections for river 125 

high flows across 346 catchments covering GB (see section 2.2 for catchment selection). An ensemble of 12 spatially coherent 126 

regional climate model (RCM) projections are first bias-corrected (see section 2.3), and then used directly as inputs to the 127 

DECIPHeR hydrological modelling framework to produce flow projections (see section 2.4). For each RCM ensemble 128 



5 

 

member, DECIPHeR simulations are carried out using 30 nationally consistent hydrological model parameter fields (see 129 

section 2.4). The use of 12 RCMs and 30 hydrological model parameter sets results in 360 national simulations, representing 130 

uncertainty due to RCM and hydrological model parameterisation.  131 

 132 

To explore climate change impacts on high flows, flow metrics were selected to assess median flows (Q50), high flow quantiles 133 

(Q10 and Q1), the magnitude of peak flows (AMAX), and the frequency of peak flows (see section 2.5). The skill of the 134 

climate-hydrological modelling chain was first evaluated relative to observed flow metrics, and then changes in flow metrics 135 

between the baseline (1985 –2010) and future (2050 –2075) periods were evaluated.  136 

2.2 Catchment selection 137 

A large sample of 346 catchments covering GB was selected for this study. This sample provides a dense coverage across GB, 138 

with catchments in all river basin districts, as shown in Figure 1. Gauging stations were selected from the UK National River 139 

Flow Archive (NRFA) Service Level Agreement (SLA) Network (Centre for Ecology and Hydrology, 2016; Dixon et al., 140 

2013). This network of 715 gauges forms a subset of strategically valuable NRFA catchments, where additional validation and 141 

quality testing procedures have been carried out (Dixon et al., 2013). As hydrometeorological data were available on 12km 142 

grids at daily resolution, we chose to exclude catchments that were smaller than 144km2 (i.e., one RCM grid), because for 143 

these small catchments local variation in precipitation could be problematic for the RCM ensemble scale, and for small flashy 144 

catchments sub-daily data would be required to capture high flow and peak responses effectively.    145 

2.3 Climate model data 146 

Climate scenarios representing changes in precipitation and potential evapotranspiration (PET) were derived from the UKCP18 147 

regional climate projections (Murphy et al., 2018). These comprised a perturbed-physics ensemble of 12 regional climate 148 

model simulations, run at 12km resolution with daily output from 1981 to 2080 (Met Office Hadley Centre, 2019). These  149 

projections were chosen because they have many advantages over other available products for UK impact assessments, 150 

including 1) they were the highest resolution (12km) RCM climate model outputs available for a continuous run period over 151 

GB, 2) they were specifically developed for the UK and form the basis of UK climate policy (Murphy et al., 2018), 3) they 152 

included a measure of climate uncertainty through the use of an RCM ensemble, 4) they are UK specific climate projection 153 

tools designed to help decision-makers assess their risk exposure to climate and thus will for the first time inform important 154 

discussions of the uncertainty within climate impacts across GB, 5) they were the newest national climate projections for GB, 155 

including the latest developments in climate modelling capability and scientific understanding, and therefore have not yet been 156 

comprehensively analysed in other impact studies. A key advantage of the RCM data over other UKCP18 products is that it 157 

has full spatial and temporal coherence and therefore allows for the assessment of interactions between changes in precipitation 158 

and PET as well as providing a nationally consistent picture of future changes (Met Office, 2020). 159 

 160 
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The 12 RCM projections were all driven by the same GCM (GC3.05), and only the RCP8.5 emissions scenario was provided. 161 

We considered this to be the most important emissions scenario to look at for two reasons; 1) it shows the ‘worst case’ and so 162 

will most likely show the largest expected changes, and 2) the emissions in RCP8.5 are in close agreement with historical total 163 

cumulative CO2 emissions and are therefore increasingly looking like a plausible future up to 2100 (Schwalm et al., 2020).  164 

The GC3.05 GCM has been shown to sample the warmer range of global outcomes (Lowe et al., 2019), and so combined with 165 

a single emissions scenario, it is important to note that we only sample the warmer range of possible climate outcomes.        166 

 167 

While precipitation data were available as an RCM output variable, PET time series needed to be derived from other relevant 168 

UKCP18 model outputs. There are many possible approaches to calculating PET from climate model data, with the choice of 169 

PET equation shown to impact the subsequent changes in PET over time (Kay & Davies, 2008; Prudhomme & Williamson, 170 

2013). Here, PET was calculated to be consistent with the CHESS-PE dataset used for hydrological model parameterisation 171 

(Robinson et al., 2015). The CHESS-PE dataset uses the Penman-Monteith equation, calculating PET as a function of air 172 

temperature, specific humidity, wind speed, shortwave radiation, longwave radiation, and air pressure. These variables were 173 

all available as UKCP18 output apart from air pressure, which was calculated using the integral of the hypsometric equation 174 

with modelled temperature as an input (Shuttleworth, 2012) 175 

 176 

Bias correction of climate model output data is often required for hydrological impact studies due to the occurrence of 177 

considerable biases in hydrologically relevant variables (Addor and Seibert, 2014; Cloke et al., 2013; Ning et al., 2012; 178 

Teutschbein and Seibert, 2012). An analysis of biases in the UKCP18 regional projections identified systematic biases in the 179 

model output precipitation and model-derived PET data (see Supplement S1 for more information). For precipitation, RCM 180 

biases included overpredictions of mean annual precipitation across GB by up to 50%, underpredictions of rainfall in wetter 181 

areas along the west coast, and an increased number of wet days (an average of around 15% more rainy days per year than 182 

observations). RCMs tend to overpredict the variance in PET, resulting in overestimations of PET in the south-east, where 183 

observed PET is high, and underestimations in Scotland as well as an incorrect seasonal variation with overestimations in 184 

summer (up to around +40%) and underestimations in winter (up to -100%). A bias correction method was required to reduce 185 

these biases in RCM precipitation and PET, so that they were suitable for hydrological modelling.  186 

 187 

The choice of bias correction has been shown to impact the magnitude and spread of projected changes in flood-producing 188 

flows (Cloke et al., 2013; Smith et al., 2014), and should, therefore, be carefully considered. Techniques to directly adjust 189 

RCM simulations range from relatively simple linear scaling to more complex approaches such as quantile mapping 190 

(Teutschbein and Seibert, 2012). As well as correcting for the distribution of simulated precipitation, correcting for persistence 191 

attributes has been shown to be useful when considering the security of water resource systems (Johnson and Sharma, 2012). 192 

The delta change method, which modifies historical time series based on RCM-simulated changes, is commonly applied (e.g., 193 

Veijalainen et al., 2010). However, this method cannot change the temporal sequencing of events, so it cannot evaluate changes 194 
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in flood timing. The quantile mapping bias-correction approach was selected here for both precipitation and PET (this method 195 

has also been referred to as distribution mapping, probability mapping, model output statistics, or histogram equalisation). The 196 

quantile mapping approach accounts for errors in the variability of PET, and ensures that heavy precipitation events important 197 

for high flows were appropriately corrected as well as mean precipitation. It also corrected for biases in the number of wet 198 

days in the RCM data.       199 

 200 

Observed precipitation and PET data used for bias correction came from the CEH-GEAR (Keller et al., 2015; Tanguy et al., 201 

2014) and CHESS-PE (Robinson et al., 2015) datasets respectively. For each grid-cell and month for precipitation the 202 

following steps were performed: 203 

1. Empirical Cumulative Distribution Functions (CDFs) were calculated for the observed precipitation, and RCM 204 

simulated precipitation for the control/baseline period (all dates where observed and simulated precipitation were 205 

available).  206 

2. The fractional change in precipitation between the observed and control/baseline simulated was calculated for each 207 

cumulative probability.  208 

3. The whole simulated precipitation series was then bias-corrected. The cumulative probability of each precipitation 209 

value was calculated, and the value was modified by the fractional change for that cumulative probability.  210 

 211 

The same method was carried out for PET, with a minor modification. It was found that for some Scottish catchments, 212 

fractional changes could become very large when PET values were low (<0.1mm/day) as a result of dividing by values close 213 

to 0. To prevent unrealistic spikes in future PET at low cumulative probabilities, a check was added to ensure that PET values 214 

at a low cumulative probability were always smaller than values at a higher cumulative probability. This bias correction 215 

methodology successfully reduced biases in RCM data over the observational period (see Supplement S1 for more 216 

information). However, it is important to note that bias correction assumes that (i) despite biases in hydrometeorological 217 

variables, the RCM output is still meaningful and changes in hydrometeorological variables are well simulated, (ii) biases in 218 

RCM output are stationary and so methods of bias correcting baseline data also hold into the future, (iii) the observed data 219 

used in bias correction is not erroneous. The quantile mapping bias correction approach is also limited because there will be 220 

few observations to constrain the CDF at the extreme high end of observations (e.g., exceptionally heavy rainfall events), and 221 

therefore bias correction is likely to be less robust for the rarest events. Whilst potentially another interesting avenue of research 222 

in bias correction, namely wet/dry persistence bias, we decided not to pursue this analyses. Because we feel the matter is 223 

complex and requires a more dedicated paper on these issues and potential impacts, for example Moon et al. (2019) showed 224 

more wet/dry persistence biases between observed gridded rainfall products than between those and climate model outputs. 225 

 226 
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The bias-corrected RCM data was used directly as hydrological model input, with no further downscaling. This was possible 227 

due to the size of the catchments we have chosen to analyse coupled with the high resolution (12km) of the RCM data, which 228 

is a key advantage of the UKCP18 climate product over previous climate projections.  229 

2.4 Hydrological modelling 230 

The DECIPHeR hydrological modelling framework was selected to transform precipitation and PET into river flows (Coxon 231 

et al., 2019; Lane et al., 2021). DECIPHeR is a semi-distributed hydrological modelling framework which discretises the 232 

modelling domain into hydrological response units (HRUs). Here, the model was configured to be consistent with the 12km 233 

UKCP18 data, with HRUs defined by splitting the landscape into 12km input grids which were further sub-divided by three 234 

accumulated area classes, three slope classes and sub-catchment boundaries. This HRU definition aimed to capture topographic 235 

and catchment attribute controls in hydrological processes. The HRU-based approach enabled representation of the spatial 236 

variation of input time series, while being computationally efficient to facilitate the use of multiple hydrological and RCM 237 

parameter sets across the large sample of catchments. In contrast to a gridded approach, it meant that the model runs in much 238 

higher resolution for critical areas (where there are large variations in slope/accumulated area or at sub-catchment boundaries). 239 

Here, we have selected the default model structure, which is based on the widely used TOPMODEL, and has previously been 240 

shown to perform well across GB and selected catchments (Coxon et al., 2019; Lane et al., 2021). This model structure does 241 

not include a snow module, as snow processes were assumed not to substantially impact many GB catchments (95% of the 242 

catchments included in this study have less than 6% of precipitation falling as snow).   243 

 244 

National fields of model parameters have been generated using the multiscale parameter regionalisation technique (Samaniego 245 

et al., 2010), as described in Lane et al., (2021). This method relates model parameters to spatial catchment attribute data 246 

(including soil texture, land-use, and hydrogeology) via transfer functions. The coefficients of the transfer functions were then 247 

constrained simultaneously on a large sample of 437 British catchments, instead of directly constraining model parameters. 248 

Model parameters were calibrated over the period January 1991 to December 2000, and then evaluated over the period January 249 

2001 to December 2010. Over 3500 possible parameter fields were produced, and of these, the top 30 parameter fields were 250 

selected for this study to explore the uncertainty due to model parameter selection. These parameter fields were selected as 251 

they produced non-parametric KGE scores (Pool et al., 2018) above 0.8, when taking the average value across the large sample 252 

of catchments in GB (Lane et al., 2021). Using catchment attribute data to define the spatial distribution of model parameters 253 

means that parameter fields are spatially coherent with no artificial discontinuities (Mizukami et al., 2017; Samaniego et al., 254 

2017). This is advantageous when modelling climate impacts for larger regions or entire countries, as it has been shown that 255 

artificial discontinuities in parameter fields can lead to discontinuities in modelled variables (Mizukami et al., 2017). 256 

 257 

The DECIPHeR framework requires inputs of precipitation and PET, as well as spatial catchment attribute data for 258 

parameterisation. The model was driven continuously with climate data over the period 01/01/1981 – 30/12/2075, with 259 
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01/09/1985 – 30/8/2010 extracted as the baseline period and 01/09/2050 – 30/08/2075 being used as the future period in all 260 

further analysis. These 25-year baseline and future periods were selected to allow the maximum distance between the baseline 261 

and future. The choice to start the baseline period in 1985 was due to the need for a long hydrological model spin-up period 262 

(1981-1985), which is required for some catchments in the south-east of England. Hydrological simulations were also carried 263 

out using observed data over the period 01/01/1981 – 30/08/2010, to provide a benchmark of model performance which the 264 

RCM-driven simulations could be compared against over the baseline. For these simulations, potential evapotranspiration data 265 

from the CHESS-PE dataset (Robinson et al., 2015) and precipitation data from CEH-GEAR (Keller et al., 2015) were re-266 

gridded to match the UKCP18 12km data. All observed river flow data were from the UK National River Flow Archive 267 

(NRFA) (Centre for Ecology and Hydrology, 2016).  268 

2.5 Hydrological indicators 269 

To explore changes in the magnitude of high flows, we calculated the percentage changes in four different flow metrics 270 

between the baseline (1985-2010) and future (2050-2075) periods. Flow metrics calculated were 1) the average annual 271 

maximum (AMAX) flow, 2) Q1, the flow value exceeded 1% of the time, 3) Q10, the flow value exceeded 10% of the time, 272 

and 4) Q50, the median flow or flow value exceeded 50% of the time. These were selected to give a broad overview of future 273 

higher flow changes, ranging from flood flows (AMAX and Q1) to median flows (Q50).  274 

 275 

To analyse changes in the frequency of high flows, a peaks-over-threshold (POT) analysis was carried out. Thresholds were 276 

defined for each catchment to extract an average of three peaks per year over the baseline period. To ensure flood events were 277 

independent, no peak was selected within seven days of a larger peak. This selection was consistent with previous studies, for 278 

example, Svensson et al. (2005) used a five-day window for catchments smaller than 45,000 km2 (the largest catchments in 279 

the UK are ~10,000 km2), while Petrow & Merz, (2009) used ten days for catchments across Germany. Having found a POT 280 

threshold for each catchment over the baseline that resulted in an average of 3 peaks per year, the number of peaks exceeding 281 

this threshold in the future period was counted. The percentage change between the count of 75 peaks total gained in the 282 

baseline and peaks gained in the future was then calculated as an indication of changes in the frequency of flood events.     283 

3 Results 284 

3.1 Meteorological changes 285 

Median precipitation is projected to decrease almost everywhere. GB-average median precipitation is projected to decrease by 286 

31-61% between the different RCMs, with the only exception being in west Scotland (Figure 2a). This decreasing median 287 

precipitation contrasts with very high precipitation (99th percentile), which is expected to increase across most of GB, by an 288 

average of 5-20%. The 90th percentile precipitation shows a more mixed picture, with GB-average changes of -9% to +6%. 289 
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Generally, increases were simulated for areas along the west coast and in western Scotland, while decreases can be seen across 290 

southern England and Wales.   291 

 292 

All RCMs indicate increasing PET over the modelled period (Figure 2b-c). These broadly align with observed PET across GB 293 

between 1980-2010, although it is difficult to distinguish an upward trend in the observed PET data over such a short period. 294 

GB-average PET values show increases of 23-38% between the baseline and future period, with the largest PET increases (33-295 

50%) seen in the south, and the smallest PET increases (11-19%) simulated for north-west Scotland. Note that these increases 296 

in PET are likely linked to the fact that the UKCP18 projections sample the warmer range of possible climate outcomes (Lowe 297 

et al., 2019).  298 

3.2 Evaluation of climate-hydrological modelling chain 299 

Overall, the simulations of the climate-hydrological modelling chain across GB bounded the observations (Figure 3). Our 300 

evaluation focused on the performance for hydrological indicators relevant for higher flows, namely flow quantiles Q50, Q10, 301 

and Q1 and AMAX flows. Catchments where storage reservoirs and regulated flow regimes impacted runoff were removed 302 

for the model performance evaluation, as these processes are not included in the model meaning any errors in these catchments 303 

would not be due to the driving data. However, the presence of reservoirs was not found to lead to a reduction in model 304 

performance (see Supplement S2). The maps in Figure 3a show biases in the highest (i.e., wettest) and lowest (i.e., driest) 305 

simulation for each individual catchment from the ensemble of 12 RCMs and 30 hydrological model parameter sets compared 306 

to observed flows. For catchments which are well represented by the modelling chain, we would expect simulated flows to 307 

bound the observations. Therefore the highest simulation would show a small positive bias, and the lowest simulation would 308 

show a small negative bias. For the majority of catchments (75% for Q50, 64% for Q10 and 65% for Q1) the model simulations 309 

bound observed discharge. The model tends to underestimate AMAX flows in north-west England and Wales, and overestimate 310 

in the south-east, with only 47% of simulations bounding the observed AMAX. For at least 70% of catchments median biases 311 

are less than 30% for Q50, Q10 and Q1, and less than 36% for AMAX flows. However, the modelling chain overestimated 312 

flows in the south-east across all high flow metrics. The difficulties of modelling catchments in south-east England have been 313 

documented in previous studies (Coxon et al., 2019; Lane et al., 2019; Seibert et al., 2018), and are likely due to complex 314 

aquifer systems facilitating inter-catchment groundwater flow. These catchments should, therefore, be treated with caution 315 

when interpreting the results. 316 

 317 

Model performances are shown in more detail for a selection of catchments covering a variety of error characteristics (Figure 318 

3b). Here, error (i.e., bias) in modelled flow driven by RCM output (green) is compared to modelled flows driven by 319 

observations (yellow) using the same 30 hydrological model parameter sets. For most gauges, simulated flows bound the 320 

observations, even when driven by the RCM meteorological data. This result was expected as the RCM data has been bias -321 

corrected against observations, and therefore the RCM data will be similar to observations in magnitude, albeit with different 322 
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sequencing of events. There is no consistent relationship between model biases and flow percentiles, with gauge 9002 showing 323 

an increased tendency to overestimate higher flows, while gauge 83013 showed a decreased tendency to overestimate higher 324 

flows.  325 

 326 

3.3 Spatial changes in high flows across GB  327 

Maps showing the spatial pattern of changes in high flow magnitude and frequency are presented for three example simulations 328 

in Figure 4. As the spatial pattern was similar between the ensemble members, we have focused on RCMs 13, 8 and 4 which 329 

represent low, average, and high GB-average projections respectively (calculated based on GB-average Q10 changes). These 330 

projections were selected to indicate the range in flow changes across GB, but plots for a larger number of scenarios, and 331 

showing absolute changes as well as percentage changes, are given in Supplement S3. It is important to note that the maps in 332 

Figure 4 are spatially coherent futures from single RCM ensemble projections and a single hydrological model parameter set. 333 

Therefore, they do not reflect the full range of flow changes for each individual catchment that would be obtained by evaluating 334 

the entire RCM ensemble driven by all hydrological model parameter sets. Plots showing the ensemble range for each 335 

catchment are therefore also given in Supplement S3.   336 

 337 

Despite differences between the example projections, there is a clear east/west divide for high flow magnitude metrics (AMAX, 338 

Q1 and Q10) with increased flows for catchments in the west and decreasing flows in the east. The largest percentage decreases 339 

in high flows are in eastern England, particularly in the Anglian river basin district, while the largest increases in flow are 340 

along the west coast. It is important to note that the large percentage changes in flows for the south-east could be due to the 341 

low baseline flow values, so small absolute changes will result in larger percentage changes (see Supplement S3 for 342 

presentation of absolute and percentage change maps). Median flow (Q50) projections indicate reductions in flow almost 343 

everywhere, but these reductions are generally lower for catchments in western Scotland. The frequency of high flow events, 344 

represented by changes to the number of peaks over threshold events, also shows general increases in the west and reductions 345 

in the south-east. The spatial pattern is very similar to the changes to high flow magnitude, indicating that western catchments 346 

could experience larger annual maximum floods combined with more frequent high flow events.  347 

3.4 Regional changes and uncertainties 348 

Changes in the hydrological indices for the different RCMs and across regions were visualized by heatmaps to enable easy 349 

comparison (Figure 5 and Figure 6). Heatmaps in Figure 5 present the median flow values from the sample of hydrological 350 

model parameters for each flow statistic, with the full range of regional projections presented in Table 1. They highlight 351 

similarities between RCM members: most RCM ensembles result in increasing AMAX flows in Scotland, northern England, 352 

and west Wales, and decreasing AMAX flows in the Anglian river basin district. Most RCM ensembles also result in decreasing 353 

Q50 flows everywhere except for the Argyll and West Highland districts in west Scotland. However, there are also important 354 
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differences between the different RCM projections, including; i) differences in the spatial variation of changes across GB, for 355 

example RCM 15 shows relatively little variation between regions (range of 28% between AMAX projections) while RCM 356 

11 shows a large variation (range of 104%), ii) differences in the magnitude of projected changes for each region, for example 357 

NW England projections for Q10 range from -16% to +20% between RCMs, and iii) the tendency for some RCMs to simulate 358 

increases in flow (e.g., RCM 04) while others tend towards decreases (e.g., RCM 13) which relates to relative change in 99 th 359 

percentile precipitation (see Figure 2). These differences demonstrate the importance of considering multiple RCM 360 

parameterisations, to show a more complete picture of potential future changes.  361 

Heatmaps in Figure 6 present regional changes to Q10 (see supplement S4 for other metrics), evaluated using 1) the median 362 

flow values from the sample of hydrological model parameters for each RCM ensemble member, 2) the median flow values 363 

from the RCM ensemble for each hydrological model parameter set. This highlights similarities and differences between 364 

hydrological model parameter sets compared to RCM ensemble members. There are some hydrological model parameter sets 365 

that tend towards increases in Q10 (e.g. HM 5 or 12) while others tend towards decreases (e.g. HM 1 or 9) across the regions. 366 

Hydrological model parameter sets also result in considerable differences in projections for some regions, for example the 367 

change in Q10 flow magnitude for the Anglican river basin varies from –36 to –14% for the hydrological model parameters, 368 

compared to –44 to –11% for the RCM parameters. Figure 7 summarises these ranges across all regions and metrics.  369 

 370 

Overall, RCM parameters were a larger source of uncertainty in median and high flow changes than hydrological model 371 

parameters (see Figure 6 and Figure 7). This finding agrees with previous studies that have investigated high flows, which 372 

generally find climate models to be the largest source of uncertainty in hydrological climate impact assessments (Addor et al., 373 

2014; Bosshard et al., 2013; Kay et al., 2009). However, hydrological model parameter selection is a large source of uncertainty 374 

in the south-east, especially in the Anglian river basin region.  This region receives relatively little precipitation compared to 375 

the rest of GB. Previous studies have shown that drier catchments are more sensitive to parameter selection, with fewer good 376 

parameter sets for drier than for wet catchments (Lane et al., 2019). It is however possible that high percentage differences in 377 

the south-east are due to the lower river flow values magnifying the percentage value of any changes.   378 

3.5 Relationship between climate changes, flow changes and catchment characteristics 379 

The relationship between precipitation change (95th precipitation percentile) and change in flood flows (Q1) across all 380 

catchments and RCMs is presented in Figure 8. Additional plots showing this relationship for other precipitation change 381 

metrics, flow change metrics and hydrological model parameter selections are given in Supplement S5. This shows that there 382 

is a strong positive correlation between precipitation change and flood response, albeit with a large variation between 383 

catchments. The non-linearity between changing precipitation and changing Q1 flows can be seen, with a 25% increase in 384 

precipitation leading to a 20-50% increase in Q1. Surprisingly, for some catchments, heavy precipitation increases yet there is 385 

a reduction in Q1 flows (i.e., catchments in the bottom right quadrant of Figure 8). This flow reduction could be due to the 386 
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contrasting effect of increasing PET, resulting in generally drier antecedent conditions for catchments and thus reduced flows 387 

due to the increases in soil moisture storage deficits.  388 

 389 

The relationship between change in 95th percentile precipitation, total PET and Q1 is given in Figure 9; other variations of 390 

precipitation, PET and flow changes produced similar results (but are not shown). There is a clear relationship between climate 391 

forcing and hydrological response. Increased heavy precipitation tends to lead to increased Q1, while decreased or unchanged 392 

heavy precipitation, combined with increasing PET, leads to reduced Q1 flows. The range in climatic changes is different for 393 

each region (see Figure 9b), which is a key reason for the regional differences in Q1 changes. However, the hydrological 394 

response differed between regions for the same climate forcing. For example, a 6% decrease in 95th percentile precipitation 395 

and over 45% increase in total PET leads to an average 53% reduction in Q1 in the Anglian river basin district, but only an 396 

average 15% decrease in Q1 in the Thames region in the South-east. These results highlight the importance of how multiple 397 

climatic factors impact regional flow responses differently due to the non-linearity within the hydrological processes.   398 

 399 

The observed runoff coefficient (runoff divided by precipitation) helped to explain these regional differences in catchment 400 

flow response to climatic change inputs. Figure 10 shows the relationship between 95th precipitation, PET and Q1 changes, 401 

with catchments grouped by Runoff Coefficient classes. Catchments with relatively low runoff coefficients tend to show a 402 

higher sensitivity to the increasing PET. They are therefore more likely to see decreasing Q1 flows even with small (<5%) 403 

increases in heavy precipitation. These catchments are often drier catchments, and so heavy precipitation events may fill 404 

storage deficits rather than result in increased river flow. Other catchment properties, such as deep soils or permeable geology 405 

may also contribute to water being retained in the catchment. By contrast, catchments with high runoff coefficients show more 406 

sensitivity to changes in heavy precipitation, and very small (5%) increases in precipitation can lead to increases in Q1 of up 407 

to 25%. These are often wetter catchments, or catchments with other properties such as steep slopes or impermeable soils, 408 

where increases in heavy rainfall will directly result in increases in flood flows.    409 

4 Discussion 410 

4.1 Future changes to high flows across GB 411 

Despite large uncertainties, some clear patterns of climate change impact on flooding across GB emerged. Projections indicated 412 

decreasing median flows (Q50) across all regions except for the Clyde and West Highland river basin regions where Q50 413 

changes ranged between -42% to +19%. The overall decrease in Q50 was likely due to reduced average precipitation and 414 

nationwide increases in PET projected by all the RCMs.  415 

 416 

Increased flood flow magnitudes (AMAX) and frequency were projected for all RCMs along the west coast and across most 417 

of Scotland, while decreasing flood flows were projected for the Anglian river basin region in east England using the median 418 
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of all hydrological model parameter sets. These results are consistent with previous studies on the hydrological impacts of 419 

climate change for GB, which broadly find increasing flood flows for Wales, Northern England and Scotland (Chan et al., 420 

2022).  For example, Collet et al. (2018),found that hydro-hazard hotspots were likely to develop along the west coast and 421 

north-eastern Scotland. Kay et al. (2014) also modelled large increases to flood peaks in north-west Scotland. However, our 422 

results contrast with Bell et al. (2016) and Kay, et al. (2014), which both found relatively large increases in flood flows in the 423 

south-east and Anglian in particular. This contrast could be due to the different metric studied (Bell et al. (2016) and Kay, et 424 

al. (2014) both showed percentage changes in 20-year return period floods, while we show changes in AMAX floods), or other 425 

methodological differences such as hydrological model or climate projections. Chan et al., (2022) summarise the results from 426 

122 publications on the hydrological impacts of climate change for GB, concluding that changes in flooding over southeast 427 

England were uncertain. This is consistent with our finding that hydrological modelling uncertainties were particularly large 428 

for the Anglian region.  Therefore increases or decreases in AMAX flows were within the total uncertainty range of a -74% to 429 

+19% change.  430 

 431 

Our modelled changes in AMAX and high flow magnitudes (Table 1) will be useful to inform climate change adaptation, for 432 

example in ensuring correct allowances are made for changing fluvial flood risk in new developments. To account for the 433 

potential impact of changing flood risk, the national planning policy for England requires that developments are safe from 434 

flood risk throughout their lifetime by applying an allowance for the potential impact of climate change (Reynard et al., 2017). 435 

These have evolved from a simple 20% allowance applied nationally, to a range of allowances for each river basin district that 436 

represent the central (50th percentile), the higher central (70th percentile), the upper end (90th percentile) and the H++ (highest) 437 

projections of changes to peak river flows (Environment Agency, 2020a). Our highest regional projections are within the H++ 438 

government allowances for southern and central England, but our highest projections exceed the government H++ peak flow 439 

allowances for northern England (Solway, Tweed, Northumbria and North-west England river basin districts). In particular, 440 

the H++ allowance for peak flow changes in the Tweed river basin is 35% for the 2050s (Environment Agency, 2020a), but 441 

our projections include peak flow changes of up to 59%. Therefore, our projections indicate that current guidance could be 442 

underestimating the potential risks from climate change for northern England. However, the use of different time-periods (we 443 

modelled changes by 2050-2075 whereas the government allowances cover the period 2040-2069) restricts the comparability 444 

of these results.  445 

4.2 Relationship between climate changes and hydrological response 446 

It is often assumed that increases in extreme precipitation will lead to increases in flood flows (Sharma et al., 2018). However, 447 

while there is observational evidence of increasing precipitation extremes, there is no compelling evidence for any systematic 448 

increases in flooding which can be attributed to climate change (Hannaford, 2015; Watts et al., 2015). Understanding the link 449 

between changing precipitation and changing floods has, therefore, been highlighted as an important challenge for the 450 

hydrologic community (Sharma et al., 2018). Here we found that while there was a strong positive relationship between 451 
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changes in heavy precipitation (as characterised by changes in the 95th percentile precipitation) and changes in high flows 452 

(Q1), there were catchments where precipitation was increasing yet modelled flood flows were decreasing. These catchments 453 

tend to be located in the southeast of England where we have drier conditions and large increases in PET - These catchments 454 

were found to have large increases in PET – and therefore the impact of drier soils and increased storage deficits could have 455 

moderated the impact of increased heavy precipitation on river flows.  456 

We found that the relationship between changes in heavy precipitation, total PET and changes to flood flows varied between 457 

river basin regions. The catchment runoff coefficient (average river flow divided by average precipitation) helped to explain 458 

this variation; for catchments with high runoff coefficients precipitation increases most directly related to increased flood 459 

flows, while catchments with low runoff coefficients showed a greater response to increasing PET. This in part relates to 460 

previous studies finding that there is a more direct link between heavy rainfall and high flows in wetter catchments (Charlton 461 

and Arnell, 2014; Ivancic and Shaw, 2015), as there is a general relationship between the runoff coefficient and catchment 462 

wetness. It’s important to realise that the interplay between general runoff coefficients of different catchment typologies and 463 

the amount they are impacted by changes in both evaporation and precipitation to Q1 high flow sensitivity is not consistent, 464 

as shown in Figure 10. Therefore we recognise that impacts to high flows are multifaceted and the uniqueness of catchment 465 

characteristics and climatological differences needs to be taken into account when quantifying climate change impacts. This 466 

result highlights that it is important to recognise the complexities of flow change resulting from multiple climatic drivers and 467 

non-linear hydrological processes. 468 

4.3 Uncertainties in climate impacts on high flows 469 

Our results highlight the importance of considering uncertainty in projections of climate change on flood flows. The selection 470 

of RCM parameters impacted not only the range of future changes for each region (often disagreeing on the direction of 471 

change), but also variation in changes between regions, and to some extent the spatial pattern of changes across GB. This, 472 

combined with hydrological modelling uncertainties, resulted in the large ranges in future changes given in Table 1. The overall 473 

picture of climate change impact on flows differed between the four selected metrics, showing the importance of metric 474 

selection and consideration of multiple metrics in model evaluation and impact studies. The incorporation of multiple 475 

uncertainty sources, therefore, prevents an overconfident portrayal of climate change impacts on high flows, which could be 476 

misleading if used to inform future planning or policy decisions (Buurman and Babovic, 2016; Kundzewicz et al., 2018).  477 

 478 

Previous studies found hydrological modelling uncertainties to be small relative to climate modelling uncertainties, especially 479 

when considering high flows (Chegwidden et al., 2019; Chen et al., 2011; Velázquez et al., 2013). For example, Chegwidden 480 

et al., (2019) used an ensemble of two RCPs, 10 GCMs, two downscaling methods and four hydrological model structures in 481 

their analysis of climate change impacts on annual streamflow across the Pacific Northwest of North America, finding that 482 

GCMs were overall the dominant contributor to the variance in projected changes. Similarly, Thober et al., (2018) used an 483 
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ensemble of 3 RCPs, 5 GCMs and 3 hydrological model structures in an analysis of climate change impact on European floods, 484 

finding that the GCM contribution to total uncertainty was generally higher than the hydrological model contribution. Our 485 

results generally support these previous findings, showing that the variation in future changes between RCMs is much larger 486 

than the variation between behavioural hydrological model parameter sets. However, we observed substantial hydrological 487 

modelling uncertainties for catchments in England, particularly for the Anglian river basin and drier catchments in the south-488 

east.  489 

 490 

Many studies have explored the impact of climate model structural uncertainty when evaluating climate impact on flows by 491 

using different GCMs/RCMs. (Kay et al., 2009; Meresa and Romanowicz, 2017; De Niel et al., 2019)(Kay et al., 2009; Meresa 492 

and Romanowicz, 2017; De Niel et al., 2019)(Kay et al., 2009; Meresa and Romanowicz, 2017; De Niel et al., 2019)(Kay et 493 

al., 2009; Meresa and Romanowicz, 2017; De Niel et al., 2019) When comparing uncertainty sources, GCM structures are 494 

commonly found to be one of the largest sources of uncertainty for peak flows (Kay et al., 2009; De Niel et al., 2019). However, 495 

the impact of climate model parameter uncertainties has hardly been studied so far. Here, we had the unique opportunity to 496 

use simulations from a perturbed-physics ensemble of 12 regional climate model simulations, i.e. the situations were all based 497 

on the same GCM/RCM structure. We demonstrate that even when using a single GCM/RCM structure, there are considerable 498 

differences in the magnitude of projected changes as well as differences in the spatial pattern of projected changes due to RCM 499 

parameterisation. This implies that using single realisations of different GCM/RCM likely does not represent the full variability 500 

of the climate model simulations. 501 

 502 

It is likely that interactions between the RCMs and hydrological model parameters also contribute to the total uncertainty 503 

where behaviour is not linear. For example, the AMAX variation between different hydrological model parameter sets may 504 

depend on the winter rainfall projection from the driving RCM, where certain RCM projections may lie on a threshold which 505 

produces a large difference in hydrological response between models. It has previously been shown that interactions between 506 

uncertainty sources can account for 5-40% of the total uncertainty in hydrological climate change impacts studies (Bosshard 507 

et al., 2013).  This emphasized that while uncertainties in future climate may dominate, uncertainties due to hydrological model 508 

parameters are not negligible.  509 

 510 

4.4 Limitations and future work 511 

This study focused on the uncertainties in flow projections due to RCM and hydrological model parameter uncertainties. 512 

Additional sources of uncertainty in hydrological climate impact studies include the future emissions scenario, global climate 513 

model (GCM) structure, bias correction methods, PE estimation equation, and hydrological model structure (Bosshard et al., 514 

2013; Kay et al., 2009; Prudhomme and Davies, 2009; Wilby and Harris, 2006). Therefore, while our results provide a useful 515 
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indication of the range in future changes to high flow metrics across GB, the true uncertainty ranges are likely to be much 516 

larger. 517 

The RCM ensemble projections applied here were all driven by the same GCM and emissions scenario, and so do not sample 518 

the full range of climate uncertainty. Other GCMs may have resulted in different precipitation trends and levels of warming 519 

into the future, and would therefore have resulted in different flow changes. For example, Kay et al., (2021) evaluated climate 520 

change impacts on flood indicators using the UKCP18 regional projections applied here alongside lower resolution projections 521 

from a range of GCMs, finding a clear distinction in results driven by different climate models.     However, the UKCP18 522 

projections used here were the only high resolution, spatially consistent projections available covering GB for a continuous 523 

time period up to 2080. There is therefore a need to develop more spatially consistent climate projections at high resolution 524 

from a range of GCMs/RCMs, to assess the impacts of climate model uncertainty on river flows. This is particularly important 525 

for flood flows, where high-resolution outputs are critical for capturing rainfall extremes.  526 

 527 

This study focused on changes between a baseline and mid to far- future scenario. However, it is important to recognise that 528 

the relative importance of different uncertainty sources could change depending on the time horizon considered (Chan et al., 529 

2022). For example, climate uncertainty in the near-term (2020s) is dominated by natural variability, but the impact of 530 

emissions scenario and GCM configuration becomes more important in the mid to long-term (2050s onwards) (Hawkins and 531 

Sutton, 2009). Furthermore, a study comparing uncertainty sources for flow projections in the Mekong basin, found that the 532 

Soil and Water Assessment Tool (SWAT) parameters were the major source of uncertainty in the short term (2030s) but GCMs 533 

were the major source of uncertainty in the long term (2060s) (Shrestha et al., 2016).  The relative contribution of hydrological 534 

modelling and RCM parameter uncertainties with time horizon is therefore an interesting avenue for future research.  535 

 536 

A further limitation of this study is that the hydrological modelling framework used a single model structure, which did not 537 

include snow accumulation and melt processes. However, snow fractions are generally very low across GB, with a median 538 

snow fraction of 0.01, except for catchments in north-east Scotland where it reaches a maximum of 0.17 (Coxon et al., 2020). 539 

Bell et al. (2016) investigated the impact of including a snow module on climate change projections for peak flows. They 540 

found that across most of GB the inclusion of a snowmelt regime led to small percentage differences in peak flow changes of 541 

less than 6%. However, snowmelt processes were shown to be important for upland parts of GB, mainly in East Scotland, 542 

where the reduced presence of snow in the future could have a large impact on river flows. Therefore, the results of our study 543 

need to be interpreted with caution in these upland catchments.  544 

5 Conclusions 545 

This study considers both RCM and hydrological model parameter uncertainties for the first time at the national scale by 546 

modelling climate change impact on the magnitude and frequency of high flows across 346 catchments in GB. The latest UK 547 
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Climate Projections (UKCP18) were used to generate 12 spatially coherent and equally plausible time-series of precipitation 548 

and PET. These were then used to drive the DECIPHeR hydrological modelling framework, using 30 nationally consistent 549 

parameter fields. The resultant 360 future flow projections were used to investigate the range of changes in high flow 550 

magnitude and frequency between baseline (1985 - 2010) and future (2050 - 2075) scenarios, as well as the relationship 551 

between climatic change and hydrological response. 552 

 553 

This paper provides a national overview of projected future changes in median and higher flows across GB, with the full 554 

ensemble range in projected changes given for each region. Generally, results indicated increasing magnitude and frequency 555 

of flood flows for catchments along the west coast of GB, and across most of Scotland. For western Scotland, region-average 556 

increases in annual maximum flows of up to 65% were projected. The Anglian and Thames river basins in eastern England 557 

generally showed decreasing flood magnitude and frequency. However, hydrological modelling uncertainty was high for these 558 

areas and therefore increases in flood magnitude were also within the ensemble range. This information will be useful for 559 

decision-makers who have a role in managing or planning water in GB, for example in water companies, regulators and 560 

government. 561 

 562 

More broadly, we have shown that regional differences in high flow changes were related to i) differences in climatic change 563 

signals and ii) differences in catchment conditions during the baseline period as characterised by the runoff coefficient (total 564 

discharge/precipitation). A strong relationship was found between increasing heavy precipitation and increasing flood flows, 565 

alongside the moderating impact of increased PET. This relationship differed between catchments; catchments with high runoff 566 

coefficients were found to have a more direct response of flood flows to precipitation change, while catchments with low 567 

runoff coefficients were more responsive to increased PET often resulting in very large reductions in Q1 flows (-50%) in areas 568 

with small (-5%) reductions in 95th percentile precipitation. Furthermore, our results highlight the importance of considering 569 

uncertainties in climate impact studies. The variation in results within a single RCM was a large source of uncertainty, with 570 

differences in both the magnitude of projected changes for individual regions and the variability between regions. While, 571 

hydrological modelling uncertainties were smaller, they were still considerable for catchments in east and south-east England.  572 

This demonstrates the importance of incorporating hydrological model uncertainties into future climate change impact studies.  573 
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Figures 814 

 815 

Figure 1: Locations of the catchments used in this study, grouped according to the so-called ‘river basin districts’.  816 
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 818 

Figure 2: precipitation (a) and PET (b-c) change. GB-maps are presented for each ensemble member in order. Top row: RCM01, 819 
RCM04, RCM05, RCM06, RCM07 and RCM08, bottom row: RCM09, RCM10, RCM11, RCM12, RCM13, RCM15.  820 
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 823 

Figure 3: Evaluation of model performance, showing how well the modelled flow statistics from the climate-hydrological cascade 824 
bound the observed flow statistics over the baseline period. The maps (a) show error in RCM-driven simulations compared to the 825 
observed. The top row shows the highest positive error from the 360 simulations, while the bottom row shows the lowest negati ve 826 
error, calculated separately for each catchment. When considered together, these show how well the RCM-driven simulations bound 827 
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the observed flows. Four gauges are shown in more detail (b), giving error across median and higher flow percentiles compared to 828 
observations, showing both simulations driven by observations and simulations driven by RCM data.  829 

 830 

 831 

 832 

 833 

 834 

Figure 4: Maps showing changes in the magnitude and frequency of peak flows between the baseline and future periods for example 835 
simulations. Each row shows a nationally coherent projection, with plots of changes in five flow metrics (AMAX, Q1, Q10, Q50 and 836 
the number of peak flows above a threshold). This combination of RCMs and hydrological parameter sets were selected from the 837 
ensemble of 360 simulations to give an indication of the ensemble spread, as they provided the highest, median, and lowest GB-838 
average change in Q10, but they do not show the full range of possible changes for individual catchments or all flow metrics.   839 

 840 



31 

 

 841 

 842 

Figure 5: Heatmaps showing region-average changes in flow magnitude between the baseline and future periods, for all 12 RCMs. 843 
Regions have been ordered by location, with the relative position within GB given on the left. To focus on differences between RCMs, 844 
the median flow value from the hydrological model parameter sets is presented.  845 

 846 

 847 

Figure 6: Heatmap showing region-average changes in Q10 flow magnitude between the baseline and future periods. The 12 columns 848 
on the left focus on the difference between RCM parameterisations, using the median flow value from all hydrological model 849 
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parameter sets. The 30 columns on the right focus on the difference between hydrological model parameterisations, using the median 850 
flow value from all RCMs. Regions have been ordered by location, with the relative position within GB given on the left.  851 

 852 

 853 

Figure 7: Relative uncertainties from inclusion of different RCM and hydrological model (HM) parameter sets. The RCM range 854 
was calculated as the full range in regional-average changes between the RCMs, using the median of all HM parameter sets. 855 
Similarly, the HM range was calculated using the median output of all RCMs.  856 

 857 

Figure 8: Relationship between precipitation change and Q1 change across all catchments. Results are presented for all RCMs using 858 
the median of all hydrological parameter sets.  859 
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 860 

 861 

Figure 9: Relationship between changing climate and changing high flows (Q1), shown for all catchments nationally (a) and by 862 
region (b).  Plots show climatic changes from all RCMs, coloured by the median change in Q1 flows from the ensemble of hydrological 863 
model parameter sets. Regions which are shown together, exhibited similar patterns.   864 
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 867 

 868 

Figure 10: Runoff Coefficient (runoff divided by precipitation) vs flow sensitivity to climatic changes.  869 
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Tables 872 

Table 1: Ensemble range in projected changes for each flow metric. All changes are given as percentage differences between the 873 
baseline and future periods. Low, Med and High refer to the lowest, median, and highest region-average changes from the ensemble 874 
of RCM and hydrological model parameters.  875 

Region 

AMAX 

change (%) 

Low, Med, 

High 

Q1 change 

(%) 

Low, Med, 

High 

Q10 change 

(%) 

Low, Med, 

High 

Q50 change 

(%) 

Low, Med, 

High 

N. peaks change 

(%) 

Low, Med, High 

Solway 7 18 49 1 13 37 -4 4 24 -49 -26 -4 4 24 79 

Clyde -10 15 29 -9 11 27 -8 5 28 -42 -20 5 -28 23 77 

W Highland 3 18 65 -7 14 46 -4 9 31 -17 1 19 -16 35 113 

N Highland -15 4 39 -17 -1 33 -27 -6 18 -41 -20 0 -41 -5 68 

NE Scotland -7 8 45 -15 0 19 -27 -13 9 -56 -33 -12 -41 -12 33 

Tay 1 13 36 -3 11 36 -9 2 25 -43 -26 -3 -7 17 75 

Forth 6 17 40 1 11 37 -5 3 22 -49 -23 -3 -5 23 73 

Tweed -14 6 59 -14 1 19 -20 -5 14 -69 -41 -19 -37 -3 52 

Northumbria -11 3 38 -20 2 17 -32 -16 8 -69 -44 -24 -39 -16 26 

Humber -21 4 27 -18 0 17 -33 -11 9 -71 -42 -23 -53 -12 31 

Anglian -74 -21 19 -68 -22 8 -80 -41 3 -85 -50 -9 -99 -55 13 

Thames -50 -10 15 -44 -10 18 -59 -24 4 -72 -41 -11 -78 -34 16 

SE England -30 -3 37 -26 -2 32 -38 -15 13 -64 -40 -7 -64 -20 32 

SW England -18 5 29 -18 1 20 -32 -10 5 -70 -47 -22 -49 -10 21 

Severn -25 0 26 -20 0 16 -39 -11 6 -68 -43 -21 -55 -13 19 

W Wales 3 21 42 3 12 36 -14 4 15 -67 -35 -12 -9 25 59 

Dee -6 13 26 -7 8 25 -21 -4 10 -62 -38 -21 -25 6 39 

NW England -1 18 57 -4 13 48 -18 2 29 -71 -33 -15 -21 24 76 
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 877 


