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 7 
Abstract. Time irreversibility or temporal asymmetry refers to the steeper ascending and gradual descending parts 8 

of a streamflow hydrograph. The primary goal of this study is to bring out the distinction between streamflow 9 

indices directly linked with rising limbs and falling limbs and to explore their utility in uncovering processes 10 

associated with the steeper ascending and gradual descending limbs of the hydrograph within the time-11 

irreversibility paradigm. Different streamflow indices are correlated with the rising and falling limbs and the 12 

catchment attributes. The key attributes governing rising and falling limbs are then identified. The contribution of 13 

the work is on differentiating hydrographs by their time irreversibility features and offering an alternative way to 14 

recognize primary drivers of streamflow hydrographs. A series of spatial maps describing the streamflow indices 15 

and their regional variability in the Contiguous United States (CONUS) is introduced here. These indices 16 

complement the catchment attributes provided earlier (Addor et al., 2017) for the CAMELS data set. Findings of 17 

the study revealed that the elevation, fraction of precipitation falling as snow and depth to bedrock mainly 18 

characterize the rising limb density, whereas the aridity and frequency of precipitation influence the rising limb 19 

scale parameter. Moreover, the rising limb shape parameter is primarily influenced by forest fraction, the fraction 20 

of precipitation falling as snow, mean slope, mean elevation, sand fraction, and precipitation frequency. It is noted 21 

that falling limb density is mainly governed by climate indices, mean elevation, and the fraction of precipitation 22 

falling as snow. However, the recession coefficients are controlled by mean elevation, mean slope, clay, the 23 

fraction of precipitation falling as snow, forest fraction, and sand fraction. 24 

 25 

1 Introduction 26 

Hydrologists use data to understand the hydrologic system by identifying several unique catchment signatures and 27 

employ various flow descriptors independent of statistical assumptions yet capable of capturing signals that reflect 28 

the basin's long-term unique behavior. Hydrological indices, commonly referred to as hydrologic metrics, 29 

hydrologic signatures, or diagnostic signatures, are quantitative flow metrics that characterize statistical or 30 

dynamical hydrological data series (McMillan, 2021). Specifically, streamflow indices are flow descriptors 31 

derived from discharge time-series data, and a considerable collection of indices are available to aid in the better 32 

characterization of hydrological features, ranging from basic statistics like the mean to more sophisticated metrics 33 

(Addor et al., 2018; McMillan, 2021). In many cases, daily streamflow records are not permitted for redistribution; 34 

however, researchers have computed streamflow indices and made them publicly accessible.   35 
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Hydrological indices are increasingly used in emerging areas such as global-scale hydrologic modeling and large-36 

sample hydrology to extract relevant information and compare the different watershed processes (Addor et al., 37 

2017, 2018; McMillan, 2021). These indices offer an indirect way to explore hydrological processes as well as 38 

provide insights into hydrologic behavior in catchments where data other than streamflow is restricted and are 39 

widely used in process exploration, model calibration, model selection, and catchment classification (Addor et al., 40 

2018; Clark et al., 2011; Kuentz et al., 2017; McMillan et al., 2011; Sawicz et al., 2011). McMillan (2021) 41 

presented a classification that differentiates between statistics and dynamics-based signatures and between 42 

signatures at different timescales. 43 

The relevance of time irreversibility (or temporal asymmetry) of streamflow variability on a daily scale has been 44 

emphasized in recent studies (Koutsoyiannis, 2020; Mathai and Mujumdar, 2019; Serinaldi and Kilsby, 2016). 45 

The disparity in physical mechanisms driving the hydrograph's rising and falling limbs (Fig.1) contributes to time 46 

irreversibility. Koutsoyiannis (2020) shows that irreversibility may be ignored at scales relevant to hydrological 47 

applications in atmospheric processes, but it is critical to include irreversibility in studies related to streamflow. 48 

Streamflow recessions convey valuable information about the basin storage properties and aquifer characteristics 49 

(Aksoy & Bayazit, 2000). High variability encountered in the recession behaviour of individual segments is 50 

always a challenge in modeling the recession limb (Tallaksen, 1995). Recessions do not follow a simple form due 51 

to their nonlinear nature (Aksoy et al., 2001). Various segments of recession represent different stages in the flow 52 

process and there is a need to differentiate the recession to various segments and to characterize the recession rates 53 

separately. Such segmentation of recession curves enables us to reveal the nonlinear behavior of streamflow 54 

dynamics. Time irreversibility must therefore be acknowledged in streamflow analysis, accounting for the 55 

distinction of the recession into different segments, with a faster recession induced by high discharges caused by 56 

surface runoff and a slower recession caused by baseflow (Fig.1), and the characterization of the recession rates 57 

separately (Mathai and Mujumdar, 2019). In this study, streamflow indices are chosen to better understand 58 

different hydrological processes by recognizing the streamflow hydrograph's temporal asymmetry. The novelty 59 

in the work presented here is to differentiate hydrograph limbs by their time irreversibility property and use their 60 

associated indices to provide an approach to derive insights on the primary drivers of streamflow hydrographs. 61 
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 62 
Figure 1. Schematic representation of rising limb and falling limb 63 

(source: Environment Southland;  64 
https://www.es.govt.nz/environment/water/groundwater/groundwater-monitoring) 65 

The analysis employs a collection of indices drawn from hydrograph shape diagnoses, to extract information about 66 

the properties of rising and falling limbs of the hydrograph. The principle of time irreversibility is encapsulated 67 

by six streamflow indices that characterize the shape of a streamflow hydrograph. 68 

The goals of this study are as follows: i) to identify the key drivers of streamflow hydrograph (rising and falling 69 

limbs) in terms of catchment attributes (eg. mean slope, aridity, fraction of precipitation falling as snow) using 70 

time-irreversibility-based indices; ii) to present a spatial map-based attribute class based on streamflow indices 71 

for a large-sample hydrology dataset. The attribute class is a broad classification of attributes based on a particular 72 

aspect/feature. Topography, climate, and soil are examples of attribute classes. In this study, we present a new 73 

attribute class of streamflow indices related to rising and falling limbs, referred to as “TI-streamflow indices” 74 

(Time-irreversibility streamflow indices).  75 

Hydrograph analysis is referred to as the investigation of the numerous factors that influence hydrograph shape 76 

(Rogers, 1972). The presence of hydrographs with a similar shape in long-term observation series of runoff 77 

suggests that the same conditions of runoff generation reoccur from time to time in the catchment of a river due 78 

to climate cyclicity and as a result of hydrological processes (Khrystyuk et al., 2017). Because climatic factors 79 

are dynamic in space and time, they seem to be the most significant factors influencing the hydrograph shape 80 

provided that changes in catchment conditions like land use are small.  Khrystyuk et al., (2017) suggested that for 81 

the Desna river basin in Russia, temperature, snow water equivalent, and snowmelt conditions are the most critical 82 

factors influencing the shape of hydrographs. However, it is likely that these controls may not be equally important 83 

controls on hydrograph across all regions globally. The shape, timing, and peak flow of a streamflow hydrograph 84 

are influenced spatially and temporally by rainfall and watershed factors (Singh, 1997).  One of the earlier studies 85 

by Roberts and Klingeman (1970) investigated the influence of meteorological and physiographic parameters on 86 

the runoff hydrograph using a physical laboratory model. Storm-related parameters (rainfall intensity, rainfall 87 

duration, storm movement) and basin surface conditions are among the inputs that could be experimentally 88 
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modified in this model. The results revealed that each of these variables mentioned above has a substantial impact 89 

on the hydrograph shape where certain factors had a more considerable effect on the rising limb of the runoff 90 

hydrograph, whereas others were more important in terms of the flood crest (Roberts and Klingeman, 1970). 91 

As shown in numerous studies in the literature, our notion of time-irreversibility and its indices could also helpful 92 

in understanding the catchment drivers of streamflow hydrographs. This study presents an attribute class of 93 

hydrograph shape descriptors with temporal asymmetry. The significance of large-sample hydrology datasets in 94 

open hydrologic science and their potential to improve hydrological studies' transparency is also underlined in 95 

this study. 96 

Large-sample hydrology (LSH) gathers information from a large number of catchments to gain a more 97 

comprehensive understanding of hydrological processes and to go beyond individual case studies. LSH helps 98 

identify catchment behavior and leads one to derive precise conclusions regarding different hydrological 99 

processes and models (Addor et al., 2020). Studies involving large-sample catchments help in understanding the 100 

drivers of hydrological change (Blöschl et al., 2019), in assessing hydrological similarity and classification 101 

(Berghuijs et al., 2014; K. A. Sawicz et al., 2014), in predictions in ungauged basins (Ehret et al., 2014), and in 102 

analysing model and data uncertainty (Coxon et al., 2014) and foster hydrology research by standardizing and 103 

automating the creation of large-sample hydrology datasets worldwide (Addor et al., 2020). LSH assists in 104 

exploring interrelationships between numerous catchment attributes related to landscape, climate, and hydrology 105 

(Addor et al., 2017; Alvarez-Garreton et al., 2018; Gupta et al., 2014; Newman et al., 2015;  Sawicz et al., 2011) 106 

and generalizing rules that can significantly improve the predictability of the water cycle (Alvarez-Garreton et al., 107 

2018). 108 

The primary challenges in fostering LSH are data availability and accessibility, which seriously hinder its use in 109 

data-scarce regions. Despite the fact that a few large-scale hydrology studies have been undertaken, the number 110 

of publicly available large-scale datasets is still restricted (Addor et al., 2017, 2020; Coxon et al., 2020). Moreover, 111 

licensing restrictions and strict access policies make the datasets rarely available to the public (Coxon et al., 2020). 112 

Model Parameter Estimation Experiment project (MOPEX) dataset (Duan et al., 2006), Canadian model parameter 113 

experiment (CANOPEX) database (Arsenault et al., 2016), Global Streamflow Indices and Metadata Archive (Do 114 

et al., 2018; Gudmundsson et al., 2018), Global Runoff Reconstruction (Ghiggi et al., 2019), HydroATLAS (Linke 115 

et al., 2019) and the Catchment Attributes and MEteorology for Large-Sample studies (CAMELS) (Addor et al., 116 

2017) are notable contributions of open and accessible large-sample catchment datasets ( Coxon et al., 2020). The 117 

concept of time irreversibility-based streamflow indices is then applied to CAMELS catchments with the goal of 118 

encouraging large-sample hydrology studies. The primary contribution of this study is to establish the distinction 119 

between signatures directly linked with rising limbs and falling limbs and their utility in uncovering processes 120 

associated with the hydrograph's steeper ascending and gradual descending limbs. 121 

2 Methods 122 

To facilitate an understanding of various hydrological processes and streamflow hydrograph drivers, the study 123 

employs streamflow indices considering the streamflow hydrograph's temporal asymmetry. The description of 124 

indices used in this study are tabulated in Table 1. Streamflow indices linked to each limb of the streamflow 125 

hydrograph within the time-irreversibility paradigm are distinguished since hydrographs have rising and falling 126 



5 
 

limbs. The following indices are considered in the rising limb category: 1) rising limb density, 2) rising limb shape 127 

parameter, and 3) rising limb scale parameter. In contrast, 1) falling limb density 2) slope of upper recession 128 

(upper recession coefficient) 3) slope of lower recession (lower recession coefficient) are selected in falling limb 129 

category. The next step is to compute these indices for a large number of catchments and correlate them with 130 

attributes such as climate, topography, vegetation, geology, and soil. The streamflow indices can be correlated 131 

explicitly since sub-categories are involved in each of the catchment attributes discussed above. Finally, the key 132 

attributes governing rising and falling limbs can be summarized and identified. The specifics of indices are 133 

explained further below. 134 

Rising limb density (RLD) is defined as the ratio of the number of rising limbs and the cumulative time of rising 135 

limbs (Shamir et al., 2005). RLD is a hydrograph shape descriptor without considering the flow magnitude (Fig. 136 

2) and the expression for RLD is given as, 137 

RLD =  
NRL

TR
 

 

                                         (1) 

The ratio of the number of falling limbs to the cumulative time of falling limbs is termed as falling limb density 138 

(FLD) (Fig. 2) (Shamir et al., 2005). The expression for FLD is given as, 139 

FLD =  
NFL

TF
 

 

                                         (2) 

  140 

Table 1. Hydrological descriptors with temporal asymmetry. 141 

 142 

Attribute Description Unit Data source References 

R
is

in
g

 l
im

b
 

RLD Rising limb density day-1 

N15 – USGS data* 

(https://doi.org/10.5065/D6MW2F4D) 

Shamir et al. (2005) 

a 
Rising limb scale 

parameter 
- 

Mathai and 

Mujumdar, (2019) 

b 
Rising limb shape 

parameter 
- 

Mathai and 

Mujumdar, (2019) 

F
a
ll

in
g
 l

im
b

 

FLD Falling limb density day-1 Shamir et al. (2005) 

b1 
Upper recession 

coefficient 
- 

Mathai and 

Mujumdar, (2019) 

b2 
Lower recession 

coefficient 
- 

Mathai and 

Mujumdar, (2019) 

* N15 covers 671 catchments in the contiguous USA (CONUS), which provides daily meteorological forcing and daily streamflow 143 
measurements from the United States Geological Survey (USGS). 144 
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 145 

Figure 2. Schematic example of rising limb density (RLD) and falling limb density (FLD) calculation (Shamir et 146 

al., 2005). 147 

We first identify the hydrologic state of the stream (ascension and recession) (Mathai and Mujumdar, 2019). To 148 

determine the hydrologic state of a stream - increasing (wet) or decreasing (dry) - on a given day, a time series of 149 

diurnal increments is extracted by differencing the original time series with its one-day lagged time series. The 150 

positive increments are identified as diurnal increments for wet days (ascension limb).  151 

 152 

Figure 3. Schematic representation of flow series (a) ascension limb and (b) recession limb (Mathai and 153 

Mujumdar, 2019). 154 
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To characterize the shape of the rising limbs occurring on wet days, the diurnal increments are fitted using an 155 

appropriate probability density function. The Weibull distribution reflects the diurnal increments of streamflow 156 

that occur on wet days satisfactorily (Mathai and Mujumdar, 2019; Stagge and Moglen, 2013; Szilagyi et al., 157 

2006), and the scale ‘𝑎′ and shape ′𝑏′ parameters of the Weibull distribution are computed for each catchment by 158 

using observed diurnal increments of streamflow (indicating 𝛿𝑄) of the ascension limb (Fig 3.a). The Weibull pdf 159 

is positive only for positive values of 𝑥, and is zero otherwise. For strictly positive values of the scale parameter 160 

𝑎 and shape parameter 𝑏, the density function is given by 161 

 𝑓(𝑥; 𝑎, 𝑏) =  {
𝑏

𝑎
(

𝑥

𝑎
)

𝑏−1

𝑒−(𝑥 𝑎⁄ )𝑏
           𝑥 ≥ 0,

 0                                         𝑥 < 0 ,
 

 

(3) 

where 𝑎 > 0, 𝑏 > 0. The shape and scale parameters of the Weibull distribution are estimated for each catchment 162 

from the observed diurnal increments of the streamflow. The scale parameter controls the magnitude of the 163 

increasing limb, whilst the shape parameter reflects the flashiness of the increasing limb. The scale parameter is 164 

related to the magnitude of storm events which mirrors the general shape of flows in the stream. As a result, 165 

correlating these parameters with catchment attributes reveals which catchment attributes drive the magnitude and 166 

flashiness of rising limbs. 167 

In contrast, an exponential recession is used to capture the shape of the falling limbs on dry days of the daily 168 

hydrograph, representing the falling limbs' underlying dynamics (Mathai and Mujumdar, 2019). As the upper 169 

recession refers to the fast flow following a storm event and the lower recession refers to the baseflow recession, 170 

falling limb modeling is done in two stages (Fig 3.b) (Aksoy, 2003; Aksoy and Bayazit, 2000). The steps to obtain 171 

recession coefficients 𝑏1 and 𝑏2 are explained below (Mathai and Mujumdar, 2019). To portray the shape of the 172 

recession limbs occurring on dry days of the daily hydrograph, an exponential recession is employed to capture 173 

the falling limbs' underlying dynamics (Mathai & Mujumdar, 2019). The expression for the exponential recession 174 

is given as follows,  175 

 𝑄𝑡 = 𝑄0𝑒−𝑏𝑡 (4) 

where 𝑏 is the recession coefficient, 𝑡 is time, 𝑄𝑡 is the flow 𝑡 days after the peak and 𝑄0 is the peak flow (Mathai 176 

& Mujumdar, 2019). Mean flow value is chosen as an appropriate measure (Sargent, 1979) to divide the recession 177 

into two stages. The limbs with a peak flow value greater than the observed mean flow value are considered as 178 

upper recessions and those with peak flow values smaller than the observed mean as lower recessions.  However, 179 

it may be noted that using the mean monthly flow can lead to unusual situations if peak flow for a given event is 180 

below the monthly mean. In such cases, the entire recession would be classified as a lower recession curve, and 181 

no upper part would exist. In those situations, there are still different driving processes for the first and second 182 

part of the recession, but these would all be lumped into one category in this case. Since we are dealing with the 183 

long-term time series, the recession slope will be nearly constant for a catchment and does not vary much with 184 

the recession separation technique used. In this study, we calculate recession slope at an annual scale. The upper 185 

recession is modelled as follows, 186 

 𝑄𝑡 = 𝑄0𝑒−𝑏1𝑡 (5) 
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where 𝑏1 is the recession coefficient for the upper part of the recession limb, 𝑡 is the number of days after the 187 

peak, 𝑄𝑡  is flow 𝑡 days after the peak, 𝑄0 is the preceding peak flow (Mathai & Mujumdar, 2019). The lower 188 

recession is represented as, 189 

 𝑄𝑡 = 𝑄0
∗𝑒−𝑏2(𝑡−𝑡∗) (6) 

where 𝑏2  is the recession coefficient for the lower part of the recession limb, 𝑡∗ is the time from the start of the 190 

lower recession, Q0
∗  is the initial flow in the lower part of the recession (Mathai & Mujumdar, 2019). The recession 191 

expressions for upper and lower recession are fitted by regressing ln (𝑄𝑡/𝑄0) versus 𝑡 and ln (𝑄𝑡/𝑄0
∗) versus 𝑡 −192 

𝑡∗ respectively. These linear regressions are performed on each individual recession sequence. The average of the 193 

upper/lower recession parameters is taken as the upper/lower recession parameter of that catchment (on daily time 194 

series data). 195 

The study uses indices related to rising limb (viz., RLD, rising limb scale parameter, rising limb shape parameter) 196 

and recession limb (viz., FLD, upper recession coefficient, lower recession coefficient) to summarize the 197 

characteristic shape of steeper rising and gradually declining falling limb and its application in understanding the 198 

role of various drivers of catchment attributes in streamflow generation.  199 

3 Dataset used 200 

Section 3 provides the description of the dataset used and the study area chosen. This study employs the CAMELS 201 

dataset, which encompasses daily discharge data and catchment attributes for 671 catchments (Fig. 4) across the 202 

continental United States, representing a diverse set of catchments with long streamflow time series covering a 203 

wide range of hydro-climatic conditions (Addor et al., 2017). The time frame chosen for the analysis is from 1 204 

October 1989 to 30 September 2009 (Addor et al., 2017).  205 

The topographic characteristics of CAMELS dataset are represented in Fig. S1. Except for the Appalachian 206 

Mountains, the eastern part of the Continental United States is much flatter than the western portion, according to 207 

mean elevation and mean slope maps (Fig. S1.a and S1.b). Figure S1.c depicts the spatial pattern of catchment 208 

size, highlighting presence of some catchments with an area greater than 10,000 km2. The landscape of each 209 

catchment is described using multiple attributes, which can be divided into various classes as shown in Table S1 210 

(Addor et al., 2017). 211 

 212 

 213 

 214 
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 215 

Figure 4. (a) Map of 671 CAMELS catchments in the continental United States considered in this study. (b) 216 
Geographical regions of US according to NOAA National Centers for Environmental Information referred for the 217 
analysis (source: NOAA National Centers for Environmental Information; https://www.ncdc.noaa.gov/temp-and-218 
precip/drought/nadm/geography). 219 

 220 

4 Results and Discussion 221 

The regional variability of the streamflow indices is investigated by computing the rising limb density, falling 222 

limb density, rising limb scale parameter, rising limb shape parameter, upper recession coefficient, and lower 223 

recession coefficient for 671 CAMELS catchments and given as spatial maps. Streamflow indices are then 224 

presented in hydrological clusters to incorporate a more explicit spatial representation of catchment behavior 225 

across the CONUS. Catchment attributes cover a broad range of aspects of catchment hydrology such as: land 226 

cover, soil, climate, geology, topography and the association between these attributes and streamflow indices is 227 

discussed further in the subsequent section.  It is important to understand the influence of climatic zones on the 228 

streamflow indices, as climate attributes influence the catchment streamflow dynamics (Addor et al., 2018; 229 

Berghuijs et al., 2014; Jehn et al., 2020; Knoben et al., 2018; Stein et al., 2021). Since the catchments are 230 

distributed in varied climatic zones (Jehn et al., 2020; Knoben et al., 2018; Stein et al., 2021), the CAMELS data 231 

about:blank
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is ideal for addressing this question. With this motivation, the effect of climate attributes on streamflow indices 232 

associated with rising and falling limbs is investigated here. 233 

4.1 Spatial Variability in Streamflow Indices and Relation of the Streamflow Indices with Catchment 234 

Attributes 235 

Streamflow indices related to rising limbs and falling limbs are computed for the selected catchments and 236 

displayed in spatial maps as shown in Fig. 5 and Fig. 6, respectively. The spatial analysis is based on the United 237 

States' geographical areas (for details, refer to Fig. 4b) as defined by NOAA's National Centers for Environmental 238 

Information and is referred to in the following spatial maps. Furthermore, the clusters provided by Jehn et al. 239 

(2020) to represent the discrete hydrological behaviors of the continental United States are adopted in this study 240 

to understand the regional variability of catchment behavior. Figure S2 and Table S2 present the location map and 241 

details of the ten clusters. Figure S3 shows Boxplots of the catchment attributes of the clusters (after Jehn et al., 242 

2020). 243 

Even though a comprehensive dataset such as CAMELS provides an excellent overview of various catchments in 244 

contrasting climatic and topographic regions, it does not by itself provide insights to explain hydrologic behavior. 245 

We present here streamflow indices in clusters representing distinct hydrological behavior, enabling an 246 

understanding of the hydrological processes. Jehn et al. (2020) summarize the characteristics of each catchment 247 

cluster in terms of climate, hydrology and location. The clusters presented by Jehn et al. (2020) are formed based 248 

on agglomerative hierarchical clustering with ward linkage on the principal components of the hydrological 249 

signatures. The hydrological signatures identified with the highest spatial predictability are used to cluster 643 250 

catchments from the CAMELS dataset (Jehn et al., 2020). This facilitates straightforward interpretations of the 251 

observations to explain the hydrologic behavior in each cluster.  252 

In this paper, we first identify the regions in the United States where high/low values of streamflow indices occur. 253 

The dominant catchment attributes of these regions are also identified using corresponding clusters. The 254 

streamflow indices and the dominant catchment attribute are then related to interpreting the obtained findings' 255 

process. In terms of geographical regions, the rising limb density is highest over the Atlantic coast states, Ohio 256 

valley, Lower Mississippi Valley, Southern Great Plains, Southwest and Pacific, and lowest along the Upper Great 257 

Lakes region, Upper Mississippi Valley, Great Basin, and Northern Rocky Mountains, Northern Interior Plains, 258 

and East of Gulf Coast (Fig. 5.a). Further, in terms of hydrological clusters, the Appalachian Mountains (Cluster 259 

10), Southeastern and Central Plains (Cluster 1), and all Southern most states of the US (Cluster 9) witness high 260 

rising limb densities (Fig. 6.a). Cluster 1 is characterized by dense vegetation cover and low elevation resulting in 261 

little annual snowfall. Cluster 10 catchments are located in the Appalachian Mountains, with a higher mean 262 

elevation than most other clusters, experiencing low aridity and high forest cover. However, Cluster 9 263 

encompasses all of the United States' southern states, with lower precipitation seasonality and higher forest cover 264 

and green vegetation. Furthermore, all of the catchments in Cluster 9 are very near the sea, with a low snow 265 

component and high evapotranspiration. We used Spearman rank correlation for the correlation analysis (Table 266 

2). Green-colored coefficients represent positive correlation, and the red-colored correlation coefficients represent 267 

negative correlation (Table 2). It can be seen that the rising limb density shows a negative correlation (Table 2) 268 

with the area (r = -0.30), elevation (r = -0.20) fraction of precipitation falling as snow (r = -0.33), and depth to 269 

bedrock (r = -0.32). Northwestern Forested Mountains (Clusters 3, 4), located in the mountains of the western US, 270 
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experience low values of rising limb density. The catchments of Cluster 3 have the largest snow storage in the 271 

dataset. Cluster 4 is found in the western United States' mountains, where there is a lot of snow, same as Cluster 272 

3. Low values of rising limb density are observed due to a negative correlation with the fraction of precipitation 273 

falling as snow (r = -0.33). The study indicates that rising limb density is mainly governed by elevation and 274 

fraction of precipitation falling as snow in the CONUS. 275 

Considerably low values of rising limb scale parameters are experienced over the Rocky Mountains, High Plains, 276 

Great Plains, Upper Mississippi Valley, Great Basin, Southwest, and the Great Lakes regions, whereas the Pacific 277 

Northwest shows high values of rising limb scale parameters (Fig. 5.b). Clusters (5, 7) over the Northwestern 278 

Forested Mountains of CONUS experience very high values of rising limb scale parameters (Fig. 6.b). These 279 

catchments have the highest discharge, especially in the early summer, due to a combination of high precipitation 280 

and snowmelt. Further, the region in the Continental US which receives the highest precipitation is included in 281 

Cluster 5. Moreover, Cluster 5 consists of a large proportion of forest. Again, Cluster 7 with high values of rising 282 

limb scale parameter is characterized by high fraction of precipitation falling as snow. High precipitation and 283 

snowmelt might result in a large discharge. Higher discharges can create higher values of rising scale parameters 284 

as the rising limb scale parameter regulates the magnitude of the rising limb. Low values of rising limb scale 285 

parameters are shown by Clusters 2, 8, 9. This is because of low water availability, low snow fraction precipitation 286 

falling as snow, and high evaporation experienced in these regions. Low discharge and thus lower rising limb 287 

scale parameters can be caused by excessive evaporation, low water availability, and a low snow fraction of 288 

precipitation falling as snow. It is observed that the rising limb scale parameter (Table 2) shows a negative 289 

correlation with climate (r = -0.53 for aridity) and a positive association with the vegetation attributes (r = 0.46 290 

for forest fraction, r = 0.41 for LAI maximum, r = 0.44 for green vegetation fraction maximum). Frequency of 291 

precipitation (r = -0.56 for high precipitation frequency, r = -0.63 for low precipitation frequency) display a strong 292 

negative association with the rising limb scale parameter. 293 

Low rising limb shape parameter occurs along the Great Plains, Mississippi Valley, Pacific coast, and the west of 294 

Gulf Coast (Fig. 5.c). In contrast, the shape parameter over the Rocky Mountains, High Plains, Great Basin, Pacific 295 

Northwest, and the Great Lakes region witnesses the highest values of rising limb shape parameters (Fig. 5.c). All 296 

the catchments located in the Southern states of the US (Cluster 9), Great Plains and North American deserts 297 

(Cluster 8), and the Central Plains (Cluster 2) characterize low values of rising limb shape parameters (Fig. 6.c). 298 

This is due to low water availability, low snow fraction precipitation falling as snow, low leaf area index, and high 299 

evaporation experienced in these regions. Excessive evaporation and a low snow fraction of precipitation falling 300 

as snow can contribute to low discharge and thus lower rising limb shape parameters. It is noted that the rising 301 

limb shape parameter indicates (Table 2) a positive correlation with vegetation attributes (r = 0.41 for forest 302 

fraction) and the fraction of precipitation falling as snow (r = 0.53), mean slope (r = 0.36), mean elevation (r = 303 

0.41), and sand fraction (r = 0.37) whereas, it negatively correlates with precipitation frequency (r= -0.42 for high 304 

precipitation frequency and r = -0.45 for low precipitation frequency). High values of rising limb shape parameters 305 

are seen in Clusters 3, 4 (Fig. 6.c) located in the Northwestern Forested Mountains of the western US, dominant 306 

with a summer peak of discharge caused by rapid snowmelt. The rapid snowmelt can cause flashy hydrographs 307 

with high values of rising limb shape parameters.  308 
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Catchments with a high falling limb density are predominantly located along the Great Basin and the Rocky 309 

Mountains and in the High Plains region (Fig. 7.a). This is due to less forest cover in these arid regions and falling 310 

limb density shows a positive association with the arid climate (r = 0.39). Clusters 6, 7 over Marine West Coast 311 

Forests and Western Cordillera experience smaller falling limb densities (Fig. 8.a). We can see that falling limb 312 

density is mainly governed by climate indices and is negatively correlated with the land cover characteristics (for 313 

LAI maximum (r = -0.37) and green veg frac max (r = -0.40, Table 2). Mean elevation (r = 0.55) also strongly 314 

characterizes the nature of the falling limb density. Besides, fraction of precipitation falling as snow (r = 0.42) is 315 

also positively correlated with falling limb density.  316 

Similarities exist between the patterns of the upper recession coefficient and the lower recession coefficient (Fig. 317 

7.b and Fig. 7.c). Clusters 3, 4 located in the Northwestern Forested Mountains, which have overall low discharge, 318 

show low values of upper and lower recession coefficients (Fig. 8.b and Fig. 8.c).  Clusters 2 and 9, located in the 319 

eastern US, witness high values of recession coefficients; due to low slope inclinations, water takes a long time 320 

to reach the outlet (Fig. 8.b and Fig. 8.c). Recession coefficients are negatively correlated (Table 2) with 321 

topographic indices (with mean elevation: upper_r = -0.40, lower_r = -0.35; with mean slope: upper_r = -0.38, 322 

lower_r = -0.37, where upper_r and lower_r corresponds to correlation values of upper and lower recession 323 

coefficients respectively). Further, the recession coefficients show a positive correlation with clay (upper_r = 0.52, 324 

lower_r = 0.32) and negative correlations with the fraction of precipitation falling as snow (upper_r = -0.46, 325 

lower_r = -0.39), forest fraction (upper_r = -0.31, lower_r = -0.28), and sand fraction (upper_r = -0.38, lower_r = 326 

-0.23). Moreover, the geology attributes such as subsurface porosity (upper_r = 0.13, lower_r = 0.16) reveal a 327 

positive correlation to recession coefficients and a negative (upper_r = -0.09, lower_r = -0.18) with subsurface 328 

permeability (Table 2). 329 
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 330 

Figure 5. Spatial maps of streamflow indices associated with a rising limb (a) rising limb density [day-1], (b) 331 
rising limb scale parameter, (c) rising limb shape parameter over the CONUS.  332 
  333 
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 334 

Figure 6. Boxplots of the hydrological descriptors linked with the rising limb (a) rising limb density [day-1], (b) 335 
rising limb scale parameter, (c) rising limb shape parameter of the clusters over the CONUS.   336 
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 337 

Figure 7. Regional variability of streamflow indices associated with the falling limb (a) falling limb density [day-338 
1], (b) upper recession coefficient, (c) lower recession coefficient over the CONUS.  339 
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 340 

Figure 8. Boxplots of the streamflow indices related with the falling limb (a) falling limb density [day-1], (b) upper 341 
recession coefficient, (c) lower recession coefficient of the clusters. 342 

 343 

 344 
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Table 2 Correlation (r- values) between streamflow indices and the catchment attributes. Green colored 345 
coefficients represent positive correlation, and the red-colored correlation coefficients represent the negative 346 
correlation. Corresponding (p- values) are shown in brackets. Insignificant correlations (p > 0.05) are marked 347 
yellow. 348 

r- value 
Rising 

limb 

density 

Scale 

parameter 

Shape 

parameter 

Falling 

limb 

density 

Upper 

recession 

coefficient 

Lower 

recession 

coefficient 

Area 
-0.30 -0.17 -0.06 -0.13 -0.06 -0.06 

(0.00) (0.00) (0.11) (0.00) (0.10) (0.11) 

Mean elevation 
-0.20 -0.13 0.41 0.55 -0.40 -0.35 

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

Mean slope 
-0.06 0.35 0.36 0.18 -0.38 -0.37 

(0.13) (0.00) (0.00) (0.00) (0.00) (0.00) 

Precipitation 

seasonality 

-0.04 -0.36 -0.14 0.01 0.17 0.22 

(0.26) (0.00) (0.00) (0.75) (0.00) (0.00) 

Frac of precp as 

snow 

-0.33 -0.04 0.53 0.42 -0.46 -0.39 

(0.00) (0.27) (0.00) (0.00) (0.00) (0.00) 

Aridity 
-0.10 -0.53 -0.16 0.39 0.04 0.03 

(0.01) (0.00) (0.00) (0.00) (0.30) (0.45) 

High precp freq 
0.08 -0.56 -0.42 0.12 0.31 0.27 

(0.04) (0.00) (0.00) (0.00) (0.00) (0.00) 

High precp dur 
-0.15 0.00 -0.07 0.12 -0.11 -0.17 

(0.00) (0.97) (0.09) (0.00) (0.01) (0.00) 

Low precp freq 
0.00 -0.63 -0.45 0.17 0.26 0.19 

(0.91) (0.00) (0.00) (0.00) (0.00) (0.00) 

Low precp dur 
-0.03 -0.25 -0.29 0.11 0.07 0.01 

(0.49) (0.00) (0.00) (0.00) (0.07) (0.84) 

Depth to bedrock 
-0.32 -0.21 -0.16 -0.19 0.19 0.21 

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

Sand frac 
-0.28 -0.02 0.37 -0.02 -0.38 -0.23 

(0.00) (0.62) (0.00) (0.63) (0.00) (0.00) 

Clay frac 
0.26 -0.15 -0.47 0.00 0.52 0.32 

(0.00) (0.00) (0.00) (0.93) (0.00) (0.00) 

Forest frac 
0.10 0.46 0.41 -0.17 -0.31 -0.28 

(0.01) (0.00) (0.00) (0.00) (0.00) (0.00) 

LAI maximum 
0.20 0.41 0.17 -0.37 -0.09 -0.04 

(0.00) (0.00) (0.00) (0.00) (0.03) (0.28) 

Green veg frac 

max 

0.18 0.44 0.15 -0.40 -0.05 -0.01 

(0.00) (0.00) (0.00) (0.00) (0.16) (0.74) 

Subsurface 

porosity 

-0.16 -0.06 -0.16 -0.08 0.13 0.16 

(0.00) (0.12) (0.00) (0.03) (0.00) (0.00) 

Subsurface 

permeability 

-0.11 -0.04 0.06 0.03 -0.09 -0.18 

(0.00) (0.34) (0.12) (0.39) (0.02) (0.00) 

349 
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 350 

 351 

Figure 9. (a) Comparison of the hydrological clusters of Jehn et al. (2020) with the climate index space (fraction 352 
of precipitation falling as snow vs. aridity). Single dots show the catchments and are colored by their hydrological 353 
clusters. Comparison of the streamflow indices in climate index space (b) rising limb density (c) rising limb scale 354 
parameter, (d) rising limb shape parameter, (e) falling limb density, (f) upper recession coefficient, (g) lower 355 
recession coefficient for all catchments. Single dots show the catchments and are colored according to the value 356 
of the streamflow indices.  357 

 358 

4.2 Influence of Attributes of Climate to Streamflow Indices 359 

The climatic indices indicate a more substantial influence on hydrological signatures than the topographic, soil, 360 

land cover, and geological attributes combined (Addor et al., 2018, Stein et al., 2021). Additionally, the findings 361 

of Jehn et al. (2020) highlighted that the climate appears to be the most critical factor influencing hydrological 362 

behavior in the CAMELS dataset as a whole, and depending on the location, either aridity, snow, or seasonality 363 

are most important. Hence, the streamflow indices are then examined in the climate index space (aridity along x-364 

axis and fraction of precipitation falling as snow along the y-axis) to evaluate the main drivers of the catchments. 365 

Single dots show the catchments and are colored by their hydrological clusters (Fig. 9.a).  366 

Clusters 5, 6, 7, 1, 10 are characterized by a low fraction of precipitation falling as snow and humid climate, 367 

whereas Clusters 3, 4 have humid climate experiencing a high fraction of precipitation falling as snow (Fig. 9.a). 368 

Clusters 2, 8, 9 are featured by a low fraction of precipitation falling as snow and arid climate (Fig. 9.a). The three 369 

categories mentioned above are referred to as G1, G2, and G3, respectively. 370 



19 
 

Clusters G1 with a low fraction of precipitation falling as snow with humid climate show (Clusters 1, 9, 10) high 371 

rising limb densities (Fig. 9.b) and (Clusters 5, 7) high rising limb scale parameters (Fig. 9.c). This is because the 372 

rising limb density negatively correlates with fraction of precipitation falling as snow (Table 2: r = -0.33, Fig. 373 

9.b), whereas the rising limb scale parameter negatively correlates with aridity (Table 2: r = -0.53, Fig. 9.c). 374 

Moreover, these Clusters G1 experience a low value of (Clusters 6, 7) falling limb density (Fig. 9.e). This is 375 

because the falling limb density positively correlates with the climate indices (Table 2: r = 0.42 for fraction of 376 

precipitation falling as snow and r = 0.39 for aridity, Fig. 9.e). 377 

As mentioned earlier, Clusters G2 with humid climate and with a high fraction of precipitation falling as snow 378 

(Clusters 3, 4) display low values of rising limb density as rising limb density correlates negatively with the 379 

fraction of precipitation falling as snow (Table 2: r = -0.33, Fig. 9.b). G2 witnesses higher values of rising limb 380 

shape parameter due to its negative correlation with aridity (r = -0.16) and positive correlation with the fraction 381 

of precipitation falling as snow (Table 2: r = 0.53, Fig. 9.d). Furthermore, the Clusters of G2 (Clusters 3, 4) show 382 

low values of recession coefficients as they depict a strong negative correlation with the fraction of precipitation 383 

falling as snow (Table 2: upper_r = -0.46, and lower_r = -0.39, Fig. 9.f, g). 384 

Low values of rising limb scale and shape parameters are noticed for the Clusters 2, 9, 8 (Clusters G3) with arid 385 

climate and low fraction of precipitation falling as snow (Fig. 9.c, d) due to its negative correlation with aridity as 386 

stated earlier. Cluster 8 experiences the maximum values of falling limb density (Fig. 9.e) where the region 387 

witnesses low fraction of snow and arid catchments, due to its strong positive correlates with the aridity (r = 0.39).  388 

5 Concluding remarks 389 

Streamflow hydrograph portrays the time distribution of runoff at the point of measurement by a single curve, and 390 

the hydrographs are characterized by their time irreversibility property.  In this study, the indices related to this 391 

characteristic feature are used to study the catchment drivers of streamflow hydrograph. The streamflow indices 392 

associated with the time irreversibility of hydrograph open new opportunities to investigate the interaction 393 

between topography, soil, climate, vegetation, geology that drive the hydrological behavior of catchments. 394 

Moreover, most of the previously presented hydrologic indices are employed only for time-symmetric processes 395 

(McMillan, 2021); the importance of the time irreversibility of streamflow is highlighted in this study. The indices 396 

associated with rising and falling limbs are primarily correlated to distinct catchment attributes, establishing a 397 

relationship between the indices and catchment attributes such as climate, topography, soil, geology, and 398 

vegetation to delineate the controlling drivers in corresponding hydrograph sections. A set of streamflow indices 399 

with temporal asymmetry for 671 catchments in the United States is presented in this study. The regional 400 

variations among catchments over the United States are compared and discussed using the spatial maps of 401 

streamflow indices. Such spatial maps of the streamflow indices supplement the hydrometeorological time series 402 

and catchment attributes provided by Addor et al. (2017).  403 

The study showed that the rising limb density is mainly governed by the elevation and fraction of precipitation 404 

falling as snow. Climate indices, mean elevation, and the fraction of precipitation falling as snow mainly influence 405 

falling limb density. In contrast, the aridity and frequency of precipitation drive the rising limb scale parameter. 406 

Furthermore, forest fraction, the fraction of precipitation falling as snow, mean slope, mean elevation, sand 407 

fraction, and precipitation frequency influence the rising limb shape parameter. Mean elevation, mean slope, clay, 408 
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the fraction of precipitation falling as snow, forest fraction, and sand fraction all determine recession coefficients. 409 

Finally, streamflow indices are studied in the climate index space to isolate the runoff generation's leading drivers. 410 

High rising limb densities and rising limb scale parameters are observed in catchments with low precipitation 411 

falling as snow and a humid climate. It is observed that the catchments with a humid climate and a high fraction 412 

of precipitation falling as snow display low values of rising limb density, high values of the rising limb shape 413 

parameter, and low values of recession coefficients. The lowest values of rising limb scale and shape parameters, 414 

and the highest values of falling limb density, are seen in catchments of arid climates and a low fraction of 415 

precipitation falling as snow. 416 

In general, the contribution of this work lies in differentiating hydrographs depending on their time irreversibility 417 

property and using the corresponding indices to provide an alternative methodology for identifying the drivers of 418 

streamflow hydrographs. In the context of large sample hydrology research, the concept of time-irreversibility 419 

and the indices associated with it could also be used to describe the drivers at catchment scale. It must be noted 420 

that each attribute (e.g., climate vegetation, soil, geology) usually does not exist independently in space but is 421 

closely interwoven, resulting in various strongly correlated attributes in a catchment (Jehn et al., 2020; Stein et 422 

al., 2021). However, it would be beyond the scope of this paper to describe all probable relationships between 423 

attributes. Keeping this in mind, the main focus of this study was constrained to only identify the controlling 424 

attributes of streamflow indices. Another limitation of the work is related with the characterization of recessions 425 

used. Future work may investigate using the inflection point or another recession separation technique to 426 

characterize recessions. 427 
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