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Abstract. Streamflow indices are flow descriptors that quantify the streamflow dynamics, which are usually 8 

determined for a specific basin and are distinct from other basin features. The flow descriptors are appropriate for 9 

large-scale and comparative hydrology studies, independent of statistical assumptions and can distinguish signals 10 

that indicate basin behavior over time. In this paper, the characteristic features of the hydrograph's temporal 11 

asymmetry due to its different underlying hydrologic processes are primarily highlighted. Streamflow indices 12 

linked to each limb of the hydrograph within the time-irreversibility paradigm are distinguished with respect to 13 

its processes driving the rising and falling limbs.  Various streamflow indices relating the rising and falling limbs, 14 

and the catchment attributes such as climate, topography, vegetation, geology and soil are then correlated. Finally, 15 

the key attributes governing rising and falling limbs are identified. The novelty of the work is on differentiating 16 

hydrographs by their time irreversibility property and offering an alternative way to recognize primary drivers of 17 

streamflow hydrographs. A set of streamflow indices at the catchment scale for 671 basins in the Contiguous 18 

United States (CONUS) is presented here. These streamflow indices complement the catchment attributes 19 

provided earlier (Addor et al., 2017) for the CAMELS data set.  A series of spatial maps describing the streamflow 20 

indices and their regional variability over the CONUS is illustrated in this study. 21 

 22 

1 Introduction 23 

Hydrologists use data to underpin the hydrologic system by identifying several unique catchment signatures and 24 

employ various flow descriptors independent of statistical assumptions yet capable of capturing signals that reflect 25 

the basin's long-term unique behavior. Hydrological indices, commonly referred to as hydrologic metrics, 26 

hydrologic signatures, or diagnostic signatures, are quantitative flow metrics that characterize statistical or 27 

dynamical hydrological data series (McMillan, 2021). Specifically, streamflow indices are flow descriptors 28 

derived from discharge time-series data, and a considerable collection of indices are available to aid in the better 29 

characterization of hydrological features, ranging from basic statistics like the mean to more sophisticated metrics 30 

(Addor et al., 2018; McMillan, 2021). In many cases, daily streamflow records are not permitted for redistribution; 31 

however, researchers have computed streamflow indices and made them publicly accessible.   32 

 33 

Hydrological indices are increasingly used in emerging areas such as global-scale hydrologic modeling and large-34 

sample hydrology to extract relevant information and compare the different watershed processes (Addor et al., 35 

2017, 2018; McMillan, 2021). These indices offer an indirect way to explore hydrological processes as well as 36 

provide insights into hydrologic behavior in catchments where data other than streamflow is restricted and are 37 
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widely used in process exploration, model calibration, model selection, and catchment classification (Addor et al., 38 

2018; Clark et al., 2011; Kuentz et al., 2017; McMillan et al., 2011; Sawicz et al., 2011). McMillan (2021) 39 

presented a classification that differentiates between statistics- and dynamics-based signatures and between 40 

signatures at different timescales. 41 

 42 

The relevance of time irreversibility (or temporal asymmetry) of streamflow variability on a daily scale has been 43 

emphasized in recent studies (Koutsoyiannis, 2020; Mathai and Mujumdar, 2019; Serinaldi and Kilsby, 2016) the 44 

disparity in physical mechanisms driving the hydrograph's ascension and recession limbs (Fig.1) contributes to 45 

time irreversibility. Unlike other variables such as temperature, wind, precipitation, time irreversibility has been 46 

marked for streamflow at a daily scale (Koutsoyiannis, 2020). Moreover, the various segments of the recession 47 

phase represent different phases in the flow process. As a result, time irreversibility must be acknowledged in 48 

streamflow analysis, accounting for the distinction of the recession into different segments, with a faster recession 49 

induced by high discharges caused by surface runoff and a slower recession caused by baseflow (Fig.1), and the 50 

characterization of the recession rates separately (Mathai and Mujumdar, 2019). In this study, streamflow indices 51 

are chosen to better understand different hydrological processes by recognizing the streamflow hydrograph's 52 

temporal asymmetry. 53 

 54 

 55 
Figure 1. Schematic representation of rising limb and falling limb 56 

(source: Environment Southland;  57 
https://www.es.govt.nz/environment/water/groundwater/groundwater-monitoring) 58 

 59 

2 Methods 60 

To facilitate a comprehension of various hydrological processes and streamflow hydrograph drivers, the study 61 

employs streamflow indices considering the streamflow hydrograph's temporal asymmetry. The description of 62 

indices used in this study are tabulated in Table 1. Streamflow indices linked to each limb of the streamflow 63 

hydrograph within the time-irreversibility paradigm are distinguished since hydrographs have rising and falling 64 
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limbs. The following indices are considered in the rising limb category: 1) rising limb density, 2) rising limb shape 65 

parameter, and 3) rising limb scale parameter. In contrast, 1) falling limb density 2) slope of upper recession 66 

(upper recession coefficient) 3) slope of lower recession (lower recession coefficient) are selected in falling limb 67 

category. The next step is to compute these indices for a large number of catchments and correlate them with 68 

attributes such as climate, topography, vegetation, geology, and soil. The streamflow indices can be correlated 69 

explicitly since sub-categories are involved in each of the catchment attributes discussed above. Finally, the key 70 

attributes governing ascension and recession limbs can be summarized and identified. This work's main novelty 71 

is to differentiate hydrographs by their time irreversibility property and using their associated indices by offering 72 

an alternative way to recognize primary drivers of streamflow hydrographs. The specifics of indices are explained 73 

further below. 74 

Rising limb density (RLD) is defined as the ratio of the number of rising limbs and the cumulative time of rising 75 

limbs (Shamir et al., 2005). RLD is a hydrograph shape descriptor without considering the flow magnitude (Fig. 76 

2) and the expression for RLD is given as, 77 

RLD =  
NRL

TR

 

 

                                         (1) 

The ratio of the number of falling limbs to the cumulative time of falling limbs is termed as falling limb density 78 

(FLD) (Fig. 2) (Shamir et al., 2005). The expression for FLD is given as, 79 

FLD =  
NFL

TF

 

 

                                         (2) 

Table 1. Hydrological descriptors with temporal asymmetry. 80 

Sl.no Attribute Description Unit Data source References 

1 RLD Rising limb density day-1 N15 – USGS data 

 

Shamir et al. (2005) 

 
2 FLD Falling limb density day-1 

3 a ascension limb 

scale parameter 

- Mathai and Mujumdar, 

(2019) 

 4 b ascension limb 

shape parameter 

- 

5 b1 Upper recession 

coefficient 

- 

6 b2 Lower recession 

coefficient 

- 

 81 
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 82 

Figure 2. Schematic example of rising limb density (RLD) and falling limb density (FLD) calculation 83 

(Shamir et al., 2005). 84 

The diurnal increments of streamflow are fitted with an appropriate probability density function to depict 85 

the shape of the ascension limbs which occur on wet days. The Weibull distribution reflects the diurnal 86 

increments of streamflow that occur on wet days reasonably well (Mathai and Mujumdar, 2019; Stagge 87 

and Moglen, 2013; Szilagyi et al., 2006), and the scale ‘𝑎′ and shape ′𝑏′ parameters of the Weibull 88 

distribution are computed for each catchment by using observed diurnal increments of streamflow. In 89 

contrast, an exponential recession is used to capture the shape of the recession limbs on dry days of the 90 

daily hydrograph, representing the falling limbs' underlying dynamics (Mathai and Mujumdar, 2019). As 91 

the upper recession refers to the fast flow following a storm event and the lower recession refers to the 92 

baseflow recession, falling limb modeling is done in two stages. 93 

The study uses indices related to ascension limb (viz., RLD, ascension limb scale parameter, ascension 94 

limb shape parameter) and recession limb (viz., FLD, upper recession coefficient, lower recession 95 

coefficient) to summarize the characteristic shape of steeper rising and gradually declining falling limb 96 

and its application in understanding the role of various drivers of catchment attributes in streamflow 97 

generation.  98 

3 Contributions of the Study 99 

The analysis employs a collection of indices drawn from hydrograph shape diagnoses, which extracts 100 

information about a basin's ascension and recession limbs' inherent properties.  The principle of time 101 

irreversibility is encapsulated by six streamflow indices that describe and characterize a streamflow 102 

hydrograph's shape, and indices for a particular basin are consistent and distinct from indices from other 103 

basins. 104 
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The goals of this study are as follows: i) to identify the key drivers of streamflow hydrographs (in terms 105 

of catchment attributes) using time-irreversibility-based indices ii) to present a spatial map-based attribute 106 

class of time-irreversibility-based indices for a large sample hydrology dataset. 107 

As shown in numerous ways/studies in the literature, our notion of time-irreversibility and its indices 108 

could also do a reasonable job of articulating the catchment drivers of streamflow hydrographs. This 109 

study presents an attribute class of hydrograph shape descriptors with temporal asymmetry. The 110 

significance of large sample hydrology datasets in open hydrologic science and their potential to improve 111 

hydrological studies' transparency is also underlined in this study. 112 

4 Motivation to extend to large sample hydrology  113 

Large-sample hydrology (LSH) gathers information from a larger number of catchments to gain a more 114 

comprehensive understanding of hydrological processes and to go beyond individual case studies. LSH 115 

helps identify catchment behavior and leads one to derive precise conclusions regarding different 116 

hydrological processes and models (Addor et al., 2020). Studies involving large sample catchments help 117 

in understanding the drivers of hydrological change (Blöschl et al., 2019), in assessing hydrological 118 

similarity and classification (Berghuijs et al., 2014; K. A. Sawicz et al., 2014),  in predictions in ungauged 119 

basins (Ehret et al., 2014), and in analysing model and data uncertainty (G. Coxon et al., 2014) and foster 120 

hydrology research by standardizing and automating the creation of large sample hydrology datasets 121 

worldwide (Addor et al., 2020). LSH assists in exploring interrelationships between numerous catchment 122 

attributes related to landscape, climate, and hydrology (Addor et al., 2017; Alvarez-Garreton et al., 2018; 123 

Gupta et al., 2014; Newman et al., 2015; K. Sawicz et al., 2011) and generalizing rules that can 124 

significantly improve the predictability of the water cycle (Alvarez-Garreton et al., 2018). 125 

The primary challenges in fostering LSH are data availability and accessibility, which seriously hinder 126 

its use in data-scarce regions. Despite the fact that a few large-scale hydrology studies have been 127 

undertaken, the number of publicly available large-scale datasets is still restricted (Addor et al., 2017, 128 

2020; Coxon et al., 2020). Moreover, licensing restrictions and strict access policies make the datasets 129 

rarely available to the public (Coxon et al., 2020). 130 

Model Parameter Estimation Experiment project (MOPEX) dataset (Duan et al., 2006), Canadian model 131 

parameter experiment (CANOPEX) database (Arsenault et al., 2016), Global Streamflow Indices and 132 

Metadata Archive (Do et al., 2018; Gudmundsson et al., 2018), Global Runoff Reconstruction (Ghiggi et 133 

al., 2019), HydroATLAS (Linke et al., 2019) and the Catchment Attributes and MEteorology for Large-134 

Sample studies (CAMELS) (Addor et al., 2017) are notable contributions of open and accessible large 135 

sample catchment datasets ( Coxon et al., 2020). 136 

Addor et al. (2017) introduced a new dataset (CAMELS) made publicly available for large-sample 137 

hydrological studies. This dataset covers meteorological and streamflow datasets provided by Newman 138 

et al. (2015) and provides quantitative metrics for a large variety of attributes for 671 catchments in the 139 

contiguous United States (CONUS). Streamflow records are available in the dataset from 1990 to 2009 140 

for the 671 catchments, which are minimally influenced by human activities (Addor et al., 2017). 141 
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The CAMELS dataset prompted hydrological research by enabling open access to hydrologic data and 142 

establishing a common standard across the database.  CAMELS promoted open access to datasets for the 143 

United States, and it is eventually expanded to the United Kingdom (CAMELS-GB), Chile (CAMELS-144 

CL), and Brazil (CAMELS-BR). The CAMELS proposes five classes of catchment attributes, namely 145 

location, topography, geology, land cover characteristics, climatic indices, and hydrological signatures, 146 

in order to promote common standards and formats in large sample studies (Addor et al., 2017). The 147 

concept of time irreversibility-based streamflow indices is then applied to CAMELS catchments with the 148 

goal of encouraging large sample hydrology studies. 149 

5 Dataset used 150 

Section 5 provides the description of the dataset used and the study area chosen. This study employs the 151 

CAMELS dataset, which encompasses daily discharge data and catchment attributes for 671 catchments 152 

(Fig. 3) across the continental United States, representing a diverse set of catchments with long 153 

streamflow time series covering a wide range of hydro-climatic conditions (Addor et al., 2017). The time 154 

frame chosen for the analysis is from 1 October 1989 to 30 September 2009 (Addor et al., 2017). The 155 

topographic characteristics of CAMELS dataset are represented in Fig. 4. Except for the Appalachian 156 

Mountains, the eastern part of the Continental United States is much flatter than the western portion, 157 

according to mean elevation and mean slope maps (Fig. 4.a and 4.b). Figure 4.c depicts the spatial pattern 158 

of catchment size, highlighting presence of some catchments with an area greater than 10,000 km2. 159 

 160 

 161 

https://doi.org/10.5194/hess-2021-307
Preprint. Discussion started: 28 June 2021
c© Author(s) 2021. CC BY 4.0 License.



7 
 

 162 

Figure 3. (a) Map of 671 CAMELS catchments in the continental United States considered in this study. 163 
(b) Geographical regions of US according to NOAA National Centers for Environmental Information 164 
referred for the analysis (source: NOAA National Centers for Environmental Information; 165 
https://www.ncdc.noaa.gov/temp-and-precip/drought/nadm/geography). 166 

 167 

https://doi.org/10.5194/hess-2021-307
Preprint. Discussion started: 28 June 2021
c© Author(s) 2021. CC BY 4.0 License.



8 
 

 168 

 169 

Figure 4.  Maps of topographic characteristics of CAMELS catchments over the CONUS (Addor et al., 170 
2017). (a) Mean elevation [m above sea level] (b) Mean slope [m km-1] (c) Area [km2]. The eastern US 171 
seems to have a much flatter mean elevation and mean slope than the western US, which significantly 172 
influences catchment behavior. The majority of the catchments are noticed to be smaller, with an area of 173 
fewer than 3000 km2. 174 

 175 

 176 

 177 

 178 
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5.1 Catchment attributes 179 

The landscape of each catchment is described using multiple attributes, which can be divided into various 180 
classes as shown in Table 2 (Addor et al., 2017). The details of the attributes used in this study is 181 
summarized in Table 2. 182 

Table 2. CAMELS attributes (Addor et al., 2017) 183 

 184 

 185 

 186 

 187 

 188 

 189 

 190 

 191 

 192 

 193 

 194 

 195 

Sl.no Attribute  Description  Unit  

Climatic indices 

1 aridity aridity (ratio of mean PET to mean 

precipitation) 

- 

2 p_seasonality seasonality and timing of 

precipitation (positive (negative) 

values indicate that precipitation 

peaks in summer (winter); values 

close to 0 indicate uniform 

precipitation throughout the year) 

- 

3 frac_snow fraction of precipitation falling as 

snow  

- 

4 high_prec_freq frequency of high precipitation days  days yr-1 

5 high_prec_dur average duration of high precipitation 

events 

days 

6 low_prec_freq frequency of dry days  days yr-1 

7 low_prec_dur average duration of dry periods  days 

Land cover characteristics 

8 Forest_frac forest fraction - 

9 Lai_max maximum monthly mean of the leaf 

area index  

- 

10 Gvf_max maximum monthly mean of the green 

vegetation fraction 

- 

Soil characteristics 

11 soil_depth_pelletier depth to bedrock  m 

12 sand_frac sand fraction  % 

13 clay_frac clay fraction  % 

Geological characteristics 

14 geol_porosity subsurface porosity - 

15 geol_permeability subsurface permeability (log10) m2 
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6 Results and Discussion 196 

The first sub-section below looks at the regional variability of the streamflow indices used in this study. For the 197 

671 CAMELS catchments, rising limb density, falling limb density, ascension limb scale parameter, ascension 198 

limb shape parameter, upper recession coefficient, and lower recession coefficient are computed and given as 199 

spatial maps. Streamflow indices are then presented in hydrological clusters to incorporate a more explicit spatial 200 

representation of catchment behavior across the CONUS. Catchment attributes cover a broad range of aspects of 201 

catchment hydrology such as, land cover, soil, climate, geology, topography and the association between these 202 

attributes and streamflow indices is discussed further in the subsequent section. As the climate is the most 203 

important factor in the US for the hydrological behavior for the CAMELS dataset (Jehn et al., 2020), the influence 204 

of climatic factors on streamflow indices is finally studied. 205 

6.1 Spatial Variability in Streamflow Indices  206 

Streamflow indices related to rising limbs and falling limbs are computed for the selected catchments and 207 

displayed in spatial maps as shown in Fig. 5 and Fig. 6, respectively. The spatial analysis is based on the United 208 

States' geographical areas (for details, refer to Fig. 3b) as defined by NOAA's National Centers for Environmental 209 

Information and is referred to in the following spatial maps. Furthermore, ten clusters provided by Jehn et al. 210 

(2020) to represent the discrete hydrological behaviors of the continental United States are adopted in this study 211 

to understand the regional variability of catchment behavior. Figure S1 and Table S1 present the location map and 212 

details of the ten clusters. 213 

In terms of geographical regions, the rising limb density is highest over the Atlantic coast states, Ohio valley, 214 

Lower Mississippi Valley, Southern Great Plains, Southwest and Pacific, and lowest along the Upper Great Lakes 215 

region, Upper Mississippi Valley, Great Basin, and Northern Rocky Mountains, Northern Interior Plains, and East 216 

of Gulf Coast (Fig. 5.a). Further, in terms of hydrological clusters, Appalachian Mountains (Cluster 10), 217 

Southeastern and Central Plains (Cluster 1) and all Southern most states of the US (Cluster 9) witness high rising 218 

limb densities and these clusters are characterized by a high forest fraction, low aridity, and high frequency of 219 

high precipitation events, respectively (Fig. 6.a). Northwestern Forested Mountains (Clusters 3, 4), located in the 220 

mountains of the western US, experience low values of rising limb density as these clusters are characterized by 221 

a dominant summer peak of discharge caused by rapid snowmelt (Fig. 6.a). 222 

Considerably low values of rising limb scale parameters are experienced over the Rocky Mountains, High Plains, 223 

Great Plains, Upper Mississippi Valley, Great Basin, Southwest, and the Great Lakes regions, whereas the Pacific 224 

Northwest shows high values of rising limb scale parameters (Fig. 5.b). Clusters (5, 7) over the Northwestern 225 

Forested Mountains of CONUS experience very high values of rising limb scale parameters (Fig. 6.b). These 226 

catchments have the highest discharge, especially in the early summer, due to a combination of high precipitation 227 

and snowmelt. Further, the region in the Continental US which receives the highest precipitation is included in 228 

Cluster 5. Moreover, Cluster 5 consists of a large proportion of forest. Again, Cluster 7 with high values of rising 229 

limb scale parameter is characterized by high fraction of precipitation falling as snow. Low values of rising limb 230 

scale parameters are shown by Clusters 2, 8, 9. This is because of low water availability, low snow fraction 231 

precipitation falling as snow, and high evaporation experienced in these regions. 232 
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Low rising limb shape parameter occurs along the Great Plains, Mississippi Valley, Pacific coast, and the west of 233 

Gulf Coast (Fig. 5.c). In contrast, the shape parameter over the Rocky Mountains, High Plains, Great Basin, Pacific 234 

Northwest, and the Great Lakes region witnesses the highest values of rising limb shape parameters (Fig. 5.c). All 235 

the catchments located in the Southern states of the US (Cluster 9), Great Plains and North American deserts 236 

(Cluster 8), and the Central Plains (Cluster 2) characterize low values of rising limb shape parameters (Fig. 6.c). 237 

This is due to low water availability, low snow fraction precipitation falling as snow, low leaf area index, and high 238 

evaporation experienced in these regions.  High values of rising limb shape parameters are seen in Clusters 3, 4 239 

(Fig. 6.c) located in the Northwestern Forested Mountains of the western US, dominant with a summer peak of 240 

discharge caused by rapid snowmelt.  241 

Catchments with a high falling limb density are predominantly located along the Great Basin and the Rocky 242 

Mountains and in the High Plains region (Fig. 7.a). Clusters 4, 2, 8 over Northwestern Forested Mountains, Central 243 

Plains, Great Plains, and North American deserts characterize higher magnitudes of falling limb density, and 244 

Clusters 6, 7 over Marine West Coast Forests and Western Cordillera smaller falling limb densities (Fig. 8.a). 245 

This is due to less presence of forest cover in these arid regions. 246 

Similarities exist between the patterns of the upper recession coefficient and the lower recession coefficient (Fig. 247 

7.b and Fig. 7.c). Clusters 3, 4 located in the Northwestern Forested Mountains, which have overall low discharge, 248 

show low values of upper and lower recession coefficients (Fig. 8.b and Fig. 8.c).  Clusters 2, 9, located in the 249 

eastern US, witness high values of recession coefficients; due to low slope inclinations, water takes a long time 250 

to reach the outlet (Fig. 8.b and Fig. 8.c).  251 
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 252 

Figure 5. Spatial maps of streamflow indices associated with a rising limb (a) rising limb density [day -1], (b) 253 
rising limb scale parameter, (c) rising limb shape parameter over the CONUS. The Atlantic coast states, Ohio 254 
Valley, Lower Mississippi Valley, Southern Great Plains, Southwest, and Pacific have the highest rising limb 255 
density, while the Upper Great Lakes region, Upper Mississippi Valley, Great Basin, Northern Rocky Mountains, 256 
Northern Interior Plains, and East of Gulf Coast have the lowest. The Rocky Mountains, High Plains, Great Plains, 257 
Upper Mississippi Valley, Great Basin, Southwest, and Great Lakes regions have low values of rising limb scale 258 
parameters, but the Pacific Northwest has high values of rising limb scale parameters. The Great Plains, 259 
Mississippi Valley, Pacific coast, and west of Gulf Coast have low rising limb shape parameters. The shape 260 
parameter has the greatest values of rising limb shape parameters over the Rocky Mountains, High Plains, Great 261 
Basin, Pacific Northwest, and Great Lakes regions. 262 
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  263 

 264 

Figure 6. Boxplots of the hydrological descriptors linked with the rising limb (a) rising limb density [day -1], (b) 265 
rising limb scale parameter, (c) rising limb shape parameter of the clusters over the CONUS. High rising limb 266 
densities are observed in Clusters 10, 1, and 9, which are characterized by a high forest fraction, low aridity, and 267 
a high frequency of high precipitation events, respectively. Rising limb scale parameters are exceptionally high 268 
in Clusters 5, 7. Due to a combination of high precipitation and snowmelt, these catchments have the highest 269 
discharge. Because of the low water availability, low snow fraction precipitation falling as snow, low leaf area 270 
index, and high evaporation experienced in these areas, catchments in Cluster 9, Cluster 8, and Cluster 2 have low 271 
values of rising limb shape parameters.  272 
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 273 

 274 

Figure 7. Regional variability of streamflow indices associated with the falling limb  (a)  falling limb density 275 
[day-1], (b) upper recession coefficient, (c) lower recession coefficient over the CONUS. The Great Basin and the 276 
Rocky Mountains, and the High Plains region have high falling limb density. The patterns of the upper recession 277 
coefficient and the lower recession coefficient are similar. 278 

 279 
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 280 

Figure 8. Boxplots of the streamflow indices related with the falling limb (a) falling limb density [day-1], (b) 281 
upper recession coefficient, (c) lower recession coefficient of the clusters. Clusters 4, 2, 8 have higher falling limb 282 
densities, while Clusters 6, 7 have lower falling limb densities due to the less forest cover in these arid areas. 283 
Clusters 3, 4, which have a low discharge, have low upper and lower recession coefficients. Clusters 2, 9 have 284 
high recession coefficients due to low slope inclinations. 285 
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   286 

6.2 Relation of the Flow Descriptors and the Catchment Attributes 287 

The association between the flow descriptors related to rising and falling limbs and catchment attributes is 288 

examined in this section. Table 3 shows the relation of streamflow indices linked with rising limb, and Table 4 289 

shows the association of indices of the falling limb with catchment attributes. Across all five attribute classes, the 290 

vegetation/land cover attributes positively correlate with all rising limb indices (Table 3). It can be seen that the 291 

rising limb density shows a positive correlation with all the three vegetation density indicators, namely fraction 292 

of forest, maximum leaf area index, maximum green vegetation fraction (Table 3).  293 

 294 

However, it is observed that the rising limb scale parameter shows a negative correlation with climate and a 295 

positive association with the vegetation attributes (Table 3). Aridity and frequency of precipitation (Table 3) 296 

display a strong negative association with the rising limb scale parameter. It is noted that the rising limb shape 297 

parameter indicates a positive correlation with vegetation attributes and the fraction of precipitation falling as 298 

snow, mean slope, mean elevation, and sand fraction whereas, it negatively correlates with precipitation 299 

frequency. 300 

 301 

Falling limb density is mainly governed by climate indices and is negatively correlated with the land cover 302 

characteristics (Table 4). Mean elevation also strongly characterizes the nature of the falling limb density. Besides, 303 

aridity and fraction of precipitation falling as snow are also positively correlated with falling limb density. 304 

Recession coefficients are negatively correlated with topographic indices (Table 4). Further, the recession 305 

coefficients show a positive correlation with clay and negative correlations with the fraction of precipitation falling 306 

as snow, forest fraction, and sand fraction. Moreover, the geology attributes such as subsurface porosity reveal a 307 

positive correlation to recession coefficients and a negative with subsurface permeability (Table 4). 308 

 309 

 310 

 311 
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Table 3. Correlation between streamflow indices linked with rising limb and the catchment attributes. Green 312 
colored coefficients represent positive correlation, and the red-colored correlation coefficients represent the 313 
negative correlation. The vegetation/land cover attributes positively correlate with all rising limb indices amongst 314 
all five attribute groups. It can be seen that the rising limb density has a positive relationship with all three 315 
vegetation density measures. The rising limb scale parameter, has a negative association with climate and a 316 
positive relationship with vegetation attributes. The rising limb shape parameter positively correlates with 317 
vegetation attributes and the fraction of precipitation that falls as snow, mean slope, mean elevation, and sand 318 
fraction. 319 
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Table 4. Correlation between streamflow indices linked with falling limb and the catchment attributes. Green 331 
colored coefficients represent positive correlation, and the red-colored correlation coefficients represent the 332 
negative correlation. Climate factors are the principal drivers of falling limb density and are negatively associated 333 
with land cover characteristics. Topographic indicators are negatively correlated with recession coefficients. 334 
Furthermore, the recession coefficients reveal a positive association with clay and negative correlations with the 335 
fraction of precipitation falling as snow, forest fraction, and sand fraction.  336 

 337 
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 339 

Figure 9. (a) Comparison of the hydrological clusters of Jehn et al. (2020) with the climate index space (fraction 340 
of precipitation falling as snow vs. aridity). Single dots show the catchments and are colored by their hydrological 341 
clusters. Comparison of the streamflow indices in climate index space (b) rising limb density (c) rising limb scale 342 
parameter, (d) rising limb shape parameter, (e) falling limb density, (f) upper recession coefficient, (g) lower 343 
recession coefficient for all catchments. Single dots show the catchments and are colored according to the value 344 
of the streamflow indices. Low values of rising limb density, high values of the rising limb shape parameter, and 345 
low values of recession coefficients are seen in catchments with a humid environment and a high fraction of 346 
precipitation falling as snow. In arid climates with a low fraction of precipitation falling as snow, the lowest values 347 
of rising limb scale and shape parameters, as well as the highest values of falling limb density, can be seen. 348 

 349 

6.3 Streamflow Indices with Attributes of Climate  350 

Climate attributes seem to be the most important indicator for hydrological behavior in the United States among 351 

the various attribute categories (Jehn et al., 2020). Hence, the flow descriptors are then examined in the climate 352 

index space (aridity along x-axis and fraction of precipitation falling as snow along the y-axis) to evaluate the 353 

main drivers of the catchments. Single dots show the catchments and are colored by their hydrological clusters 354 

(Fig. 9.a).  355 

Clusters 5, 6, 7, 1, 10 are characterized by a low fraction of precipitation falling as snow and humid climate, 356 

whereas Clusters 3, 4 have humid climate experiencing a high fraction of precipitation falling as snow (Fig. 9.a). 357 

Clusters 2, 8, 9 are featured by a low fraction of precipitation falling as snow and arid climate (Fig. 9.a). The three 358 

categories mentioned above are referred to as G1, G2, and G3, respectively. 359 
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Clusters G1 with a low fraction of precipitation falling as snow with humid climate show (Clusters 1, 9, 10) high 360 

rising limb densities (Fig. 9.b) and (Clusters 5, 7) high rising limb scale parameters (Fig. 9.c). This is because the 361 

rising limb density negatively correlates with fraction of precipitation falling as snow (Fig. 9.b), whereas the rising 362 

limb scale parameter negatively correlates with aridity (Fig. 9.c). Moreover, these Clusters G1 experience a low 363 

value of (Clusters 6, 7) falling limb density (Fig. 9.e). This is because the falling limb density positively correlates 364 

with the climate indices (Fig. 9.e). 365 

As mentioned earlier, Clusters G2 with humid climate and with a high fraction of precipitation falling as snow 366 

(Clusters 3, 4) display low values of rising limb density as rising limb density correlates negatively with the 367 

fraction of precipitation falling as snow (Fig. 9.b). G2 witnesses higher values of rising limb shape parameter due 368 

to its negative correlation with aridity and positive correlation with the fraction of precipitation falling as snow 369 

(Fig. 9.d). Furthermore, the Clusters of G2 (Clusters 3, 4) show low values of recession coefficients as they depict 370 

a strong negative correlation with the fraction of precipitation falling as snow (Fig. 9.f, g). 371 

Low values of rising limb scale and shape parameters are noticed for the Clusters 2, 9, 8 (Clusters G3) with arid 372 

climate and low fraction of precipitation falling as snow (Fig. 9.c, d) due to its negative correlation with aridity as 373 

stated earlier. Cluster 8 experiences the maximum values of falling limb density (Fig. 9.e) where the region 374 

witnesses low fraction of snow and arid catchments, due to its strong positive correlates with the aridity.  375 

7 Concluding remarks 376 

Streamflow hydrograph portrays the time distribution of runoff at the point of measurement by a single curve, and 377 

the hydrographs are characterized by their time irreversibility property.  In this study, the indices related to this 378 

characteristic feature are used to study the catchment drivers of streamflow hydrograph. The streamflow indices 379 

associated with the time irreversibility of hydrograph open new opportunities to investigate the interaction 380 

between topography, soil, climate, vegetation, geology that drive the hydrological behavior of catchments. 381 

Moreover, most of the previously presented hydrologic indices are employed only for time-symmetric processes; 382 

the importance of the time irreversibility of streamflow is highlighted in this study. The indices associated with 383 

rising and falling limbs are primarily correlated to distinct catchment attributes, establishing a relationship 384 

between the indices and catchment attributes such as climate, topography, soil, geology, and vegetation to 385 

delineate the controlling drivers in corresponding hydrograph sections. A set of streamflow indices with temporal 386 

asymmetry for 671 catchments in the United States is presented in this study. The regional variations among 387 

catchments over the United States are compared and discussed using the spatial maps of streamflow indices. Such 388 

spatial maps of the streamflow indices supplement the hydrometeorological time series and catchment attributes 389 

provided by Addor et al. (2017).  390 

The study revealed that the rising limb indices such as rising limb density, rising limb shape parameter and rising 391 

limb scale parameter correlate positively with vegetation indices. Falling limb density is primarily controlled by 392 

climate indices and is negatively correlated with land cover characteristics; the structure of the falling limb density 393 

is also closely influenced by mean elevation. Finally, flow descriptors are studied in the climate index space to 394 

isolate the runoff generation's leading drivers. High rising limb densities and rising limb scale parameters are 395 

observed in catchments with low precipitation falling as snow and a humid climate. It is observed that the 396 

catchments with a humid climate and a high fraction of precipitation falling as snow display low values of rising 397 
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limb density, high values of the rising limb shape parameter, and low values of recession coefficients. The lowest 398 

values of rising limb scale and shape parameters, and the highest values of falling limb density, are seen in 399 

catchments of arid climates and a low fraction of precipitation falling as snow. 400 

In general, the contribution of this work lies in differentiating hydrographs depending on their time irreversibility 401 

property and using the corresponding indices to provide an alternative methodology for identifying the drivers of 402 

streamflow hydrographs. In the context of large sample hydrology research, the concept of time-irreversibility 403 

and the indices associated with it could also be used to describe the drivers at catchment scale.  404 

 405 
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