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Abstract. Non-rainfall water (NRW), defined here as dew, hoar frost, fog, rime and water vapor adsorption, might be a 

relevant water source for ecosystems, especially during summer drought periods. These water inputs are often not considered 

in ecohydrological studies, because water amounts of NRW events are rather small and therefore difficult to measure. Here 

we present a novel micro-lysimeter (ML) system and its application which allows to quantify very small water inputs from 10 
NRW during rainfree periods with an unprecedented high accuracy of ± 0.25 g, which corresponds to ± 0.005 mm water 

input. This is possible with an improved ML design paired with individual ML calibrations in combination with high-

frequency measurements at 3.3 Hz and an efficient low-pass filtering to reduce noise level. With a set of ancillary sensors, 

the ML system furthermore allows differentiating between different types of NRW inputs: dew, hoar frost, fog, rime and the 

combinations among these, but also additional events when condensation on leaves is less probable, such as water vapor 15 
adsorption events. In addition, our ML system design allows to minimize deviations from natural conditions in terms of 

canopy and soil temperatures, plant growth and soil moisture. This is found to be a crucial aspect for obtaining realistic 

NRW measurements in short-statured grasslands. Soil temperatures were higher in the ML compared to the control, thus 

further studies should focus to improve the thermal soil regime of ML. Our ML system has proven to be useful for high-

accuracy, long-term measurements of NRW on short-statured vegetation like grasslands. Measurements with the ML system 20 
at a field site in Switzerland showed that NRW input occurred frequently with 127 events over 12 months, with a total NRW 

input of 15.9 mm. Drainage water flow of the ML was not measured, therefore the NRW inputs might be conservative 

estimates. High average monthly NRW inputs were measured during summer months, suggesting a high ecohydrological 

relevance of NRW inputs for temperate grasslands. 

1 Introduction 25 

Non-rainfall water (NRW) inputs, defined here as dew, hoar frost, fog, rime and water vapor adsorption, 
provide water to plants. These different inputs form under different environmental conditions: Dew 
forms on plant surfaces when the temperature of the surface drops below the dewpoint temperature of 
the adjacent air (Beysens, 2018; Monteith, 1957), whereas dew forming directly on soil surfaces is 
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rarely observed (Agam and Berliner, 2004; Ninari and Berliner, 2002). In addition, hoar frost is frozen 30 
dew, which forms at temperatures below 0 °C. Fog droplets form on condensation nuclei (activated 
aerosol particles) in the atmosphere when water vapor concentration reaches saturation, whereas rime is 
supercooled fog in contact with a surface (e.g. vegetation) at a temperature below 0 °C. Water vapor 
adsorption occurs on hygroscopic surfaces, which can lower saturation vapor pressure and thus lead to 
adsorption, despite the fact that temperatures are still above dewpoint temperature (Agam and Berliner, 35 
2006; McHugh et al., 2015). 
NRW inputs are a water source for plants during dry periods and can thus have a significant influence 
on plant water relations by increasing plant water status (Boucher et al., 1995; Kerr and Beardsell, 1975; 
Wang et al., 2019; Yates and Hutley, 1995). Plant water status is a widely used measure in plant 
physiology for assessing plant water stress. It incorporates the amount of water in plants and its energy 40 
status (Jones, 2006). NRW inputs can increase the amount of water in plants (Limm et al., 2009; 
Munné-Bosch and Alegre, 1999) and change thereby the plant water status, which can lower plant water 
stress. Plants can take up NRW via the leaves, termed foliar water uptake (Berry et al., 2014; Eller et al., 
2013; Slatyer, 1960), or via the roots (Wang et al., 2019). NRW is brought to the rhizosphere by drip-
off from leaves and stems (Dawson, 1998), or by dew formation and/or fog droplet interception and 45 
impaction on soils (Agam and Berliner, 2006; Kaseke et al., 2012; Uclés et al., 2013). Moreover, NRW 
can also reduce water loss (1) by suppressing transpiration (Aparecido et al., 2016; Gerlein-Safdi et al., 
2018; Ishibashi and Terashima, 1995; Waggoner et al., 1969), induced by clogged stomata (Gerlein-
Safdi et al., 2018; Vesala et al., 2017); (2) by reducing the vapor pressure deficit (Ritter et al., 2009) in 
the boundary layer between leaves and the atmosphere; and (3) by decreasing canopy temperatures 50 
because of evaporative cooling during re-evaporation of NRW inputs  (Thornthwaite, 1948). The energy 
from incoming solar radiation is partially used for the phase transition from liquid water to water vapor, 
which thereby alleviates potential heat stress of the plants. Moreover, canopy temperature may decrease 
due to an increase in surface albedo (Eugster et al., 2006; Minnis, 1997), when more light is reflected as 
long as the surface is wet. Thus, NRW inputs can substantially change water relations and micro-55 
environmental conditions of plants. 
Despite these significant effects of NRW on plants, NRW inputs are the least studied component in 
ecohydrology (Wang et al., 2019), because NRW inputs are difficult to quantify (Groh et al., 2018; 
Jacobs et al., 2006; Kidron and Starinsky, 2019). High accuracy measurement instrumentation, which 
simulates natural conditions, e.g. in terms of surface properties, while minimizing disturbances, is 60 
required to capture the comparatively small water inputs. There exists no international agreement on a 
reference standard instrumentation system for NRW measurements (Chen et al., 2005; Groh et al., 
2018). Over the last decades, different measurement systems were developed (see Kidron and Starinsky, 
2019). Lysimeter (LM) and micro-lysimeter (ML) systems simulate natural conditions well (Ninari and 
Berliner, 2002) and are therefore considered as accurate and reliable NRW measurement methods 65 
(Ninari and Berliner, 2002; Richards, 2004; Uclés et al., 2013). Hence, they became the most commonly 
used methods over the last decades (Kidron and Starinsky, 2019). LM differ from ML by their much 
larger size, although there is no well-defined size threshold that indisputably allows to separate LM 
from ML (6 to 25 cm in diameter and 3.5 to 25 cm in depth). 
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The main drawback of large ML for NRW studies is the trade-off between weighing capacity and 70 
weighing accuracy. The weighing capacity of LM and ML is determined by their load cell capacity: the 
higher the weighing capacity, the lower the weighing accuracy. 
Most ML systems were developed for application in arid regions to measure NRW inputs to soils and 
sand. ML systems for temperate regions may have different requirements, because quantification of 
NRW inputs on vegetation requires a sufficient ML size for natural plant (root) growth. ML with 75 
shallow depth and small radius can alter normal plant (root) growth, because of insufficient space 
availability. This characteristic makes them unsuitable for long-term NRW studies on vegetation with a 
high demand for root space. Furthermore, natural soil–atmosphere water exchange might be altered by 
shallow depth of the ML in some ecosystems. While limited rainfall retention capacity of ML is not a 
problem for NRW quantification, the potential prevention of upward direct water flow due to capillary 80 
rise from deeper soil layers or the groundwater body cannot be neglected (Evett et al., 1995), because it 
replenishes plant available water in the rooting zone. Likewise, the energy budget of small ML can be 
severely affected by its insufficient depth (Kidron and Kronenfeld, 2017; Ninari and Berliner, 2002). 
All LM and ML are disconnected from the surrounding soil and therefore can exhibit a more efficient 
heat loss via nocturnal long-wave radiative cooling (Kidron and Kronenfeld, 2017). To accurately 85 
measure NRW inputs on short-statured vegetation it is thus crucial that the canopy temperature of the 
ML vegetation equals the canopy temperature in its surrounding (control). This is especially true for 
dew formation, hoar frost and water vapor adsorption events. Higher temperatures of ML canopies 
would lead to underestimated NRW amounts, while lower temperatures would lead to overestimated 
NRW amounts (Kidron and Kronenfeld, 2017). Consequently, measuring NRW inputs reliably needs to 90 
take these effects into account. 
The goal of this study was to design and test an automated long-term ML system for NRW 
quantification to grasslands during dry and rainfree periods, that overcomes drawbacks of existing small 
ML systems in terms of hampered plant growth and altered canopy and soil temperatures as compared 
to the control (surrounding area). The main objectives of our study were to: 95 

(1) develop a ML system with high accuracy that overcomes existing drawbacks of size vs. 
accuracy and that does not hinder plant growth and minimises ML temperature differences as 
compared to its surroundings. 

(2) design a ML system that allows differentiating between different NRW inputs, here defined as 
dew, hoar frost, fog, rime as well as water vapor adsorption events during dry and drought 100 
conditions, and 

(3) to test for long-term suitability of the ML system in the field and to quantify the share of NRW 
of the mean annual precipitation. 

 



4 
 

2 Material and Methods 105 

2.1 Field site Früebüel 

Field work for this study was carried out at Früebüel (CH-FRU), a long-term Swiss FluxNet field site in 
Switzerland (Pastorello et al., 2020; Zeeman et al., 2010). The site is a permanent grassland located on a 
mountain plateau in the Canton of Zug, Switzerland (47°06'57.0" N, 8°32'16.0" E) at an elevation of 
982 m a.s.l.. The annual mean temperature is 7.8 °C (years 2005 to 2019), the annual mean rainfall is 110 
1232 mm (SD = ± 372 mm). The site is moderately intensively managed with two to four management 
events per year, usually a combination of mowing and grazing, depending on vegetation growth (Imer et 
al., 2013). The dominant species are common ryegrass (Lolium multiflorum), meadow foxtail 
(Alopecurus pratensis), cocksfoot grass (Dactylis glomerata), dandelion (Taraxacum officinale), 
buttercup (Ranunculus sp.) and white clover (Trifolium repens) (Sautier, 2007). The soil at the site is a 115 
silt loam mixture (56% silt, 37% sand, 7% clay), with a bulk density of 1.12 ± 0.03 g cm-3 and an 
organic C content of 4.4 ± 0.2% (Stiehl-Braun et al., 2011). The main rooting horizon is within the top 
20 cm of soil, with a high root density in the top 11 cm (Stiehl-Braun et al., 2011). A location map and 
an aerial photograph of the site can be found in Appendix A. 
The site is equipped with an agrometeorological station, comprising a temperature and a relative 120 
humidity sensor (CS215, Campbell Scientific Inc., Logan, USA) placed in an actively aspired radiation 
shield, a cup anemometer with a wind vane (A100R and W200P, Vector Instruments, North Wales, 
UK), all installed at a height of 1.15 m, and a 3D anemometer (R3-50, Gill Instruments Ltd., 
Lymington, UK) installed at a height of 1.80 m. Moreover, the site is equipped with a tipping bucket 
rain gauge (15188H, Lambrecht meteo GmbH, Goettingen, Germany) and a networked digital camera 125 
(NetCam SC, StarDot Technologies, Buena Park, CA, USA). Furthermore, a leaf wetness sensor 
(PHYTOS 31, Meter Group AG, Munich, Germany) that mimics thermodynamic and radiative 
properties of a leaf, is installed horizontally at a height of 30 cm, to measure close or in the canopy of 
the grassland vegetation. A visibility sensor (MiniOFS, Optical sensors Sweden AB, Gothenburg, 
Sweden) is installed at a height of 1 m to capture shallow radiation fog and rime events. 130 

2.2 Methods 

The ML system was composed of three individual ML with additional sensors. The three ML were 
placed in a row at 1.45 m intervals. The design of the ML system is presented in Section 2.2.1 – 2.2.2. 
Further information about the installation process (including photographs), data processing and storage 
can be found in the Appendix. A description of the installation procedure and the soil monolith 135 
preparation can be found in Appendix B. How data were collected, stored and delivered can be found in 
Appendix C. The description of the load cell data low-pass filtering can be found in Appendix D. 

2.2.1 ML design 

A ML consisted of an inner part (Fig. 1a) and an outer part (Fig. 1b, item (a), in what follows referenced 
as Fig. 1b:a). The outer part (Fig. 1b:a) was made by a cylindrical PVC-U tube (VINK Schweiz GmbH, 140 
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Dietikon, Switzerland; 45 cm outer diameter x 42 cm height, 44.64 cm inner diameter) with an open top 
and a closed bottom. The bottom was closed with a PVC-XT disk (VINK Schweiz GmbH, Dietikon, 
Switzerland; 46 cm diameter, 0.3 cm thick), which was welded with a PVC-U welding rod to the 
cylindrical tube for waterproof closure. The outer part protected the inner part (Fig. 1b:b–q) from 
confounding factors like soil pressure, infiltrating water and biota. The core elements of the inner part 145 
were a cylindrical pot (Fig. 1b:b), filled with a soil monolith (for simplicity called ML pot within this 
paper) containing the original grass sward. The ML pot was made of a cylindrical PVC-U tube (VINK 
Schweiz GmbH, Dietikon, Switzerland; 25 cm outer diameter x 25 cm height, 24.8 cm inner diameter), 
of which the bottom was closed with a PVC-XT disc (VINK Schweiz GmbH, Dietikon, Switzerland; 26 
cm diameter, 0.3 cm thick) that was welded in the same way as the outer part. The ML pot was mounted 150 
by means of three custom made sockets (Fig. 1b:c) on a weighing platform (Fig. 1b:d–g), secured with 
machine screws. The weighing platform consisted mainly of three parts, the load plate (Fig. 1b:d), a 
load cell (Fig. 1b:e), and a base plate (Fig. 1b:f). The load plate was made of aluminum (AlSi1MgMn, 
29 cm diameter, 1 cm thick), likewise the base plate (35 cm diameter, 1 cm thick). Between the load 
plate and the base plate, a PW15AHY temperature-compensated load cell with 20 kg capacity (HBM, 155 
Darmstadt, Germany) was mounted. To allow bending of the load cell, two rectangular spacing washers 
(Fig. 1g, 2.5 x 3.1 cm, 0.1 cm thick) were mounted between load cell and load plate, and between load 
cell and base plate. To mount the load cell and the spacing washers to the load plate and the base plate, 
two countersunk head screws were used. The weighing platform was standing on three equidistant 
adjustable support feet (Fig. 1b:h, M6×1 machine screws, 15.5 cm height) integrated in the base plate. 160 
This allowed to level the weighing platform, which is important for accurate load cell measurements. A 
counter nut above the base plate (Fig. 1b:i) fixed the position of the weighing platform. 
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Fig. 1. Inner part of the ML (a) and schematic drawing of ML design (b) with: a) outer part, b) ML pot, c) socket, d) load plate, e) 165 
load cell, f) base plate, g) spacing washer, h) adjustable support feet, i) counter nut for adjustable support feet, j) drainage-water 
outlet, k) water guide, l) float switch, m) bilge pump, n) water and dirt protection, o) cover lid, p) optional sensor or drop counter 
to quantify drainage for applications that do not specifically target drought conditions, and q) soil moisture and temperature 
sensor. 

 170 

2.2.2 Drainage water flow 

To avoid stagnating water inside of ML pots, a passive drainage water flow path was made. The 
drainage-water was guided away from the load cell to a reservoir to protect the load cell from suspended 
matter. Suspended matter can be carried along with drainage water and could impede the function of the 
load cell by blocking the load cell bending. Drainage water beyond soil field capacity was allowed to 175 
flow out from the bottom of the ML pot via drainage-water outlets. Three drainage-water outlets (Fig. 
1b:j; 0.8 cm diameter) were drilled equidistantly into the lateral side of the ML pot as close as possible 
to the bottom. The drainage-water outlets were protected with a metal mesh to prevent erosion of ML 
soil during heavy rainfall events. Excessive water could follow a passive drainage path from the top of 
the load plate, guided by a water guide (Fig. 1b:k; 3 cm height, 0.4 cm thick), to the base plate. From 180 
the base plate water could flow to an approximately 10 cm high reservoir below the base plate. If the 
collected water in the reservoir exceeded a certain threshold, a float switch (Fig. 1b:l; Fujian Baida 
Pump, Fuan, China) gave a signal to a bilge pump (Fig. 1b:m; Fujian Baida Pump, Fuan, China) that 
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pumped the water away from the ML system (schematically shown with an arrow in Fig. 1b) via a 
flexible tube (2 cm inner diameter). The load cell was protected from drainage water flow by a 185 
rectangular water and dirt protection (Fig. 1b:n, PVC XT, 25 cm x 10.5 cm, 4 cm height). It was glued 
at the base plate around the load cell and made watertight with silicon. 
Rainfall could enter also in the gap between the ML pot and the outer part of the ML system. To 
minimize this water collection, a cover lid (Fig. 1b:o) made of a PVC-XT ring (47 cm outer diameter, 
26 cm inner diameter) was constructed. The cover lid had an inclination of 7° towards the outside. This 190 
was done by putting the cover lid in a heated oven at 90 °C and then pressing it towards a custom-made 
wooden fit with the desired form, till it had cooled down. The slanted cover lid resulted in a preferred 
water flow towards the surrounding and thereby prevented water flow towards the inside of the ML 
system. Furthermore, it protected the ML pot from incident solar radiation, also minimizing potential 
heating effects. Wiring of the load cell, the float switch, the bilge pump as well as the soil temperature 195 
and moisture sensors were bundled and led out close to the top of the outer part of the ML system 
(schematically shown with an arrow in Fig. 1b). 
In the design as used here, i.e. to quantify NRW inputs during rainfree periods, drainage water was 
allowed to freely drain from the ML pots. Thus, rainfall periods had to be excluded from analysis (see 
section 2.2.3). However, to use the ML system during and shortly after rainfall periods, it is 200 
recommended to add an additional sensor (Fig. 1b:p) to quantify drainage water flow (see Appendix E). 
For applications without such an additional sensor, it should be kept in mind that, depending on soil 
type, up to 41.5 hours after intensive rainfall that saturated the soil monolith completely, drainage water 
losses can occur (see Fig. F1 and Table F1). 

2.2.3 Calculation of NRW amounts and differentiation of NRW inputs 205 

We differentiated six types of NRW events with ML and ancillary sensors, i.e., (1) dew only, (2) hoar 
frost only, (3) fog only, (4) rime only, (5) combined dew and fog events, and (6) combined hoar frost 
and rime events. During all six event types, a mass increase was expected on the ML. The NRW 
amounts (NRWamount) were calculated using equation (1): 

𝑁𝑁𝑁𝑁𝑁𝑁!"## = %𝑀𝑀𝑀𝑀!"$%! −𝑀𝑀𝑀𝑀!&'%!
0

,																		precip	=	0	mm
,																		precip	>	0	mm	,	 (1)	210 

where MLmax1m is the maximum value of the one-minute mean ML mass (all three ML values averaged 
every minute) over a time period of 24 hours (from 12:00 to 12:00 UTC), MLmin1m is the minimum 
value of the one-minute mean ML mass over the same time period. The resulting NRWmass (in grams) 
was then converted to mm. If rainfall occurred during an analyzed 24-hour period, that period was 
excluded, except when the rain event occurred directly after the NRW input event. Rain events were 215 
determined by the rain gauge measurements at the site. Time periods with a snow cover as determined 
visually from digital images were not considered in the analysis. To distinguish between different types 
of NRW inputs, we used the information from all ancillary sensors. Often dew and fog or hoar frost and 
rime occurred in combination, e.g. after sunset, dew formation occurred, when the atmosphere cooled 
further down till the atmosphere got highly saturated, fog started to form. We termed such events 220 
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combined dew and fog events, or hoar frost and rime events, respectively. The leaf wetness sensor was 
used to sense condensation (during dew only and hoar frost only events), NRW droplet interception and 
impaction (during fog, rime, combined dew and fog, combined hoar frost and rime events), and to sense 
an absence of condensation (during events when less condensation is expected to occur, e.g. water 
vapor adsorption or dew formation on soil). The visibility sensor was used to distinguish between 225 
events with reduced visibility below 1000 m (fog, rime events), and events without reduced visibility 
(dew only, hoar frost only events). To distinguish between fog and rime events from dew and hoar frost 
events, the temperature sensor of the nearby agrometeorological station was used. When temperature 
dropped below 0 °C, NRW inputs were attributed to rime and hoar frost. 

2.2.4 Load cell calibration and determination of accuracy 230 

In this study, weighing accuracy denotes the difference between the measured mass (determined with a 
ML) and the control (calibrated mass). Precision reflects the reliability of the measurements, and it 
specifies to what extent the experiment can be repeated. On the other hand, resolution is the smallest 
distinguishable unit for an observable change in mass and thus determines the upper limit of precision. 
For NRW studies, high accuracy is indispensable, which requires instruments with high resolution 235 
paired with high precision. 
Calibration runs for ML and the determination of the accuracy of the measurements were performed in 
a laboratory with closed windows and doors to avoid any influence of turbulence on load cell readings. 
Raw data were filtered as described in Appendix D during load cell calibration of the ML. A two-point 
calibration was performed on every single ML using calibration mass. For mass increases up to 500 g, 240 
calibration mass complying with the OIML F1 standard (Mettler Toledo, Greifensee, Switzerland) were 
used. The maximum permissible error of these calibration mass is ± 2.5 mg. For mass increases of 1000 
g, custom made mass of steel were used. Their mass was determined on a laboratory scale (XS4002S 
DeltaRange, Mettler Toledo, Switzerland) which was calibrated and certified for determining mass up 
to 4.1 kg with an accuracy of ± 0.01 g. First, a zero-point calibration was carried out, then the span was 245 
set to 15045.2 g, as this was the approximate mass which most moist ML pots had. The offset from the 
zero-point calibration was used together with the span calibration value in the code running on the 
microcontroller. The absolute accuracy of the load cells was tested on 2nd April 2019, by loading 
calibration mass on the weighing platform, in the range of 0 kg to 19.5 kg. The mass was increased 
stepwise by 500 g. The maximum mass was set to 19.5 kg to avoid an overload damage of the load cell. 250 
Three repetitions were performed. A linear regression was performed in order to assess the relationship 
between target mass and load cell mass. Moreover, a relative calibration was performed on 7th April 
2019. We investigated the accuracy of a load cell with relative mass changes. A base mass, ranging 
from 10 kg to 19.5 kg, was loaded on the weighing platform, then a 100 g calibration mass was added to 
the base mass. Accuracy of relative mass changes was determined with three replications. To test 255 
accuracy also under field conditions, we regularly performed a loading/unloading experiment after Nolz 
et al. (2013), by loading 5 to 10 g calibration mass on the ML and noting the mass before and after the 
loading. Because masses can be calibrated with certified standards as was done here, we use the term 
accuracy in this context, which goes beyond (relative) precision. 
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 260 

2.2.5 Evaluation of the effects of ML size on plant growth, canopy temperatures and soil 
moistures and temperatures 

Plant growth in the ML system was evaluated by comparing individual plant heights in the ML pots 
versus the control (surrounding). Plant heights were measured from ground level to maximum standing 
height. Plant heights of Trifolium pratense, Plantago major and Rhinanthus alectorolophus were 265 
measured at CH-FRU on 26 July 2019, with three replications per species and treatment (ML pot, 
control). To test for a statistically significant difference between plant heights of ML pots and the 
control (surrounding) we used a t-test (n=3). To compare canopy temperatures of ML and the control 
(surrounding) during a NRW input period, we used a thermal camera (testo 882, Testo AG, Lenzkirch, 
Germany), with a thermal sensitivity of ±0.05 °C. Thermal infrared images were taken from 18:27 to 270 
05:15 (UTC) of ML vegetation and of the control (surrounding) at CH-FRU during a dew night on 24 to 
25 June 2019. Thermal images of the control (surrounding) were taken in a distance of ca. 100 cm from 
the ML system, to exclude any potential influences of the ML system on its immediate surrounding. To 
compare thermal images of the ML surface with the control, we compared the variance (F-test). Data 
were bootstrapped to reduce sample size from > 30k to 30 samples using the scikit-learn machine 275 
learning package of Python (Pedregosa et al., 2011). Soil moisture and temperature data of ML pots and 
the control (surrounding) were retrieved by soil temperature and moisture sensors (Fig. 1b:q; 5TM, 
Meter Group AG, Munich, Germany), installed at a soil depth of 15 cm. As a control, one additional 
sensor was placed outside the ML system at the same depth in the surrounding. We measured over a 
period from beginning of May till mid October 2019. Soil moisture data were compared as water filled 280 
pore space (WFPS). WFPS was used to make soil moisture values better comparable, by minimizing the 
effects of soil texture, e.g. different gravel content, that might be present in close proximity of the 
sensors. Higher or lower gravel content could bias soil saturation. WFPS was calculated relative to a 
saturation point (100%), which was reached, when the soil was fully saturated with water after long and 
intensive rainfall. To test if the difference of WFPS values of ML pots and the control (surrounding) 285 
stayed constant over time, we used a cointegration test after Engle and Granger (1987), which can be 
used to test for co-movement of two non-stationary variables. To test if the WFPS time series were non-
stationary, we used an Augmented Dickey-Fuller (ADF) test. To perform all statistical tests, we used 
the Statsmodels package (Skipper et al., 2010) of Python. 

3 Results 290 

3.1 Accuracy of the ML system 

Three replications showed an almost perfect linear correlation (R2=0.9999) between target mass and 
load cell mass. Target mass was retrieved from the microcontroller after data filtering (see Appendix 
D). Data with a resolution of 0.1 g were used. The root mean square errors (RMSE) for comparisons of 
target mass to load cell mass of three replications were 0.43, 0.47 and 0.36 g, respectively. The standard 295 
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error (SE) of the parameter estimates of three replications were ± 0.13, ± 0.14 and ± 0.11 g, 
respectively. 

 
Fig. 2 (a) Absolute calibration of a load cell placed in a weighing platform. Three replications (overlapping data points) are shown 
with SE of the intercept. (b) The residuals from the target mass of three replications (Rep. 1 to 3) were in the range of ± 2 g. 300 

 
NRW inputs occur during events with a finite time period, thus for NRW input studies, the relative 
change in mass from start to end of that time period is of interest. A 100 g change with the given ML 
size translated to a change of 2 mm water input. The residuals were in the range of ± 0.25 g or ± 0.005 
mm equivalent water input, which represents the accuracy of the ML system. 305 

 
Fig. 3 Residuals of three replications (Rep. 1 to 3) with relative mass changes of 100 g. 

 

Three replications
y1=1.1592 + 0.9999 x; SE= ±0.13 g
y2=0.6923 + 0.9999 x; SE= ±0.14 g
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A zero-point offset calibration combined with data filtering (see Appendix D) gave us not only a more 
accurate zero-point offset, but also a more accurate span value. An accurate span value reduced 310 
fluctuating values from load cell readings and gave us stable measurements when mass changed over 
time. The precision was determined by repeatedly loading and unloading calibration mass on the 
weighing platform for three times and noting the difference to test for repeatability. The precision was ± 
0.28 g, equivalent to ± 0.005 mm water input. With a base mass over 18.5 kg, the precision was slightly 
lower, with ± 0.45 g equivalent to ± 0.009 mm water input. The digital resolution of the ML system was 315 
0.01 g, which corresponds to 0.0002 mm equivalent water input, and is thus two orders of magnitude 
better than the physical resolution provided by our ML system. Regular loading/unloading experiments 
after Nolz et al. (2013) showed deviations in the range between ± <0.1 g (± <0.002 mm) and ± 0.4 g (± 
0.008 mm), and thereby confirmed high accuracy also under field conditions. Thus, the data acquisition 
of the ML system was accurate enough to provide high accuracy. 320 

3.2 Differentiation among different types of NRW inputs 

Our ML system allowed differentiating among different types of NRW events when the ML 
measurements were combined with ancillary sensors. During a combined dew and fog event (Fig. 4a), 
we measured an increase in mass on the ML, an increase in leaf wetness (uncalibrated sensor voltage), 
while visibility was partially below 1000 m (intermittent fog event). During a dew only event, we 325 
measured an increase in mass on the ML, besides increased leaf wetness, while visibility stayed above 
1000 m throughout the event (Fig. 4b). During a potential water vapor adsorption event, there was only 
an increase in mass on the ML, whereas no condensation occurred on the leaf wetness sensor, while the 
visibility stayed well above 1000 m (Fig. 4c). Wind speed remained low (< 1 m s-1) during the whole 
potential water vapor adsorption event. Mass increases on the ML could be attributed to hoar frost if air 330 
temperature was below 0 °C or to rime during events with reduced horizontal visibility <1000 m and 
temperatures below 0 °C. The highest water gain of the NRW input events shown in Fig. 4 was 0.4 mm 
and originates from the combined dew and fog event; the water input from the dew only event was 0.2 
mm, and the lowest water input with 0.06 mm came from the potential water vapor adsorption event. 
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 335 
Fig. 4. Differentiation of different NRW input events with the ML system and ancillary sensors: (a) Combined dew and fog event; 
(b) Dew only event; (c) Potential water vapor adsorption event. The black dashed line indicates the zero line. The red dashed line is 
the threshold for fog events with a visibility < 1000 m. Visibilities > 4000 m were reported as 4000 m. Blue circles indicate start and 
end of NRW input events. 
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Table 1. Cross table to indicate different criteria for differentiation among different NRW events. The ‘+’ sign indicates the 350 
presence, whereas the ‘-’ sign indicates the absence of a certain factor. All NRW events lead to increase of ML mass, ancillary 
sensors of leaf wetness, visibility and temperature are needed to differentiate between NRW events. 

NRW event 
type 

ML mass 
increase 

Leaf wetness Visibility  
< 1000 m 

Temperature  
< 0 °C 

Dew + + – – 

Hoar frost + + – + 

Fog + + + – 

Rime + + + + 

Combined dew 
and fog 

+ + + – 

Combined hoar 
frost and rime 

+ + + + 

Potential water 
vapor 
adsorption 

+ – – – 

 

3.3 Influence of ML system design on plant canopy temperature 

Canopy temperature did not differ significantly (t-test, p > 0.05, n = 30) between ML vegetation and 355 
control (Fig. 5a, b). The standard deviation of temperature data between ML surface and the control was 
< 0.5 °C throughout the observation period. The variance of canopy temperature between the ML 
vegetation and the control was not statistically significant different (F-test, p > 0.05, n = 30). Soil 
temperature in the ML pot 1 was higher than in the control plot at the beginning of the dew formation 
period (Fig. 5c), but equaled control soil temperatures towards the end. Dew formation started at 18:53 360 
and ended at 06:07 UTC (Fig. 5d). Dew water input was 0.24 mm, showcased for ML 1, even though 
dew formation occurred during that night on all three ML installed at the site. 
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Fig. 5. Canopy temperatures (a, b), soil temperatures (c), and NRW input (d) of ML1 and the control (surrounding area) at CH-365 
FRU during 24 to 25 June 2019. Time of day (HH:MM) is given in UTC time. The thermal infrared images (a) show the ML pot 
(small circle) with the cover lid (between small circle and big circle) and the surrounding (outside of big circle) during selected 
time points (1–7) of a dew night. Image size is ca. 75×75 cm. To compare ML pot temperatures to temperatures of the 
surrounding, separate images were taken in a distance of ca. 100 cm (images not shown here) with a size of ca. 75×75 cm, to 
exclude any potential influence of the ML on its approximate surrounding. 370 

 

3.4 Influence of ML system design on plant growth 

Plant heights of Trifolium pratense, Plantago major and Rhinanthus alectorolophus did not differ 
between ML pots and the control (t-test, p > 0.05, n = 3), also variability did not differ (F-test, p > 0.05, 
n = 3). Additional measurements of mean and maximum vegetation height on 14 August 2019 showed 375 
also no statistically significant difference (t-test, p > 0.05, n = 3; data not shown). 
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Fig. 6. Comparison of plant height of three plant species at CH-FRU (measured on 26 May 2019) growing in ML pots versus the 
same species growing in the open field (control). Error bars are showing standard errors (n = 3), n.s. stands for no statistically 
significant difference. 380 

 

3.5 Influence of ML system design on soil moistures and temperatures 

WFPS data of ML pots 1, and ML pot 2 were very similar, and closely matched the control (Fig. 7a). 
WFPS values of ML pot 3 showed a higher dynamic, but closely followed the temporal pattern of the 
control and ML pots 1 and 2. The differences between WFPS of ML pots and the control were constant 385 
over time (Engle-Granger two step cointegration test; p < 0.05). This indicates that soil moisture data of 
ML pots and the control were in general not significantly different. However, during a prolonged no-
rainfall period in summer (Fig. 7a, marked with red box), WFPS of ML pots decreased faster in 
comparison to the control. Since lower soil moisture values can result in a lower heat capacity of the 
soil, we assessed whether lower WFPS values inside ML pots may have an influence on soil 390 
temperature during non-rainfall periods (Fig. 7b). 
Soil temperature of ML pot 1 and the control (Soil temperature in the surrounding) (Fig. 7b) showed the 
same increasing trend, while deviation of WFPS of ML pots from the control (Fig. 7a, marked in red) 
increased with time (same pattern as of ML pot 1 was also evident on ML pot 2 and ML pot 3, data not 
shown). From this we conclude that soil temperatures inside ML pots during the most relevant hours of 395 
the day when dew forms (during the night before sunrise) were not strongly influenced by a lower water 
content and its resulting lower heat capacity. Nocturnal temperature minima almost perfectly agreed 
between ML pot 1 and the control, while the daily temperature range of ML pot 1 was double compared 
to the control (Fig. 7b). Over the prolonged no-rainfall period, the hourly mean soil temperature 
deviations of ML pot 1 from the control ranged between –0.14 °C around sunrise and 2.57 °C in the 400 
later afternoon (Fig. 7c). Over the period from May-October 90 % of nocturnal one-minute soil 
temperature deviations (sunset–sunrise) were lower than 2.90 °C, 50 % were lower than 0.69 °C. 
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Fig. 7. (a) Comparison of WFPS (based on soil moisture measured at 15 cm depth) inside the ML pots versus the control from 
beginning of May till mid of October 2019 at CH-FRU;( b) Soil temperature from ML pot 1 at CH-FRU during a non-rainfall 405 
period in July (marked with red box in panel a); (c) Soil temperature deviations of ML pot 1 from the control by hour of day 
during the same period as marked in panel a and used in panel b. 

 

3.6 NRW inputs over one year 

There were a total of 127 NRW input events at CH-FRU over one year (2nd May 2019 12:00 UTC to 2nd 410 
May 2020 11:59 UTC; Fig. 8). The frequency of the events can be found in Table 2. Eleven NRW 
events were observed when leaf wetness remained low, potentially indicating water vapor adsorption 
events or dew formation on soil. Potential water vapor adsorption events occurred during two time 
periods: period 1 in July 2019, period 2 in April 2020. During period 1, a single potential water vapor 
adsorption event occurred, whereas during period 2 ten such events occurred. During both periods 415 
rainfall was low, ten days before the event in period 1 the cumulative rainfall was only 9.6 mm, in 
period 2 the cumulative rainfall between 14 March, the last bigger rainfall event with 12.3 mm, and 23 
April was only 13.7 mm. The soil moisture during both potential water vapor adsorption periods was 
rather low, with WFPS of ca. 45 %. This indicates a potential water vapor gradient from the atmosphere 
to the soil, favorable for water vapor adsorption. The cumulative NRW input over 12 months was 15.9 420 
mm, which corresponds to roughly 1% of the 1580 mm annual precipitation collected during the third 
warmest year in Switzerland since weather recordings started in 1864 (MeteoSchweiz, 2020). 
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Table 2. Number counts of events with its associated NRW input by type, and percentage of the total NRW input during the 
observation period of 12 months at CH-FRU. 

Number count of 
events 

NRW type NRW input (mm 
yr-1) 

NRW input (mm 
d-1) 

Percentage of 
total NRW input 
(%) 

85 dew 10.23 0.12 64.23 
21 hoar frost 1.92 0.09 12.05 
13 Combined dew 

and fog 
2.69 0.21 16.89 

5 fog 0.9 0.18 5.67 
2 Hoar frost and 

rime 
0.15 0.08 0.95 

1 rime 0.03 0.03 0.22  
 

 
Fig. 8. Daily NRW inputs at CH-FRU over one year, starting on 2nd May 2019 till 2nd May 2020. The blue bars indicate NRW 430 
events with their corresponding NRW input per day. Different colours indicate different types of NRW inputs. The black line 
indicates the cumulative NRW input over one year. The annual total NRW input was 15.9 mm, about 1% of total precipitation 
during this time. 

 
The mean NRW input over all events was 0.12 mm, with the highest single input of 0.4 mm by a fog 435 
event, and the lowest input of 0.021 mm by a hoar frost event. On a monthly basis, the months with 
highest NRW inputs were September with 2.64 mm, August with 2.35 mm, and June with 2.32 mm. 
The cumulative NRW input from May until September was 9.7 mm. At the monthly scale, NRW inputs 
can be remarkable: in April 2020, the month with the least rainfall (51.8 mm), the contribution of NRW 
input to the monthly hydrological input was 3.5%. The average monthly NRW input was highest in 440 
September with 0.088 mm, when the nights were longer than in summer, and thus the probability for 
NRW inputs was increasing with the duration of the night. However, observed average monthly NRW 
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inputs ranked second and third in terms of amount in June and August when nights were much shorter 
than in September. The relationship between NRW input as a function of actual NRW input duration 
(Fig. 9) was not very strong, but when durations were binned into ten bins of equal widths, a clear trend 445 
of increasing NRW inputs with increasing NRW input duration emerged. Because no NRW input is 
expected if the duration of NRW input is 0 hours, we first started with a square-root regression through 
the origin, 𝑦𝑦 = 𝑏𝑏 ⋅ √𝑥𝑥	, the slope of the fit was 0.042 ± 0.001 mm h–1/2 (Fig. 9 dotted line), but for 
durations > 2 hours it closely corresponded to a conventional linear regression slope of 0.008 ± 0.001 
mm h–1 (Fig. 9 black line, R2 = 0.86, p < 0.001; the intercept should be ignored because it has no 450 
physical meaning in this context). Despite this rather clear dependence on actual duration of NRW 
input, there was no significant correlation found between average monthly NRW input duration and 
potential NRW input duration given by the time between sunset and sunrise (R2 = 0.16, p > 0.1; data 
now shown). 
 455 

 
Fig. 9. The relationship of actual NRW input as a function of actual NRW input duration from 12 months of NRW inputs. NRW 
inputs were binned to 10 bins of equal width covering the entire data range of the NRW input duration. Horizontal and vertical 
whiskers indicate the SD of the available data within each bin relative to the respective bin average (open circles). Different 
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colours indicate different types of NRW inputs. There is a strong linear relationship (R2 = 0.86, p <  0.001) between actual NRW 460 
input and actual NRW input duration. 

4 Discussion 

4.1 Accuracy of the ML system 

The high accuracy of our newly developed ML system allowed capturing even very small NRW events 
such as the potential water vapor adsorption event with 0.06 mm shown in Fig. 4c. It was possible to 465 
capture NRW events with an accuracy of ± 0.25 g with pots that weigh roughly 15 kg in total. This 
corresponds to an accuracy of ± 0.005 mm of water inputs. The accuracy would be even higher with a 
relative mass change less than 100 g (equivalent to 2 mm water input), which is true for most NRW 
events. The accuracy of our ML system was four orders of magnitude better than reported for many 
other studies (see Table 3). Feigenwinter et al. (2020) could achieve on average (depending on 470 
calibration date) the same accuracy, although with a lower depth of the ML pot (6.5 cm) and a lower 
weighing capacity (7 kg). The high accuracy of our ML system was achieved by a combination of 
factors, such as using a state-of-the-art load cell in combination with continuous high frequency data 
filtering as well as ancillary data. For example, temperature measurements were crucial to differentiate 
between hoar frost and dew events and fog and rime events. Ancillary wind measurements could be 475 
used to exclude periods with high wind speeds, because high wind could act as a force on ML and 
increase thereby mass. However, NRW inputs occur during conditions with low wind speed, the 
probability for dew formation decreases below 5% when wind speeds are smaller than 0.4 m s-1 or 
bigger than 1.9 m s-1 (Zhang et al., 2014). Thus, wind is not a big bias source for NRW quantification. 
A further factor promoting high accuracy was a load-cell specific calibration. Factory calibration is the 480 
same for all load cells of the same model, but when an individual calibration is made, the differences 
among individual load cells are substantial, and hence highest accuracy always requires a load-cell 
specific calibration by the user. Construction details that promoted accuracy were the frictionless gap 
construction between ML pot and cover lid, as well as the three adjustable support feet on which the 
weighing platform was centred on the load cell. This is needed because after burial, a ML system may 485 
accidentally tip, twist and be thrown out of balance (Uclés et al., 2013). The low-cost microcontroller 
had enough computing power to continuously process data from multiple sensors, while consuming 
little energy. Thus, our ML system could also be powered by solar panels. During or after freezing 
temperature conditions the ML system should be controlled, because expanding water in the reservoir or 
the ML pot could break PVC parts of the ML system. However, this did not occur during this study 490 
period. 
Precision (repeatability of the measurements) of our ML system was ± 0.005 mm equivalent water 
input. With a base mass over 18.5 kg, the precision was lower, with ± 0.009 mm equivalent water input. 
However, in the field, ML pots were weighing less than 18.5 kg, even when soil was moist. This 
precision was unprecedented, only topped by manual ML weighing on an electronic balance (Jia et al., 495 
2014). Manual weighing is, however, very labor intensive and consequently unsuitable for long-term 
NRW studies. 
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The digital resolution (smallest distinguishable unit) of our ML system was 0.0002 mm. This resolution 
was in the range reported by Uclés et al. (2013). Comparison of accuracies, precisions and resolutions 
with other studies is often hampered, because the distinct terms accuracy, precision and resolution are 500 
often misconceived. The load cell capacity of 20 kg in our ML system is relatively large compared to 
other ML studies. NRW input studies with ML had a load cell capacity in the range from 0.3 kg (Brown 
et al., 2008), 1.5 kg (Kaseke et al., 2012), 3 kg (Uclés et al., 2013), 6 kg (Maphangwa et al., 2012; 
Matimati et al., 2013), up to 7 kg (Feigenwinter et al., 2020). 
 505 
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 525 
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Table 3. Comparison of accuracies, precisions, and resolutions of ML and LM for NRW studies. 

Accuracy of ML and LM Additional information Reference 

± 0.005 mm ML weighing capacity of 
20 kg 

This study 

± 0.005 mm (mean) Accuracy ranged from ± 
0.001 mm to ± 0.02 mm 
depending on calibration 
date. ML weighing 
capacity of 7 kg 

Feigenwinter et al. (2020) 

± 0.02 mm ML weighing capacity of 1 
kg 

Heusinkveld et al. (2006) 

± 0.03 mm  Zhang et al. (2019) 

Precision of ML and LM   

± 0.28 g (± 0.005 mm)  This study 

± 0.001 g (± 0.00012 mm) ML pots were manually 
weighed on an electronic 
balance 

Jia et al. (2014) 

± 0.3 g (± 0.008 mm) 
(mean) 

Precision ranged from ± 
0.1 g (± 0.002 mm) to ± 
1.12 g (± 0.023 mm), 
depending on calibration 
date 

Feigenwinter et al. (2020) 

± 20 g (± 0.01 mm to ± 0.04 
mm) 

For a surface area of 0.5 
m2 up to 2 m2 

Meissner et al. (2014) 

Resolution of ML and LM   

0.01 g (± 0.0002 mm)  This study 

0.01 g (± 0.00055 mm)  Uclés et al. (2013) 

0.038 g (± 0.0026 mm)  Kaseke et al. (2012) 

0.1 g (± 0.0022 mm)  Maphangwa et al. (2012) 

0.1 g (± 0.004 mm)  Agam and Berliner (2004) 

1 g and 10 g (± 0.001 mm Big LM, two different LM Groh et al. (2018) 
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and 0.01 mm) systems with 1 m2 surface 
area 

 530 

4.2 Quantification and differentiation among different types of NRW inputs 

NRW inputs occurred rather frequently over the entire year of observation (Fig. 8). NRW inputs could 
be measured on approximately every third day on average. The highest NRW inputs occurred during the 
months of main grass growth (April–September), indicating a potential hydro ecological relevance. 
Ancillary sensors allowed differentiation of different NRW inputs. Differentiation among different 535 
types of NRW inputs is important for various research disciplines, e.g. the prediction of fog events 
poses a major challenge for numerical weather prediction for meteorologists (Westerhuis et al., 2020). 
Thus, it is important to measure the frequency and water inputs of fog events during the whole year. 
The use of a visibility sensor allowed us to assess the contribution of fog and rime. A leaf wetness 
sensor allowed differentiating between events in which condensation occurred (dew, hoar frost) in 540 
contrast to events when condensation on leaves was less probable (water vapor adsorption and/or dew 
formation on soil). Potential water vapor adsorption events occurred during periods with low rainfall, 
when soil was drying out, which increased the vapor pressure deficit gradient between soil and 
atmosphere, promoting water vapor adsorption. However, the NRW inputs of the potential water vapor 
adsorption events were rather low (0.03 – 0.13 mm). Thus, it is not unlikely that a leaf wetness sensor 545 
might react slightly different than a true plant leaf, despite the care that was taken to design leaf wetness 
sensors to match the radiative and thermodynamic properties of plant leaves, and these events were 
small dew events. Further investigations are needed to clarify if the leaf wetness sensor is suitable to 
differentiate between dew and water vapor adsorption events. Air temperature measurements from the 
agrometeorological station were necessary to differentiate between dew vs. hoar frost formation and 550 
between fog vs. rime. Rainfall measurements allowed differentiating between NRW events and rainfall 
events, and a networked digital camera allowed to observe persisting snow cover. The installation of 
three ML allowed exclusion of possible effects by insects, snails and lizards arriving on or departing 
from a ML pot. If it is assumed that these animals have no preference for a particular ML pot and thus 
their arrival and departure is a random process, such effects only contribute to the noise that is filtered 555 
out during data filtering, and thus should not bias our NRW input estimates. In deserts or arid regions 
(with low vegetation cover) additional sensors (e.g. infrared video cameras) would be needed to detect 
depositing materials like dust and sand that accumulate on the ML over time. The installation of 
multiple ML further had the advantage that spatial variation in soils, species composition and leaf area 
could be reduced in comparison to single ML deployments. 560 

4.3 Effect of ML size on plant growth, canopy temperatures, soil moisture and soil temperatures 

Our ML system had a larger area and a deeper ML pot than most other ML systems developed and used 
in earlier studies on NRW quantification (Table 4). This allowed unimpaired plant height growth (Fig. 
6), representing more natural conditions than many, rather shallow ML systems, an issue crucial for 
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accurate measurements of NRW inputs to grasses and forbs. We did not find any significant differences 565 
in canopy temperatures between our ML pots and of the control (surrounding) (Fig. 5a). Furthermore, 
we found in general no significant difference in soil moisture between ML and the control 
(surrounding), only during a prolonged drought period soil moisture values of ML pots were decreasing 
faster. In this study, this had however no influence on plant standing height because measurements of 
plant height (before the drought period) and measurement of overall vegetation height (after the drought 570 
period) were not statistically different. However, lower soil moisture during prolonged drought periods 
can result in reduced evaporation rates and increased water vapor adsorption rates. Furthermore, this 
can influence plant growth and development. Thus, the ML system can be used to reliably measure 
NRW inputs as long as the difference in soil moisture during prolonged drought periods does not 
influence plant height or canopy architecture. WFPS values of ML pots were in general not higher than 575 
the control, suggesting a sufficient drainage by the drainage-water outlets. This is crucial, because 
saturation at the bottom of ML could lead to oxygen limitation for root growth (Ben-Gal and Shani, 
2002). In contrast to Kidron and Kronenfeld (2017), Evett et al. (1995) and Ninari and Berliner (2002), 
we also did not observe substantially lower nocturnal soil temperatures, the time when NRW inputs 
actually take place, which is important to avoid an overestimation of dew formation on soils. On the 580 
other hand, afternoon and close to sunset soil temperatures of ML pots were higher compared to those 
in the control (Fig. 7). Thus, potentially, the ML system could underestimate dew formation on soils 
shortly after sunset, but dew formation on soils is rare (Agam and Berliner, 2004; Ninari and Berliner, 
2002), the open soil surface in grasslands is rather small, ideally zero under good management 
practices. Higher soil temperatures could underestimate water vapor adsorption, because it lowers the 585 
vapor pressure deficit between soil and atmosphere.  Therefore, our estimates of NRW inputs on soils 
should be conservative estimates, given that the slightly elevated temperatures actually do reduce (not 
increase) NRW inputs on soil inside the ML pots. The higher soil temperatures in the afternoon were 
not related to a lower water content nor its associated heat capacity. Kidron et al. (2016) provided a 
possible explanation for the diurnal temperature difference between a ML pot and the control. They 590 
termed it a “loose stone effect”, the ML pot might act as loose stone, i.e., through the air gap between 
the ML pot and the outer part of the ML system more efficient longwave radiational cooling can occur 
in comparison to the bulk soil. However, Ninari and Berliner (2002) found that the lateral soil 
temperature gradient was small compared to the vertical soil temperature gradient and that wrapping the 
ML pots with insulation material did not reduce temperature deviations. We thus think that insufficient 595 
ML pot depth has most likely caused the soil temperature alterations observed mainly during daytime 
when dew formation is absent. Ninari and Berliner (2002) suggested that the minimum ML depth 
should be the depth at which the temperature is constant during the entire day. For a dry loess soil in the 
Negev Desert, a sufficient ML pot depth would be 50 cm (Ninari and Berliner, 2002). At CH-FRU, a 
ML pot depth of approximately 95 cm would be necessary, in order to have soil temperature gradients 600 
over 24-hour periods < 0.5 °C.  With a depth of 95 cm, there would be the risk that all the advantages 
any ML system entails would be lost. Although constructing deeper ML pots would be possible, even 
with double or triple the current ML pot depth, deeper ML pots would exert more dead mass onto the 
load cell and would thus decrease load cell accuracy (Kaseke et al., 2012). Overall, ML design is always 
a tradeoff between representing the surrounding and feasibility of construction and installation. The ML 605 
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system was not constructed with the depth suggested by Ninari and Berliner (2002), however, the aim 
of this study was to measure NRW inputs to grasslands, for which canopy temperatures are more 
important. We found only a small difference in canopy temperature between ML and the control. Thus, 
we conclude that our novel ML design is suitable for quantifying nocturnal NRW inputs on grasses and 
forbs reliably and accurately at high temporal resolution. 610 
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Table 4. Size comparison of lysimeters (LM) and micro-lysimeters (ML) developed and used for NRW studies. 

LM 
or 
ML 

Depth 
[cm] 

Diamet
er [cm] 

Study object Locality Reference 

ML 25 25 grassland CH-FRU 
(Früebüel, 
Switzerland) 

This study 

LM 150 112 grassland Gumpenstein, 
Rollesbroich 
(Austria and 
Germany) 

Groh et al. 
(2018) 

LM 200 112 cropland (Zea mays) Helmholtz 
Centre for 
Environmental 
Research – UFZ 
(Germany) 

Meissner et al. 
(2007) 

LM 265 225 herbaceous vegetation Dingxi (China) Zhang et al. 
(2019) 

ML 3.5 6 sand dunes Nizzana, Negev 
desert (Israel) 

Jacobs et al. 
(1999) 

ML 3.5 6 undisturbed soil with 
biological soil crusts 

Gurbantunggut 
desert (China) 

Zhang et al. 
(2009) 

ML 3.5 8.8 soil Knersvlakte 
(South Africa) 

Brown et al. 
(2008) 

ML 3.5 14 sand Nizzana, Negev 
desert (Israel) 

Heusinkveld et 
al. (2006) 

ML 3.5 14 river sand Stellenbosch 
(South Africa) 

Kaseke et al. 
(2012) 

ML 3.5 24 gypsum soils and 
lichens 

Alexander bay 
(South Africa) 

Maphangwa et 
al. (2012) 

ML 3.5 24 dwarf succulents Quaggaskop, 
Knersvlakte 
(South Africa) 

Matimati et al. 
(2013) 
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ML 6.5 25 bare soil Central Namib 
Desert (Africa) 

Feigenwinter 
et al. (2020) 

ML 9 15.2 bare soil with 
biological soil crusts 
and the grass Stipa 
tenecissima 

Balsa Blanca 
and El Cautivo 
(Spain) 

Uclés et al. 
(2013) 

ML 15 and 
55 

25 and 
18.6 

soil with biological 
soil crusts 

Wadi Mashash 
Experimental 
Farm, Negev 
desert (Israel) 

Ninari and 
Berliner 
(2002) 

 

4.4 NRW inputs at CH-FRU 

NRW inputs occurred on approximately one third of the nights and were thus a frequent water input. 
The NRW inputs measured by our ML system represent conservative estimates under certain 640 
conditions, because drainage water flow from the ML pots was not measured. Under conditions with 
water lost via drainage, NRW inputs would be underestimated. Especially during and shortly after 
intensive rainfall periods, when drainage water flow is more likely (see Appendix F, Fig. F1 and Table 
F1), the application of the ML system is limited. During transition periods, shortly after rainfall, e.g. 
during nights when the sky clears after rainfall, NRW inputs may be underestimated. Therefore, we 645 
excluded such periods (see Eq. 1) from the analysis and limited our analysis for dry periods. Our longer-
term NRW estimates might thus be conservative estimates if rainfall periods are included in the total 
hydrological input. At our site, drainage water flow from the ML pots reached low levels rather quickly 
after rainfall events (see the Appendix E and F for more details). Nevertheless, depending on soil 
characteristics and conditions, drainage water flow could persist for longer time (Fig. F1 and Table F1). 650 
Under such conditions, the ML system provides conservative estimates of NRW inputs, because we set 
NRW input to 0 mm when there is rainfall and/or drainage flow percolating out of the soil monolith. A 
possible modification of the ML system to also quantify such drainage flow accurately is suggested in 
the Appendix E with an additional sensor as indicated in Fig. 1b:p. We used three outlets (Fig. 1b:j) to 
ascertain that drainage is not hindered, but if a sensor to quantify drainage is added, the ML pot should 655 
only have one drainage hole with a sensor, from which reliable quantitative estimates of drainage losses 
can be obtained. 
NRW inputs were especially high under conditions when rainfall was absent, e.g. in April, the month 
with the lowest rainfall. NRW inputs were not influenced by potential NRW input duration, thus there 
was also a high probability for NRW inputs to occur during summer months, the main growth period of 660 
temperate grasses and forbs. In fact, the monthly average NRW inputs were similar to the NRW inputs 
that were measured in spring and autumn months, when NRW inputs are expected to be highest. This 
indicates a high ecohydrological relevance of NRW inputs for temperate grassland ecosystems, 
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especially during hot and dry periods. However, the effects of these frequent NRW inputs on plant 
water status have still to be investigated. 665 
Besides studying the effects of NRW inputs on temperate grassland species during hot days with low 
soil moisture, a special focus should be directed to the effects of NRW inputs during periods with high 
soil moisture, when no soil water stress is present. NRW inputs could be beneficial even under such 
conditions, when simultaneously atmospheric demand is high (high energy input, high vapor pressure 
deficit). NRW inputs could reduce leaf temperatures by the re-evaporative cooling effect and thereby 670 
reduce water stress during early morning hours and consequently increase productivity (Dawson and 
Goldsmith, 2018). However, leaf wetting by NRW inputs could also be disadvantageous during periods 
with no soil water stress. Leaves covered by water droplets from NRW inputs could show reduced gas 
exchange due to lower gas diffusivity through the water layer. Thus, the development of the ML system 
and measuring NRW inputs with high accuracy are crucial steps to address ecohydrological processes, 675 
but further investigations are necessary to understand physiological effects on grasslands. 

5 Summary and conclusions 

The aim of this study was to develop a high accuracy ML system for the quantification of NRW inputs 
that overcomes existing drawbacks. The ML system comprised a comparatively large and deep ML pot 
in the size class of 25 cm diameter × 25 cm depth in combination with an unprecedented weighing 680 
accuracy. This ML size allowed natural plant growth and such a ML system can therefore be used in 
different ecosystems with most short to mid-size statured grasses and forbs or similar vegetation up to 
ca. 40 cm. Ancillary sensors allowed differentiating among different types of NRW inputs. Our study 
shows that the ML system represents natural conditions very well. The plant height was not 
significantly different between ML pots and the control (surrounding). Plant canopy temperatures of 685 
ML pots were close to canopy temperatures of the surrounding during a nocturnal period when NRW 
input took place. However, additional continuous canopy temperature measurements in follow-up 
studies could allow to more clearly distinguish dew formation from water vapor adsorption and to 
identify if canopy temperature drops below dewpoint temperature. If this is not the case, and other 
factors like rainfall and fog can be excluded, a weight increase might then be related to water vapor 690 
adsorption. Furthermore, canopy temperature measurements would clarify if a leaf wetness sensor alone 
is sufficient to distinguish between dew and water vapor adsorption events. Soil temperatures were 
higher in ML pots, especially during the day. This could influence the hydraulic characteristics of soil 
water, the heat balance of the soil and in consequence lead to biased latent and sensible heat fluxes. 
Thus, further ML studies should primarily focus to get rid of soil temperature differences between ML 695 
pots and the surrounding soil. In addition, the ML system could be further improved by adding water 
flow or water droplet sensors at the ML pot outlets to measure drainage water flow (see Appendix E), 
with the goal to avoid underestimation of NRW inputs shortly after intensive rainfall events or during 
soil conditions when drainage water flow persists for longer time (see Appendix F). With our ML 
system, we were able to resolve mass changes on a 15 kg pot with an accuracy of ± 0.25 g, which 700 
corresponds to ± 0.005 mm of water input. This accuracy allows determining typical water gains by 
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dew, hoar frost, fog, rime or water vapor adsorption on the order of 0.021 to 0.4 mm in a single night. 
The study revealed that, NRW inputs occurred frequently and provided on average of all NRW events 
0.12 mm of water. Such quantitative estimates will be essential to assess the role that NRW inputs 
might have on temperate grasslands during summer drought conditions. However, longer-term NRW 705 
input measurements would allow to see whether the seasonal pattern of NRW inputs are constant over 
time, or if they are influenced by weather conditions and thus vary from season to season. Moreover, 
the effects of NRW inputs on plant physiology in grassland ecosystems have still to be elucidated more 
carefully, to assess the importance of such water inputs during ongoing climate change such as 
projected prolonged heat periods in the months of main vegetation growth. 710 

Appendix A: Location map 

 
Fig. A1. a) The red dot indicates the location of the CH-FRU site within the Swiss borders (blue). The black dots indicate the cities 
of Zurich, Bern and Lucerne. Map tiles by Stamen Design, under CC BY 3.0. Data by OpenStreetMap, under ODbL. b) Aerial 
photograph taken with a drone of the CH-FRU site. On the left of the fenced area the three ML are visible. 715 

a) b)
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Appendix B: Installation procedure and soil monolith preparation 

 
Fig. B1. Photographs of single ML pots during (a-e) and after installation (f-g) at CH-FRU. a) First step to retrieve an undisturbed 
soil monolith. An empty ML pot was placed upside down, then the soil around the ML pot was removed with small shovels. 
Afterwards the ML pot was gently pressed into the soil. b) The contact of the monolith with the soil was cut at the bottom with a 720 
spade. C) The monolith was removed from the ML pot and carefully transferred to a second ML pot. d) Monolith ready for 
installation at the weighing platform. e) Empty ML pot on a weighing platform. The weighing platform is standing on the 
adjustable support feet. f) Lateral view of an installed ML. g) Top view of an installed ML. 

To retrieve an undisturbed soil monolith with intact grass vegetation, we used an empty ML pot that 
was placed upside down at the place of interest from where the monolith was to be retrieved. First, we 725 
trenched the soil with a long spade around the ML pot. Then we removed the soil around the ML pot 
with small shovels, which allowed pressing the ML pot into the soil. We continued until the top of the 
ML pot was at ground level. Finally, the contact with the soil could be cut at the bottom with a spade. 
The reversed soil monolith was carefully taken out from the ML pot and three people collaborated to 
transfer it to a second ML pot to be upright again. The ML pot was then ready for installation on the 730 
weighing platform. The weighing platform was levelled out by adjusting the three adjustable standing 
feet with a prolonged hexagon socket wrench. The final position was fixed with the counter nut by 
using an open-end wrench. 

Appendix C: Data collection, storage, and delivery 

Data from all sensors were collected by an Arduino-type MEGA 2560 PRO microcontroller (RobotDyn, 735 
Zhuhai, China), which was installed on a custom-made printed circuit board (PCB). The voltage signal 

a) b) c) d)

e) f) g)
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coming from the load cells was digitised by a 24-bit analog-to-digital converter for weigh scales 
(LM711, SparkFun Electronics, Niwot, USA). For each load cell, a separate analog-to-digital converter 
was used. After collecting and processing the data of the load cells and the other sensors, the data were 
stored as one-minute averages on a micro-SD card (MicroSD 16 Gb, Kingston Technology Company 740 
Inc., Fountain Valley, USA) inserted in the slot of a micro-SD breakout board (MicroSD card breakout 
board 254, Adafruit Industries, New York, USA). Then, the data were transferred to our data server 
every five minutes by using Internet of Things (IoT) technology. To send the data, a breakout board 
(RFM9X LoRa Radio, Adafruit Industries, New York, USA) connected to the open TheThingsNetwork 
was used. TheThingsNetwork uses a Long Range Wide Area Network (LoRaWAN) protocol. A real-745 
time clock (DS3231 for PI, HiLetgo, Shenzhen, China) was installed on the PCB to obtain exact 
timestamps. 

Appendix D: Load cell data low-pass filtering 

Load cell data are prone to noise. To cancel the noise related to temperature fluctuations, the load cells 
used four strain gauges in a Wheatstone bridge configuration. Thus, noise visible in the data mostly 750 
originated from electrical noise, fluctuations in wind speed and atmospheric pressure. To minimize this 
noise, we used a data filtering algorithm on the microcontroller. The microcontroller measured the load 
cells nominally at 3.3 Hz in combination with the retrieval of measurements from other sensors. The 
raw load cell data were then stored in an averaging window (ring memory) with a size of 100 values, 
where the oldest values were replaced by the newest ones. The upper and lower 15% of these values 755 
within the averaging window were discarded, and the remaining values were averaged. From the low-
pass filtered signal, one-minute means were stored on the micro-SD card. For data delivery via IoT, 
these mean values were further averaged over five-minute intervals to comply with the allowed IoT 
bandwidth for data transfers. 

Appendix E: Drainage water flow of ML pots 760 

The ML pots were designed to avoid stagnation of water that potentially could impede plant growth by 
creating anaerobic conditions in the rooting zone. For that reason, a passive drainage water flow path 
allowed drainage of excess water beyond field capacity. However, to further develop this ML system 
and use it during and shortly after rainfall periods or to improve the measurements during other periods 
when the soil cannot hold excessive water, it is recommended to quantify drainage water flow. This is 765 
because NRW inputs increase the mass of ML pots, whereas drainage water flow out of the ML pots 
reduces their mass. Therefore, if drainage water flow during NRW inputs is non-zero, this would lead to 
an underestimation of the NRW inputs, as long as no additional sensor is added to the ML pots to 
quantify this drainage flow. 
To assess the required specification of such an additional sensor and to quantify how long drainage 770 
water flow of the ML system persists, we investigated three consecutive events (see Table E1):  
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1) A high intensity, high amount and high duration rainfall event (Fig. E1a, event 1); 
2) an evapotranspiration event from sunrise until sunset (Fig. E1a, event 2), and  

3) a NRW input event (Fig. E1a, event 3). 

 775 
Fig. E1. (a) Cumulative rainfall and ML mass during a rainfall (event 1), an evapotranspiration (event 2) and a NRW event (event 
3), from July 28 00:00 until July 30 12:00 UTC. The grey-shaded areas indicate night time duration (sunset until sunrise), the 
unshaded areas indicate daytime (sunrise until sunset). The ML mass and the cumulative rainfall increased with the same rate 
until the ML pots were almost saturated (indicated with an arrow). Afterwards there was more drainage water lost from the ML 
pots than water gained. During the ev1a period (from sunset until the end of rainfall in event1), a rainfall water input of 26.9 mm 780 
was observed, but the ML system showed a water gain of only 0.3 mm, the difference between the two measurements corresponds 
to the (unmeasured) loss via drainage water flow. During the ev1b period (from the end of rainfall until sunrise in event1), there 
was no rainfall water input, but the ML system showed a water loss of 0.07 mm. During event 2 there was a water loss by 
evapotranspiration of 2.25 mm. During event 3 (the following night), there was no water loss, but instead a water gain by NRW 
input of 0.28 mm. (b) WFPS inside the ML pots and the control, measured at a depth of 15 cm. WFPS reached high values after 785 
the rainfall event. 
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Table E1. Start, end and duration of the three events used to assess the duration of drainage water flow from ML pots and the 790 
specification of a drainage water flow sensor. 

Event Start End Duration 
Event 1 28 July 2019 

06:03 UTC 
29 July 2019 
02:27 UTC 

20 hours and 24 
minutes 

Event 2 29 July 04:00 
UTC 

July 29 19:02 
UTC 

15 hours and 2 
minutes 

Event 3 29 July 21:18 
UTC 

July 30 6:17 UTC 8 hours and 41 
minutes 

 
During event 1, the total amount of rainfall was 128.5 mm. The highest hourly rainfall intensity 
occurred on 28 July 2019 at 10 UTC with 16.8 mm h-1, which classifies as "heavy rain" > 4 mm h–1 
(Met Office, 2012). ML mass increased as soon as the rainfall event started and increased with the same 795 
rate during the rainfall input until ca. 11 UTC. Afterwards the rate of ML mass change, i.e. the slope of 
the ML mass increase was flattening compared to the cumulative curve of rainfall input: From the 
beginning of the rainfall event until sunset, the water input was 101.6 mm, whereas the ML system 
showed an increase of only 36.2 mm. The difference of 65.4 mm most likely corresponds to the losses 
from drainage water flow, because of soil saturation during such high intensity rainfall with excessive 800 
water being lost. However, WFPS did not reach the 100% mark (Fig. E1b). Note that the 100% WFPS 
reference was determined from the full year of measurements and is thus relative to spring conditions. 
Therefore, it is not surprising that this mark was never reached during dry summers, even after heavy 
precipitation. During such a high rainfall water input, drainage water flow of the ML system was on the 
order of 64 % of the rainfall amount. However, water might not only be lost via drainage water flow, 805 
but also by evapotranspiration during daytime. To quantify solely drainage water loss, the night ime 
period (when no evapotranspiration is expected) was further investigated. We separated the night time 
period in period ev1a, when rainfall occurred, and period ev1b, when no rainfall occurred (Fig. E1a, 
gray shaded periods). 
During the ev1a period (Fig. E1a, period ev1a), from sunset until the end of the rainfall event, the water 810 
input was 26.9 mm, whereas the ML system showed only an increase of 0.3 mm. The difference of 26.6 
mm (98 %) might be caused by losses from drainage water flow. The water loss rate was 3.6 mm h-1. 
The 34 % higher drainage water loss compared to the daytime period might be due to the lower water 
holding capacity of the more saturated soil. During the ev1b period, starting after the ev1a period until 
sunrise (Fig. E1a, period ev1b), no further water gains and losses were expected, because 815 
evapotranspiration was absent during nocturnal conditions with low average wind speed (< 0.6 m s-1). 
During period ev1b, the ML system showed a water loss of 0.07 mm, which corresponds to an average 
water loss of 0.05 mm h-1. This water loss can clearly be attributed to drainage water flow. The rate of 
drainage water loss was however strongly reduced (by 98%) compared to the ev1a period. Thus, 
drainage water flow of the ML system reached very low values within only 1 hour and 33 minutes after 820 
this extraordinary high rainfall, showing that even the current ML system can handle high drainage 
water flows well. 
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During event 2 with no rain but evapotranspiration, the ML system indicated a water loss of 2.25 mm, 
which corresponds to an average evapotranspiration rate of 0.15 mm h-1. Potentially a drainage water 
loss could have occurred in the morning hours on July 29. However, the drainage water loss most likely 825 
was < 0.05 mm h-1, similar to the drainage water flow rate during the ev1b period, just before event 2, 
shortly after the rainfall event. Since no new rain fell, we expect the drainage water flow rate to 
decrease with time. In fact, one hour before sunset, a further reduced ML mass loss of only 0.005 mm h-

1 was recorded. This very low water loss can be either attributed to drainage water loss, or to 
evapotranspiration as it occurred during daytime. We conclude that the drainage water loss could at 830 
maximum be 0.005 mm h-1, but was most likely lower due to concurrent evapotranspiration. Thus, the 
ML system readings were no longer significantly affected by potential drainage water flow after only 15 
hours after rainfall. 
During event 3, a very large dew event of 0.28 mm occurred, which was above the 95th percentile of all 
NRW events during the 12 months period considered in this study. Such a large dew event is unlikely to 835 
be recorded under conditions when at the same time also a large drainage water flow would have 
occurred. If this would have happened, the dew water input should have been lower. Thus, it is very 
unlikely that drainage water flow still occurred during that dew event. 
Overall, these three events showed that drainage flow occurred under rainfall conditions and shortly 
after rainfall events. The current ML system handled large drainage flows well and effectively, i.e. 840 
water drained fast, avoiding long-lasting “memory” effects. Drainage flow was lower than 0.005 mm h-1 
one hour before sunset during event 2, only 15 hours after the last rainfall. However, at other sites with 
different soil characteristics different drainage flow patterns might occur (See Appendix F) and our ML 
system might therefore provide conservative NRW inputs and accentuated evapotranspiration rates. If 
the current ML system were to be used for high rainfall conditions, potential drainage water flow need 845 
to be quantified using additional sensors. Without such additional sensors, NRW inputs could be 
underestimated if the NRW input occurs shortly after a rainfall event and drainage water flow indeed 
occurs. Consequently, the current ML system is expected to give conservative estimates of NRW inputs, 
especially if NRW inputs happen directly after a rainfall event. 
Potential approaches to quantify the small amounts of drainage flow from a ML system are by installing 850 
a water flow sensor or a drip counter at the ML pot drainage water outlets. The maximum rainfall 
intensity reported above was 16.8 mm h-1. With a ML pot diameter of 25 cm (see Section 2.2.1 of the 
main text), and the extreme assumption that 100% of precipitation contributes to drainage water flow, 
such an addition must be able to process 13.7 ml min–1. If the maximum drainage water flow is however 
only expected to be <15% of precipitation, then a sensor capable of measuring up to 2000 µl min-1 855 
would be an adequate choice. 
We recommend using a water flow sensor or a drip counter. One option is a liquid flow sensor (SLF3S-
0600F, Sensirion AG, Staefa, Switzerland) that is capable to detect low flow rates of up to ±2000 µl 
min-1. A drip counter can be constructed with two gold electrodes attached to the ML pots drainage 
water holes with a small gap. If a water droplet passes the gap, an electric circuit is closed which can be 860 
counted as a water drop by a datalogger (Meter Group AG, 2020). Calibration of a drip counter is 
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recommended for accurate measurements of drainage water amount. Sensors measuring drainage water 
flow would allow to correct for drainage water outflow and would thereby increase the usability of the 
current ML system for times during and shortly after rainfall events. 

Appendix F: Duration of drainage water flow after heavy rainfall (saturated soils) 865 

Drainage water flow was not quantified in the application of the ML system described here, because the 
goal was to quantify NRW inputs during dry conditions without saturated soils. To estimate the duration 
of drainage water flow from the bottom of the ML pot, we used the approach by Zhan et al. (2016) with 
modifications following Freeze and Cherry (1979) and model input parameters from Rawls et al. (1991) 
listed in Table F1. The full equation set used here is provided in what follows. 870 

The relation between the unsaturated hydraulic conductivity 𝑘𝑘, the volumetric water content	𝜃𝜃	and the 
pore-water pressure head 𝜓𝜓	(matrix potential) can be described by the following formula: 
(
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Where 𝛾𝛾 is the slope angle (0° with our ML), 𝑧𝑧* is the axis perpendicular to the slope, and 𝑡𝑡 is time. 
Note that we are only considering the case where 𝜓𝜓 < 𝜓𝜓ae. In the case where 𝜓𝜓 ≥ 𝜓𝜓ae	both variables 875 
𝑘𝑘, 𝜃𝜃	are constant. 

In order to solve this equation we can substitute 𝑘𝑘 = 𝑘𝑘#𝑒𝑒0(*2*ae)	and 
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To solve this numerically we assume a uniform saturated ground at 𝑡𝑡 = 0	given by 𝜓𝜓(𝑧𝑧*, 0) = −𝜓𝜓ae	and 
(*
()*

= 0	for all 𝑧𝑧*. 885 

Moreover, we impose the boundary conditions (*
()*

= 0	at 𝑧𝑧* = 0	and (*
()*

= cos(𝛾𝛾)𝑞𝑞	at the top 𝑧𝑧* =
𝐻𝐻*	where 𝑞𝑞	is the rainfall intensity. Here we choose 𝑞𝑞 = 0 to look at the situation after long rainfall 
events. 

We simulated the drying of the 25 cm deep soil monolith using a finite difference approach with Δ𝑧𝑧* = 
0.01 m and Δt = 10 minutes. The procedure carried out at each timestep was: (1) to compute the 890 
drainage water loss across the bottom of the soil monolith Per using Zhan et al.'s (2016) equation, 
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𝑃𝑃54 = 𝑘𝑘′𝑘𝑘#cos𝛾𝛾,   (F5)	
where k' is the dimensionless ratio of the unsaturated hydraulic conductivity normalized by its value at 
saturation (ks), k' = k/ks. and γ is the slope angle. For the simulations we assumed γ = 0°; thus, in case 
of a sloping surface the drying of the soil monolith takes less time (td) than what we present in Figure 895 
F1. 

(2) This amount of water was removed from the lowest soil layer θ(z*=0). (3) Then the updated soil 
water content profile θ(z*) was converted to an updated pressure head profile 𝜓𝜓 (z*) using the 
relationship in Eq. (F2) solved for 𝜓𝜓, 

𝜓𝜓 = %
0
ln ,6,+

,*6,+6*,-
,	 (F6)	900 

(4) Then the drainage flow rate for all soil layers was computed with Eq. (F5), and the respective 
amount was transferred from each layer to its lower adjacent layer. (5) Then the θ(z*) profile was 
converted to 𝜓𝜓(z*) and the change over time from Eq. (F3) was added, and then the θ(z*) profile was 
updated accordingly before the next timestep was simulated. 
The threshold for the end of the drainage period was set to one drop of water per day percolating out of 905 
the soil monolith's bottom (0.05 mm d–1, or 0.35 µm at the Δt = 10 minutes timestep). 

Following Timlin et al. (2004) we used the Brooks-Corey pore size distribution λ tabulated in Table F1 
in combination with the effective porosity ϕe (m3 m–3) defined as the difference between total porosity 
ϕ (m3 m–3) minus the water retained in the soil matrix at a suction pressure of –33 kPa (θ33; m3 m–3), ϕe  
= ϕ – θ33, 910 

𝑘𝑘# = 0.000259 ⋅ 109.;< ⋅ ϕ=7.>?, (F7)	
The results for different soil textures are shown in Figure F1. Given the initial condition that the soil 
monolith is completely water saturated at t = 0 our results show rather conservative estimates how long 
water is percolating out of the ML pot after heavy rainfall or long rainfall that saturated the entire soil 
volume (which typically takes a few days to a week with precipitation). 915 
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Fig. F1. Estimated duration of percolation (ttdd) at the bottom of a 25-cm soil monolith in a ML for various soil types. Bars show the 
best estimate for each soil type for completely saturated soils, and whiskers show the range that results when the parameter range 
given by Rawls et al. (1991) in Table F1 are used. Symbols show the reduced td when the average water content of the soil monolith 
is 90% of its saturation (yellow circles), 80% (green circles), or 70% (blueish circles). Because the system is highly nonlinear, the 920 
parameters given in Table F1 are not resulting in the full range of ttdd, hence we added the maximum that can be obtained with 
intermediate model parameters for each soil type (dashed whiskers) and the 70%, 80% and 90% two-sided confidence interval 
(gray bars of varying width, see legend) for all ttdd resulting by combination of parameter values within the bandwidth given in 
Table F1. 

Most soils on average fall dry within less than 24 hours; the absolute maximum was modeled for silty 925 
clay which can produce drainage up to 41.5 hours. At the sandy end short maximum td are realistic 
because of easy drainage of soils with high sand content, whereas the results at the clay side show a 
range from no drainage up to 30.0–41.5 hours can be explained by the high capillary retention of water 
that retains more water inside the soil volume without generating drainage water flow. The modeling 
however is based on a traditional micropore flow approach, whereas macropore flow (e.g. Alaoui and 930 
Eugster, 2004) is not explicitly represented in the model. But the range of parameter estimates in Table 
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F1 seems to include also macropore flow via parameter combinations that result in td = 0 hours, which 
is most likely not realistic, but should be interpreted that in the presence of macropore flow (wormholes, 
dry cracks in clay) the drainage is restricted to very short intervals even after soils were fully saturated). 
Thus, in reality most but not all soils will most likely not produce measurable drainage after one day or 935 
so. Adding a sensor to measure drainage water flux (item q in Fig. 1b) is recommended if in contrast to 
this study the entire hydrological soil water budget shall be quantified, and not only the NRW gain 
during dry and drought periods. 
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Table F1: Model parameters used in estimating duration time (ttdd) until less than one water droplet  per square-meter and day 960 
(0.05 mm d–1) is draining out of a 25 cm deep soil monolith volume in a ML. Hydraulic conductivity (kkss) was computed with Eq. 
(F7). The best estimate for each parameter is complemented by a range suggested by Rawls et al. (1991) shown within brackets. 
The parameters for the silt loam soil at the field site is highlighted in boldface for reference. 

Soil 
Texture 

Total 
Porosity 

Residual 
Water Content 

Air Entry 
Pressure 

Pore Size 
Index λ 

Water Retained 
at –33 kPa 

Hydraulic 
Conductivity 

Drainage 
Time 

Class	 θS	 θR	 ψEAa	 λ	 θ33a	 ks	 td	

		 m3	m–3	 m3	m–3	 m	 –	 m3	m–3	 m3	s–1	 h	
Sand	 0.437 0.020 0.0726 0.592 0.091 3.961E-05 2.8 

 
[0.374, 
0.500] [0.001, 0.039] 

[0.0136, 
0.3874] 

[0.334, 
1.015] [0.018, 0.164] 

[2.981E-05, 
6.595E-05] [2.2, 3.0] 

Loamy	
sand	 0.437 0.035 0.0869 0.474 0.125 2.587E-05 3.0 

 
[0.368, 
0.506] [0.003, 0.067] 

[0.0180, 
0.4185] 

[0.271, 
0.827] [0.060, 0.190] 

[1.892E-05, 
4.352E-05] [2.5, 3.5] 

Sandy	
loam	 0.453 0.041 0.1466 0.322 0.207 1.147E-05 4.0 

 
[0.351, 
0.555] [-0.024, 0.106] 

[0.0345, 
0.6224] 

[0.186, 
0.558] [0.126, 0.288] 

[7.576E-06, 
1.956E-05] [2.8, 4.7] 

Loam	 0.463 0.027 0.1115 0.220 0.270 5.378E-06 5.7 

 
[0.375, 
0.551] [-0.020, 0.074] 

[0.0163, 
0.7640] 

[0.137, 
0.355] [0.195, 0.345] 

[4.017E-06, 
7.648E-06] [4.5, 6.2] 

SSiilltt		llooaamm		 0.501 0.015 0.2076 0.211 0.330 3.906E-06 6.8 

 
[0.420, 
0.582] [-0.028, 0.058] 

[0.0358, 
1.2040] 

[0.136, 
0.326] [0.258, 0.402] 

[3.070E-06, 
5.215E-06] [5.8, 7.5] 

Sandy	
clay	loam	 0.398 0.068 0.2808 0.250 0.255 2.617E-06 7.0 

 
[0.332, 
0.464] [-0.001, 0.137] 

[0.0557, 
1.4150] 

[0.125, 
0.502] [0.186, 0.324] 

[2.321E-06, 
3.513E-06] [5.3, 7.5] 

Clay	loam	 0.464 0.075b 0.2589 0.194 0.318 2.554E-06 7.7 

 
[0.409, 
0.519] [-0.024, 0.174] 

[0.0580, 
1.1570] 

[0.100, 
0.377] [0.250, 0.386] 

[2.785E-06, 
2.595E-06] [7.0, 8.0] 

Silty	clay	
loam	 0.471 0.040 0.3256 0.151 0.366 1.042E-06 22.5 

 
[0.418, 
0.524] [-0.038, 0.118] 

[0.0668, 
1.5870] 

[0.090, 
0.253] [0.304, 0.428] 

[1.180E-06, 
9.551E-07] 

[21.8, 
21.2] 

Sandy	
clay	 0.430 0.109 0.2917 0.168 0.339 7.414E-07 23.2 

 
[0.370, 
0.490] [0.013, 0.205] 

[0.0496, 
1.7160] 

[0.078, 
0.364] [0.245, 0.433] 

[1.466E-06, 
2.962E-07] 

[0.0, 
11.7] 

Silty	clay	 0.479 0.056 0.3419 0.127 0.387 7.203E-07 31.0 

 
[0.425, 
0.533] [-0.024, 0.136] 

[0.0704, 
1.6620] 

[0.074, 
0.219] [0.332, 0.442] 

[6.881E-07, 
7.955E-07] 

[24.5, 
34.5] 

Clay	 0.475 0.090 0.3730 0.131 0.396 4.919E-07 0.0 
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[0.427, 
0.523] [-0.015, 0.195] 

[0.0743, 
1.8720] 

[0.068, 
0.253] [0.326, 0.466] 

[8.415E-07, 
2.541E-07] 

[0.0, 
28.5] 

		 	       
a	geometric	mean	values	were	used	from	Rawls	et	
al.'s	(1991)	table	 	    
b	this	value	was	considered	a	typographic	error	in	Rawls	et	al.'s	(1991)	table	and	
corrected	here	(×0.1)	 	  

  

Appendix G: NRW inputs vs. night time duration 965 

 
Fig. G1. Average monthly NRW input with average monthly NRW input duration and average night duration (potential NRW 
input duration). 
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