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Abstract. Private water supply systems consisting of a domestic well and septic system are used throughout the world where

households lack access to public water supply and sewers. In residential areas with high housing density, septic contamination

of private wells is common and associated with multiple health concerns. This situation can give rise to social dilemmas, where

individual costs dis-incentivize homeowners from investing in enhanced septic systems that would reduce well contamination

and bring communal benefits. We combine a stylized game-theoretical model with a probabilistic groundwater model to char-5

acterize how economic and hydrogeological conditions interact to produce misaligned incentives conducive to social dilemmas.

The occurrence of social dilemmas depends on the relative costs of well contamination versus the cost of installing an enhanced

septic treatment system, and the relative probabilities of cross-contamination versus self-contamination. The game reveals three

three types of social dilemmas that occur in such systems, with each calling for distinct policy solutions. We demonstrate how

the model can be applied to existing systems using a case study of St Joseph County, Indiana, where high nitrate contamination10

rates have raised public health concerns. This analysis represents a step towards identifying alternative policy solutions for a

problem that has remained difficult to address for decades.

1 Introduction

Groundwater plays a critical role in supporting social and ecological systems throughout the world (Gleeson and Richter,

2018). Groundwater provides over 50% of urban water supply (Zektser and Everett, 2004) and 40% of water for irrigation15

(Siebert et al., 2010). Protecting the groundwater commons has become increasingly important and challenging as aquifers

deplete and become contaminated (Gleeson et al., 2020; Hartmann et al., 2021). Indeed, contamination has become prevalent

in groundwater systems throughout the world (Charalambous, 2020). In many cases, regulatory frameworks struggle to pro-

vide effective preventative measures and the challenge of groundwater protection transforms into a problem of groundwater

remediation (Nieto et al., 2005; Hou et al., 2018). Fundamental to the challenge of groundwater protection is the issue of20

environmental externalities, where the polluter gains some benefit from inadequate (or faulty) treatment prior to water being

discharged or leaked to the subsurface (Hellegers et al., 2001). Although this problem arises in a variety of industrial and

agricultural settings, groundwater systems that supply residential communities can also be compromised by inadequate private

water systems (Withers et al., 2014).

Private water systems consisting of a domestic well and septic system are common throughout the world in areas without25

piped supply and sewers. In the United States, approximately 13% of the population relies on water supply from a private
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domestic well (Dieter et al., 2018, also see Fig. 1) and 25% of households discharge wastewater through a septic system (US

EPA, 2005a). Although the installation of septic systems is generally governed by a combination of guidelines from state and

local governments (Thomassey and Dutcher, 2017), over half of septic systems were installed at least 30 years ago and up

to 20% are malfunctioning with potentially more underperforming (US EPA, 2005a). Domestic wells are unregulated and the30

responsibility for maintaining water quality is left to each individual household (Bowen et al., 2019). Private water systems

are at a relatively high risk of contamination from a variety of sources, and water quality in private systems often fails to

match water quality in highly-regulated public water supply systems (Focazio et al., 2006; DeSimone et al., 2009). Surveys

indicate that 2-14% of private wells are contaminated with nitrates (Hoppe et al., 2011), but this can rise considerably higher

in locations with high housing density (Yates, 1985; Bremer and Harter, 2012).35

Septic tanks represent one of the major threats to water quality in domestic wells and the high concentration of contami-

nants in septic leachate creates a variety health concerns (US EPA, 2005b; Katz et al., 2011). Septic contamination has been

associated with endemic diarrheal illness in Wisconsin (Borchardt et al., 2003), viral discharge and transport exceeding typical

well-drainfield setback distances (DeBorde et al., 1998), and multiple disease outbreaks in the United States and Canada (Craun

et al., 1994; Beller et al., 1997). In addition to pathogens, septic systems also discharge high levels of nitrates, which can cause40

acute health problems in infants (Knobeloch et al., 2000), and other emerging contaminants such as PFAS, flame retardants,

and endocrine disruptors (Schaider et al., 2016), which also present long-term exposure risks (Bergman et al., 2013).

The issue of septic contamination has been widely recognized for at least half a century (Yates, 1985). While technological

solutions (e.g., reverse osmosis) are available to treat water from contaminated wells, due to high costs such systems are often
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Figure 1. Concentration of households with domestic wells in the contiguous United States. (a) Gridded (1 km) density of wells. (b) Total

number of high density wells by state, defined as wells (in 1 km pixels) where the average density is at least 1 per acre. Data are from Johnson

et al. (2019). The location of the case study (Sect. 4) is marked inside the gray circle.
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limited to wealthier households and only implemented at select points of consumption (e.g., kitchen sinks), leaving potential45

contamination pathways open through other water points. Furthermore, a well contaminated with nitrate pollution can reduce

the value of a home by up to 6% (Guignet et al., 2016). Additional options exist to remove contaminants at the source. For

instance, traditional septic systems are designed to mitigate the effect of pathogens, and advanced septic systems can remove

nitrates from septic leachate (Washington State Department of Health, 2005). However, the uncertainty of groundwater flow,

combined with the lay knowledge of most homeowners, means that residents often have little clarity about the source of50

contamination of their own well. Given that contamination could originate from a neighboring well, homeowners may lack

incentives to maintain or upgrade their septic system even if doing so would decrease pollution risk for all residents. This

discrepancy means that the best choice for each individual household may be in conflict with the best choice for the community

as a whole. Such scenarios are known as social dilemmas because the solution that maximizes the welfare of the community

does not correspond to outcomes that arise from individual community members acting rationally and independently (Kollock,55

1998).

The management challenge pertaining to private water systems has focused primarily on understanding the water quality,

public health, and technical aspects of these systems. These analyses are directly related to questions of the severity of the

problem and the extent to which such systems should be regulated. Here, we re-frame the problem from the perspective of

household utility, with the goal of identifying when households may benefit from policy instruments to support solutions60

that maximize collective welfare. To address this challenges, we develop a game theoretic model to understand how social

dilemmas might arise in private water systems. Framing pollution and treatment behavior through game theory has been done

in a variety of case studies (Madani, 2010). However, most game theoretic models of water quality focus predominantly on

surface water quality (Šauer et al., 2003; Schreider et al., 2007; Estalaki et al., 2015) and we are unaware of any studies that

apply game theory to water quality in private water systems with a domestic well and septic field. In order to frame the problem65

in quantitative terms, we consider the net utility, including the costs and benefits of water protection (as identified by Raucher,

1983; Crocker et al., 1991), and the perceived economic value of clean groundwater (Caudill and Hoehn, 1992; Brouwer and

Neverre, 2020; Charalambous, 2020).

We proceed to develop theory regarding social dilemmas in communities with predominantly private water systems. We be-

gin by focusing on two-household scenarios to capture different social dilemmas that could occur in such simple configurations70

(Sect. 2) and how player preferences depend on the cost of septic treatment as well as the cost of contaminated well water.

We then build on this framework to understand how social dilemmas arise in N-player games with varying housing density

(Sect. 3). In order to evaluate the potential for social dilemmas in a real-world scenario, we apply the model to a case study

in St. Joseph County, Indiana (Sect. 4) where nitrate contamination in private water systems has been an ongoing concern for

the county health department. Finally, we review the different types of social dilemmas that may occur in such private water75

systems, along with a discussion of barriers and policy opportunities to support effective management strategies (Sect. 5).
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2 Two-household contamination games

2.1 Expected utility and payout matrices

We first consider a two-player static game with complete information, wherein the payout structure of both players is common

knowledge. Each player chooses whether to upgrade their septic to an enhanced system with contaminant removal (E) at some80

cost, or to keep a basic septic system (B) at no cost. The cost of upgrading, Cσ , represents the difference between the enhanced

septic system and the cost for a conventional system (e.g., as mandated by local regulations). If a player’s well becomes

contaminated, that player also incurs a cost, Cx. The expected utility of an individual household i is therefore

E[Ui] =−σiCσ − piCx , (1)

where σi ∈ {0,1} represents the choice of each household to maintain a basic septic system (0) or upgrade to an enhanced85

system (1). The probability pi describes the likelihood of contamination of player i’s well, which depends on the septic system

decisions made by both players (σi and σj) and on the groundwater flow direction. Lastly, the cost of contamination, Cx,

can either represent the individual cost of household water treatment to improve household water quality (which represents

a lower bound on the cost, Yadav and Wall, 1998), or the cost of using contaminated water and associated consequences

(Raucher, 1983). Note that no player would benefit from upgrading their system if doing so was more expensive the cost of90

contamination. To avoid this trivial outcome, we consider only situations with Cx larger than Cσ . We evaluate this requirement

and explore associated costs of nitrate contamination in greater detail in Sect. 4.

Because Eq. (1) depends on binary decisions taken by two interacting players, its outcomes can be represented as a 2× 2

matrix. The rows and columns of the matrix represent the decision by players 1 and 2, respectively, on whether or not to

upgrade. Each cell of the matrix is populated by a pair of normalized payouts representing the expected utility of each player95

for each combination of decisions. Payouts from Eq. (1) are normalized so that the summed total payout across players for

each cell ranges between 0 and 2. Two types of matrix cells are particularly noteworthy:

– The Nash Equilibrium (NE) represents each player’s best (i.e., utility maximizing) response to the other player’s own

utility-maximizing decision.

– The Social Optimum (SO) represent the combination of decision that maximizes the summed expected utility of both100

players.

Whether or not the NE and SO decision outcomes overlap depends on the ratio of costs (i.e., the “cost ratio”,Cx/Cσ) and the

groundwater configuration between households. We define a social dilemma as a situation where the SO outcome is different

from at least one NE outcome. We proceed to enumerate the different configurations of NE and SO in the 2× 2 games that

emerge from Eq. (1) for symmetric cases (Sect. 2.2), and in the situation where the two players face different and uncertain105

costs (Sect. 2.3). In both situations, we identify and characterize emerging social dilemmas.
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2.2 Symmetric two-player games

If both players face identical costs (Cx and Cσ) and contamination by (and of) each player is symmetric, four different game

configurations emerge depending on the spatial configuration of the two players (Fig. 2). If neither player contaminates their

own well or that of the other player, neither player wishes to upgrade to an enhanced septic system and the Nash Equilibrium110

is identical to the Social Optimum (Fig. 2a). When both players contaminate only their own wells, they are both incentivized

to upgrade their septic system and the Nash Equilibrium and Social Optimum solutions are again identical (Fig. 2b).

A social dilemma only occurs when each player’s decision affects water quality in the other player’s well. In the case where

both players only contaminate the other player’s well without contaminating their own well (Fig. 2c), the best response for

each player would be not to upgrade, regardless of the decision of the other player. While neither player has anything to115

gain from paying to upgrade their own septic, both players would benefit if the other player upgrades. This leads to a classic

Prisoner’s dilemma (see Kollock, 1998) where neither player upgrades, despite the fact that a situation where both players

upgrading would improve their utility and is the social optimal outcome. The final situation, where players contaminate both

their own and the other players’ well (Fig. 2d) gives rise to a second Nash Equilibrium where both players upgrade. In this

case, upgrading is the best response for each player when the other player also decides to upgrade. However, not upgrading120

will be the best response for each player if the other player decides not to upgrade. By upgrading in the latter case, the player

would pay the full cost of upgrading while still being contaminated by the other player’s septic system. Under these conditions,

the benefits of upgrading are contingent on the other player doing the same (Fig. 2d). This scenario is known as a Stag-hunt

game, where players face conflict between individual safety and social cooperation (Kollock, 1998). In the canonical Stag-Hunt

game, two hunters independently decide whether to hunt a stag or a hare. A hare can be hunted by an individual hunter, while125

an individual player deciding to hunt a stag will fail. The much more valuable stag can only be successfully hunted if both

hunters decide to hunt it. The game has two Nash Equilibria, where either both players hunt the stag or both players hunt the

hare. The second Nash Equilibrium (which, here, corresponds to a situation where neither household updates their septic) is

not a Social Optimum and therefore creates a social dilemma.

2.3 Uncertainty and asymmetry in groundwater behavior130

In addition to these symmetric games with complete information, households may have uncertainty with respect to ground-

water behavior. We consider five different configurations of households (Fig. 3, I-V) and allow groundwater to flow west,

east, or north, with corresponding probability P (West), P (East), and P (North). Allowing flow towards the south would

produce identical game structures as flow towards the north, and we exclude this unnecessary possibility. The expected util-

ity can be calculated as the weighted average utility from the end-member scenarios. For instance, consider scenario II in135

Fig. 3. If P (West) = 0.4, P (East) = 0, P (North) = 0.6, and neither player upgrades their septic system, the expected

utility for each player would be 0.4Cx. Considering all combinations of household configurations and flow probabilities (i.e.,

with P (North),P (West),P (East) ∈ {0,0.2,0.6,0.6,0.8,1}), this approach generates three types of social dilemmas (Fig. 3,

right): the aforementioned Prisoner’s Dilemma (PD) and Stag-Hunt game (SH), and an additional situation that we refer to as
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Figure 2. Payouts and social dilemmas in symmetric games. In each scenario, the choice to keep a basic septic system results in (a) no

contamination, (b) self-contamination, (c) contamination of the other player, and (d) contamination of both players. Payouts represent the

situation where Cx = 1.5Cσ . Utility is normalized so that the social optimal scenario produces an average payout of 1, and the joint worst

scenario produces an average payout of 0. Arrows indicate direction of groundwater flow. For scenarios (a) and (b) the Nash equilibrium

(red outline) and social optimal (gray shading) are equivalent. A social dilemma arises for scenarios (c) and (d), as there exists a difference

between (at least one) Nash equilibrium and the social optimum (red for Prisoner’s dilemma and orange for Stag-Hunt).

an Asymmetric Dilemma (AD). In the latter dilemma, the social optimum differs from the Nash equilibrium which exhibits140

asymmetric payouts favoring one player over the other.

To better understand how asymmetric dilemmas arise, consider configuration I as an example, where P (West) = 0.2,

P (East) = 0.8, and P (North) = 0 (i.e., marked by the +, ◦, and × in Fig. 3, I). If neither player upgrades, the player

on the left faces low expected cost of contamination due to the low probability of flow to the west, whereas the player on the

right faces a high expected cost of contamination due high probability of flow to the east. This creates an asymmetric dilemma145

where the left household chooses not to upgrade in the Nash equilibrium, but would need to upgrade to reduce costs for the

other player and achieve the Social Optimum. Multiple types of Asymmetric Dilemmas exist. In AD-i, one player upgrades in

the Nash equilibrium because they have a high risk of self-contamination. However the social optimum requires that the second

player upgrade because both have a modest risk of contamination from this player. In this situation the Nash equilibrium is

(E, B) or (B, E) and the social optimum is (E, E). In AD-ii, neither player faces a high risk of self-contamination, but one150

player faces a high risk of contamination from the other player. The Nash is (B, B) and the social optimal is (E, B) or (B, E).

Similarly in AD-iii, neither player has a high risk of self-contamination. However, the combined risk of contamination from

either player means that both players must upgrade to achieve the Social Optimum. In this situation, the Nash is (B, B), and

the social optimum is (E, E).

Generally, there tends to be greater likelihood of a social dilemma if the relative risk of contamination is high. This can155

arise if the cost of contamination is high compared to the cost of upgrading (i.e. Cx >>Cσ , Fig. 3, right) or if the probability

of contaminating the other player is high compared to the probability of self-contamination. Conversely, a high probability of

6

https://doi.org/10.5194/hess-2021-312
Preprint. Discussion started: 15 June 2021
c© Author(s) 2021. CC BY 4.0 License.



Cx = 1.5Cσ Cx = 2Cσ Cx = 3Cσ

I
II

III
IV

V

0 0.4 0.8 1 0 0.4 0.8 1 0 0.4 0.8 1

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

P(East)

P(
W
es
t)

i

PD SH AD

ii iii

Social dilemma

No dilemma

Potential
benefits of

cooperation by
dilemma type

0

0.2

0.4

0.6

0.8

1

N
EW

P(North)

P(West) P(East)II

I

III

IV

V

Figure 3. Social dilemmas under various household configurations and various cost ratios. (left) Household configurations I-V, with un-

certainty about the mean direction of groundwater flow. (right) Social dilemma types Prisoner’s Dilemma (PD), Stag-Hunt game (SH), and

Asymmetric Dilemma (AD) along with the potential benefits of cooperation, given as the difference in normalized payouts between the social

optimal and the (least desirable) Nash equilibrium, averaged for both players. The main axes represent the probability of flow towards the

west and east, respectively, with the remainder being the probability of flow towards the north (i.e., P (North) = 1−P (West)−P (East)).

self-contamination circumvents social dilemmas by incentivizing the contaminating household to upgrade, as seen in scenario

I (P (West)→ 1) and III (P (West)→ 1 or P (East)→ 1).

Changing costs (either Cx or Cσ) lead to transitions across different types of social dilemmas, indicated by the symbols160

+, ◦, × in Fig. 3, with payouts shown in Fig. 4. For instance in configuration I, the social dilemma changes from AD-ii with

Cx = 2Cσ (◦) to AD-iii with Cx = 3Cσ (×) (Fig. 4a). Conversely, in configuration III, the social dilemma changes from a

Prisoner’s Dilemma with Cx = 1.5Cσ (+) to AD-i with Cx = 2Cσ (◦) to no dilemma with Cx = 3Cσ (×) (Fig. 4b).
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Figure 4. Transitions among social dilemmas by changing the cost ratio and the probability of groundwater flow direction. Each sce-

nario corresponds to the configuration (I, III, IV) and parameters (+, ◦, ×) presented in Fig. 3. (a) Household configuration I with

P (West) = 0.2, P (East) = 0.8, and multiple cost ratios including Cx = 1.5Cσ (AD-ii), Cx = 2Cσ (AD-ii), and Cx = 3Cσ (AD-iii). (b)

Household configuration III with P (West) = 0.4, P (East) = 0.6, and cost ratios including Cx = 1.5Cσ (Prisoner’s Dilemma), Cx = 2Cσ

(AD-i), and Cx = 3Cσ (no dilemma). (c) Household configuration IV with P (West) = 0.2, Cx = 3Cσ , and multiple probabilities flow

direction including P (East) = 0.2, P (West) = 0.6 (AD-ii), P (East) = 0.4, P (West) = 0.4 (Prisoner’s Dilemma), and P (East) = 0.6,

P (West) = 0.2 (AD-iii).

Changes in the uncertainty associated with groundwater behavior can also lead to transitions across different types of social

dilemmas. In particular, in configuration IV with Cx = 3Cσ , the social dilemma changes from AD-ii with P (East) = 0.2165

(+) to PD with P (East) = 0.4 (◦) to AD-iii with P (East) = 0.6 (×) (Fig. 4c). These dynamics have practical implications

because each type of dilemma (PD, SH, and AD) is associated with a distinct set of appropriate policy responses, as discussed

in Sect. 5.

3 A general N-player game and groundwater model

3.1 Social dilemmas in the symmetric game170

The two-by-two games described above demonstrate the variety of social dilemmas that can exist within groundwater con-

tamination games. We now translate the game to an N-player system in which each player faces the same decision (σi) and

costs (Cx and Cσ) as above, while also generating a more plausible representation of groundwater behavior and probabilities

of contamination.
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Consider the binary random variable Xi to denote the event that player i has their well contaminated. In this version of the175

game, the associated probability pi = P (Xi) is the union of probabilities that the well is contaminated by any septic system j:

pi =
⋃

j

pij . (2)

We write the probability of well i being contaminated by septic tank j as pij = P (Xij |σj ,dij ,G), where dij is the distance

between the domestic well and septic system, andG represents the set of hydrogeological parameters that determine groundwa-

ter flow. The probability pij therefore encapsulates the groundwater hydrology between i and j and the decision by j whether180

or not to upgrade their septic system. This probability associated with each of the N players can therefore be determined by a

groundwater model (Sect. 3.2).

We begin by considering the key economic trade-off that is encapsulated by the decision (and associated risks) of whether

or not to upgrade a septic system. Utility within the game can be considered from the perspective of the individual household

(whether or not they should upgrade) and the perspective of the community (whether or not everyone should upgrade). Because185

the game is fully symmetric, we focus on the utility of an individual player given by Eq. (1), which also representative of the

mean utility for households in the community. The reduction in probability of contamination for player i if everyone upgrades

is given as ∆pi = pi(σj = 0)− pi(σj = 1) ∀ j. All players would be better off with everyone upgrading if ∆piCx/Cσ − 1 is

positive. In contrast, the reduction in the probability of contamination of player i if he is the only one to upgrade is ∆pii =

pi(σi = 0,σj = 0)− pi(σi = 1,σj = 0) ∀ j 6= i. An individual player wishes to upgrade their septic system if ∆piiCx/Cσ − 1190

is positive. Furthermore, a social dilemma occurs when

∆piiCx−Cσ < 0<∆piCx−Cσ . (3)

In other words, all players would benefit from upgrading (right hand side), but any individual player will endure a decrease in

utility if they are the only one to upgrade (left hand side). The occurrence of a social dilemma can be understood by plotting

these quantities against each other (Fig. 5). In particular, high ∆pi and Cx/Cσ increase the benefits of cooperation (everyone195

upgrades) because the consequences of not upgrading are steep (high probability, and associated costs, of contamination).

Conversely, low ∆pii and Cx/Cσ increase the maximum loss of upgrading individually (i.e., the expected decrease in utility

when no one else upgrades), because individual benefits of upgrading are small. Both the cost ratioCx/Cσ and probability ratio

∆pii/∆pi play an important role in determining whether or not a social dilemma occurs, and characterizing social dilemmas

requires understanding both properties together (Fig. 5c).200

Cooperation is more likely to emerge when the maximum loss of upgrading (which occurs if a player is the only individual to

upgrade) is low relative to the benefits of cooperation. This situation is represented by the ◦ in Fig. 5c, which could occur when

the cost of contamination is relatively high (Cx >>Cσ) and there is a reasonable chance of self contamination (∆pii/∆pi→ 1)

but not enough to convince an individual to upgrade without collective action (i.e., not in quadrant I). Conversely, cooperation is

likely more difficult when the maximum loss of upgrading is high in comparison to the benefits of cooperation. This situation205

is represented by the × in Fig. 5c, and would occur when the cost ratio (Cx/Cσ) is just over 1 and the probability of self

contamination is negligible (∆pii→ 0).
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Figure 5. Social dilemmas as a result of individual and collective upgrades. (a) Benefits of cooperation, given as ∆piCx/Cσ − 1. (b)

The maximum loss of upgrading, given as the expected decrease in utility for a single house to upgrade in the absence of cooperation

(1−∆piiCx/Cσ). (c) Benefits of cooperation versus the (inverse) maximum loss of upgrading, with a social dilemma occurring in quadrant

II. Blue contours indicate constant cost ratios (Cx/Cs), with higher cost ratios increasing the benefits of upgrading. Red contours indicate

the ratio of ∆pii/∆pi, with lower values meaning that players get little benefit from upgrading their own septic tank relative to all other

players upgrading.

3.2 Groundwater model

Groundwater behavior determines the probability that any well i could be contaminated by leachate from a septic field j, pij .

These probabilities and their unions, as required by Eq. (3), could be determined via any groundwater model appropriate for210

the circumstances. Horn and Harter (2009) used a MODFLOW model with a fine-scale grid to demonstrate that domestic wells

capture groundwater primarily from a region that approximates a cylinder extending outwards from the screened portion of the

well. Bremer and Harter (2012) extended this concept by assuming constant recharge and uniform lateral groundwater flow,

such that the probability of domestic well contamination could be determined purely from the configuration of septic tanks and

domestic wells along with uncertainty on the mean direction of flow.215

Based on these considerations, we incorporate uncertainty in the vertical direction of flow, allowing the calculation of pij

using neighborhood layouts and simple aquifer geometries. The resulting model can be calibrated such that overall probability
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of contamination reflects actual contamination rates. In the model, the probability of contamination pij is equivalent to the

probability that a particle from septic system j intersects well source area i (Fig. 6). The model encapsulates uncertainty in

the mean horizontal direction of flow (θ, Fig. 6a) as well as uncertainty in the flow trajectory within the vertical plane (uz/ur,220

Fig. 6b), given that the particle may pass over or underneath the well (Horn and Harter, 2009).

rs

rĳ

rĳ

z1
Well casing

Well
screen

0

ur ~ U(α1uz, α2uz)

uz

GW
divide S

S×L
Fluxes

L ~ U(α1d, α2d)

θ ~ U(θ1, θ2)

d

z2

a

Septic
leachate

Potential flow
trajectories

Well
Idealized
plane of
capture

Possible contamination

No conta
mination

Source
area

plan view

cross section
b-i b-ii

φ

Figure 6. Groundwater model to determine the probability of contamination of well i from septic system j. (a) Plan view of the septic field,

domestic well, and possible flow trajectories. The mean direction of flow is unknown and follows a uniform distribution with θ ∼ U(0,2π).

(b-i) Vertical and horizontal groundwater fluxes are determined by seepage, S, and the distance to the groundwater divide, approximated

by L∼ U(0,Lmax). (b-ii) The well is cased to a depth z1 and screened from z1 to z2, with the possibility that contaminants can pass over

or under the well. Velocities are determined from the fluxes such that uz = f(S) and ur = f(S×L). It follows that uz is fixed while ur

contains uncertainty represented by a uniform distribution. The well is contaminated if the flow path intersects the idealized plane of capture

(red dashed line), representing the source area of the well, in both the horizontal and vertical planes. See text for details.

Flow velocities in the θ-z plane are determined by the vertical and horizontal velocities, uz and ur, which are, in turn,

determined by the vertical and horizontal fluxes. We assume steady state behavior, such that the vertical flux is given by

average annual seepage to the water table, S. All water is assumed to eventually flow toward a linear sink (e.g., a gaining

stream), so that the horizontal flux can be estimated as the rate of seepage multiplied by the uphill contributing area. When225

considering a unit width of the aquifer, this rate is given by S×L, where L is the distance to the groundwater divide.

For parsimony and in the absence of additional information, we assume that uncertainty in the mean direction of groundwa-

ter flow can be represented by a uniform distribution, θ ∼ U(θ1,θ2). Uncertainty in the θ-z trajectory of flow is determined by

uncertainty in the distance to the groundwater divide, also parameterized as as uniform distribution, L∼ U(L1,L2). Wells are

cased from the ground surface to depth z1 and screened from z1 to z2. Flow paths to the well occur only from groundwater230
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within the range of depth of the screened portion of the well, [z1,z2]. The assumption of uniform uncertainty in flow direction

has been applied in similar systems (Bremer and Harter, 2012), and the possibility that contamination can pass over or under-

neath a well has been demonstrated using MODFLOW (Horn and Harter, 2009). The groundwater model was implemented

in an R package (Penny, 2021) that allows the calculation of both pij and pi. As information is gained and the most critical

components identified, more complex representations can readily be added, but starting with a parsimonious representation and235

set of models has significant benefits with any probabilistic risk assessment (Bolster et al., 2009; de Barros et al., 2011).

4 Case study

4.1 Study site: St. Joseph County, Indiana

In order to evaluate the potential for social dilemmas to emerge in real-world scenarios, we apply the N-player game described

above to community nitrate contamination in St. Joseph County in northwestern Indiana, United States (see Fig. 1b). The240

county is home to 271,000 residents, with approximately half (152,000) living in the cities of South Bend and Mishawaka

(U.S. Census Bureau, 2019). Outside the city boundaries, the most common water supply and treatment are domestic wells

and septic systems, respectively, that abstract from and discharge to the St. Joseph Aquifer (Bayless and Arihood, 1996). We

obtained data on nitrate levels in domestic wells from the St. Joseph County Health Department (https://www.sjcindiana.com/

302/Health-Department), which maintains publicly available records of nitrate tests recorded when new wells are installed or245

when houses are sold. The data confirm that in higher-density residential areas of the county, nitrate contamination is common,

particularly in Centre Township and Granger Census Designated Place (CDP). For instance, 7% and 5% of household tests,

in Centre Township and Granger, respectively, exhibited nitrate concentrations over the Environmental Protection Agency

(EPA) Maximum Contaminant Level (MCL) of 10 ppm. Moreover, 43% and 30% of household tests in each of the two areas

exhibited nitrate concentrations over 5 ppm. To address this problem, the city has been working towards extending sewer lines250

into Granger, but sewer connections are optional and residents must pay a fee for the connection (St. Joseph County, 2011).

New developments may be more likely to be connected to piped water and sewers (Sheckler, 2021), but the issue in existing

homes remains. As yet, there is no clear solution to the problem. To explore the possibility of social dilemmas and potential

policy solutions, we generate parameter estimates for the contamination game described above, and calibrate the model to

observed prevalence of contamination in Centre Township and Granger CDP.255

4.2 Model parameterization and calibration

Both the economic portion of the model and the groundwater portion must be parameterized. For the economic portion, a

complete cost of contamination is difficult to obtain. The health consequences of nitrate contamination are most acute for

infants who may develop methaemoglobinaemia (Knobeloch et al., 2000), whereas the long-term consequences of exposure

for children and adults are potentially concerning but unclear (Ward et al., 2018). We therefore focused on the perceived cost260

of contamination, using existing empirical studies that associate the effect of contamination with a reduction in the price of
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houses. In particular, Guignet et al. (2016) used a hedonic analysis of nitrate well tests and real estate transactions in Lake

County, Florida to determine that the typical reduction in home value was 2-6% for those homes with nitrate contamination

over the EPA MCL. We consider this loss in home value to be a plausible estimate of the cost of contamination.

The cost of upgrading the septic system to reduce or prevent nitrate contamination has been documented for EPA approved265

systems. We consider the Aquapoint, Inc., BioclereTM 16/12 system, with a typical price range of $6000-8000 USD and Bio-

Microbics, Inc., RetroFAST®0.375 System, with a price range of $4000-5500 USD (Washington State Department of Health,

2005; US EPA, 2007).

For the groundwater model, we assumed that the mean direction of flow can be parameterized by a uniform distribution

spanning West to South (in Granger) and Northwest to Northeast (in Centre), roughly approximating the most common direc-270

tions of flow in the St. Joseph Aquifer towards the St. Joseph River (Bayless and Arihood, 1996). Indiana regulations require

that wells are installed at a depth of at least 25 ft (7.6 m) (Indiana State Department of Health, 2021), and the depth to the

groundwater table is typically 5-15 ft (Bayless and Arihood, 1996). Given that wells reduce the water level locally, we assume

a groundwater depth at the upper end of this range (15 ft, 4.6 m). We further assume that wells were screened down to the bot-

tom of this aquifer layer (70 ft, 21.3 m) (Bayless and Arihood, 1996). We approximate the distance to the groundwater divide275

as a uniform distribution characterized by the average width of the aquifer divided by the average height, giving an approxi-

mate ratio of 10-to-1 (Bayless and Arihood, 1996). Although these parameters are representative of the groundwater scenario,

the uncertainty embedded in these estimates underscores the importance of calibrating the model to observed contamination

probabilities.

We use the radius of well capture (rs) as the only calibration parameter. This value represents the maximum lateral distance280

from the well that the center of a septic plume could pass through to generate contamination within the well. Therefore, the

value could potentially change for different regions of the aquifer and different thresholds of contamination. We calibrate the

model in both Centre Township and Granger CDP for contamination thresholds of 5 ppm and 10 ppm (Fig. 7a).

In general, with a 10 ppm threshold, the probability of contamination is low (see figure 7a). With a 5 ppm threshold, the

likelihood is much higher, and there is a clearer relationship between contamination rates and housing density. The issue of285

social dilemmas depends on assumptions of the system. We specify four scenarios, representing different assumptions on the

costs and likelihood of contamination. In all cases the cost of contamination is a fraction of the home value:

– i. Centre 5 ppm calibration, $4000 to upgrade septic, Cx equals 5% of home value.

– ii. Centre 10 ppm, $4000 to upgrade septic, Cx equals 5% of home value.

– iii. Granger 5 ppm, $8000 to upgrade septic, Cx equals 4% of home value.290

– iv. Granger 10 ppm, $8000 to upgrade septic, Cx equals 4% of home value.

We calibrated rs for each scenario using observed data, allowing us to determine ∆pi and ∆pii based on housing density.

We used three values housing density to evaluate the model: 1, 2, and 3 households per acre. We further calculated the cost of
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Figure 7. St. Joseph Case study. (a) Percent of nitrates tests exceeding a given threshold versus the housing density for Centre Township and

Granger CDP. (b) Map of St. Joseph County, with colors indicating the housing density and percent of nitrates tests exceeding 5 ppm. (c)

Social dilemmas based on housing price and housing density (shown), and costs of contamination and septic upgrades (not shown, see text).

Cooperation benefits, ∆piCx/Cσ − 1, are shown as background shading (in blue) and the maximum loss of upgrading, 1−∆piiCx/Cσ , is

shown as the fill color of example points (in red). Note that both are defined the same as in Fig. 5.

contamination for multiple values of home prices: $100k, 400k, and 700k. These can be mapped to the space ∆pi vs Cx/Cσ

(Fig. 7c).295

4.3 Social dilemmas

With a 10 ppm threshold, it is generally unlikely, except for more expensive houses (see Fig. 7c for ranges), that a social

dilemma will occur under the assumptions in scenarios ii and iv. With a 5 ppm threshold and assumptions as shown, it is much

more likely that a social dilemma would occur. In fact, in some cases everyone chooses to upgrade (no social dilemma). This

represents an extreme case with a large-enough region of well capture and co-located wells and septic systems. If the direction300

of groundwater flow were known, the septic would likely be placed downstream from the well such that ∆pii would be reduced
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Figure 8. Pareto efficiency and upgrades required for the Social Optimum. The five types of dilemmas can be mapped according to whether

or not there is a Nash equilibrium that is Pareto inefficient, and the number of players that would have to upgrade to achieve a social optimal

outcome (PD and AD games). In the Stag-Hunt game, if one player can be convinced to upgrade then the other player will be incentivized to

upgrade as well.

and these situations could become social dilemmas. The 5 ppm threshold is below the EPA MCL for nitrates, and therefore

Cx/Cσ could be overestimated. However, this ratio captures only the internalized costs to the homeowner and not additional

public health or environmental externalities that could affect the socially optimal utility. This scenario is therefore illustrative

of what could happen when such externalities are incorporated. Heterogeneity in groundwater contamination still plays a large305

role. For instance, in some neighborhoods the rates of contamination were as high as 50% over 10 ppm, whereas the calibrated

model estimated a contamination rate of about 12% (Fig. 7a, ii and iv). Thus the model is conservative in some cases and, if

these differences could be resolved, then social dilemmas could be evaluated with greater precision. For instance, some wells

tap into the deep aquifer, but only 10% of wells in the dataset came with well depth, therefore it is possible that wells in the

shallow aquifer have higher rates of contamination. Other factors include localized abnormalities. For instance, septic design310

and maintenance practices play a role in septic water quality and well contamination, and lakes exist in some neighborhoods

that may be recharging and diluting groundwater.

5 Discussion

The results demonstrate that multiple types of social dilemmas can arise in the context of groundwater contamination of

private water supply and sanitation systems. When considering two-player games with uncertainty in the mean direction of315

groundwater flow, we identified five types of social dilemmas including a Prisoner’s Dilemma, Stag-Hunt game, and three

types of Asymmetric Dilemmas. The type of social dilemma can serve as a guideline to understanding barriers to cooperation

and policy opportunities to shift from the Nash equilibrium to the Social Optimum (Fig. 8).
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The Prisoner’s dilemma is, in essence, a free-rider problem: a market failure that occurs when people might benefit from

services without having to pay the associated cost (Fischbacher and Gachter, 2010). Here, the decision keep a basic system (B)320

strictly dominates the decision to upgrade to an enhanced system (E), and each player benefits the most when only the other

player upgrades. This allows the player in question to utilize the cleaner water associated with the other player’s upgraded septic

without having to pay for an upgrade themselves. A variety of market design approaches have been identified to address the

free-rider problem in the context of public goods, including assurance contracts (Tabarrok, 1998), Coasian bargaining (Farrell,

1987) and incentives for cooperation (Balliet et al., 2011). The Nash equilibrium in the Prisoner’s dilemma game is not Pareto325

efficient, meaning that all players can benefit if everyone upgrades their septic system. The free-rider problem can therefore

also be addressed through altruistic social norms (potentially combined with enforcement and sanctions) to support collective

action (Kerr, 1992). In other words, despite the various obstacles to overcoming the Prisoner’s Dilemma, there exist multiple

governance approaches to address this challenge and initiate community-wide upgrades to enhanced septic systems, allowing

everyone to benefit from cleaner groundwater and reduced contamination costs.330

In contrast, the Stag-Hunt game (also known as assurance game) is a problem of strategic uncertainty, where players might

fail to achieve a socially-optimal equilibrium by not being able to coordinate their decision-making. Here, either player can

only benefit from upgrading if the other player upgrades as well. Under these conditions, they will only endure the cost of

upgrading if they are reasonably sure that the other player is also upgrading. Strategic uncertainty can be resolved through

trust and reliable information (Jansson and Eriksson, 2015). In contrast with the Prisoner’s Dilemma, where all players must335

be incentivized to upgrade, the assurance game only requires any player to buy in (e.g., through targeted subsidies). The other

player will reciprocate if she has sufficient assurance of the other player’s buy in. As such, public programs that provide some

measure of transparency or assurance that some households have upgraded their septic systems would encourage additional

households to also upgrade.

In each of the Asymmetric dilemmas, the Nash equilibrium is Pareto optimal but one player receives outsize benefits at340

the expense of the other player. A greater social optimum can be achieved by one player sacrificing some of their utility.

Asymmetric Dilemmas i and ii are akin to the Stag-Hunt game in that the social optimal is one upgrade away from the

Nash equilibrium. However, unlike the Stag-Hunt game, achieving the social optimal requires convincing a specific player to

upgrade. Any subsidy must therefore specifically targeted to the appropriate player, which requires reliable information on all

players’ utility parameters. Finally, Asymmetric Dilemma iii is partially similar to a Prisoner’s dilemma because the social345

optimal requires both players to upgrade. However, unlike the Prisoner’s dilemma where both players increase their utility by

achieving the Social Optimal, one player is worse off in the social optimal compared to the Nash Equilibrium. In this situation,

targeted subsidies or side payments might be needed, in addition to social or market approaches to address potential free-rider

problems.

Social dilemmas in N-player games can be understood by non-dimensionalizing the expected utility when everyone upgrades350

(i.e., the cooperation benefits) and expected utility when only one player upgrades (i.e., the maximum loss of upgrading). Social

dilemmas arise when both are positive. Situations akin to the Prisoner’s dilemma are likely to arise when the cooperation

benefits are modest and the maximum loss of upgrading is high. Dilemmas akin to a Stag-Hunt game are more likely when the
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cooperation benefits are high and the maximum loss of upgrading is low and pii∩pij > 0, meaning that an individual’s upgrade

becomes more appealing after another player upgrades. The three asymmetric dilemmas only emerge in situations where355

(known) specific players have undue influence on the contamination of other players’ wells. We assume that the N-players are

homogeneously located throughout the neighborhood and do not have perfect information on the flow direction of groundwater,

and that all households face similar costs and emit comparable pollution loads. Under these conditions, asymmetric dilemmas

would only emerge near the edges of the neighborhood and therefore, assuming the neighborhood is sufficiently large, only

concern a small fraction of the households. Although both types of symmetric social dilemmas (Prisoner’s Dilemma and Stag-360

Hunt) are possible, the Prisoner’s dilemma situation is more likely because the case study in St. Joseph County suggests that

our model potentially overestimates ∆pii and the maximum loss of upgrading (Fig. 4). However, the specific benefits and costs

of such upgrades are likely to be location-specific and depend on a variety of factors. While we show that such dilemmas are

possible in St. Joseph County, additional groundwork would be needed to more clearly identify the type of situation that exists

within the county, including the specific locations where housing and groundwater behavior give rise to such dilemmas.365

6 Conclusions

Contamination of domestic wells by septic leachate is a public health concern in residential areas with high housing density. The

issue has been particularly difficult to resolve for public health officials and residents alike. We develop a theoretical framework

to understand how misaligned incentives can give rise to social dilemmas within such private water systems. A variety of social

dilemmas can occur in such situations, depending on the groundwater hydrology, costs of various treatment technologies, and370

configurations of households. These dilemmas include the classic Prisoner’s Dilemma and Stag-Hunt game, as well as an

Asymmetric Dilemma that favors some players over others. These dilemmas can occur even if all households face the same

economic costs of contamination and treatment. As such, this manuscript provides a theoretical basis to identify when social

dilemmas could be occurring and offers a new perspective through which to approach management of such systems. A better

understanding of the challenges for any specific location could be achieved using more sophisticated groundwater and transport375

models combined with location-specific estimates of the associated costs of contamination and septic upgrade. Such analyses

would better resolve the details pertaining to social dilemmas, but the overarching framework would remain unchanged.

Code and data availability. Code for the two-player games and groundwater model is available in an R package (Penny, 2021) and can be

accessed online at https://github.com/gopalpenny/nitratesgame. Household nitrates data are available from the corresponding public agencies.
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