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Abstract 1 

Projections of global climate models suggest that ongoing human-induced climate change will 2 

lead to an increase in the frequency of severe droughts in many important agricultural regions 3 

of the world. Eco-hydrological models that integrate current understanding of the interacting 4 

processes governing soil water balance and plant growth may be useful tools to predict the 5 

impacts of climate change on crop production. However, the validation status of these models 6 

for making predictions under climate change is still unclear, since few suitable datasets are 7 

available for model testing. One promising approach is to test models using data obtained in 8 

“space-for-time” substitution experiments, in which samples are transferred among locations 9 

with contrasting current climates in order to mimic future climatic conditions. An important 10 

advantage of this approach is that the soil type is the same, so that differences in soil 11 

properties are not confounded with the influence of climate on water balance and crop 12 

growth. In this study, we evaluate the capability of a relatively simple eco-hydrological model 13 

to reproduce 6 years (2013-2018) of measurements of soil water contents, water balance 14 

components and grass production made in weighing lysimeters located at two sites within the 15 

TERENO-SoilCan network in Germany. Three lysimeters are located at an upland site at 16 

Rollesbroich with a cool, wet climate, while three others had been moved from Rollesbroich 17 

to a warmer and drier climate on the lower Rhine valley floodplain at Selhausen. Four of the 18 

most sensitive parameters in the model were treated as uncertain within the framework of 19 

the GLUE (Generalized Likelihood Uncertainty Estimation) methodology, while the remaining 20 

parameters in the model were set according to site measurements or data in the literature.  21 

The model satisfactorilyaccurately reproduced the measurements at both sites, and some 22 

significant differences in the posterior ranges of the four uncertain parameters were found. 23 

In particular, the results indicated greater stomatal conductance as well an increase in dry 24 

matter allocation below-ground and a significantly larger maximum root depth for the three 25 

lysimeters that had been moved to Selhausen. As a consequence, the apparent water use 26 

efficiency (above-ground harvest divided by evapotranspiration) was significantly smaller at 27 

Selhausen than Rollesbroich. Data on species abundance on the lysimeters provide one 28 

possible explanation for the differences in the plant traits at the two sites derived from model 29 

calibration. These observations showed that the plant community at Selhausen had changed 30 

significantly in response to the drier climate, with a significant decrease in the abundance of 31 

herbs and an increase in the proportion of grass species. The differences in root depth and 32 

leaf conductance may also be a consequence of plasticity or acclimation at the species level. 33 

Regardless of the reason, we may conclude that such adaptations introduce significant 34 

additional uncertainties into model predictions of water balance and plant growth in response 35 

to climate change. 36 
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1. Introduction 37 

Projections of global climate models suggest that ongoing human-induced climate change will 38 

lead to an increase in the frequency of severe droughts (Ruane et al., 2018). This may seriously 39 

impact production in many important agricultural regions of the world (Tubiello et al., 2007), 40 

including managed grasslands (e.g. Kipling et al., 2016; Stanimirova et al., 2019), since key 41 

forage species are known to be sensitive to drought (Norris, 1982; Coleman et al., 1989; 42 

Silvertown et al., 1994; Jenkinson et al., 1994; Volaire et al., 1998; Meurer et al., 2019). 43 

Grasslands are also of major importance in the context of climate change mitigation, since 44 

they cover ca. 70% of the global agricultural land area (Foley et al., 2011) and represent a large 45 

store of soil organic carbon (SOC) (Li et al., 2018; Bossio et al., 2020). Soil water status affects 46 

plant growth through a complex web of direct and indirect mechanisms (Körner, 2015; White 47 

et al., 2016; Tardieu et al., 2018; Loka et al., 2019; Gupta et al., 2020). In turn, plant growth, 48 

both above- and below-ground, influences the soil water balance through important feedback 49 

mechanisms, particularly the regulation of transpiration by leaf area as well as the control of 50 

water supply from the soil by root length density and its distribution with depth (Monteith, 51 

1986, 1988; Tardieu et al., 2017). Thus, realistic models of the coupled processes of root water 52 

uptake, transpiration and plant growth are required to predict reliably the impacts of climate 53 

change on the future productive potential of grassland. Eco-hydrological models that attempt 54 

to capture these interactions in the soil-plant system are widely used in climate change studies 55 

that focus on the prediction of latent and sensible heat fluxes and CO2 exchange between the 56 

land surface and the atmosphere (e.g. Fatichi et al., 2016; Klein et al., 2017; Kellner et al., 57 

2017). Similarly, soil-crop models that integrate current understanding of the interacting 58 

processes governing water balance, SOC and nutrient cycling and crop growth (e.g. Robertson 59 

et al., 2015; Wu et al., 2016; Stöckle and Kemanian, 2020) are often used as tools to predict 60 

the impacts of land use or climate change on crop production and the environment (e.g. 61 

Eckersten et al., 2012). These two types of simulation model share many similarities. In the 62 

following, we refer to them collectively as SVAT (soil-vegetation-atmosphere transfer) models.  63 

SVAT models employ empirical (or phenomenological) approaches to describe many of the 64 

key processes in the soil-plant system. This is especially the case for the processes governing 65 

plant growth because the underlying mechanisms are extremely complex and not easily 66 

amenable to fundamental descriptions (Boote et al., 2013; Wu et al., 2016). This means that 67 

great care is needed in model calibration exercises, given the usual paucity of experimental 68 

data in relation to the number of model parameters. In such cases, parameter errors may 69 

often compensate for model deficiencies leading to non-unique solutions or ‘equifinality’ 70 

(Beven and Binley, 1992; Beven, 2006). Parameter uncertainty has not always been 71 

considered in SVAT model applications (Seidel et al., 2018). Thus, even though a model 72 

performs satisfactorily, it may be doing so for the wrong reasons (Kirchner, 2006). As a 73 

consequence, model predictions, for example for a future climate, can be seriously in error 74 

(Kersebaum et al., 2007, 2015; Bellocchi et al., 2010; He et al., 2017). In this respect, despite 75 

their great potential, it is not yet clear how accurately SVAT models can predict the soil water 76 

balance and production potential of grasslands in a changing climate because few suitably 77 

comprehensive data sets have been available to unequivocally constrain them in model 78 

calibration exercises. Several SVAT models specifically designed for grassland agro-ecosystems 79 
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have been developed (e.g. Jouven et al., 2006a,b; Johnson et al., 2008; Jing et al., 2012; 80 

Persson et al., 2014). However, with only a few exceptions, previous studies have focused on 81 

calibrating these models against data on above-ground biomass production at single sites, 82 

with scant focus on hydrological processes and below-ground biomass, and with little 83 

attention paid to parameter uncertainty. In a test of the PaSim grassland model at the regional 84 

scale, Ma et al. (2015) found that although CO2 and water fluxes between the land surface and 85 

atmosphere were reasonably well matched, soil water contents were not accurately simulated 86 

during dry periods. Similarly, in a multi-model and multi-site validation exercise, Sándor et al. 87 

(2017) noted a variable model performance at sites with contrasting climates. In particular, 88 

they demonstrated a failure of the models to simulate correctly root water uptake patterns 89 

and biomass production in dry summers and at dry sites. Even though most grassland species 90 

are generally comparatively shallow-rooted (Jackson et al., 1996), several previous studies 91 

have highlighted the role of sparsely distributed deeper roots in maintaining water uptake, 92 

transpiration and growth during droughts (e.g. Kemp and Culvenor, 1994; Volaire et al 1998; 93 

Bonos and Murphy, 1999; Zwicke et al., 2015). This suggests that models of root water uptake 94 

for grass must account for compensatory mechanisms, whereby water uptake increases from 95 

sparsely rooted wetter soil layers to compensate for reductions in water uptake in densely 96 

rooted, but dry soil (Jarvis, 2011; Cai et al., 2017).  97 

Manipulation experiments have been carried out to simulate the effects of climate change on 98 

grasslands in which plant growth has been monitored following controlled alterations in the 99 

precipitation regime (e.g. reduced rainfall amount or frequency). However, nearly all of these 100 

experiments are of a short-term nature and the treatments imposed have often been extreme 101 

and thus not well adapted to climate model projections (e.g. Beier et al., 2012; Hoover et al., 102 

2018). Furthermore, with only a few exceptions (e.g. Bollig and Feller, 2014), drought 103 

manipulation experiments have not focused much on the complex interactions between soil 104 

hydrological processes, water stress and plant growth, despite their importance. Thus, in most 105 

cases, the mechanisms controlling the observed growth responses have not been elucidated 106 

in detail, while little data is available from these experiments that could support and test 107 

model predictions (Beier et al., 2012; Hoover et al., 2018). An alternative approach is to test 108 

model performance against data obtained in “space-for-time” substitution experiments, in 109 

which samples are transferred among sites with contrasting current climates in order to 110 

approximately mimic likely future climate conditions (Ineson et al., 1998; Pütz et al., 2016). 111 

One important advantage of this approach is that the soil type is the same, so that differences 112 

in soil properties are not confounded with the influence of climate on soil hydrology and crop 113 

growth. Weighing lysimeters are highly suitable study objects in this context, since they enable 114 

the measurement of a complete (closed) water balance (Wegehenkel et al., 2008; Heinlein et 115 

al., 2017; Groh et al., 2020a). Providing they are sufficiently large in terms of both depth and 116 

diameter, weighing lysimeters also represent a relatively natural environment for plant 117 

growth as well as allowing the installation of instrumentation to measure soil water status.   118 

In this study, we make use of data from the TERENO-SoilCan network, in which large weighing 119 

lysimeters containing undisturbed soil monoliths have been transferred among several 120 

locations in Germany to emulate expected changes in climate (Zacharias et al., 2011; Pütz et 121 

al., 2016; Groh et al., 2020b). Here, In this study, wwe compareevaluate the capability of a 122 
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relatively simple eco-hydrological model to reproduce six years of measurements of the soil 123 

water balance and grassland production made in replicate lysimeters containing the same soil 124 

type, but located at two different sites with contrasting climates with simulations using a 125 

simple eco-hydrological model in the Eifel/Lower Rhine Valley observatory (Zacharias et al., 126 

2011; Pütz et al., 2016; Bogena et al., 2018). Our main objective with this modelling exercise 127 

was to explore and identify some plausible mechanisms that would explain the observed 128 

responses of the grassland to a change in climate, in terms of biomass production and water 129 

use efficiency. Three of these lysimeters are located at an upland site at Rollesbroich with a 130 

cool, wet climate, while three others were moved from Rollesbroich to a warmer, drier climate 131 

in the Rhine valley at Selhausen.    132 

2. Materials and methods 133 

2.1 Site descriptions, vegetation, soil properties and lysimeter data 134 

We make use of measurements made in six undisturbed lysimeters that were sampled at 135 

Three of these lysimeters are located at an upland site (Rollesbroich) in the Eifel/Lower Rhine 136 

Valley observatory (Zacharias et al., 2011; Pütz et al., 2016; Bogena et al., 2018). at 137 

Rollesbroich Three of these lysimeters were kept at Rollesbroichwith a cool, wet climate, while 138 

the three others were moved from Rollesbroich to a warmer, drier climate in the Rhine valley 139 

at Selhausen. The station at Rollesbroich (50o 37’ N, 6o 18’ E) is located on a hilltop site at an 140 

elevation of 511 m, while Selhausen (50o 52’ N, 6o 27’ E) is located on a relatively flat alluvial 141 

flood plain in the lower Rhine valley at an altitude of 104 m. The mean annual air temperature 142 

at Rollesbroich is 8oC and the mean annual precipitation is 1150 mm. At Selhausen, the mean 143 

annual air temperature is 10oC and the mean annual precipitation is 720 mm. A weather 144 

station at each site records precipitation, solar radiation, air temperature, air humidity and 145 

wind speed at a height of 2 m at a ten-minute time resolution (Pütz et al., 2016), which we 146 

aggregated to a daily time step. From these meteorological variables, we calculated daily 147 

reference (potential) evapotranspiration for grass with the FAO Penman-Monteith equation 148 

(Allen et al., 1998) as a simple comparative measure of the atmospheric demand for water in 149 

the two climates. The meteorological data and calculated reference evapotranspiration at the 150 

two sites for the period 2013-2018 are shown in the supplementary information (figure S1). 151 

The soil at Rollesbroich is a Stagnic Cambisol, with the basic properties shown in Table 1. The 152 

soil is a sandy loam in the topsoil, changing abruptly to a clay loam at 24 cm depth. The texture 153 

again becomes coarser (sandy loam/loam) in the deep subsoil below 93 cm (Table 1). The 154 

original grassland community on the lysimeters extracted at Rollesbroich is classified as a 155 

mesic grassland of the Arrhenatheretalia alliance without any clear affiliation to classical plant 156 

associations. The community is dominated by Lolium perenne L., Ranunculus repens L., Rumex 157 

acetosa L., Taraxacum officinale L., Dactylis glomerata L. and Trifolium repens L. During the 158 

extraction of the lysimeters at Rollesbroich, grassland roots were observed to extend to ca. 159 

40-50 cm depth (J. Groh, T. Pütz, pers. comm.). This is supported by SOC contents measured 160 

in the soil profile, which decline abruptly below 50 cm depth (Table 1). The lysimeters are 161 

supplied with fertilizer as liquid manure and the vegetation is cut 3 to 4 times per growing 162 

season to characterize above-ground biomass production, following the local management 163 
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practice. During the first four years (2013-2016) of the experimental period, leaf area index 164 

was measured on multiple occasions with an LAI-2200C Plant Canopy Analyzer from Licor. 165 

Plant height was also measured using a conventional ruler. Plant communities present in the 166 

lysimeters were assessed annually during the period 2011 to 2016. Plant species abundance 167 

was estimated as the number of grid cells occupied of 64 rectangular cells (10 × 10cm). Based 168 

on this data, the relative abundances of three plant functional types (i.e. grasses, legumes and 169 

non-legume herbs) were quantified. These observations showed that plant communities 170 

changed significantly at both sites, with a general decrease in the abundance of herbs and an 171 

increase in the proportion of grass species (figure S2). This change was much less pronounced 172 

at Rollesbroich than in the lysimeters transferred to Selhausen, where the plant community 173 

composition diverged continuously from the original resident community composition, 174 

presumably in response to the move to the warmer and drier climate. The small changes in 175 

community composition found at Rollesbroich may be a consequence of the experimental set-176 

up. For example, the lysimeters do not allow for root-ingrowth of rhizomatous herb species. 177 

The lysimeters have a surface area of 1 m2 and are 1.5 m deep. Weighing devices (load cells) 178 

measure weight changes equivalent to a water depth of 0.01 mm. Application of a filter 179 

routine to separate signal from noise enables accurate estimations of both precipitation and 180 

evapotranspiration from each lysimeter (Peters et al., 2017). Missing precipitation data were 181 

filled in a first step using the mean value calculated for all available lysimeters. In a second 182 

step, any remaining gaps were then filled using the precipitation measured by the reference 183 

precipitation gauge. Water fluxes into and out of the lysimeters at the base are measured and 184 

are controlled by continuous measurements of soil water pressure heads made in the 185 

surrounding soil at 1.4 m depth. Soil water contents and pressure heads are measured at a 186 

ten-minute time resolution at three depths (10, 30 and 50 cm depth) in the lysimeters using 187 

TDR probes and conventional tensiometers (30 and 50 cm depth) or MPS1 matric potential 188 

sensors (only at 10 cm depth). A detailed description of the design, construction and 189 

extraction of the lysimeters and their installation in the lysimeter stations of the SoilCan 190 

network can be found in Pütz et al. (2016). Three lysimeters were moved from Rollesbroich to 191 

Selhausen in November 2011. In this study, we make use of measurements made in a six-year 192 

period from 2013 to 2018. 193 

Table 2 summarizes the annual average water balances measured in the six lysimeters in the 194 

six-year period from 2013 to 2018, as well as the average annual harvested biomass and 195 

calculations of the water use efficiency, defined as the ratio of harvest to evapotranspiration. 196 

In the wet climate at Rollesbroich, actual evapotranspiration was ca. 90% of the potential rate 197 

calculated by the FAO version of the Penman-Monteith equation for the period 2013-2018 198 

(641 and 710 mm/year respectively), while percolation from the lysimeters was on average 199 

42% of the precipitation (442 and 1062 mm/year respectively). Thus, evapotranspiration at 200 

Rollesbroich is mostly limited by the available energy and is only rarely limited by water supply 201 

(Gebler et al., 2015; Rahmati et al., 2020). Notably, the ratio of actual to potential 202 

evapotranspiration was only slightly smaller in the much drier climate of Selhausen than at 203 

Rollesbroich (on average 86%, Table 2). Figure 1 shows that a strong limitation of the water 204 

supply on evapotranspiration at Selhausen can only be seen in the very dry year of 2018, when 205 

the ratio between actual and potential rates fell to ca. 60%. It is also striking that the actual 206 
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evapotranspiration slightly exceeds precipitation at Selhausen, so that the net percolation at 207 

the base of the lysimeters is negative (i.e. an upwards directed flow; Table 2). This is probably 208 

a result of the topographical position of the site on a low-lying flood plain, such that lateral 209 

groundwater flow from surrounding higher land is sufficient to maintain the supply of water 210 

to the drying plant root zone (i.e. the Selhausen site lies in a discharge area in the landscape).  211 

Table 2 shows that the differences in water balance components among the three replicate 212 

lysimeters at both sites are very small. For precipitation, the difference between the largest 213 

and smallest measured totals among the replicates at Rollesbroich and Selhausen is only ca. 214 

3% and 1% of the mean value respectively. Furthermore, the difference in evapotranspiration 215 

between the two lysimeters with the largest and smallest values is equivalent to only 1% of 216 

the precipitation at Selhausen and 2.6% of the precipitation at Rollesbroich. This limited 217 

within-site variation in hydrologic response appears to be consistent with the available data 218 

for soil water contents and pressure heads. The ‘in situ’ water retention data (Figure S3 and 219 

Table S1) suggest that there is limited spatial variation in soil hydraulic properties among the 220 

six lysimeters. Percolation is somewhat more variable (Table 2), despite the fact that the 221 

pressure heads in the surrounding soil at 1.4 m depth controlling water flow at the base of the 222 

lysimeter are also quite similar among the replicates, especially at Rollesbroich (see figure S4). 223 

Likewise, harvested biomass at Selhausen was similar in all three replicate lysimeters, whereas 224 

it varied more at Rollesbroich, with one lysimeter clearly an outlier (Ro_Y_013, Table 2). Much 225 

larger nitrate nitrogen concentrations were consistently found at the beginning of the 226 

experiment in the leachate from this lysimeter (Giraud et al. 2021), which suggests that the 227 

larger harvest from Ro_Y_013 may be due to a better nutrient supply from the soil. Table 2 228 

and figure 2 show that the water use efficiency (WUE) of the grassland in the drier climate at 229 

Selhausen was smaller than for the lysimeters at Rollesbroich (Forstner et al., 2021), since 230 

harvests were somewhat smaller and evapotranspiration was larger. 231 

In the following, we assess the capability of a relatively simple (parsimonious) eco-hydrological 232 

model to match the data measured in the replicate lysimeters in the two contrasting climates 233 

at Rollesbroich and Selhausen. We also use the model to identify plausible reasons for the 234 

differences in soil hydrology and grassland growth observed between the sites. 235 

2.2 Model description 236 

2.2.1 Potential evapotranspiration 237 

In the longer term, the extent of grass cover can be affected by a changing climate, which will 238 

alter the energy balance partitioning at the land surface. We therefore employ the dual-source 239 

Penman-Monteith equation (Shuttleworth and Wallace, 1985; Shuttleworth and Gurney, 240 

1990), which enables the estimation of potential soil evaporation Ep (m day-1) and potential 241 

transpiration Tp (m day-1) from dynamic plant properties and meteorological variables: 242 

𝐸𝑝 = (
3600∗24∗𝐶𝑠

1000∗𝜆
)

𝐶𝑠

𝜆
[

Δ𝑅𝑛+{
𝜌 𝑐𝑝 𝑉𝑃𝐷−Δ 𝑟𝑎

𝑠 (𝑅𝑛−𝑅𝑛(𝑠))

𝑟𝑎
𝑎+𝑟𝑎

𝑠 }

Δ+𝛾(1+(
𝑟𝑠

𝑠

𝑟𝑎
𝑎+𝑟𝑎

𝑐 ))

]   243 

 (1) 244 
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𝑇𝑝 = (
3600∗24∗𝐶𝑐

1000∗𝜆
)

𝐶𝑐

𝜆
{

Δ𝑅𝑛+{
𝜌 𝑐𝑝 𝑉𝑃𝐷−Δ 𝑟𝑎

𝑐  𝑅𝑛(𝑠)

𝑟𝑎
𝑎+𝑟𝑎

𝑐 }

Δ+𝛾(1+(
𝑟𝑠

𝑐

𝑟𝑎
𝑎+𝑟𝑎

𝑐 ))

}   245 

 (2) 246 

𝐶𝑠 =
1

1+(
𝑅𝑠𝑅𝑎

𝑅𝑐(𝑅𝑠+𝑅𝑎)
)
     (3) 247 

𝐶𝑐 =
1

1+(
𝑅𝑐𝑅𝑎

𝑅𝑠(𝑅𝑐+𝑅𝑎)
)
     (4) 248 

𝑅𝑎 = (Δ + 𝛾)𝑟𝑎
𝑎     (5) 249 

𝑅𝑐 = (Δ + 𝛾)𝑟𝑎
𝑐 + 𝛾𝑟𝑠

𝑐     (6) 250 

𝑅𝑠 = (Δ + 𝛾)𝑟𝑎
𝑠 + 𝛾𝑟𝑠

𝑠     (7) 251 

where  is the latent heat of vapourissation (J kg-1),  is the air density (kg m-3), Cp is the specific 252 

heat of air (J kg-1 oC-1), VPD is the vapour pressure deficit (Pa),  is the slope of the saturation 253 

vapour pressure curve (Pa oC-1),  is the psychrometer constant (Pa oC-1), rs
s is the surface 254 

resistance of wet soil (here fixed at 20 s m-1), rs
c and ra

c are the bulk unstressed stomatal and 255 

boundary layer resistances of the canopy (s m-1), Rn and Rn(s) are the net radiation above and 256 

below the canopy (J m-2 s-1) and ra
s and ra

a are the aerodynamic resistances from soil to canopy 257 

and canopy to the reference height (= 2m) respectively (s m-1), both of which are estimated 258 

from wind speed and crop height following the approach described by Shuttleworth and 259 

Gurney (1990) and Zhou et al. (2006). Assuming that only half the leaf area contributes to 260 

transpiration, the canopy surface resistance rs
c (s m-1) can be expressed as:  261 

𝑟𝑠
𝑐 =

2

{𝑘𝑠𝑡𝑜(max)𝑓𝐿𝑓𝑡(𝑐)} 𝐿𝐴𝐼
     (8) 262 

where ksto(max) is the maximum leaf stomatal conductance (m s-1), LAI is the leaf area index (m2 263 

m-2), ft(c) is a function describing the response of conductance to air temperature (see 264 

Environmental stress functions) and fL is a light response function given by: 265 

𝑓𝐿 = (
𝑅𝑖

𝑅𝑖+𝑅50
)      (9) 266 

where Ri is the incoming radiation (MJ m-2 d-1) and R50 is the half-saturation constant for light 267 

(here fixed at 5 MJ m-2 d-1). The bulk boundary layer resistance ra
c (m s-1) is given by:  268 

𝑟𝑎
𝑐 =

𝑟𝑏

𝐿𝐴𝐼
      (10) 269 

where rb is the leaf boundary layer resistance (here fixed at 25 s m-1). Radiation interception 270 

by the plant canopy is calculated using Beer’s law: 271 

𝑅𝑛(𝑠) = 𝑅𝑛(1 − 𝑓𝑖𝑛𝑡)     (11) 272 

𝑓𝑖𝑛𝑡 = 1 − 𝑒−𝛽 𝐿𝐴𝐼     (12) 273 
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where fint is the fraction of the net radiation intercepted by the plant canopy and  is the 274 

extinction coefficient. Net radiation is estimated from incoming solar radiation Ri using the 275 

algorithms described in Allen et al. (1998).  276 

Rainfall interception is at present not considered in the model. Although interception losses 277 

may not be negligible even for a reasonably short grassland plant community (Ataroff and 278 

Naranjo, 2009; Hu et al., 2009; Groh et al., 2019), we assume that the errors introduced by 279 

ignoring the net increase in evaporation due to rainfall interception will be negligible. 280 

 281 

2.2.2 Water flow, root water uptake and transpiration 282 

Some SVAT models use tipping bucket or reservoir models to describe water storage and flow 283 

in the soil, even though physical approaches based on Richard’s equation are not difficult to 284 

parameterize and usually perform better (e.g. Diekkrüger et al., 1995; Kröbel et al., 2010; 285 

Guest et al., 2017). Water uptake by plant roots is also represented empirically in many widely 286 

used SVAT models (Wang and Smith, 2004; Smithwick et al., 2014). These two issues are to 287 

some extent linked, as physics-based models of root water uptake require information on soil 288 

water pressures and conductances, while tipping bucket or reservoir models only simulate soil 289 

water contents. In principle, water uptake by roots also depends on the 3D architecture of the 290 

plant root system as well as the hydraulic properties along multiple flow pathways in the soil 291 

and plant (e.g. Raats, 2007). Physics-based models have been developed that can calculate 292 

water flow and uptake by a root system explicitly defined in 3D (e.g. Dunbabin et al., 2013; 293 

Schnepf et al., 2018). Although some attempts have been made (e.g. Postma et al., 2017; 294 

Mboh et al., 2019), these models are not so well suited to coupling to SVAT models due to 295 

their high parameter and computational requirements. However, some parsimonious physics-296 

based macroscopic approaches have been developed (e.g. de Jong van Lier et al., 2008, 2013; 297 

Couvreur et al., 2012; Javaux et al., 2013; Sulis et al., 2019) that contain no more parameters 298 

than the empirical models. The parameters of these models are also easier to estimate since 299 

they have a stronger physical basis (de Willigen et al., 2012; Javaux et al., 2013). For the same 300 

reason, the predictive use of these models should also be more robust in principle. The 301 

simplest physics-based models (e.g. Raats, 2007; de Jong van Lier et al., 2008) only describe 302 

flow to the roots and neglect flow and resistances within the plant. In this study, we use the 303 

model of root water uptake described by de Jong van Lier (2008), which is coupled with 304 

Richards’ equation to calculate transient water flow soil water content,  (m m-3) in a one-305 

dimensional soil profile: 306 

𝑑𝜃

𝑑𝑡
=

𝑑

𝑑𝑧
[𝐾(𝜃) (

𝑑(𝜓+𝑧)

𝑑𝑧
)] − 𝑈    (13) 307 

where t is time (days), z is height (m), K is the soil hydraulic conductivity (m day-1),  is the 308 

pressure head (m) and U (days-1) is the so-called sink term which accounts for root water 309 

uptake. The bottom boundary condition required to solve Richards’ equation is specified as 310 

the known (measured) pressure head at the base of the simulated soil profile, i.e. at 1.4 m 311 

depth. The upper boundary condition to equation 13 is specified as a flux given by the 312 
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difference between the known precipitation rate and the actual soil evaporation, Ea, which in 313 

turn is given by: 314 

𝐸𝑎 = min (𝑞𝑚𝑎𝑥; 𝐸𝑝)     (14) 315 

where qmax is the maximum flow rate towards the soil surface calculated using Darcy’s law 316 

from the pressure head in the uppermost soil layer. It can be noted that it was not necessary 317 

to include surface runoff in the model because the soil infiltration capacity was never 318 

exceeded. The soil water retention and hydraulic conductivity functions required to solve 319 

equation 13 are given by the Mualem-van Genuchten model (Mualem, 1976; van Genuchten, 320 

1980), with the matching point hydraulic conductivity, K10 (m day-1) set at a pressure head of 321 

-0.1 m (Luckner et al., 1989) and assuming that the residual water content is negligible: 322 

𝑆 =
𝜃

𝜃𝑠
       (15) 323 

𝑆 = (1 + |𝛼 𝜓|𝑛)
1

𝑛
−1     (16) 324 

𝐾(𝑆) = 𝐾10 (
𝑆

𝑆10
)

𝜏

[
1−(1−𝑆

(
𝑛

𝑛−1
)
)

(1−
1
𝑛

)

1−(1−𝑆10
(

𝑛
𝑛−1

)
)

(1−
1
𝑛

)
]

2

    (17) 325 

where S is the degree of saturation (-), S10 is the value of S at a pressure head of -0.1 m, s is 326 

the saturated water content (m3 m-3),  (m-1) and n (-) are shape parameters and  is a 327 

parameter that reflects the tortuosity and connectivity of the pore 328 

networktortuosity/connectivity factor. Equation 13 was solved by explicit finite differences 329 

and Runge-Kutta integration, with the soil profile divided into 25 numerical layers, with 330 

thicknesses varying from 1 cm (the uppermost layer) to 6 cm. A constant time step of 1 minute 331 

was employed to maintain numerical stability. The hydraulic conductivity regulating flow 332 

between two adjacent numerical layers in the soil profile was estimated by arithmetic 333 

averaging. 334 

Neglecting water storage changes in the plants, the total water uptake from the root zone 335 

equals the actual transpiration rate, Ta, such that: 336 

𝑇𝑎 = ∑ 𝑈𝑖Δ𝑧𝑖𝑖      (18) 337 

where the subscript i refers to a layer in the root zone and z is its thickness. To calculate the 338 

sink term Ui and actual transpiration Ta, we make use of the parsimonious physics-based 339 

model of root water uptake proposed by de Jong van Lier et al. (2008), which implicitly 340 

accounts for compensatory uptake (Jarvis, 2011). Neglecting plant resistances, they derived 341 

the macroscopic water uptake sink term to Richards’ equation by upscaling a model of water 342 

flow to a single root based on the concept of matric flux potential M (m2 day-1): 343 

𝑀𝑖 = ∫ 𝐾(𝜓)𝑑𝜓
𝜓

𝜓𝑤
      (19) 344 

where w is the soil water pressure head at which water uptake by plants ceases. At the 345 

microscopic scale in the soil, M will continuously decrease towards its value at the root/soil 346 
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interface Mo. In this study, we used the approximate solution derived by de Jong van Lier et 347 

al. (2009) to calculate M for the van Genuchten-Mualem model of soil hydraulic properties. 348 

Assuming that Mo is constant in the root zone and neglecting the effects of root and plant 349 

resistances on flow through the soil-plant system, de Jong van Lier et al. (2008) showed that 350 

the sink term for water uptake by roots in each soil layer can be expressed as:  351 

𝑈𝑖 = 𝜌𝑖(𝑀𝑖 − 𝑀0)      (20)   352 

where  is a composite root parameter (m-2) given by (de Jong van Lier, 2008):  353 

𝜌𝑖 =
4

𝑟𝑜
2−𝑎2𝑟𝑚(𝑖)

2 +2(𝑟𝑜
2+𝑟𝑚(𝑖)

2 )𝐿𝑁(
𝑎 𝑟𝑚(𝑖)

2

𝑟𝑜
2 )

    (21) 354 

where ro is the root radius, a is the distance to the root (normalized by rm) at which the soil 355 

water content is equal to the average value in layer i (fixed here at 0.53; de Jong van Lier et 356 

al., 2008) and rm is the mean half distance to the root surface, which can be calculated from 357 

the effective root length density RLD(i) (m m-2) as: 358 

𝑟𝑚(𝑖) = √
1

𝜋𝑅𝐿𝐷(𝑖)
     (22) 359 

Actual transpiration is determined by the minimum of the potential transpiration rate, Tp, and 360 

the maximum possible flow rate of water to the root system, Tmax, which occurs when Mo=0 361 

(see equations 18 and 20). Thus, actual transpiration can also be expressed as: 362 

𝑇𝑎 = min (𝑇𝑚𝑎𝑥; 𝑇𝑝)     (23) 363 

where Tmax is obtained by combining equations 18 and 20 with Mo=0: 364 

𝑇𝑚𝑎𝑥 = ∑ 𝜌𝑖𝑀𝑖∆𝑧𝑖𝑖      (24) 365 

For unstressed plants, Tmax  Tp and Ta = Tp. In this case, the unknown value of Mo in equation 366 

20 is calculated by combining equations 18, 20 and 24 and knowing that Ta = Tp, which gives: 367 

𝑀0 =
𝑇𝑚𝑎𝑥−𝑇𝑝

(∑ 𝜌𝑖Δ𝑧𝑖𝑖 )
         ;           𝑇𝑚𝑎𝑥 ≥ 𝑇𝑝    (25) 368 

𝑀0 = 0                      ;          𝑇𝑚𝑎𝑥 < 𝑇𝑝  369 

It can be seen from equations 24 and 25 that in any given soil, plant water stress will set in 370 

earlier when potential transpiration rates are high and total root length density is low.  371 

2.2.3 Growth model for perennial grassland  372 

Even though detailed growth models designed for perennial forage grass are already available 373 

(e.g. Schapendonk et al., 1998; Jing et al., 2012; Persson et al., 2014; Kellner et al., 2017), we 374 

developed a simple generic model for the purpose of this study, which only simulates 375 

vegetative growth. This model is intended to be able to capture the main longer-term 376 

feedback mechanisms between soil water status and grass growth (Tardieu and Parent, 2017) 377 
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and is designed to be compatible with simpler water uptake models that do not simulate water 378 

potentials, resistances and flows within plants (Manzoni et al., 2013). 379 

In the model, net assimilation is calculated using the concept of radiation use efficiency (e.g. 380 

Sinclair and Muchow, 1999), which implicitly assumes a constant ratio of respiration to 381 

photosynthesis (i.e. carbon use efficiency; Gifford, 2003). Furthermore, we assume that 382 

assimilation is limited by light, water and temperature, but not by variations in sub-optimal 383 

plant nutrition. The allocation of assimilates to above- and below-ground biomass depends on 384 

environmental stressors. In this respect, based on empirical knowledge, we assume that water 385 

stress and sub-optimal temperatures will increase the partitioning of assimilates to roots (e.g. 386 

Jones et al., 1980a; Kahmen et al., 2005; Hui and Jackson, 2006; Wedderburn et al., 2010; 387 

Skinner and Comas, 2010; Padilla et al., 2013; Nosalewicz et al., 2018; Meurer et al., 2019). 388 

Excess carbohydrates produced by grasses during periods of “sink-limited” growth are stored 389 

as non-structural reserves, mostly in the tiller bases and roots (Thomas, 1991; Johansson, 390 

1993; Volaire et al., 1998; Thomas and James, 1999; Østrem et al., 2011; Martínez-Vilalta et 391 

al., 2016; Hofer et al., 2017; Katata et al., 2020). These non-structural carbohydrates 392 

contribute to rapid recovery of growth after drought or defoliation by grazing or harvesting 393 

(Morvan-Bertrand et al., 1999; Jing et al, 2012; Schmitt et al., 2013; Benot et al., 2019). 394 

However, for the sake of simplicity, our growth model only tracks total biomasses in above- 395 

and below-ground compartments and does not explicitly account for reserves of non-396 

structural carbohydrates. 397 

The loss of both above- and below-ground biomass by diverse mechanisms (e.g. herbivory, 398 

exudation, root decay) is modelled in a simple way as a lumped first-order process. Although 399 

root longevity can be affected by drought (e.g. Chen and Brassard, 2013), this is neglected in 400 

the model for reasons of simplicity. Root systems also show plastic responses to 401 

environmental conditions, such that growth of new roots takes place where water is easily 402 

available, while root dieback occurs in dry soil (e.g. Jupp and Newman, 1987; DaCosta et al., 403 

2004; Wedderburn et al., 2010). Dynamic modeling of root proliferation and loss in response 404 

to soil conditions remains a very difficult task (e.g. Wang and Smith, 2004; Boote et al., 2013; 405 

Smithwick et al., 2014; Stöckle and Kemanian, 2020). Here, for the sake of simplicity, we 406 

assume that the distribution of root biomass and length within the root zone are constant, as 407 

well as the maximum depth of roots in the profile. With these assumptions, changes in the 408 

below-ground (root) biomass in any soil layer i, Bbg(i) (kg dry matter m-2) are given by: 409 

𝑑𝐵𝑏𝑔(𝑖)

𝑑𝑡
= 𝑓𝑏𝑔𝐴 𝑓𝑟(𝑖) − 𝑘𝑏𝑔𝐵𝑏𝑔(𝑖)    (26) 410 

where kbg is a first-order rate constant for root biomass loss (d-1), A (kg m-2 d-1) is the dry matter 411 

assimilation rate, fbg is the fraction of dry matter production partitioned to roots and fr(i) is the 412 

fraction of this root production allocated to layer i, which is prescribed by a logistic dose 413 

response function (Schenk and Jackson, 2002; Fan et al., 2016; Metselaar et al., 2019): 414 

𝑓𝑟(𝑖) = [
1

1+(
𝐷𝑈
𝐷50

)
𝑐] − [

1

1+(
𝑚𝑖𝑛(𝐷𝐿;𝐷𝑟)

𝐷50
)

𝑐]    ;        𝐷𝑟 > 𝐷𝑈   (27) 415 
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𝑓𝑟(𝑖) = 0                                                      ;        𝐷𝑟 ≤ 𝐷𝑈  416 

where c is a shape factor, DU and DL are the depths to the upper and lower boundaries of layer 417 

i, Dr is an effective root depth, which we define as the depth above which 95% of the roots are 418 

located and D50 is the depth above which 50% of the root biomass is found, such that: 419 

𝐷50 =
𝐷𝑟

(
1

0.95
−1)

1
𝑐

     (28) 420 

With this approach, 5% of the roots are located below the maximum root depth. In the model, 421 

we distribute this extra root biomass to the uppermost two numerical layers in equal amounts.  422 

The assimilation rate A in equation 26 is calculated as a function of incoming solar radiation 423 

Rs  (MJ m-2 day-1) and two dimensionless stress functions, ft(p) and fw(p) varying between zero 424 

and unity to represent the effects of temperature and water stress on dry matter production: 425 

𝐴 = 𝑓𝑖𝑛𝑡 𝑅𝑠 𝑅𝑈𝐸𝑚𝑎𝑥𝑓𝑡(𝑝)𝑓𝑤(𝑝)    (29) 426 

where RUEmax is the maximum radiation use efficiency (kg MJ-1). The root allocation fraction 427 

fbg in equation 26 is calculated as a function of plant stressors (i.e. air temperature, water 428 

stress) and “sink strength”, represented here by the fraction of radiation intercepted, fint, using 429 

an approach based on the simple model concept outlined by Friedlingstein et al. (1999): 430 

𝑓𝑏𝑔 = 𝑓𝑏𝑔(𝑜𝑝𝑡) (
2 𝑓𝑖𝑛𝑡

𝑓𝑖𝑛𝑡+𝑚𝑖𝑛(𝑓𝑡(𝑎) ; 𝑓𝑤(𝑎))
)      (30) 431 

where fbg(opt) is the fraction of assimilates partitioned below-ground when the conditions for 432 

above-ground production are optimal (i.e. full canopy, optimal temperature and no water 433 

stress) and ft(a) and fw(a) are response functions to account for the effects of sub-optimal 434 

conditions of temperature and water on allocation. With this approach, sub-optimal 435 

environmental conditions (extreme air temperatures, plant water stress) increase the 436 

proportion of assimilates partitioned to roots, whereas a loss of leaf area (e.g. due to harvest) 437 

triggers an increased allocation of assimilates to the above-ground biomass (see figure S5).  438 

Changes in above-ground biomass, Bag (kg m-2) are given by:  439 

𝑑𝐵𝑎𝑔

𝑑𝑡
= (1 − 𝑓𝑏𝑔)𝐴 − 𝑘𝑎𝑔𝑚𝑎𝑥(1 − 𝑓𝑡(𝑎); 1 − 𝑓𝑤(𝑎))𝐵𝑎𝑔 − Γ (1 −

𝐻𝑐𝑢𝑡

𝐻
) (

𝐵𝑎𝑔

Δ𝑡
) (31) 440 

where  is a binary variable, indicating the occurrence of harvest of above-ground biomass 441 

(zero for no harvest, 1 for harvest), Hcut is the cutting height at harvest (here set to 0.01 m), H 442 

is the grass height at harvest (m), t is the time step in the model and kag is a rate coefficient 443 

(d-1) regulating the loss of above-ground biomass by senescence and leaf fall, which is also 444 

promoted by sub-optimal temperatures or plant water stress, employing the same empirical 445 

functions used for assimilate partitioning between above-and below-ground biomass. In this 446 

model, we do not account for standing dead above-ground biomass, which would alter the 447 

partitioning of solar radiation between soil and plant, without contributing to transpiration 448 

and assimilation, since we assume that the loss of green leaf area results in immediate litter-449 

fall. However, it would be straightforward to incorporate standing dead biomass in future 450 

versions of the model, for example in the way described by Montaldo et al. (2005).   451 
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Feedbacks from the plant growth model to the hydrological model are provided by the leaf 452 

area index, LAI, and effective root length density, RLD(i), which are calculated as: 453 

𝐿𝐴𝐼 = 𝐵𝑎𝑔𝑆𝑙𝑒𝑎𝑓     (32) 454 

𝑅𝐿𝐷(𝑖) = 𝜀 (
𝐵𝑏𝑔(𝑖) 

z𝑖
) 𝑆𝑟𝑜𝑜𝑡     (33) 455 

where Sleaf (m2 kg-1) and Sroot (m kg-1) are the specific leaf area and specific root length and  is 456 

the fraction of the total root length that is effective for water uptake (Faria et al., 2010). The 457 

root length density affects the soil resistance to water uptake by roots (equations 21 and 22), 458 

while the leaf area index affects both canopy and aerodynamic resistances (equations 8 and 459 

10) as well as the interception of radiation by the canopy (equation 12).  The height of the 460 

crop also acts as a feedback control on the water balance, since it affects the aerodynamic 461 

resistances to evapotranspiration (equations 1 to 7). The height of the grass cover is not 462 

explicitly simulated in our relatively simple growth model. Instead, we calculate plant height 463 

as a function of simulated LAI, based on the data from both sites (see figure S6). 464 

2.2.4 Environmental stress functions 465 

As in other models of crop growth (Wu et al., 2016), we use the ratio of actual to potential 466 

transpiration to represent the effects of water stress on assimilation via stomatal closure: 467 

𝑓𝑤(𝑝) =
𝑇𝑎

𝑇𝑝
      (34) 468 

Water stress also limits crop growth without affecting photosynthesis by several different 469 

mechanisms (Körner, 2015; White et al., 2016; Tardieu et al., 2018; Loka et al., 2019; Gupta et 470 

al., 2020). Many crop models calculate limitations on leaf growth as a threshold function of 471 

the soil water deficit in the root zone. Here, we make use of the matric flux potential at the 472 

root surface Mo (see equations 20 and 25) as a measure of plant water stress, since it should 473 

be more physically and physiologically meaningful. We therefore define a second water stress 474 

index as a threshold response function of Mo, varying between zero and unity, which regulates 475 

dry matter allocation and leaf loss in the model (equations 30 and 31): 476 

 

𝑓𝑤(𝑎) = 1                ;           𝑀𝑜 ≥ 𝑀𝑜(𝑐𝑟𝑖𝑡)    (35) 477 

𝑓𝑤(𝑎) =
𝑀𝑜

𝑀𝑜(𝑐𝑟𝑖𝑡)
      ;           𝑀𝑜 < 𝑀𝑜(𝑐𝑟𝑖𝑡)    478 

where Mo(crit) is a critical value of Mo, which is in turn calculated from a user-defined value of 479 

a critical pressure head at the soil/root interface, o(crit).  480 

As in many soil-crop models (Wu et al., 2016), the temperature response function in equations 481 

8 and 29 to 31 is modelled with a piece-wise linear function (figure S7): 482 

𝑓𝑡(𝑐,𝑝,𝑎) = 0                                                    ;        𝑇 < 𝑇𝑏 𝑜𝑟 𝑇 > 𝑇𝑐   (36) 483 

𝑓𝑡(𝑐,𝑝,𝑎) = (
𝑇−𝑇𝑏

𝑇𝑜(𝑙𝑜𝑤)−𝑇𝑏
)                                ;        𝑇𝑏 ≤ 𝑇 ≤ 𝑇𝑜(𝑙𝑜𝑤)  484 



15 
 

𝑓𝑡(𝑐,𝑝,𝑎) = (
𝑇𝑐−𝑇

𝑇𝑐−𝑇𝑜(ℎ𝑖𝑔ℎ)
)                                ;        𝑇𝑜(ℎ𝑖𝑔ℎ) ≤ 𝑇 ≤ 𝑇𝑐  485 

𝑓𝑡(𝑐,𝑝,𝑎) = 1                                                    ;        𝑇 ≥ 𝑇𝑜(𝑙𝑜𝑤) 𝑎𝑛𝑑 𝑇 ≤ 𝑇𝑜(ℎ𝑖𝑔ℎ)   486 

where T is the mean air temperature (oC), To(low) and To(high) define the optimum temperature 487 

(oC) range at which ft(p,a) equals unity and Tb and Tc are the base and ceiling temperatures (oC) 488 

at which the function equals zero. Different values for the parameters in equation 36 can be 489 

assigned for transpiration (ft(c)), assimilation (ft(p)) and allocation and leaf fall (ft(a)). 490 

 491 

 492 

 493 

2.3 Model application 494 

2.3.1 Modelling strategy 495 

In this study, uncertainty in the model parameterization has been addressed through Monte 496 

Carlo simulations following the GLUE methodology (see Sensitivity and uncertainty analysis). 497 

In principle, it would be possible to apply the model individually to each lysimeter in such an 498 

approach. However, this would have been far too demanding of computer resources. Instead, 499 

recognizing the comparatively small differences in hydrological behavior among the three 500 

replicates at each site (Table 1) and the fact that the same soil type is present at both sites, 501 

we decided to simplify the analysis by assuming a common parameterization for the soil 502 

hydraulic properties in the replicateall six lysimeters at each site. Similarly, we also neglected 503 

the small differences in boundary conditions among the replicate lysimeters at each site. Thus, 504 

precipitation (Table 1; figure S1) and pressure heads at the bottom boundary (figure S4) 505 

measured for one lysimeter at each site (Ro_Y_015 at Rollesbroich and Se_Y_026 at 506 

Selhausen) were used to represent all three replicates. This approach also implicitly assumes 507 

that we can neglect the likelihood of small differences in initial conditions among the 508 

replicates at each site. Initial soil water pressure head profiles at each site were set according 509 

to the results of preliminary simulations involving “trial and error” calibration to measured 510 

early time water outflows from the lysimeters. Initial above- and below-ground plant 511 

biomasses were calculated assuming that the roots constituted 80% of the total biomass and 512 

that the initial leaf area index was 1.5. It can be noted that model predictions quickly become 513 

independent of these initial guesses. 514 

2.3.2 Soil hydraulic parameters  515 

Four horizons were identified from a soil profile description at the Rollesbroich site (Table 1). 516 

Common parameters of the Mualem-van Genuchten model were estimated for each horizon 517 

from a combination of direct measurements and pedotransfer functions (Table 3). The paired 518 

TDR and tensiometer measurements obtained in the lysimeters at 30 and 50 cm depth were 519 

utilized to estimate common water retention parameters at the two sites for the horizons at 520 

24-48 and 48-90 cm depth by least-squares fitting (Table 3 and figure S3). We used the HYPRES 521 

class pedotransfer functions (Wösten et al., 1999) to estimate the van Genuchten water 522 
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retention parameters from the soil textural class in the deep subsoil (90-140 cm depth) where 523 

no data was available. The measurements from the matric potential sensors installed in the 524 

uppermost soil horizon (0-24 cm depth) appeared to be unreliable. We therefore also used 525 

the HYPRES pedotransfer functions to estimate the shape parameter n in the topsoil, while  526 

was set equal to the same value as the deeper horizons. Saturated water contents clearly 527 

differed between the two sites in the uppermost horizon and were estimated from the data 528 

by eye. The reasons for this are not clear. With only three replicates, it could be a result of 529 

chance spatial variation. However, at least two physical explanations appear plausible. It is 530 

possible that more optimal soil moisture conditions at Selhausen have led to faster 531 

mineralization rates of soil organic matter, leading to a decline in the organic matter content 532 

and a concomitant increase in soil bulk density (i.e. a loss of porosity, Meurer et al., 2020). It 533 

may also be the case that the drier soil surface conditions at Selhausen have reduced soil 534 

wettability (Robinson et al., 2019). Hydraulic conductivity at a pressure head of -10 cm (see 535 

table 3) was estimated from clay content in each horizon using the pedotransfer function 536 

developed by Jarvis et al. (2013). 537 

2.3.3 Sensitivity and uncertainty analysis 538 

A comprehensive uncertainty analysis treating a large number of model parameters as 539 

uncertain was not feasible in this study from the point of view of both data support and 540 

computational capacity, even for the comparatively parsimonious model used in this study. 541 

We therefore performed a preliminary Monte Carlo sensitivity analysis to support the 542 

selection of a limited number of parameters to include in the uncertainty analysis. We ran 500 543 

simulations for each site for the period 2013-2018 with parameter values obtained by Latin 544 

hypercube sampling from uniform distributions (table S2 in the supplementary information). 545 

We quantified the sensitivity of two target outputs (i.e. total evapotranspiration and harvest 546 

during the experimental period) to model parameters using Spearman rank partial correlation 547 

coefficients. The sampled ranges for the plant parameters in the model were selected to 548 

reflect variations based on information in the literature. Three soil hydraulic parameters were 549 

also included in this analysis (K10,  and n). This was done by applying scaling factors (see table 550 

S2) to the parameter values in Table 3 to broadly reflect the uncertainty arising from the use 551 

of pedotransfer functions as well as the spatial variations in the water retention curves derived 552 

from the lysimeter measurements (figure S3). It should be noted here that the resulting ranges 553 

adopted for the two van Genuchten parameters encompass the differences found among the 554 

six lysimeters at both depths. Table S2 shows the results. In general, evapotranspiration and 555 

harvest is much more sensitive to many of the plant parameters than to variation in the soil 556 

hydraulic properties, which lends support to a modelling strategy in which soil hydraulic 557 

properties are set to identical values for all lysimeters. We therefore focused the uncertainty 558 

analysis on investigating differences in key plant parameters between the two sites.  559 

Of the many highly sensitive plant parameters (Table S2), we decided to treat four as 560 

uncertain: the radiation extinction coefficient , the maximum stomatal conductance ksto(max), 561 

the maximum root depth Dr and the limiting pressure head o(crit) that controls dry matter 562 

(DM) allocation between above- and below-ground compartments as well as the rate of leaf 563 

loss. Several subjective criteria underpin this selection. Firstly, they are among the most highly 564 
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sensitive parameters for both evapotranspiration and harvest yields (Table S2). In this respect, 565 

with the exception of To(low), it seems that plant parameters controlling temperature response 566 

are much less sensitive than those regulating water stress (Table S2). Secondly, in addition to 567 

the changes in plant community composition, there are also some known mechanisms of plant 568 

acclimation (e.g. Vincent et al., 2020) that could explain why these four parameters might 569 

plausibly take different values at the two sites. Finally, the effects on these four model 570 

parameters on the model outputs are unlikely to be strongly correlated with one another. This 571 

would not be the case for some of the other sensitive parameters. For example, the radiation 572 

extinction coefficient  would be correlated with the maximum radiation use efficiency, while 573 

o(crit) would be correlated with both the parameter controlling DM allocation under optimal 574 

conditions, fbg(opt), as well as the effective root fraction, . The remaining plant parameters in 575 

the model were therefore set to fixed values estimated from data in the literature (Table 4), 576 

prioritizing field studies rather than pot experiments, as the development of drought and the 577 

plant response to stress are known to be strongly affected by restricted root zones (Jones et 578 

al., 1980a,b). Specific leaf area was set to 142 cm2 g-1 based on the measurements of above-579 

ground biomass and leaf area index for the combined dataset at both sites (see figure S6). The 580 

relationship shown in figure S6 shows some scatter, but no systematic difference between the 581 

sites is apparent. In this respect, Norris (1982) also found no significant differences in specific 582 

leaf area for Lolium perenne in droughted, control and irrigated plots. 583 

We used the GLUE (Generalized Likelihood Uncertainty Estimation; Beven and Binley, 1992; 584 

Beven 2006) methodology to account for parameter uncertainty. The objective of this 585 

informal Bayesian approach is not to find a single optimum parameter set by calibration, as it 586 

acknowledges that many different parameterizations will perform equally well (so-called 587 

“equifinality”), not least as a consequence of the inevitability of model (structural) error. The 588 

objective of GLUE is therefore to identify acceptable (“behavioural”) parameterizations. To 589 

support this analysis, we ran 2000 simulations for each site, with parameter sets determined 590 

using Latin Hypercube sampling from the prior uncertainty ranges for the four uncertain 591 

parameters shown in Table 5. GLUE involves several subjective decisions, two of the most 592 

important ones being the choice of a likelihood function (i.e. a measure of goodness-of-fit) 593 

and deciding on the criteria that should be used to determine whether a simulation is 594 

acceptable or not. We considered that a parameterization was acceptable if two criteria were 595 

satisfied. The first uses calculations of the model efficiency, ME, for the six observed time 596 

series of data (i.e. water contents at three depths, evapotranspiration rates, LAI, harvests): 597 

𝑀𝐸 =
∑ (𝑂𝑖−𝑂̅)2−∑ (𝑂𝑖−𝑃𝑖)2𝑚

𝑖=1
𝑚
𝑖=1

∑ (𝑂𝑖−𝑂̅)2𝑚
𝑖=1

    (37) 598 

where O and P are the observed and simulated values for a given data type and m is the 599 

number of observations. The maximum value of ME is one, when predictions and observations 600 

are identical, while a negative value implies a poor model, since it means that taking the 601 

average of the observations would give a better prediction. A simulation was considered 602 

acceptable if i.) the model efficiency for all six data types was within 0.5 of the maximum value 603 

for that data series, and ii.) both the simulated annual average evapotranspiration AET 604 

(mm/year) and overall (apparent) water use efficiency WUE (kg DM m-3) were within 605 

acceptable limits roughly defined by the observations (see Table 2): 606 
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𝐴𝑡 𝑅𝑜𝑙𝑙𝑒𝑠𝑏𝑟𝑜𝑖𝑐ℎ: 610 < 𝐴𝐸𝑇 < 660 𝑎𝑛𝑑 1.0 < 𝑊𝑈𝐸 < 1.2 607 

𝐴𝑡 𝑆𝑒𝑙ℎ𝑎𝑢𝑠𝑒𝑛: 680 < 𝐴𝐸𝑇 < 730 𝑎𝑛𝑑 0.85 < 𝑊𝑈𝐸 < 1.05 608 

This second criterion ensures that the acceptable parameterizations respect the overall broad 609 

differences observed in the water balance components and harvest yields between the two 610 

sites. Note that the acceptable limit for WUE at Rollesbroich makes no attempt to “honour” 611 

the data from lysimeter Ro_Y_013, since it is considered an outlier, as discussed earlier. In 612 

total, 35 simulations at Rollesbroich and 57 at Selhausen satisfied these criteria. It is desirable 613 

to have the same number of acceptable parameter sets at each site. From these acceptable 614 

simulations, we therefore selected the 30 best simulations at each site (i.e. 1.5% of the total 615 

number of simulations) according to the average model efficiency for the six data types. 616 

 617 

3. Results and discussion 618 

3.1 Acceptable parameter values  619 

The distributions of the acceptable values for the four uncertain parameters are shown in 620 

figure 3, while posterior parameter ranges defined by different percentiles of these 621 

distributions are presented in table 5. The posterior uncertainty ranges are much smaller than 622 

the prior uncertainty ranges, which suggests that values for all four uncertain parameters 623 

were clearly identifiable from the data. No differences between the two sites were found for 624 

two of the parameters, the radiation extinction coefficient  and o(crit) the parameter 625 

controlling dry matter allocation and leaf loss as a function of water stress (p = 0.98 and 0.16 626 

respectively). The derived values of o(crit) (median value of -271 cm at both sites, Table 5) are 627 

much larger than w (= -150 m, Table 4), which indicates that water stress affects above-628 

ground plant growth long before stomatal closure limits transpiration and assimilation 629 

(Staniak and Kocoń 2015; Körner, 2015; Loka et al., 2019). This has been shown experimentally 630 

for droughted field-grown grass/clover pastures by Jones et al. (1980a,b) and Hofer et al. 631 

(2017). The values of the radiation extinction coefficient (inter-quartile range = 0.51-0.65 at 632 

both sites) are typical of values reported for grassland ecosystems (Zhang et al., 2014). 633 

In contrast, the results of the GLUE analysis suggest that both the maximum root depth and 634 

the unstressed stomatal conductance have increased significantly for the lysimeters moved to 635 

Selhausen (p < 0.0001 for both). The estimated root depth at Rollesbroich (ca. 56 cm) matches 636 

observations made at the site at the time of extraction of the lysimeters reasonably well. The 637 

simulations suggest that the maximum root depth at Selhausen has increased to ca. 80 cm, 638 

while the maximum stomatal conductance has roughly doubled. The mechanisms underlying 639 

these changes are not clear. One reason may be the significant changes observed in the plant 640 

community composition at Selhausen compared with the original resident plant community 641 

(figure S2), as plant traits may differ significantly between herbs and grasses. Another likely 642 

reason is that one or more of the dominant species adapted to the new climate. In this respect, 643 

plants are known to acclimatize to environmental stresses at a range of time-scales by various 644 

physiological and morphological mechanisms  (e.g. Maseda and Fernández, 2006; Nicotra et 645 

al., 2010; Nicotra and Davidson, 2010; Manzoni et al., 2013; Bartlett et al., 2014; Tardieu et 646 
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al., 2018; Vincent et al., 2020). For example, it is known that many plant species, including 647 

perennial ryegrass (Wedderburn et al., 2010), may respond to drought by developing deeper 648 

root systems. Although the mechanisms are still imperfectly understood, recent research 649 

suggests that various alterations in leaf physiology induced by heat stress may increase leaf 650 

hydraulic conductance, thereby enhancing transpiration rates and the degree of evaporative 651 

cooling (Sadok et al., 2021). 652 

3.2 Soil hydrology 653 

Figures 4 and 5 show comparisons of the acceptable simulations at the two sites with the soil 654 

water contents measured at the three depths in the lysimeters and daily evapotranspiration 655 

rates respectively. The model efficiencies for these simulations are shown in table 6. Figure S8 656 

shows measured and simulated values of accumulated evapotranspiration. Figure 6 compares 657 

measured annual average evapotranspiration and percolation in the period 2013-2018 with 658 

the simulations. Taken together, these results show that the model performs very well, 659 

matching the temporal dynamics in the high-time resolution data on state variables and fluxes 660 

as well as reproducing the differences in the overall water balances at the two sites. This is 661 

probably because the macroscopic sink term describing root water uptake that we coupled to 662 

Richards’ equation has a reasonably strong physical basis. In particular, this model implicitly 663 

accounts for the mechanism of “compensatory” root water uptake, something which is clearly 664 

necessary in order to reproduce the extensive drying in the root zone observed in the 665 

Selhausen lysimeters, with very little reduction in water uptake and transpiration.   666 

Figure 7 shows some terms of the simulated water balances that were not measured. Potential 667 

evapotranspiration calculated internally in the model by the Shuttleworth-Wallace version of 668 

the Penman-Monteith equation as a dynamic function of leaf area development at the two 669 

sites is very similar to the estimates obtained by the FAO version (Figure 7; table 2), which 670 

only treats the vegetation implicitly. This is in spite of the fact that the balance between 671 

simulated soil evaporation and transpiration differs strongly between the two sites, with soil 672 

evaporation being a much larger component of the water balance at Rollesbroich (Figure 7), 673 

where it comprises ca. 70% of the total evapotranspiration. There may be several reasons why 674 

soil evaporation is such an important term in the water balance at Rollesbroich, including the 675 

wet climate with high wind speeds (Groh et al., 2019) the capillary nature of the soil and also 676 

the fact that the grassland is harvested 3-4 times during the growing season, which exposes 677 

the soil surface to evaporation. In contrast, soil evaporation is much smaller (ca. 50% of total 678 

evapotranspiration) in the drier climate at Selhausen, despite greater incoming radiation, 679 

presumably because drying of the soil surface in summer frequently reduced evaporation 680 

below the potential rate (figure 7). 681 

Figure 7 shows that the model simulates only small reductions of transpiration due to water 682 

stress and stomatal closure at both sites (Ta < Tp), which matches the inference derived from 683 

comparing the lysimeter data with the FAO estimates of potential evaporation (figure 1). This 684 

result is not especially surprising for the grassland growing in the wet climate at Rollesbroich, 685 

but the inference of very limited reductions in water uptake and transpiration in the Selhausen 686 

lysimeters despite the extensive drying observed in the root zone (figure 5),  it does require 687 

further analysis and explanation for the much drier Selhausen site. The macroscopic sink term 688 
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describing root water uptake that we coupled to Richards’ equation implicitly accounts for 689 

“compensatory” root water uptake (Jarvis, 2011). Our results suggest these that 690 

compensation mechanisms are extremely efficient at the Selhausen site. Figure 8 shows the 691 

simulated time-courses of the two water stress functions in the model. Short periods of 692 

stomatal closure induced by water stress occur every summer at Selhausen in most of the 693 

acceptable model simulations, with one more extended period of drought stress (ca. 1 to 2 694 

weeks) in 2018. However, overall, the extent and severity of reductions in transpiration due 695 

to water stress simulated at Selhausen is not much larger than at Rollesbroich. One reason for 696 

this is clearly the deeper root system. AnotherThe reason for this becomes apparent from a 697 

comparison of the results for the two highlighted simulations in figure 8, which.Figure 8 shows 698 

the simulated time-courses of the two water stress functions in the model. This comparison 699 

shows that simulations with strong reductions in the dry matter allocation function have 700 

correspondingly small reductions in the stress function regulating transpiration or, as in this 701 

example (simulation number 6), none at all. This is because an increased rate of leaf loss and 702 

a greater allocation of assimilates to the below-ground biomass during drought reduces the 703 

transpiration demand as well as increasing the potential rate of water uptake by the root 704 

system. These adaptation mechanisms in response to soil drying conserve soil water and 705 

reduce the likelihood of stomatal closure, so that transpiration can be maintained during 706 

extended dry summer periods. Shorter periods of stomatal closure induced by water stress do 707 

occur every summer at Selhausen in most of the acceptable model simulations, with one more 708 

extended period of drought stress (ca. 1 to 2 weeks) in 2018. However, overall, the extent and 709 

severity of reductions in transpiration due to water stress simulated at Selhausen is not much 710 

larger than at Rollesbroich.  This comparison illustrates the fact that simulations with strong 711 

reductions in the dry matter allocation function show correspondingly small reductions in the 712 

stress function regulating transpiration or, as in this example (simulation number 6), none at 713 

all. This is because an increased rate of leaf loss and a greater allocation of assimilates to the 714 

below-ground biomass during drought reduces the transpiration demand as well as increasing 715 

the potential rate of water uptake by the root system. These adaptation mechanisms in 716 

response to soil drying conserve soil water and reduce the likelihood of stomatal closure, so 717 

that transpiration can be maintained during extended dry summer periods at Selhausen. 718 

 719 

3.3 Grassland growth 720 

Figures 9 and 10 show comparisons of the acceptable simulations with the measurements of 721 

leaf area index and harvested biomass on the lysimeters at Selhausen and Rollesbroich. The 722 

model efficiencies for these two data types are shown in table 6. Figure 11 shows box and 723 

whisker plots of the simulated total harvest and overall water use efficiencies (WUE, defined 724 

as total harvest divided by evapotranspiration) at the two sites. The results suggest that the 725 

model performed satisfactorily for leaf area development at both sites and for harvested 726 

biomass at Selhausen, but not for harvests at Rollesbroich (table 6). These poorer results can 727 

largely be explained by the fact that lysimeter Ro_Y_013 was considered an outlier, so no 728 

effort was made to match this data by loosening the constraints in the GLUE analysis. 729 
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Figure 12 shows the gain and loss terms in the dry matter balances simulated with the 30 best 730 

parameterizations at each site. Simulated assimilation was ca. 10% larger at Selhausen 731 

compared with Rollesbroich as a consequence of the greater radiation input and higher 732 

temperatures (Figure S1) and the fact that water stress is only slightly more prevalent (Figure 733 

8). Leaf loss is a relatively small term in the mass balance (10-12% of assimilation) and is similar 734 

at both sites (Figure 12). Root production and decay (i.e. turnover) are more significant terms, 735 

with root decay closely mirroring production, since it is modelled as a first-order function of 736 

biomass. Expressed as a proportion of assimilation, simulated root production and decay is 737 

somewhat larger at Selhausen compared with Rollesbroich (ca. 58 and 53% of assimilation 738 

respectively, on average, for both), while root biomass is also somewhat larger at Selhausen 739 

(see figure S98). This is in agreement with experimental studies that have demonstrated 740 

increases in below-ground biomass production in grasslands as a consequence of drought (e.g. 741 

Jones et al., 1980a; Kahmen et al., 2005; Wedderburn et al., 2010; Skinner and Comas, 2010; 742 

Padilla et al., 2013; Nosalewicz et al., 2018; Meurer et al., 2019). It was not possible to make 743 

measurements of root biomass and production in the lysimeters at the two sites due to the 744 

constraints of the experimental set-up. However, literature data on root biomass and 745 

production in similar temperate grassland environments can serve as an approximate “reality-746 

check”, suggesting that our simulations (Figure S98) are reasonable. For example, in northern 747 

Germany, Chen et al. (2016) measured a root biomass of ca. 500 g m-2 at 0-30 cm depth and a 748 

growth rate of 450 g m-2 year-1, while in central Sweden, Meurer et al. (2019) found a root 749 

biomass of 250-330 g m-2 in the same depth interval. In central France, Picon-Cochard et al. 750 

(2012) reported summer peak root biomasses of 13 perennial grasses grown in monoculture 751 

varying between ca. 400 and 800 g m-2, with a temporal pattern matching that simulated by 752 

our model (Figure S98). Likewise, Wedderburn et al. (2010) reported peak root counts in early 753 

summer and a minimum in winter for Lolium perenne pastures in New Zealand. The values of 754 

below-ground production simulated by our model are also within the range reported by Hui 755 

and Jackson (2006) for temperate grasslands in a global meta-analysis. 756 

4. Conclusions 757 

In this study, we made use of an eco-hydrological model to analyze the impacts on soil water 758 

balance and grassland production of climate change triggered by the transfer of weighing 759 

lysimeters from a wet, cool climate (Rollebroich) to a drier, warmer climate (Selhausen). The 760 

relatively simple model employed in this study gave satisfactoryexcellent simulations of soil 761 

water contents (Model Efficiency, ME, between 0.24 and 0.87) and evapotranspiration rates 762 

(ME between 0.32 and 0.60) measured at a daily resolution at both sites during a six-year 763 

period, as well as acceptable simulations of leaf area development (ME between -0.04 and 764 

0.50). In this model application, we assumed identical static root distributions for the 765 

grassland at the two sites and inferred different (constant) values of the maximum root depth, 766 

with deeper roots in the drier climate at Selhausen. We also concluded from the modelling 767 

that more frequent and intense soil drying at Selhausen led to a shift towards a greater 768 

production of below-ground biomass, thus mitigating drought stress. A major challenge for 769 

the future will be to further develop crop and eco-hydrological models to enable them to 770 

predict these dynamic responses of plant roots to changing soil and climatic conditions as 771 

emergent phenomena. In this respect, it should be worthwhile to test simple empirical 772 



22 
 

approaches to link root distribution with maximum root depth and biomass (e.g. Arora and 773 

Boer, 2003) as well as developing improved architectural models of root growth (e.g. Postma 774 

et al., 2017; Schnepf et al., 2018; Mboh et al., 2019). Regardless of modelling approach, it 775 

seems clear that plastic responses of plant traits to climate change of the kind we inferred 776 

from our study (e.g. in root depth or leaf conductance) introduce significant uncertainties into 777 

model predictions of water balance and plant growth. 778 
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Table 1. Soil properties at Rollesbroich 

 

Depth (cm) Particle size distribution (%), fine earth fraction Texture class 
(U.S.D.A.) 

Organic 
carbon 
(%) 

pH 
(CaCl2) Clay  

(<2 m) 

Silt  

(2-50 m) 

Sand  

(50-2000m) 

0-7  19 14 67 Sandy loam 5.3 5.2 

7-24 9 33 58 Sandy loam 2.5 5.3 

24-42 37 23 40 Clay loam 1.2 5.4 

42-50 35 33 32 Clay loam 0.8 5.4 

50-71 32 32 36 Clay loam 0.3 5.4 

71-93 32 32 36 Clay loam 0.3 5.2 

93-127 17 24 59 Sandy loam 0.1 4.6 

127+ 22 30 48 Loam 0.2 4.9 
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Table 2. Measured water balance, harvested biomass and water use efficiency for the lysimeters 

(annual averages for the period 2013-2018; P = precipitation, PET = potential evapotranspiration 

calculated with the FAO Penman-Monteith method, AET = actual evapotranspiration, S is the change 

of water storage calculated as P-AET-Percolation and WUE is water use efficiency defined as harvested 

biomass (Harvest) divided by AET).  

 

         

Site Lysimeter 

P PET AET Percolation ΔS Harvest WUE 

[mm/year] 
[g DM m-2 

year-1] 
[kg DM m-3 

water] 

Rollesbroich 

Ro1 1055 

710  

649 438 -31 732 1.13 

Ro3 1079 651 466 -38 907 1.39 

Ro5 1050 623 422 5 678 1.09 

Average 1062   641 442 -21 772 1.20 

Selhausen 

Se21 696 

 827 

716 -42 22 691 0.97 

Se25 690 709 -58 38 665 0.94 

Se26 699 714 -14 -1 661 0.93 

Average 695  713 -38 20 672 0.94 
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Table 3. Soil hydraulic parameters used in the modelling 

Depths (cm) Parameter 

s (m3 m-3) α(cm-1) 
 

n (-) K10  
(cm h-1) 

 (-) 

Selhausen Rollesbroich 

0-24 0.45 0.55 0.025 1.34 1.89 0.5 

24-48 0.39 0.39 0.025 1.09 0.73 0.5 

48-90 0.38 0.38 0.025 1.08 0.83 0.5 

90-140 0.38 0.38 0.025 1.17 1.46 0.5 
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Table 4. Fixed values for plant parameters at both sites 

Parameter Value Sources/comments 

 
Above-ground parameters 
 

Maximum radiation use efficiency, RUEmax 
(MJ m-2 d-1) 

1.6 1Akmal and Janssens (2004) 

Leaf loss coefficient, kag (d-1) 0.02 Istanbulluoglu et al. (2012) 

Specific leaf area, Sleaf (cm2 g-1) 142 Site data 

Base temperature, Tb (oC) for stomatal 
conductance and assimilation 

0 2Wingler (2015), Körner (2008, 2015) 

Base temperature, Tb (oC) for DM 
allocation and leaf loss 

5  2Schapendonk et al. (1998), Black et al. (2006), 
Hennessy et al. (2008) 

Optimum temperatures, To(low), To(high) (oC) 
Ceiling temperature Tc (oC) 

12, 25 
35 

Howard and Watschke (1991), Wu et al. (2016), 
Loka et al. (2019)  

Limiting soil water pressure head for 

cessation of transpiration, w (m) 

-150 Standard assumption 

Fraction of assimilates allocated to roots 
under optimal conditions, fbg(opt) (-) 

0.5 Hui and Jackson (2006) 

Below-ground parameters  

Root decay constant, kbg (d-1) 0.007 Van der Krift and Berendse (2002), Chen and 
Brassard (2013) 

Root radius, ro (cm) 0.02 Van der Krift and Berendse (2002), Picon-
Cochard et al. (2012) 

Effective root fraction,  (-) 0.05 Faria et al. (2010) 

Specific root length, Sroot (m g-1) 118 Picon-Cochard et al. (2012) 

Shape factor for root distribution, c (-) -1.2 Schenk and Jackson (2002), Fan et al. (2016) 

1 assuming PAR = 50% of incoming solar radiation 
2 transpiration/assimilation is less sensitive to low temperatures than growth
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Table 5. Uncertain parameters: initial ranges, data sources and poster-priori parameter ranges 

Parameter Ranges 
sampled 

Posterior-priori parameter values  (n=30) 

Selhausen Rollesbroich 

Median Inter-
quartile 
range 

10th , 90th 
percentiles 

Median Inter-
quartile 
range 

10th, 90th 
percentiles 

Radiation 
extinction 

coefficient,  

10.4-0.8 0.57 0.51-0.65 0.48, 0.71 0.58 
 

0.51-0.65 0.48, 0.71 

Maximum stomatal 
conductance, 
ksto(max) (cm s-1) 

20.4-1.6 1.28 1.13-1.47 0.97, 1.56 0.60 0.48-0.83 0.46, 0.96 

Maximum root 
depth, Dr (cm)  

340-100 79 75-83 70, 86 56 48-67 42, 73 

Limiting pressure 
head at the root 

surface, o(crit) (-cm) 

4100-2000 271 233-347 195, 533 271 224-347 157, 419 

 
1 Schapendonk et al. (1998), Akmals and Janssens (2004), White and Snow (2012), Zhang et al. (2014) 

2 Nijs et al. (1997), Allen et al. (1998), Wang and Huang, (2003), DaCosta et al. (2004), Dong et al. 

(2011), Holloway-Phillips and Brodribb (2011), Hu et al., 2013 

3 Site observations; Jackson et al. (1996), Schenk and Jackson (2002), Fan et al. (2016) 

4 No information is available, hence a wide ‘a priori’ uncertainty range was selected
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Table 6. Model efficiencies for the different data types (median values of the 30 acceptable 

parameter sets, with minimum and maximum values in parentheses).  

Site Model efficiency 

Water content 
at 10cm depth 

Water content 
at 30 cm depth 

Water content 
at 50 cm depth 

Evapo-
transpiration 

Harvest Leaf area index 

Ro 0.84 (0.78, 0.87) 0.77 (0.58, 0.83) 0.73 (0.64, 0.86) 0.58 (0.54, 0.60) -0.70 (-0.54, -0.81) 0.19 (0.09, 0.50) 

Se 0.81 (0.75, 0.84) 0.68 (0.58, 0.73) 0.28 (0.24, 0.31) 0.38 (0.32, 0.45) 0.35 (0.15, 0.46) 0.15 (-0.04, 0.32) 
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Figure 1. Ratio of actual evapotranspiration (AET) to potential evapotranspiration (PET-FAO) 

calculated with the FAO Penman-Monteith method (Allen et al., 1998) as a function of 

precipitation at Selhausen and Rollesbroich on an annual basis for the period 2013-2018. 
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Figure 2. Water use efficiency (= annual harvest divided by annual evapotranspiration) as a 

function of annual precipitation at Selhausen and Rollesbroich. 
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Figure 3. Posterior distributions of the four parameters treated as uncertain in the GLUE 

analysis. The horizontal line is the median value for the acceptable parameter sets, the box 

denotes 25th and 75th percentiles (inter-quartile range), the whiskers cover data points that lie 

within 1.5 times the inter-quartile range and solid circles represent outliers outside this range. 
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Figure 4. Measured soil water contents (symbols) at 10, 30 and 50 cm depth (2013-2018) 

compared with simulations for the 30 acceptable parameterizations at each site (black lines). 

Day 1 = 1st January 2013.   
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Figure 5. Measured daily evapotranspiration rates (symbols; 2013-2018) compared with 

simulations for the 30 acceptable parameterizations at each site (black lines). Day 1 = 1st 

January 2013. 
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Figure 6. Box and whisker plots of simulated annual average evapotranspiration (AET) and 

percolation at Selhausen and Rollesbroich for the period 2013-2018 for the 30 acceptable 

simulations compared with the lysimeter measurements (large symbols). For an explanation 

of the box and whisker plots, see the caption to figure 3. 
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Figure 7. Simulated water balance terms for the 30 acceptable simulations at each site. For an 

explanation of the box and whisker plots, see the caption to figure 3. 
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Figure 8. Plots of the two water stress functions in the model for the acceptable simulations. 

The uppermost figures show the threshold function of the pressure head at the root surface 

(equation 35) controlling dry matter allocation and leaf loss, while the figures at the bottom 

show the ratio of actual to potential transpiration, which controls assimilation (equation 34). 

Two contrasting acceptable simulations for the Selhausen site are highlighted in red and blue. 

Day 1 = 1st January 2013. 
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Figure 9. Measured daily leaf area index (symbols; 2013-2018) compared with simulations for 

the 30 acceptable parameterizations at each site (black lines). Day 1 = 1st January 2013. 
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Figure 10. Measured harvests of above-ground biomass (symbols; 2013-2018) compared with 

simulations at each site (black symbols indicate means of the 30 acceptable parameterizations 

and the vertical lines denote minimum and maximum values). Day 1 = 1st January 2013. 
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Figure 11. Box and whisker plots of simulated harvests and water use efficiencies (WUE, 

defined as total harvest divided by evapotranspiration) at Selhausen and Rollesbroich for the 

period 2013-2018 for the 30 acceptable simulations compared with lysimeter measurements 

(symbols). For an explanation of the box and whisker plots, see the caption to figure 3. 
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Figure 12. Box and whisker plots showing the simulated terms in the dry matter balance for 

the 30 acceptable model parameterizations at Selhausen and Rollesbroich for the period 

2013-2018. For an explanation of the box and whisker plots, see the caption to figure 3. 

 

 

 

 

 

 

 


