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 7 
Abstract. Time irreversibility or temporal asymmetry refers to the steeper ascending and gradual descending parts 8 

of a streamflow hydrograph. The primary goal of this study is to bring out the distinction between streamflow 9 

indices directly linked with rising limbs and falling limbs and to explore  their utility in uncovering processes 10 

associated with the steeper ascending and gradual descending limbs of the hydrograph within the time-11 

irreversibility paradigm.  Different streamflow indices are correlated with  the rising and falling limbs and the 12 

catchment attributes. The key attributes governing rising and falling limbs are then identified. The contribution of 13 

the work is on differentiating hydrographs by their time irreversibility features and offering an alternative way to 14 

recognize primary drivers of streamflow hydrographs. A series of spatial maps describing the streamflow indices 15 

and their regional variability in the Contiguous United States (CONUS) is introduced here. These indices 16 

complement the catchment attributes provided earlier (Addor et al., 2017) for the CAMELS data set. Findings of 17 

the study revealed that the elevation, fraction of precipitation falling as snow, and depth to bedrock mainly 18 

characterize the rising limb density, whereas the aridity and frequency of precipitation influence the rising limb 19 

scale parameter. Moreover, the rising limb shape parameter is primarily influenced by forest fraction, the fraction 20 

of precipitation falling as snow, mean slope, mean elevation, sand fraction, and precipitation frequency. It is noted 21 

that falling limb density is mainly governed by climate indices, mean elevation, and the fraction of precipitation 22 

falling as snow. However, the recession coefficients are controlled by mean elevation, mean slope, clay, the 23 

fraction of precipitation falling as snow, forest fraction, and sand fraction.Streamflow indices are flow descriptors 24 

that quantify the streamflow dynamics, which are usually determined for a specific basin and are distinct from 25 

other basin features. The streamflow indices are appropriate for large-scale and comparative hydrology studies, 26 

independent of statistical assumptions and can distinguish signals that indicate basin behavior over time. In this 27 

paper, the characteristic features of the hydrograph's temporal asymmetry due to its different underlying 28 

hydrologic processes are primarily highlighted. Time irreversibility or temporal asymmetry refers to the steeper 29 

ascending and gradual descending parts of a streamflow hydrograph. Streamflow indices linked to each limb of 30 

the hydrograph within the time-irreversibility paradigm are distinguished with respect to its processes driving the 31 

rising and falling limbs. Various streamflow indices relating the rising and falling limbs, and the catchment 32 

attributes such as climate, topography, vegetation, geology and soil are then correlated. Finally, the key attributes 33 

governing rising and falling limbs are identified. The novelty of the work is on differentiating hydrographs by 34 

their time irreversibility property and offering an alternative way to recognize primary drivers of streamflow 35 

hydrographs. A set of streamflow indices at the catchment scale for 671 basins in the Contiguous United States 36 

(CONUS) is introduced here. These streamflow indices complement the catchment attributes provided earlier 37 
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(Addor et al., 2017) for the CAMELS data set.  A series of spatial maps describing the streamflow indices and 38 

their regional variability over the CONUS is illustrated in this study. 39 

 40 

1 Introduction 41 

Hydrologists use data to understand the hydrologic system by identifying several unique catchment signatures and 42 

employ various flow descriptors independent of statistical assumptions yet capable of capturing signals that reflect 43 

the basin's long-term unique behavior. Hydrological indices, commonly referred to as hydrologic metrics, 44 

hydrologic signatures, or diagnostic signatures, are quantitative flow metrics that characterize statistical or 45 

dynamical hydrological data series (McMillan, 2021). Specifically, streamflow indices are flow descriptors 46 

derived from discharge time-series data, and a considerable collection of indices are available to aid in the better 47 

characterization of hydrological features, ranging from basic statistics like the mean to more sophisticated metrics 48 

(Addor et al., 2018; McMillan, 2021). In many cases, daily streamflow records are not permitted for redistribution; 49 

however, researchers have computed streamflow indices and made them publicly accessible.   50 

Hydrological indices are increasingly used in emerging areas such as global-scale hydrologic modeling and large-51 

sample hydrology to extract relevant information and compare the different watershed processes (Addor et al., 52 

2017, 2018; McMillan, 2021). These indices offer an indirect way to explore hydrological processes as well as 53 

provide insights into hydrologic behavior in catchments where data other than streamflow is restricted and are 54 

widely used in process exploration, model calibration, model selection, and catchment classification (Addor et al., 55 

2018; Clark et al., 2011; Kuentz et al., 2017; McMillan et al., 2011; Sawicz et al., 2011). McMillan (2021) 56 

presented a classification that differentiates between statistics and dynamics-based signatures and between 57 

signatures at different timescales. 58 

The relevance of time irreversibility (or temporal asymmetry) of streamflow variability on a daily scale has been 59 

emphasized in recent studies (Koutsoyiannis, 2020; Mathai and Mujumdar, 2019; Serinaldi and Kilsby, 2016). 60 

The disparity in physical mechanisms driving the hydrograph's rising and falling limbs (Fig.1) contributes to time 61 

irreversibility. (Koutsoyiannis, (2020) shows that irreversibility may be ignored at scales relevant to hydrological 62 

applications in atmospheric processes, but it is critical to include irreversibility in studies related to streamflow. 63 

Unlike other variables such as temperature, wind, precipitation, time irreversibility has been marked for 64 

streamflow at a daily scale (Koutsoyiannis, 2020). Streamflow recessions convey valuable information about the 65 

basin storage properties and aquifer characteristics (Aksoy & Bayazit, 2000). High variability encountered in the 66 

recession behaviour of individual segments is always a challenge in modeling the recession limb (Tallaksen, 67 

1995). Recessions do not follow a simple form, due to their nonlinear nature (Aksoy et al., 2001). Various 68 

segments of recession represent different stages in the flow process and there is a need to differentiate the recession 69 

to various segments and to characterize the recession rates separately. Such segmentation of recession curves 70 

enables us to reveal the nonlinear behavior of streamflow dynamics. Time irreversibility must therefore be 71 

acknowledged in streamflow analysis, accounting for the distinction of the recession into different segments, with 72 

a faster recession induced by high discharges caused by surface runoff and a slower recession caused by baseflow 73 

(Fig.1), and the characterization of the recession rates separately (Mathai and Mujumdar, 2019). In this study, 74 

streamflow indices are chosen to better understand different hydrological processes by recognizing the streamflow 75 
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hydrograph's temporal asymmetry. The novelty in the work presented here is to differentiate hydrograph limbs by 76 

their time irreversibility property and use their associated indices to provide an approach to derive insights on the 77 

primary drivers of streamflow hydrographs. 78 

 79 
Figure 1. Schematic representation of rising limb and falling limb 80 

(source: Environment Southland;  81 
https://www.es.govt.nz/environment/water/groundwater/groundwater-monitoring) 82 

The analysis employs a collection of indices drawn from hydrograph shape diagnoses, to extract information about 83 

the properties of rising and falling limbs of the hydrograph. The principle of time irreversibility is encapsulated 84 

by six streamflow indices that characterize the shape of a streamflow hydrograph. 85 

The goals of this study are as follows: i) to identify the key drivers of streamflow hydrograph (rising and falling 86 

limbs) in terms of catchment attributes (eg. mean slope, aridity, fraction of precipitation falling as snow) using 87 

time-irreversibility-based indices; ii) to present a spatial map-based attribute class based on streamflow indices 88 

for a large-sample hydrology dataset. The attribute class is a broad classification of attributes based on a particular 89 

aspect/feature. Topography, climate, and soil are examples of attribute classes. In this study, we present a new 90 

attribute class of streamflow indices related to rising and falling limbs, referred to as “TI-streamflow indices” 91 

(Time-irreversibility streamflow indices).  92 

Hydrograph analysis is referred to as the investigation of the numerous factors that influence hydrograph shape 93 

(Rogers, 1972). The presence of hydrographs with a similar shape in long-term observation series of runoff 94 

suggestsdemonstrates that the same conditions of  runoff generation reoccur from time to time in the catchment 95 

of a river due to climate cyclicity and as a result of hydrological processes (Khrystyuk et al., 2017). Because 96 

climatic factors are dynamic in space and time, they seem to be the most significant factors influencing the 97 

hydrograph shape provided that changes in catchment conditions like land use are small.  Khrystyuk et al., (2017).  98 

suggested that for the Desna river basin in Russia, temperature, snow water equivalent, and snowmelt conditions 99 

are the most critical factors influencing the shape of hydrographs. However, it is likely that these controls may 100 

not be equally important controls on hydrograph across all regions globally. Temperature, snow water equivalent, 101 

and snowmelt conditions are the most critical factors influencing the shape of hydrographs (Khrystyuk et al., 102 
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2017). The shape, timing, and peak flow of a streamflow hydrograph are influenced spatially and temporally by 103 

rainfall and watershed factors (Singh, 1997). Using a physical laboratory model, a study has investigated the 104 

influence of chosen meteorological and physiographic parameters on the runoff hydrograph (Roberts and 105 

Klingeman, 1970). Storm-related parameters (rainfall intensity, rainfall duration, storm movement) and basin 106 

surface conditions are among the inputs that could be experimentally modified in the model (simulated 107 

permeability, antecedent moisture conditions). The study revealed that each variable was shown to have a 108 

substantial impact on the shape of the hydrograph (Roberts and Klingeman, 1970). Certain factors had a more 109 

considerable impact on the rising limb of the runoff hydrograph, whereas others were more important in terms of 110 

the flood crest (Roberts and Klingeman, 1970). One of the earlier studies by Roberts and Klingeman (1970) have 111 

investigated the influence of meteorological and physiographic parameters on the runoff hydrograph using a 112 

physical laboratory model. Storm-related parameters (rainfall intensity, rainfall duration, storm movement) and 113 

basin surface conditions are among the inputs that could be experimentally modified in this  model.   The results 114 

revealed that each of these variables mentioned above has a substantial impact on the hydrograph shape where 115 

certain factors had a more considerable effect on the rising limb of the runoff hydrograph, whereas others were 116 

more important in terms of the flood crest (Roberts and Klingeman, 1970). 117 

As shown in numerous studies in the literature, our notion of time-irreversibility and its indices could also perform  118 

a reasonable job of articulating thehelpful in understanding the catchment drivers of streamflow hydrographs. 119 

This study presents an attribute class of hydrograph shape descriptors with temporal asymmetry. The significance 120 

of large-sample hydrology datasets in open hydrologic science and their potential to improve hydrological studies' 121 

transparency is also underlined in this study. 122 

Large-sample hydrology (LSH) gathers information from a large number of catchments to gain a more 123 

comprehensive understanding of hydrological processes and to go beyond individual case studies. LSH helps 124 

identify catchment behavior and leads one to derive precise conclusions regarding different hydrological 125 

processes and models (Addor et al., 2020). Studies involving large-sample catchments help in understanding the 126 

drivers of hydrological change (Blöschl et al., 2019), in assessing hydrological similarity and classification 127 

(Berghuijs et al., 2014; K. A. Sawicz et al., 2014), in predictions in ungauged basins (Ehret et al., 2014), and in 128 

analysing model and data uncertainty (Coxon et al., 2014) and foster hydrology research by standardizing and 129 

automating the creation of large-sample hydrology datasets worldwide (Addor et al., 2020). LSH assists in 130 

exploring interrelationships between numerous catchment attributes related to landscape, climate, and hydrology 131 

(Addor et al., 2017; Alvarez-Garreton et al., 2018; Gupta et al., 2014; Newman et al., 2015;  Sawicz et al., 2011) 132 

and generalizing rules that can significantly improve the predictability of the water cycle (Alvarez-Garreton et al., 133 

2018). 134 

The primary challenges in fostering LSH are data availability and accessibility, which seriously hinder its use in 135 

data-scarce regions. Despite the fact that a few large-scale hydrology studies have been undertaken, the number 136 

of publicly available large-scale datasets is still restricted (Addor et al., 2017, 2020; Coxon et al., 2020). Moreover, 137 

licensing restrictions and strict access policies make the datasets rarely available to the public (Coxon et al., 2020). 138 

Model Parameter Estimation Experiment project (MOPEX) dataset (Duan et al., 2006), Canadian model parameter 139 

experiment (CANOPEX) database (Arsenault et al., 2016), Global Streamflow Indices and Metadata Archive (Do 140 

et al., 2018; Gudmundsson et al., 2018), Global Runoff Reconstruction (Ghiggi et al., 2019), HydroATLAS (Linke 141 



et al., 2019) and the Catchment Attributes and MEteorology for Large-Sample studies (CAMELS) (Addor et al., 142 

2017) are notable contributions of open and accessible large-sample catchment datasets ( Coxon et al., 2020). The 143 

concept of time irreversibility-based streamflow indices is then applied to CAMELS catchments with the goal of 144 

encouraging large-sample hydrology studies. The primary contribution of this study is to establish the distinction 145 

between signatures directly linked with rising limbs and falling limbs and their utility in uncovering processes 146 

associated with the hydrograph's steeper ascending and gradual descending limbs. 147 

 148 

2 Methods 149 

To facilitate an understandingcomprehension of various hydrological processes and streamflow hydrograph 150 

drivers, the study employs streamflow indices considering the streamflow hydrograph's temporal asymmetry. The 151 

description of indices used in this study are tabulated in Table 1. Streamflow indices linked to each limb of the 152 

streamflow hydrograph within the time-irreversibility paradigm are distinguished since hydrographs have rising 153 

and falling limbs. The following indices are considered in the rising limb category: 1) rising limb density, 2) rising 154 

limb shape parameter, and 3) rising limb scale parameter. In contrast, 1) falling limb density 2) slope of upper 155 

recession (upper recession coefficient) 3) slope of lower recession (lower recession coefficient) are selected in 156 

falling limb category. The next step is to compute these indices for a large number of catchments and correlate 157 

them with attributes such as climate, topography, vegetation, geology, and soil. The streamflow indices can be 158 

correlated explicitly since sub-categories are involved in each of the catchment attributes discussed above. Finally, 159 

the key attributes governing rising and falling limbs can be summarized and identified. The specifics of indices 160 

are explained further below. 161 

Rising limb density (RLD) is defined as the ratio of the number of rising limbs and the cumulative time of rising 162 

limbs (Shamir et al., 2005). RLD is a hydrograph shape descriptor without considering the flow magnitude (Fig. 163 

2) and the expression for RLD is given as, 164 

RLD =  
NRL

TR
 

 

                                         (1) 

The ratio of the number of falling limbs to the cumulative time of falling limbs is termed as falling limb density 165 

(FLD) (Fig. 2) (Shamir et al., 2005). The expression for FLD is given as, 166 

FLD =  
NFL

TF
 

 

                                         (2) 

  167 

Table 1. Hydrological descriptors with temporal asymmetry. 168 

 169 

Attribute Description Unit Data source References 

R
is

in
g
 

li
m

b
 

RLD Rising limb density day-1 
N15 – USGS data* 

(https://doi.org/10.5065/D6MW2F4D) 

Shamir et al. (2005) 

a 
Rising limb scale 

parameter 
- 

Mathai and 

Mujumdar, (2019) 
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b 
Rising limb shape 

parameter 
- 

Mathai and 

Mujumdar, (2019) 

F
a

ll
in

g
 l

im
b

 

FLD Falling limb density day-1 Shamir et al. (2005) 

b1 
Upper recession 

coefficient 
- 

Mathai and 

Mujumdar, (2019) 

b2 
Lower recession 

coefficient 
- 

Mathai and 

Mujumdar, (2019) 

* N15 covers 671 catchments in the contiguous USA (CONUS), which provides daily meteorological forcing and daily streamflow 170 
measurements from the United States Geological Survey (USGS). 171 

 172 

Figure 2. Schematic example of rising limb density (RLD) and falling limb density (FLD) calculation (Shamir et 173 

al., 2005). 174 

We first identify the hydrologic state of the stream (ascension and recession) (Mathai and Mujumdar, 2019). To 175 

determine the hydrologic state of a stream - increasing (wet) or decreasing (dry) - on a given day, a time series of 176 

diurnal increments is extracted by differencing the original time series with its one-day lagged time series. The 177 

positive increments are identified as diurnal increments for wet days (ascension limb).  178 
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 179 

Figure 3. Schematic representation of flow series (a) ascension limb and (b) recession limb (Mathai and 180 

Mujumdar, 2019). 181 

To characterize the shape of the rising limbs occurring on wet days, the diurnal increments are fitted using an 182 

appropriate probability density function. The Weibull distribution reflects the diurnal increments of streamflow 183 

that occur on wet days satisfactorily (Mathai and Mujumdar, 2019; Stagge and Moglen, 2013; Szilagyi et al., 184 

2006), and the scale ‘𝑎′ and shape ′𝑏′ parameters of the Weibull distribution are computed for each catchment by 185 

using observed diurnal increments of streamflow (indicating 𝛿𝑄) of the ascension limb (Fig 3.a). The Weibull pdf 186 

is positive only for positive values of 𝑥, and is zero otherwise. For strictly positive values of the scale parameter 187 

𝑎 and shape parameter 𝑏, the density function is given by 188 

 𝑓(𝑥; 𝑎, 𝑏) =  {

𝑏

𝑎
(

𝑥

𝑎
)

𝑏−1

𝑒−(𝑥 𝑎⁄ )𝑏
           𝑥 ≥ 0,

 0                                         𝑥 < 0 ,
 

 

(3) 

where 𝑎 > 0, 𝑏 > 0. The shape and scale parameters of the Weibull distribution are estimated for each catchment 189 

from the observed diurnal increments of the streamflow. The scale parameter controls the magnitude of the 190 

increasing limb, whilst the shape parameter reflects the flashiness of the increasing limb. The scale parameter is 191 

related to the magnitude of storm events which mirrors the general shape of flows in the stream. As a result, 192 

correlating these parameters with catchment attributes reveals which catchment attributes drive the magnitude and 193 

flashiness of rising limbs. 194 

In contrast, an exponential recession is used to capture the shape of the falling limbs on dry days of the daily 195 

hydrograph, representing the falling limbs' underlying dynamics (Mathai and Mujumdar, 2019). As the upper 196 

recession refers to the fast flow following a storm event and the lower recession refers to the baseflow recession, 197 

falling limb modeling is done in two stages (Fig 3.b) (Aksoy, 2003; Aksoy and Bayazit, 2000). The steps to obtain 198 

recession coefficients 𝑏1 and 𝑏2 are explained below (Mathai and Mujumdar, 2019). To portray the shape of the 199 

recession limbs occurring on dry days of the daily hydrograph, an exponential recession is employed to capture 200 

the falling limbs' underlying dynamics (Mathai & Mujumdar, 2019). The expression for the exponential recession 201 

is given as follows,  202 



 𝑄𝑡 = 𝑄0𝑒−𝑏𝑡 (4) 

where 𝑏 is the recession coefficient, 𝑡 is time, 𝑄𝑡 is the flow 𝑡 days after the peak and 𝑄0 is the peak flow (Mathai 203 

& Mujumdar, 2019). Mean flow value is chosen as an appropriate measure (Sargent, 1979) to divide the recession 204 

into two stages. The limbs with a peak flow value greater than the observed mean flow value are considered as 205 

upper recessions and those with peak flow values smaller than the observed mean as lower recessions.  However, 206 

it may be noted that using the mean monthly flow can lead to unusual  situations if peak flow for a given event is 207 

below the monthly mean. In such cases, the entire recession would be classified as a lower recession curve, and 208 

no upper part would exist. In those situations, there are still different driving processes for the first and second 209 

part of the recession, but these would all be lumped into one category in this case. Since we are dealing with the 210 

long-term time series, the recession slope  will be nearly constant for a catchment and does not vary much with 211 

the recession separation technique used. In this study, we calculate recession slope at an annual scale. The upper 212 

recession is modelled as follows, 213 

 𝑄𝑡 = 𝑄0𝑒−𝑏1𝑡 (5) 

where 𝑏1 is the recession coefficient for the upper part of the recession limb, 𝑡 is the number of days after the 214 

peak, 𝑄𝑡  is flow 𝑡 days after the peak, 𝑄0 is the preceding peak flow (Mathai & Mujumdar, 2019). The lower 215 

recession is represented as, 216 

 𝑄𝑡 = 𝑄0
∗𝑒−𝑏2(𝑡−𝑡∗) (6) 

where 𝑏2  is the recession coefficient for the lower part of the recession limb, 𝑡∗ is the time from the start of the 217 

lower recession, Q0
∗  is the initial flow in the lower part of the recession (Mathai & Mujumdar, 2019). The recession 218 

expressions for upper and lower recession are fitted by regressing ln (𝑄𝑡/𝑄0) versus 𝑡 and ln (𝑄𝑡/𝑄0
∗) versus 𝑡 −219 

𝑡∗ respectively. These linear regressions are performed on each individual recession sequence. The average of the 220 

upper/lower recession parameters is taken as the upper/lower recession parameter of that catchment (on daily time 221 

series data). 222 

The study uses indices related to rising limb (viz., RLD, rising limb scale parameter, rising limb shape parameter) 223 

and recession limb (viz., FLD, upper recession coefficient, lower recession coefficient) to summarize the 224 

characteristic shape of steeper rising and gradually declining falling limb and its application in understanding the 225 

role of various drivers of catchment attributes in streamflow generation.  226 

3 Dataset used 227 

Section 3 provides the description of the dataset used and the study area chosen. This study employs the CAMELS 228 

dataset, which encompasses daily discharge data and catchment attributes for 671 catchments (Fig. 4) across the 229 

continental United States, representing a diverse set of catchments with long streamflow time series covering a 230 

wide range of hydro-climatic conditions (Addor et al., 2017). The time frame chosen for the analysis is from 1 231 

October 1989 to 30 September 2009 (Addor et al., 2017).  232 

The topographic characteristics of CAMELS dataset are represented in Fig. S1. Except for the Appalachian 233 

Mountains, the eastern part of the Continental United States is much flatter than the western portion, according to 234 



mean elevation and mean slope maps (Fig. S1.a and S1.b). Figure S1.c depicts the spatial pattern of catchment 235 

size, highlighting presence of some catchments with an area greater than 10,000 km2. The landscape of each 236 

catchment is described using multiple attributes, which can be divided into various classes as shown in Table S1 237 

(Addor et al., 2017). 238 

 239 

 240 

 241 

 242 

Figure 4. (a) Map of 671 CAMELS catchments in the continental United States considered in this study. (b) 243 
Geographical regions of US according to NOAA National Centers for Environmental Information referred for the 244 
analysis (source: NOAA National Centers for Environmental Information; https://www.ncdc.noaa.gov/temp-and-245 
precip/drought/nadm/geography). 246 

 247 

 248 

 249 

4 Results and Discussion 250 
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The first sub-section below looks at the regional variability of the streamflow indices used in this study. For the 251 

671 CAMELS catchments, rising limb density, falling limb density, rising limb scale parameter, rising limb shape 252 

parameter, upper recession coefficient, and lower recession coefficient are computed and given as spatial maps. 253 

Streamflow indices are then presented in hydrological clusters to incorporate a more explicit spatial representation 254 

of catchment behavior across the CONUS. Catchment attributes cover a broad range of aspects of catchment 255 

hydrology such as: land cover, soil, climate, geology, topography and the association between these attributes and 256 

streamflow indices is discussed further in the subsequent section. As the climate is the most important factor in 257 

the US for the hydrological behavior for the CAMELS dataset (Jehn et al., 2020), the effect of climatic attributes 258 

on streamflow indices associated with rising and falling limbs is also investigated here. 259 

4.1 Spatial Variability in Streamflow Indices  260 

4 Results and Discussion 261 

The regional variability of the streamflow indices is investigated by computing the rising limb density, falling 262 

limb density, rising limb scale parameter, rising limb shape parameter, upper recession coefficient, and lower 263 

recession coefficient for 671 CAMELS catchments and given as spatial maps. Streamflow indices are then 264 

presented in hydrological clusters to incorporate a more explicit spatial representation of catchment behavior 265 

across the CONUS. Catchment attributes cover a broad range of aspects of catchment hydrology such as: land 266 

cover, soil, climate, geology, topography and the association between these attributes and streamflow indices is 267 

discussed further in the subsequent section.  It is important to understand the influence of  climatic zones on the 268 

streamflow indices, as climate attributes influence the catchment streamflow dynamics (Addor et al., 2018; 269 

Berghuijs et al., 2014; Jehn et al., 2020; Knoben et al., 2018; Stein et al., 2021). Since the catchments are 270 

distributed in varied climatic zones (Jehn et al., 2020; Knoben et al., 2018; Stein et al., 2021), the CAMELS data 271 

is ideal for addressing this question. With this motivation, the effect of climate attributes on streamflow indices 272 

associated with rising and falling limbs is investigated here. 273 

4.1 Spatial Variability in Streamflow Indices and Relation of the Streamflow Indices with Catchment 274 

Attributes 275 

Streamflow indices related to rising limbs and falling limbs are computed for the selected catchments and 276 

displayed in spatial maps as shown in Fig. 5 and Fig. 6, respectively. The spatial analysis is based on the United 277 

States' geographical areas (for details, refer to Fig. 43b) as defined by NOAA's National Centers for Environmental 278 

Information and is referred to in the following spatial maps. Furthermore, ten the clusters provided by Jehn et al. 279 

(2020) to represent the discrete hydrological behaviors of the continental United States are adopted in this study 280 

to understand the regional variability of catchment behavior. Figure S2 and Table S2 present the location map and 281 

details of the ten clusters. Figure S3 shows Boxplots of the catchment attributes of the clusters (after Jehn et al., 282 

2020). 283 

Even though a comprehensive dataset such as  CAMELS provides an excellent overview of various catchments 284 

in contrasting climatic and topographic regions, it does not by itself provide insights give conclusions to explain 285 

hydrologic behavior. We then presented here streamflow indices in these clusters representing distinct 286 

hydrological behavior, enabling an ready understanding of the hydrological processes. Jehn et al. (2020) 287 

summarize the characteristics of each catchment cluster in terms of climate, hydrology and location.  288 
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The clusters presented by Jehn et al. (2020) are formed based on agglomerative hierarchical clustering with ward 289 

linkage on the principal components of the hydrological signatures. The hydrological signatures identified with 290 

the highest spatial predictability are used to cluster 643 catchments from the CAMELS dataset (Jehn et al., 2020). 291 

This facilitates straightforward interpretations of the observations to explain the hydrologic behavior in each 292 

cluster.  293 

In this paper, we first identify the regions in the United States where high/low values of streamflow indices occur. 294 

The dominant catchment attributes of these regions are also identified using corresponding clusters. The 295 

streamflow indices and the dominant catchment attribute are then related to interpreting the obtained findings' 296 

process. Features of the 10 clusters provided by Jehn et al. (2020) are used to interpret the findings of the results. 297 

Even though a comprehensive dataset like CAMELS provides an excellent overview of various catchments in 298 

contrasting climatic and topographic regions, it does not give conclusions to explain hydrologic behavior.  In order 299 

to address this difficulty, we transformed the streamflow indices and presented them in clusters that represent 300 

distinct hydrological behavior which facilitates a ready interpretation of hydrological processes. The ten clusters 301 

represent groups of catchments with distinct hydrological behavior and have distinct spatial patterns as well. The 302 

clusters presented by Jehn et al. (2020) are formed based on agglomerative hierarchical clustering with ward 303 

linkage on the principal components of the hydrological signatures. The hydrological signatures that are identified 304 

with the highest spatial predictability are used to cluster 643 catchments from the CAMELS dataset. In terms of 305 

geographical regions, the rising limb density is highest over the Atlantic coast states, Ohio valley, Lower 306 

Mississippi Valley, Southern Great Plains, Southwest and Pacific, and lowest along the Upper Great Lakes region, 307 

Upper Mississippi Valley, Great Basin, and Northern Rocky Mountains, Northern Interior Plains, and East of Gulf 308 

Coast (Fig. 5.a). Further, in terms of hydrological clusters, the Appalachian Mountains (Cluster 10), Southeastern 309 

and Central Plains (Cluster 1), and all Southern most states of the US (Cluster 9) witness high rising limb densities 310 

(Fig. 6.a). Cluster 1 is characterized by dense vegetation cover and low elevation resulting in little annual 311 

snowfall. Cluster 10 catchments are located in the Appalachian Mountains, with a higher mean elevation than 312 

most other clusters, experiencing low aridity and high forest cover. However, Cluster 9 encompasses all of the 313 

United States' southern states, with lower precipitation seasonality and higher forest cover and green vegetation. 314 

Furthermore, all of the catchments in Cluster 9 are very near the sea, with a low snow component and high 315 

evapotranspiration. We used Spearman rank correlation for the correlation analysis (Table 2). Green-colored 316 

coefficients represent positive correlation, and the red-colored correlation coefficients represent negative 317 

correlation (Table 2). It can be seen that the rising limb density shows a negative correlation (Table 2) with the 318 

area (r = -0.30), elevation (r = -0.20) fraction of precipitation falling as snow (r = -0.33), and depth to bedrock (r 319 

= -0.32). Northwestern Forested Mountains (Clusters 3, 4), located in the mountains of the western US, experience 320 

low values of rising limb density. The catchments of Cluster 3 have the largest snow storage in the dataset. Cluster 321 

4 is found in the western United States' mountains, where there is a lot of snow, same as Cluster 3. Low values of 322 

rising limb density are observed due to a negative correlation with the fraction of precipitation falling as snow (r 323 

= -0.33). The study indicates that rising limb density is mainly governed by elevation and fraction of precipitation 324 

falling as snow in the CONUS. 325 

Considerably low values of rising limb scale parameters are experienced over the Rocky Mountains, High Plains, 326 

Great Plains, Upper Mississippi Valley, Great Basin, Southwest, and the Great Lakes regions, whereas the Pacific 327 



Northwest shows high values of rising limb scale parameters (Fig. 5.b). Clusters (5, 7) over the Northwestern 328 

Forested Mountains of CONUS experience very high values of rising limb scale parameters (Fig. 6.b). These 329 

catchments have the highest discharge, especially in the early summer, due to a combination of high precipitation 330 

and snowmelt. Further, the region in the Continental US which receives the highest precipitation is included in 331 

Cluster 5. Moreover, Cluster 5 consists of a large proportion of forest. Again, Cluster 7 with high values of rising 332 

limb scale parameter is characterized by high fraction of precipitation falling as snow. High precipitation and 333 

snowmelt might result in a large discharge. Higher discharges can create higher values of rising scale parameters 334 

as the rising limb scale parameter regulates the magnitude of the rising limb. Low values of rising limb scale 335 

parameters are shown by Clusters 2, 8, 9. This is because of low water availability, low snow fraction precipitation 336 

falling as snow, and high evaporation experienced in these regions. Low discharge and thus lower rising limb 337 

scale parameters can be caused by excessive evaporation, low water availability, and a low snow fraction of 338 

precipitation falling as snow. It is observed that the rising limb scale parameter (Table 2) shows a negative 339 

correlation with climate (r = -0.53 for aridity) and a positive association with the vegetation attributes (r = 0.46 340 

for forest fraction, r = 0.41 for LAI maximum, r = 0.44 for green vegetation fraction maximum). Frequency of 341 

precipitation (r = -0.56 for high precipitation frequency, r = -0.63 for low precipitation frequency) display a strong 342 

negative association with the rising limb scale parameter. 343 

Low rising limb shape parameter occurs along the Great Plains, Mississippi Valley, Pacific coast, and the west of 344 

Gulf Coast (Fig. 5.c). In contrast, the shape parameter over the Rocky Mountains, High Plains, Great Basin, Pacific 345 

Northwest, and the Great Lakes region witnesses the highest values of rising limb shape parameters (Fig. 5.c). All 346 

the catchments located in the Southern states of the US (Cluster 9), Great Plains and North American deserts 347 

(Cluster 8), and the Central Plains (Cluster 2) characterize low values of rising limb shape parameters (Fig. 6.c). 348 

This is due to low water availability, low snow fraction precipitation falling as snow, low leaf area index, and high 349 

evaporation experienced in these regions. Excessive evaporation and a low snow fraction of precipitation falling 350 

as snow can contribute to low discharge and thus lower rising limb shape parameters. It is noted that the rising 351 

limb shape parameter indicates (Table 2) a positive correlation with vegetation attributes (r = 0.41 for forest 352 

fraction) and the fraction of precipitation falling as snow (r = 0.53), mean slope (r = 0.36), mean elevation (r = 353 

0.41), and sand fraction (r = 0.37) whereas, it negatively correlates with precipitation frequency (r= -0.42 for high 354 

precipitation frequency and r = -0.45 for low precipitation frequency). High values of rising limb shape parameters 355 

are seen in Clusters 3, 4 (Fig. 6.c) located in the Northwestern Forested Mountains of the western US, dominant 356 

with a summer peak of discharge caused by rapid snowmelt. The rapid snowmelt can cause flashy hydrographs 357 

with high values of rising limb shape parameters.  358 

Catchments with a high falling limb density are predominantly located along the Great Basin and the Rocky 359 

Mountains and in the High Plains region (Fig. 7.a). This is due to less forest cover in these arid regions and falling 360 

limb density shows a positive association with the arid climate (r = 0.39). Clusters 6, 7 over Marine West Coast 361 

Forests and Western Cordillera experience smaller falling limb densities (Fig. 8.a). We can see that falling limb 362 

density is mainly governed by climate indices and is negatively correlated with the land cover characteristics (for 363 

LAI maximum (r = -0.37) and green veg frac max (r = -0.40, Table 2). Mean elevation (r = 0.55) also strongly 364 

characterizes the nature of the falling limb density. Besides, fraction of precipitation falling as snow (r = 0.42) is 365 

also positively correlated with falling limb density.  366 



Similarities exist between the patterns of the upper recession coefficient and the lower recession coefficient (Fig. 367 

7.b and Fig. 7.c). Clusters 3, 4 located in the Northwestern Forested Mountains, which have overall low discharge, 368 

show low values of upper and lower recession coefficients (Fig. 8.b and Fig. 8.c).  Clusters 2 and 9, located in the 369 

eastern US, witness high values of recession coefficients; due to low slope inclinations, water takes a long time 370 

to reach the outlet (Fig. 8.b and Fig. 8.c). Recession coefficients are negatively correlated (Table 2) with 371 

topographic indices (with mean elevation: upper_r = -0.40, lower_r = -0.35; with mean slope: upper_r = -0.38, 372 

lower_r = -0.37, where upper_r and lower_r corresponds to correlation values of upper and lower recession 373 

coefficients respectively). Further, the recession coefficients show a positive correlation with clay (upper_r = 0.52, 374 

lower_r = 0.32) and negative correlations with the fraction of precipitation falling as snow (upper_r = -0.46, 375 

lower_r = -0.39), forest fraction (upper_r = -0.31, lower_r = -0.28), and sand fraction (upper_r = -0.38, lower_r = 376 

-0.23). Moreover, the geology attributes such as subsurface porosity (upper_r = 0.13, lower_r = 0.16) reveal a 377 

positive correlation to recession coefficients and a negative (upper_r = -0.09, lower_r = -0.18) with subsurface 378 

permeability (Table 2). 379 

We first identify the regions in the United States where high/low values of streamflow indices occur. The dominant 380 

catchment attributes of these regions are also identified using corresponding clusters. The streamflow indices and 381 

the dominant catchment attribute are then related to interpret the process behind the obtained findings. In terms 382 

of geographical regions, the rising limb density is highest over the Atlantic coast states, Ohio valley, Lower 383 

Mississippi Valley, Southern Great Plains, Southwest and Pacific, and lowest along the Upper Great Lakes region, 384 

Upper Mississippi Valley, Great Basin, and Northern Rocky Mountains, Northern Interior Plains, and East of Gulf 385 

Coast (Fig. 5.a). Further, in terms of hydrological clusters, Appalachian Mountains (Cluster 10), Southeastern and 386 

Central Plains (Cluster 1) and all Southern most states of the US (Cluster 9) witness high rising limb densities and 387 

these clusters are characterized by a high forest fraction, low aridity, and high frequency of high precipitation 388 

events (Jehn et al., 2020), respectively (Fig. 6.a). The higher the forest proportion, the more precipitation is 389 

intercepted, resulting in a shallow rising limb and longer lag time of hydrograph. A high frequency of high 390 

precipitation episodes, on the other hand, can result in more rising limbs and higher rising limb densities. 391 

Northwestern Forested Mountains (Clusters 3, 4), located in the mountains of the western US, experience low 392 

values of rising limb density as these clusters are characterized by a dominant summer peak of discharge caused 393 

by rapid snowmelt (Fig. 6.a). In these clusters, we identified regions with low rising limb densities and the main 394 

catchment characteristics as dominant summer discharge peaks induced by quick snowmelt (Jehn et al., 2020). A 395 

long lag time and shallow rising limb might be caused by snow on the ground; hence low values of rising limbs 396 

might be caused by a longer lag time.  397 

Considerably low values of rising limb scale parameters are experienced over the Rocky Mountains, High Plains, 398 

Great Plains, Upper Mississippi Valley, Great Basin, Southwest, and the Great Lakes regions, whereas the Pacific 399 

Northwest shows high values of rising limb scale parameters (Fig. 5.b). Clusters (5, 7) over the Northwestern 400 

Forested Mountains of CONUS experience very high values of rising limb scale parameters (Fig. 6.b). These 401 

catchments have the highest discharge, especially in the early summer, due to a combination of high precipitation 402 

and snowmelt. Further, the region in the Continental US which receives the highest precipitation is included in 403 

Cluster 5. Moreover, Cluster 5 consists of a large proportion of forest. Again, Cluster 7 with high values of rising 404 

limb scale parameter is characterized by high fraction of precipitation falling as snow. High precipitation and 405 



snowmelt might result in a large discharge. Higher discharges can create higher values of rising scale parameters 406 

as the rising limb scale parameter regulates the magnitude of the rising limb. Low values of rising limb scale 407 

parameters are shown by Clusters 2, 8, 9. This is because of low water availability, low snow fraction precipitation 408 

falling as snow, and high evaporation experienced in these regions. Low discharge and thus lower rising limb 409 

scale parameters can be caused by excessive evaporation, low water availability, and a low snow fraction of 410 

precipitation falling as snow. 411 

Low rising limb shape parameter occurs along the Great Plains, Mississippi Valley, Pacific coast, and the west of 412 

Gulf Coast (Fig. 5.c). In contrast, the shape parameter over the Rocky Mountains, High Plains, Great Basin, Pacific 413 

Northwest, and the Great Lakes region witnesses the highest values of rising limb shape parameters (Fig. 5.c). All 414 

the catchments located in the Southern states of the US (Cluster 9), Great Plains and North American deserts 415 

(Cluster 8), and the Central Plains (Cluster 2) characterize low values of rising limb shape parameters (Fig. 6.c). 416 

This is due to low water availability, low snow fraction precipitation falling as snow, low leaf area index, and high 417 

evaporation experienced in these regions. Excessive evaporation and a low snow fraction of precipitation falling 418 

as snow can contribute to low discharge and thus lower rising limb shape parameters. High values of rising limb 419 

shape parameters are seen in Clusters 3, 4 (Fig. 6.c) located in the Northwestern Forested Mountains of the western 420 

US, dominant with a summer peak of discharge caused by rapid snowmelt. The rapid snowmelt can cause flashy 421 

hydrographs with high values of rising limb shape parameters. 422 

Catchments with a high falling limb density are predominantly located along the Great Basin and the Rocky 423 

Mountains and in the High Plains region (Fig. 7.a). Clusters 4, 2, 8 over Northwestern Forested Mountains, Central 424 

Plains, Great Plains, and North American deserts characterize higher magnitudes of falling limb density, and 425 

Clusters 6, 7 over Marine West Coast Forests and Western Cordillera smaller falling limb densities (Fig. 8.a). 426 

This is due to less presence of forest cover in these arid regions and falling limb density shows a positive 427 

association with the arid climate. 428 

Similarities exist between the patterns of the upper recession coefficient and the lower recession coefficient (Fig. 429 

7.b and Fig. 7.c). Clusters 3, 4 located in the Northwestern Forested Mountains, which have overall low discharge, 430 

show low values of upper and lower recession coefficients (Fig. 8.b and Fig. 8.c).  Clusters 2 and 9, located in the 431 

eastern US, witness high values of recession coefficients; due to low slope inclinations, water takes a long time 432 

to reach the outlet (Fig. 8.b and Fig. 8.c).  433 



 434 

Figure 5. Spatial maps of streamflow indices associated with a rising limb (a) rising limb density [day-1], (b) 435 
rising limb scale parameter, (c) rising limb shape parameter over the CONUS.  436 
  437 



 438 

Figure 6. Boxplots of the hydrological descriptors linked with the rising limb (a) rising limb density [day-1], (b) 439 
rising limb scale parameter, (c) rising limb shape parameter of the clusters over the CONUS.   440 



 441 

Figure 7. Regional variability of streamflow indices associated with the falling limb (a) falling limb density [day-442 
1], (b) upper recession coefficient, (c) lower recession coefficient over the CONUS.  443 



 444 

Figure 8. Boxplots of the streamflow indices related with the falling limb (a) falling limb density [day-1], (b) upper 445 
recession coefficient, (c) lower recession coefficient of the clusters. 446 

 447 

 448 



Table 2 Correlation (r- values) between streamflow indices and the catchment attributes. Green colored 449 
coefficients represent positive correlation, and the red-colored correlation coefficients represent the negative 450 
correlation. Corresponding (p- values) are shown in brackets. Insignificant correlations (p > 0.05) are marked 451 
yellow. 452 

r- value 
Rising 

limb 

density 

Scale 

parameter 

Shape 

parameter 

Falling 

limb 

density 

Upper 

recession 

coefficient 

Lower 

recession 

coefficient 

Area 
-0.30 -0.17 -0.06 -0.13 -0.06 -0.06 

(0.00) (0.00) (0.11) (0.00) (0.10) (0.11) 

Mean elevation 
-0.20 -0.13 0.41 0.55 -0.40 -0.35 

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

Mean slope 
-0.06 0.35 0.36 0.18 -0.38 -0.37 

(0.13) (0.00) (0.00) (0.00) (0.00) (0.00) 

Precipitation 

seasonality 

-0.04 -0.36 -0.14 0.01 0.17 0.22 

(0.26) (0.00) (0.00) (0.75) (0.00) (0.00) 

Frac of precp as 

snow 

-0.33 -0.04 0.53 0.42 -0.46 -0.39 

(0.00) (0.27) (0.00) (0.00) (0.00) (0.00) 

Aridity 
-0.10 -0.53 -0.16 0.39 0.04 0.03 

(0.01) (0.00) (0.00) (0.00) (0.30) (0.45) 

High precp freq 
0.08 -0.56 -0.42 0.12 0.31 0.27 

(0.04) (0.00) (0.00) (0.00) (0.00) (0.00) 

High precp dur 
-0.15 0.00 -0.07 0.12 -0.11 -0.17 

(0.00) (0.97) (0.09) (0.00) (0.01) (0.00) 

Low precp freq 
0.00 -0.63 -0.45 0.17 0.26 0.19 

(0.91) (0.00) (0.00) (0.00) (0.00) (0.00) 

Low precp dur 
-0.03 -0.25 -0.29 0.11 0.07 0.01 

(0.49) (0.00) (0.00) (0.00) (0.07) (0.84) 

Depth to bedrock 
-0.32 -0.21 -0.16 -0.19 0.19 0.21 

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

Sand frac 
-0.28 -0.02 0.37 -0.02 -0.38 -0.23 

(0.00) (0.62) (0.00) (0.63) (0.00) (0.00) 

Clay frac 
0.26 -0.15 -0.47 0.00 0.52 0.32 

(0.00) (0.00) (0.00) (0.93) (0.00) (0.00) 

Forest frac 
0.10 0.46 0.41 -0.17 -0.31 -0.28 

(0.01) (0.00) (0.00) (0.00) (0.00) (0.00) 

LAI maximum 
0.20 0.41 0.17 -0.37 -0.09 -0.04 

(0.00) (0.00) (0.00) (0.00) (0.03) (0.28) 

Green veg frac 

max 

0.18 0.44 0.15 -0.40 -0.05 -0.01 

(0.00) (0.00) (0.00) (0.00) (0.16) (0.74) 

Subsurface 

porosity 

-0.16 -0.06 -0.16 -0.08 0.13 0.16 

(0.00) (0.12) (0.00) (0.03) (0.00) (0.00) 

Subsurface 

permeability 

-0.11 -0.04 0.06 0.03 -0.09 -0.18 

(0.00) (0.34) (0.12) (0.39) (0.02) (0.00) 
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Area 
-0.30 -0.17 -0.06 -0.13 -0.06 -0.06 

(0.00) (0.00) (0.11) (0.00) (0.10) (0.11) 

Mean elevation 
-0.20 -0.13 0.41 0.55 -0.40 -0.35 

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

Mean slope 
-0.06 0.35 0.36 0.18 -0.38 -0.37 

(0.13) (0.00) (0.00) (0.00) (0.00) (0.00) 

Precipitation 

seasonality 

-0.04 -0.36 -0.14 0.01 0.17 0.22 

(0.26) (0.00) (0.00) (0.75) (0.00) (0.00) 

Frac of precp as 

snow 

-0.33 -0.04 0.53 0.42 -0.46 -0.39 

(0.00) (0.27) (0.00) (0.00) (0.00) (0.00) 

Aridity 
-0.10 -0.53 -0.16 0.39 0.04 0.03 

(0.01) (0.00) (0.00) (0.00) (0.30) (0.45) 

High precp freq 
0.08 -0.56 -0.42 0.12 0.31 0.27 

(0.04) (0.00) (0.00) (0.00) (0.00) (0.00) 

High precp dur 
-0.15 0.00 -0.07 0.12 -0.11 -0.17 

(0.00) (0.97) (0.09) (0.00) (0.01) (0.00) 

Low precp freq 
0.00 -0.63 -0.45 0.17 0.26 0.19 

(0.91) (0.00) (0.00) (0.00) (0.00) (0.00) 

Low precp dur 
-0.03 -0.25 -0.29 0.11 0.07 0.01 

(0.49) (0.00) (0.00) (0.00) (0.07) (0.84) 

Depth to bedrock 
-0.32 -0.21 -0.16 -0.19 0.19 0.21 

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

Sand frac 
-0.28 -0.02 0.37 -0.02 -0.38 -0.23 

(0.00) (0.62) (0.00) (0.63) (0.00) (0.00) 

Clay frac 
0.26 -0.15 -0.47 0.00 0.52 0.32 

(0.00) (0.00) (0.00) (0.93) (0.00) (0.00) 

Forest frac 
0.10 0.46 0.41 -0.17 -0.31 -0.28 

(0.01) (0.00) (0.00) (0.00) (0.00) (0.00) 

LAI maximum 
0.20 0.41 0.17 -0.37 -0.09 -0.04 

(0.00) (0.00) (0.00) (0.00) (0.03) (0.28) 

Green veg frac 

max 

0.18 0.44 0.15 -0.40 -0.05 -0.01 

(0.00) (0.00) (0.00) (0.00) (0.16) (0.74) 

Subsurface 

porosity 

-0.16 -0.06 -0.16 -0.08 0.13 0.16 

(0.00) (0.12) (0.00) (0.03) (0.00) (0.00) 

Subsurface 

permeability 

-0.11 -0.04 0.06 0.03 -0.09 -0.18 

(0.00) (0.34) (0.12) (0.39) (0.02) (0.00) 
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  455 

 456 

4.2 Relation of the Streamflow Indices and the Catchment Attributes 457 

The association between the streamflow indices related to rising and falling limbs and catchment attributes is 458 

examined in this section. Table 2 shows the relation of streamflow indices linked with rising limb, and Table 3 459 

shows the association of indices of the falling limb with catchment attributes. We used Spearman rank correlation 460 

for the correlation analysis. (in Tables 2 and 3). Green-colored coefficients represent positive correlation, and the 461 

red-colored correlation coefficients represent negative correlation. Table 2 and Table 3 have certain columns that 462 

are blank because only significant correlation values are provided in the table. Across all five attribute classes, the 463 

vegetation/land cover attributes positively correlate with all rising limb indices (Table 2). It can be seen that the 464 

rising limb density shows a positive correlation with all the three vegetation density indicators, namely fraction 465 

of forest, maximum leaf area index, maximum green vegetation fraction (Table 2).  466 

 467 

However, it is observed that the rising limb scale parameter shows a negative correlation with climate and a 468 

positive association with the vegetation attributes (Table 2). Aridity and frequency of precipitation (Table 2) 469 

display a strong negative association with the rising limb scale parameter. It is noted that the rising limb shape 470 

parameter indicates a positive correlation with vegetation attributes and the fraction of precipitation falling as 471 

snow, mean slope, mean elevation, and sand fraction whereas, it negatively correlates with precipitation 472 

frequency. 473 

 474 

Falling limb density is mainly governed by climate indices and is negatively correlated with the land cover 475 

characteristics (Table 3). Mean elevation also strongly characterizes the nature of the falling limb density. Besides, 476 

aridity and fraction of precipitation falling as snow are also positively correlated with falling limb density. 477 

Recession coefficients are negatively correlated with topographic indices (Table 3). Further, the recession 478 

coefficients show a positive correlation with clay and negative correlations with the fraction of precipitation falling 479 

as snow, forest fraction, and sand fraction. Moreover, the geology attributes such as subsurface porosity reveal a 480 

positive correlation to recession coefficients and a negative with subsurface permeability (Table 3). 481 

 482 

 483 

 484 
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Table 2. Correlation between streamflow indices linked with rising limb and the catchment attributes. Green 485 
colored coefficients represent positive correlation, and the red-colored correlation coefficients represent the 486 
negative correlation.  487 
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Rising limb density -0.30 -0.20   -0.33 -0.10 0.08 -0.15   -0.32 -0.28 0.26 0.10 0.20 0.18 -0.16 -0.11 

Scale parameter -0.17 -0.13 0.35 -0.36  -0.53 -0.56  -0.63 -0.25 -0.21  -0.15 0.46 0.41 0.44   

Shape parameter  0.41 0.36 -0.14 0.53 -0.16 -0.42  -0.45 -0.29 -0.16 0.37 -0.47 0.41 0.17 0.15 -0.16  

Table 3. Correlation between streamflow indices linked with falling limb and the catchment attributes. Green 488 
colored coefficients represent positive correlation, and the red-colored correlation coefficients represent the 489 
negative correlation.  490 
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 493 

Figure 9. (a) Comparison of the hydrological clusters of Jehn et al. (2020) with the climate index space (fraction 494 
of precipitation falling as snow vs. aridity). Single dots show the catchments and are colored by their hydrological 495 
clusters. Comparison of the streamflow indices in climate index space (b) rising limb density (c) rising limb scale 496 
parameter, (d) rising limb shape parameter, (e) falling limb density, (f) upper recession coefficient, (g) lower 497 
recession coefficient for all catchments. Single dots show the catchments and are colored according to the value 498 
of the streamflow indices.  499 

 500 

4.3 Influence of Attributes of Climate to Streamflow Indices 501 

The climatic indices indicate a more substantial influence on hydrological signatures than the topographic, soil, 502 

land cover, and geological attributes combined (Addor et al., 2018). Additionally, the findings of Jehn et al. (2020) 503 

highlighted that the climate appears to be the most critical factor influencing hydrological behavior in the 504 

CAMELS dataset as a whole, and depending on the location, either aridity, snow, or seasonality are most 505 

important. Hence, the streamflow indices are then examined in the climate index space (aridity along x-axis and 506 

fraction of precipitation falling as snow along the y-axis) to evaluate the main drivers of the catchments. Single 507 

dots show the catchments and are colored by their hydrological clusters (Fig. 9.a).  508 

Clusters 5, 6, 7, 1, 10 are characterized by a low fraction of precipitation falling as snow and humid climate, 509 

whereas Clusters 3, 4 have humid climate experiencing a high fraction of precipitation falling as snow (Fig. 9.a). 510 

Clusters 2, 8, 9 are featured by a low fraction of precipitation falling as snow and arid climate (Fig. 9.a). The three 511 

categories mentioned above are referred to as G1, G2, and G3, respectively. 512 
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Clusters G1 with a low fraction of precipitation falling as snow with humid climate show (Clusters 1, 9, 10) high 513 

rising limb densities (Fig. 9.b) and (Clusters 5, 7) high rising limb scale parameters (Fig. 9.c). This is because the 514 

rising limb density negatively correlates with fraction of precipitation falling as snow (Fig. 9.b), whereas the rising 515 

limb scale parameter negatively correlates with aridity (Fig. 9.c). Moreover, these Clusters G1 experience a low 516 

value of (Clusters 6, 7) falling limb density (Fig. 9.e). This is because the falling limb density positively correlates 517 

with the climate indices (Fig. 9.e). 518 

As mentioned earlier, Clusters G2 with humid climate and with a high fraction of precipitation falling as snow 519 

(Clusters 3, 4) display low values of rising limb density as rising limb density correlates negatively with the 520 

fraction of precipitation falling as snow (Fig. 9.b). G2 witnesses higher values of rising limb shape parameter due 521 

to its negative correlation with aridity and positive correlation with the fraction of precipitation falling as snow 522 

(Fig. 9.d). Furthermore, the Clusters of G2 (Clusters 3, 4) show low values of recession coefficients as they depict 523 

a strong negative correlation with the fraction of precipitation falling as snow (Fig. 9.f, g). 524 

Low values of rising limb scale and shape parameters are noticed for the Clusters 2, 9, 8 (Clusters G3) with arid 525 

climate and low fraction of precipitation falling as snow (Fig. 9.c, d) due to its negative correlation with aridity as 526 

stated earlier. Cluster 8 experiences the maximum values of falling limb density (Fig. 9.e) where the region 527 

witnesses low fraction of snow and arid catchments, due to its strong positive correlates with the aridity.  528 

4.2 Influence of Attributes of Climate to Streamflow Indices 529 

The climatic indices indicate a more substantial influence on hydrological signatures than the topographic, soil, 530 

land cover, and geological attributes combined (Addor et al., 2018, Stein et al., 2021). Additionally, the findings 531 

of Jehn et al. (2020) highlighted that the climate appears to be the most critical factor influencing hydrological 532 

behavior in the CAMELS dataset as a whole, and depending on the location, either aridity, snow, or seasonality 533 

are most important. Hence, the streamflow indices are then examined in the climate index space (aridity along x-534 

axis and fraction of precipitation falling as snow along the y-axis) to evaluate the main drivers of the catchments. 535 

Single dots show the catchments and are colored by their hydrological clusters (Fig. 9.a).  536 

Clusters 5, 6, 7, 1, 10 are characterized by a low fraction of precipitation falling as snow and humid climate, 537 

whereas Clusters 3, 4 have humid climate experiencing a high fraction of precipitation falling as snow (Fig. 9.a). 538 

Clusters 2, 8, 9 are featured by a low fraction of precipitation falling as snow and arid climate (Fig. 9.a). The three 539 

categories mentioned above are referred to as G1, G2, and G3, respectively. 540 

Clusters G1 with a low fraction of precipitation falling as snow with humid climate show (Clusters 1, 9, 10) high 541 

rising limb densities (Fig. 9.b) and (Clusters 5, 7) high rising limb scale parameters (Fig. 9.c). This is because the 542 

rising limb density negatively correlates with fraction of precipitation falling as snow (Table 2: r = -0.33, Fig. 543 

9.b), whereas the rising limb scale parameter negatively correlates with aridity (Table 2: r = -0.53, Fig. 9.c). 544 

Moreover, these Clusters G1 experience a low value of (Clusters 6, 7) falling limb density (Fig. 9.e). This is 545 

because the falling limb density positively correlates with the climate indices (Table 2: r = 0.42 for fraction of 546 

precipitation falling as snow and r = 0.39 for aridity, Fig. 9.e). 547 

As mentioned earlier, Clusters G2 with humid climate and with a high fraction of precipitation falling as snow 548 

(Clusters 3, 4) display low values of rising limb density as rising limb density correlates negatively with the 549 
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fraction of precipitation falling as snow (Table 2: r = -0.33, Fig. 9.b). G2 witnesses higher values of rising limb 550 

shape parameter due to its negative correlation with aridity (r = -0.16) and positive correlation with the fraction 551 

of precipitation falling as snow (Table 2: r = 0.53, Fig. 9.d). Furthermore, the Clusters of G2 (Clusters 3, 4) show 552 

low values of recession coefficients as they depict a strong negative correlation with the fraction of precipitation 553 

falling as snow (Table 2: upper_r = -0.46, and lower_r = -0.39, Fig. 9.f, g). 554 

Low values of rising limb scale and shape parameters are noticed for the Clusters 2, 9, 8 (Clusters G3) with arid 555 

climate and low fraction of precipitation falling as snow (Fig. 9.c, d) due to its negative correlation with aridity as 556 

stated earlier. Cluster 8 experiences the maximum values of falling limb density (Fig. 9.e) where the region 557 

witnesses low fraction of snow and arid catchments, due to its strong positive correlates with the aridity (r = 0.39).  558 

5 Concluding remarks 559 

Streamflow hydrograph portrays the time distribution of runoff at the point of measurement by a single curve, and 560 

the hydrographs are characterized by their time irreversibility property.  In this study, the indices related to this 561 

characteristic feature are used to study the catchment drivers of streamflow hydrograph. The streamflow indices 562 

associated with the time irreversibility of hydrograph open new opportunities to investigate the interaction 563 

between topography, soil, climate, vegetation, geology that drive the hydrological behavior of catchments. 564 

Moreover, most of the previously presented hydrologic indices are employed only for time-symmetric processes 565 

(McMillan, 2021); the importance of the time irreversibility of streamflow is highlighted in this study. The indices 566 

associated with rising and falling limbs are primarily correlated to distinct catchment attributes, establishing a 567 

relationship between the indices and catchment attributes such as climate, topography, soil, geology, and 568 

vegetation to delineate the controlling drivers in corresponding hydrograph sections. A set of streamflow indices 569 

with temporal asymmetry for 671 catchments in the United States is presented in this study. The regional 570 

variations among catchments over the United States are compared and discussed using the spatial maps of 571 

streamflow indices. Such spatial maps of the streamflow indices supplement the hydrometeorological time series 572 

and catchment attributes provided by Addor et al. (2017).  573 

The study revealed that the rising limb indices such as rising limb density, rising limb shape parameter and rising 574 

limb scale parameter correlate positively with vegetation indices. Falling limb density is primarily controlled by 575 

climate indices and is negatively correlated with land cover characteristics; the structure of the falling limb density 576 

is also closely influenced by mean elevation. The study showed that the rising limb density is mainly governed 577 

by the elevation and fraction of precipitation falling as snow. Climate indices, mean elevation, and the fraction of 578 

precipitation falling as snow mainly influence falling limb density. In contrast, the aridity and frequency of 579 

precipitation drive the rising limb scale parameter. Furthermore, forest fraction, the fraction of precipitation falling 580 

as snow, mean slope, mean elevation, sand fraction, and precipitation frequency influence the rising limb shape 581 

parameter. Mean elevation, mean slope, clay, the fraction of precipitation falling as snow, forest fraction, and sand 582 

fraction all determine recession coefficients. Finally, streamflow indices are studied in the climate index space to 583 

isolate the runoff generation's leading drivers. High rising limb densities and rising limb scale parameters are 584 

observed in catchments with low precipitation falling as snow and a humid climate. It is observed that the 585 

catchments with a humid climate and a high fraction of precipitation falling as snow display low values of rising 586 

limb density, high values of the rising limb shape parameter, and low values of recession coefficients. The lowest 587 

values of rising limb scale and shape parameters, and the highest values of falling limb density, are seen in 588 
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catchments of arid climates and a low fraction of precipitation falling as snow. 589 

In general, the contribution of this work lies in differentiating hydrographs depending on their time irreversibility 590 

property and using the corresponding indices to provide an alternative methodology for identifying the drivers of 591 

streamflow hydrographs. In the context of large sample hydrology research, the concept of time-irreversibility 592 

and the indices associated with it could also be used to describe the drivers at catchment scale. It must be noted 593 

that Eeach attribute (e.g., climate vegetation, soil, geology) usually does not exist independently in space but is 594 

closely interwoven, resulting in various strongly correlated attributes in a catchment (Jehn et al., 2020; Stein et 595 

al., 2021). However, it would be beyond the scope of this paper document to describe all probable relationships 596 

between attributes. Keeping this in mind, the main focus of this study was constrained to only identify the 597 

controlling attributes of streamflow indices. Another limitation of the work is related with the characterization of 598 

recessions used.  599 

Future work may investigate using the inflection point or another recession separation technique to characterize 600 

recessions. 601 
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