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We sincerely thank Dr. Wouter Knoben (Reviewer #1) and the anonymous reviewer 

(Reviewer#2) for reviewing the manuscript and offering valuable critical comments to improve 

the manuscript. We provide here our responses to their comments. 

Comments of Reviewer #1: 

The manuscript “Streamflow indices to identify catchment drivers of hydrograph” by Mathai 

and Mujumdar estimates six streamflow indices for 621 stations in the U.S. and investigates 

their correlation with 15 catchment attributes, taken from the CAMELS data set in a spatial 

context. This study aims at identifying the drivers of streamflow indices, by distinguishing 

indices related to the rising and falling limbs of the hydrographs, i.e., implicitly related to 

different processes. The idea of the study is potentially very interesting however, in my opinion, 

the analyses, results and discussion presented should be further expanded and developed in 

order to be considered suitable for publication. The manuscript is overall well written, but I 

have some specific comments/suggestions regarding the organisation of some sections/figures.  

 

Response: We sincerely thank you for the encouraging remarks and for giving us an 

opportunity to revise our manuscript. 

 

Please find my specific comments below. 

 

Major comments: 

1. Methods: the method section is partly unclear (lines 85-93) and further explanations are 

needed. How are the diurnal increments of streamflow obtained (line 85)? How is the 

Weibull distribution fitted to the data (line 86)? How are the recession coefficient b1 and b2 

obtained (the description of these two indices is missing)? How are the correlation 

coefficients, presented in the result section, calculated? Please clarify these aspects in the 

method section and provide references. 

 

Response: We apologize for the lack of clarity in the text. To obtain the diurnal increments of 

streamflow for wet days [Fig 1 (a)], we first identify the hydrologic state of the stream 

(ascension and recession) (Mathai and Mujumdar, 2019). To determine the hydrologic state of 

a stream - increasing (wet) or decreasing (dry) - on a given day, a time series of diurnal 

increments is extracted by differencing the original time series with its one-day lagged time 

series. The positive increments are identified as diurnal increments for wet days (ascension 
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limb). 

 
Fig 1. Schematic representation of flow series (a) ascension limb and (b) recession limb. 

The diurnal increments (indicating 𝛿𝑄) of the ascension limb (wet days) are fitted with an 

appropriate probability density function. The Weibull distribution is proven to be a reasonable 

fit as an extreme value distribution to the diurnal increments of the streamflow (Stagge and 

Moglen, 2013; Szilagyi et al., 2006). The Weibull pdf is positive only for positive values of 𝑥, 

and is zero otherwise. For strictly positive values of the scale parameter 𝑎 and shape parameter 

𝑏, the density function is given by 

𝑓(𝑥; 𝑎, 𝑏) =  {
𝑏

𝑎
(

𝑥

𝑎
)

𝑏−1

𝑒−(𝑥 𝑎⁄ )𝑏
           𝑥 ≥ 0,

 0                                         𝑥 < 0 ,
 

where 𝑎 > 0, 𝑏 > 0. The shape and scale parameters of the Weibull distribution are estimated 

for each catchment from the observed diurnal increments of the streamflow. 

The steps to obtain recession coefficients 𝑏1 and 𝑏2 are explained below (Mathai and 

Mujumdar, 2019): 

 

Modeling of the recession limb (dry days) of the daily hydrograph is carried out in two stages 

to capture the underlying dynamics of the flow (Aksoy, 2003; Aksoy and Bayazit, 2000). 

Practically, the upper recession [Fig 1 (b)] corresponds to the rapid flow following a storm 

event and the lower recession corresponds to the baseflow recession (Stagge and Moglen, 

2013). Barnes (1939) represented the emptying of water from the basin after a storm with an 

exponential recession given as, 

 𝑄𝑡 = 𝑄0𝑒−𝑏𝑡  

where 𝑏 is the recession coefficient, 𝑡 is time, 𝑄𝑡 is the flow 𝑡 days after the peak and 𝑄0 is the 

peak flow. Mean flow value is chosen as an appropriate measure (Sargent, 1979) to divide the 

recession into two stages.  
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The limbs with a peak flow value greater than the observed mean flow value are considered as 

upper recessions and those with peak flow values smaller than the observed mean as lower 

recessions. The upper recession is assumed to take the form of: 

 𝑄𝑡 = 𝑄0𝑒−𝑏1𝑡  

where 𝑏1 is the recession coefficient for the upper part of the recession limb, 𝑡 is the number of 

days after the peak, 𝑄𝑡  is flow 𝑡 days after the peak, 𝑄0 is the preceding peak flow. The lower 

recession is assumed to take the form of: 

 𝑄𝑡 = 𝑄0
∗𝑒−𝑏2(𝑡−𝑡∗)  

where 𝑏2  is the recession coefficient for the lower part of the recession limb, 𝑡∗ is the time 

from the start of the lower recession, Q0
∗  is the initial flow in the lower part of the recession.  

 

The recession expressions for upper and lower recession are fitted by regressing ln (𝑄𝑡/𝑄0) 

versus 𝑡 and ln (𝑄𝑡/𝑄0
∗) versus 𝑡 − 𝑡∗ respectively. These linear regressions are performed on 

each individual recession sequence. The average of the upper/lower recession parameters is 

taken as the upper/lower recession parameter of that catchment (on daily time series data). 

 

In the results section, we used Spearman rank correlation for the correlation analysis (in Tables 

3 and 4 of the manuscript). Green-colored coefficients represent positive correlation, and the 

red-colored correlation coefficients represent negative correlation. Only significant values of 

correlations are provided in the table, which results in some columns being blank in Table 3 

and Table 4. 

2. In the manuscript too much space is given, in my opinion, to the presentation of the 

CAMEL database and the related catchment attributes or clustering of stations. Three figures 

(Figure 3, Figure 4 and Figure S1) and two tables (Table 2 and Table S1) of the manuscript are 

directly taken from other publications (in some cases the figures are copy-pasted, and the 

source is cited, and in other cases the data is simply re-plotted compared to the original 

publication and the source is cited). I would suggest significantly reducing the room (both text 

and figures/tables) allocated to these “non-original” parts of the manuscript by, e.g. combining, 

condensing and reworking (or removing) the above cited figures and tables. 

 

Response: Thank you for the valuable suggestions.  Figure 4, which depicts topographic 

characteristics of CAMELS catchments across the CONUS, will be moved to the Supplement 

section. Table 2 in the manuscript will also be moved to the Supplement. Because the spatial 

maps are interpreted using Figure 3 in the results section, we wish to keep Figure 3 in the 

manuscript. We prefer to keep Figure S1/Table S1 in the Supplement rather than eliminating 

them since we use the clusters provided by Jehn et al. (2020) to interpret the results. 

3.  The correlation analysis between the streamflow indices and the catchment attributes (pages 

16-19, Section 6.2 and 6.3), which should represent the main focus of the paper, is carried out 

in a bit too simplistic and superficial way. The only results presented in Section 6.2 are two 

correlation matrices (where the authors do not specify how the correlation coefficients are 

calculated) and the analysis in the ‘climate index space’ (Section 6.3, figure 9) merely consists 

in plotting the streamflow indices as a function of two (arbitrarily chosen) climate indices. 
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Further and more rigorous analyses should be added (e.g. are the correlations significant?) in 

order to properly investigate the processes represented by the time-irreversibility-based indices 

and to support the authors’ statements. The discussion of the results is poor, and Section 6 is 

limited to the mere description of the figures/tables. A discussion or interpretation of the 

processes behind the obtained results would be advisable. 

Response: We are grateful to you for your insightful recommendations and comments. We 

acknowledge that the discussion part is weak due to the lack of discussion of the processes that 

underpin the correlations. We will add an interpretation of the processes behind the correlations 

to the discussion section to improve it. 

In the results section (Section 6.2), we used Spearman rank correlation for the correlation 

analysis (in Tables 3 and 4 of the manuscript). Green-colored coefficients represent positive 

correlation, and the red-colored correlation coefficients represent negative correlation. Table 3 

and Table 4 have certain columns that are blank because only significant correlation values are 

provided in the table. We will clarify in the revised manuscript. 

Specific comments: 

Lines 71-74 about the novelty of the study would better fit at the end of the introduction section. 

Response: We thank you for the suggestion. We will now move the main novelty part to the 

end of the introduction section. 

 

Table 1: there is an apparent change in terminology (i.e. “rising limb” and “ascension limb” 

are used in the description of different indices). Please use consistent terminology throughout 

the manuscript. 

Response: Thanks for pointing out this mistake. We will use consistent terminology 

throughout the manuscript. 

Figure 2: 3 rising limbs are taken into account in the RLD denominator, but only 2 are 

considered in the RLD numerator. Why is that? How do the authors take into account 

rising/falling limbs that fall only partly into the analysed period? Please specify it also in the 

text of the method section. 

Response: Thanks for pointing out this mistake. The numerator is also 3. We will correct the 

numerator in the revised manuscript. In this study, we consider entire daily time series of a 

particular station and identify the state of the stream as ascension or recession. The limbs that 

correspond to the ascension state are considered rising limbs, while those belonging to the 

recession state are considered falling limbs.  

Figure 2: please align the labels of the time intervals to the centre of corresponding segments. 

Response: Thanks for pointing out this mistake. We will follow  the suggestion and include a 

modified figure in the revised manuscript. 

Section 3 (contributions of the study) and Section 4 (motivation of the study) would be better 

placed at the end of the introduction. The description of the Camel dataset and corresponding 

catchment attributes (currently in Section 4) would be better placed in the Data section 5. 
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Response: Thank you for the suggestions. We will move Section 3 (Contributions of the study) 

and Section 4 (Motivation to extend to large sample hydrology) to the end of the introduction 

section. The text (lines 137-147) will appropriately move to Data Section 5.   

 

Line 105: “to identify the key drivers of streamflow hydrographs” or “to identify the key drivers 

of streamflow indices”? 

Response: “to identify the key drivers of streamflow hydrographs” is used in the Line 105. 

The main goal of the study is to identify the key drivers of streamflow hydrograph (rising and 

falling limbs) in terms of catchment attributes (eg. mean slope, aridity, fraction of precipitation 

falling as snow).  

 

Line 110: what do the author mean by “attribute class”? It’s not clear to me. 

Response: Thank you so much for bringing this up. The attribute class is a broad classification 

of attributes based on a particular aspect/feature. Topography, climate, and soil are examples 

of attribute classes. 

A data set of attributes for 671 catchments in the contiguous United States is presented using a 

series of maps (CAMELS dataset- Addor et al., 2017) to describe six main classes of attributes 

at the catchment scale: topography, climate, streamflow, land cover, soil, and geology. In this 

study, we present a new attribute class of streamflow indices related to rising and falling 

limbs.  

 

Line 180: “the landscape of each catchment is described using multiple attributes […]” I 

believe that the attributes of Table 2 are representative of broader catchment features than 

landscape (e.g. climate) 

Response: We apologize for the lack of clarity in the text. Table 2 summarizes the various 

attributes of CAMELS dataset used in the analysis. We will remove the text (line 180) and 

move Table 2 to the Supplement section. 

 

Line 186-191: line numbers are mistakenly written into the last column of the table 

Response: Thanks for pointing out this mistake. We will correct this in the revised manuscript.  

Line 192: how are “high precipitation days” defined? 

Response:  High precipitation days are defined as days that have precipitation ≥ five times the 

mean daily precipitation (Addor et al., 2017).  ‘high_prec_freq’  is the frequency of high 

precipitation days (≥ 5 times mean daily precipitation). Unit is days yr-1. We will add this  

description in Table 2.  

Section 6.1: several statements in this section are not justified by the results and figures 

presented by the authors. This occurs e.g., in lines 219-220 “these clusters … respectively”, 

lines 221-222 “as these clusters … rapid snowmelt”, lines 226-229 “These catchments ... 

forest.”, lines 321-232 “This is because … regions”, lines 238-239 “This is due to… regions”, 

lines 240-241 “dominant with … snowmelt” and line 246. Please support your statements with 

additional figures/results. 
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Response: We thank you for this advice. We acknowledge that we did not provide adequate 

supporting references for the statements. 

 

For Section 6.1, the features/characteristics of the 10 clusters provided by Jehn et al. (2020) are 

used to interpret the findings of the results.  For explaining these statements, lines 219-220 

“these clusters … respectively”, lines 221-222 “as these clusters … rapid snowmelt”, lines 

226-229 “These catchments ... forest.”, lines 321-232 “This is because … regions”, lines 238-

239 “This is due to… regions”, lines 240-241 “dominant with … snowmelt” and line 246 – we 

start by identifying the regions in the United States where high/low values of streamflow 

indices occur. The dominant catchment attributes of these identified regions are also identified 

using corresponding clusters. Finally, the streamflow indices and the dominant catchment 

attribute are related to interpret the process behind the obtained findings.  

 

We will add these discussions in the manuscript. 

 

in lines 219-220: We found the regions with the highest rising limb densities, as well as the 

dominant catchment characteristics in these clusters: high forest proportion, low aridity, and a 

high frequency of high precipitation events (Jehn et al., 2020).  The higher the forest proportion, 

therefore, higher is the precipitation intercepted, resulting in  shallow rising limbs. A high 

frequency of high precipitation episodes, on the other hand, can result in more rising limbs and 

higher rising limb densities. 

 

lines 221-222: Reproduced from the manuscript [Northwestern Forested Mountains (Clusters 

3, 4), located in the mountains of the western US, experience low values of rising limb density 

as these clusters are characterized by a dominant summer peak of discharge caused by rapid 

snowmelt (Fig. 6.a)].  

 

In these clusters, we identified regions with low rising limb densities and the main catchment 

characteristics as dominant summer discharge peaks induced by quick snowmelt (Jehn et al., 

2020).  A long lag time and shallow rising limb might be caused by snow on the ground; hence 

low values of rising limbs might be caused by a longer lag time. 

 

lines 226-229: Reproduced from the manuscript [Clusters (5, 7) over the Northwestern 

Forested Mountains of CONUS experience very high values of rising limb scale parameters. 

These catchments have the highest discharge, especially in the early summer, due to a 

combination of high precipitation and snowmelt (Jehn et al., 2020). Further, the region in the 

Continental US which receives the highest precipitation is included in Cluster 5 (Jehn et al., 

2020). Again, Cluster 7 with high values of rising limb scale parameter is characterized by high 

fraction of precipitation falling as snow (Jehn et al., 2020)].   

 

High precipitation and snowmelt might result in a large outflow. Higher discharges can create 

higher values of rising scale parameters because the rising limb scale parameter regulates the 

magnitude of the rising limb. 

 



7 
 

lines 231-232: Reproduced from the manuscript [Low values of rising limb scale parameters 

are shown by Clusters 2, 8, 9. This is because of low water availability, low snow fraction 

precipitation falling as snow, and high evaporation experienced in these regions].  

 

Low discharge and thus lower rising limb scale parameters can be caused by excessive 

evaporation, low water availability, and a low snow fraction of precipitation falling as snow. 

 

lines 238-239: Reproduced from the manuscript [All the catchments located in the Southern 

states of the US (Cluster 9), Great Plains and North American deserts (Cluster 8), and the 

Central Plains (Cluster 2) characterize low values of rising limb shape parameters (Fig. 6.c). 

This is due to low water availability, low snow fraction precipitation falling as snow, low leaf 

area index, and high evaporation experienced in these regions].   

 

Low discharge- long lag time and thus lower rising limb shape parameters can be caused by 

excessive evaporation, low water availability, and a low snow fraction of precipitation falling 

as snow. 

 

lines 240-241:  Reproduced from the manuscript [High values of rising limb shape parameters 

are seen in Clusters 3, 4 (Fig. 6.c) located in the Northwestern Forested Mountains of the 

western US, dominant with a summer peak of discharge caused by rapid snowmelt].   

 

The rapid snowmelt can cause flashy hydrographs with high values of rising limb shape 

parameters. 

 

line 246:  Reproduced from the manuscript [Clusters 6, 7 over Marine West Coast Forests and 

Western Cordillera smaller falling limb densities (Fig. 8.a). This is due to less presence of 

forest cover in these arid regions].  

 

Our interpretation is that the falling limb density shows a positive association with the arid 

climate.  

 

We considered the clusters provided by Jehn et al. (2020) for this study. Even though the 

CAMELS dataset provides an excellent overview of many kinds of catchments in contrasting 

climatic and topographic regions, a comprehensive dataset like CAMELS does not allow easy 

to find a conclusive set of clusters to explain catchment hydrologic behavior. In order to tackle 

this difficulty, we transformed the streamflow indices and presented them in clusters that 

represent distinct hydrological behavior which facilitates the interpretation of hydrological 

processes easier. The ten clusters represent groups of catchments with distinct hydrological 

behavior and have distinct spatial patterns as well. The clusters presented by Jehn et al. (2020) 

are formed based on agglomerative hierarchical clustering with ward linkage on the principal 

components of the hydrological signatures. The hydrological signatures that are identified with 

the highest spatial predictability are used to cluster 643 catchments from the CAMELS dataset.  
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Captions of Figures and tables: the captions of the manuscript often contain the description of 

the results presented in the figure/table (Figure 4, 5, 6, 7, 8, 9 and Table 3, 4). This is not 

needed. Please place the description of the figure/table in the main text. 

Response: We thank you for your remarks. The description of the figures/tables (Figure 4, 5, 

6, 7, 8, 9 and Table 3, 4) will be removed during the revision and will be placed in the text as 

advised. 

 

I would suggest combining Figure 5/6 and 7/8 into one figure with multiple panels (i.e., one 

figure with the current Figure 5 and 6, and another figure with the current figure 7 and 8). This 

is because the message conveyed by figures 5 and 6 and by figures 7 and 8 is similar and 

complementary (they present spatial patterns and spatial clusters) and it would be easier for the 

reader to have comparable results in a more compact form. 

Response: We thank you for your suggestion. We will combine Figures 5/6 and 7/8 and 

provide a more compact form for easy readability. 

 

Table 3 and Table 4: Reading the tables would be easier if rows and columns were inverted 

(i.e. transposed table). I would also suggest merging table 3 and 4 for a more rapid and direct 

comparison. 

Response: We thank you for your suggestion. We will incorporate this change in the revised 

manuscript.  

Section 6.2: the streamflow indices are here referred to as “Flow descriptors”. Please use 

consistent terminology throughout the manuscript. 

Response: Thanks for pointing out this mistake. We will correct this text in the revised 

manuscript. 

Section 6.3: Why only 2 climate attributes (aridity and snow fraction) are considered? 

Response: Thank you for raising this concern. We acknowledge that we chose these two 

climate attributes (aridity and snow fraction) rather arbitrarily in the study, out of the many 

possible attributes. 

 

The climatic indices indicate a more substantial influence on hydrological signatures than the 

topographic, soil, land cover, and geological attributes combined (Addor et al., 2018). 

Additionally, the findings of Jehn et al. (2020) highlighted that the climate appears to be the 

most critical factor influencing hydrological behavior in the CAMELS dataset as a whole, and 

depending on the location, aridity, snow, or seasonality are most important.  

 

Therefore, we attempted to determine how widely streamflow indices differ across US 

catchments in terms of aridity and snow fraction. 

 

Section 6.3: The clusters G1, G2, G3 are arbitrarily chosen by re-grouping 10 pre-existing 

clusters. The reasons of this choice are not fully clear to me and this double clustering creates 

some confusion in this section. Perhaps the authors could use a clustering algorithm or better 

justify this choice. 
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Response: We are sorry for the lack of clarity in the text.  

Clusters 5, 6, 7, 1, 10 are characterized by a low fraction of precipitation falling as snow and 

humid climate, whereas Clusters 3, 4 have humid climate experiencing a high fraction of 

precipitation falling as snow (Please refer Fig. 9.a in the manuscript). Clusters 2, 8, 9 are 

featured by a low fraction of precipitation falling as snow and arid climate (Fig. 9.a in the 

manuscript).  

The three categories mentioned above are referred to as G1, G2, and G3, respectively. These 

three are the possible combinations with climate attributes- the aridity and fraction of 

precipitation falling as snow. 

G1- a low fraction of precipitation falling as snow and humid climate 

G2- humid climate experiencing a high fraction of precipitation falling as snow 

G3- a low fraction of precipitation falling as snow and arid climate 

The fourth combination of arid climate and a high fraction of precipitation falling as snow does 

not happen in actual cases.  

 

We then tried to group the 10 clusters in the above categories to understand better how 

streamflow indices behave in these climate attribute combinations. 

 

The title of Section 6.3 is unclear 

Response: The title of Section 6.3 is Streamflow Indices with Attributes of Climate. As the 

climate is the most important factor in the US for the hydrological behavior for the CAMELS 

dataset (Jehn et al., 2020), the influence of climatic factors on streamflow indices is studied in 

this section. We will modify the title of Section 6.3 to ‘Influence of Climate Attributes on 

Streamflow Indices’. 

 

Comments of Reviewer #2: 

Manuscript summary 

 

This study attempts to investigate the relationship between statistical descriptors of catchment 

properties (e.g mean elevation, mean aridity, forest fraction, etc) and statistical properties of 

the rising limbs and recessions of streamflow hydrographs. The study uses 671 catchments 

from the CAMELS dataset and a subset of 15 of the CAMELS’ attributes. The study uses six 

streamflow indices/signatures; three of which describe properties of rising limbs and three of 

which describe properties of recessions. The signatures are the rising and falling limb density, 

and four parameters that are found by respectively fitting a Weibull function to the rising limbs 

of each catchment and two exponential regressions to the falling limbs of each catchment. 

Values for these six signatures are correlated with values of the 15 catchment attributes and 

these correlations are summarized. Part of the analysis is performed with the catchments 

grouped into 10 clusters defined in other work and part of the analysis is performed without 

this division into clusters. 
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Summary of comments 

 

I have provided a summary of my thoughts about this manuscript here. I have also uploaded an 

annotated PDF with additional comments. Some overlap exists between the summary here and 

the individual comments in the annotated PDF. 

 

Novelty 

The introduction is currently missing an overview of what is already known about drivers of 

rising limbs and recessions. Currently no knowledge gap is defined and this makes it somewhat 

difficult to assess the novelty of this paper. A literature review and definition of knowledge 

gap should be added to the paper. 

 

Response: Thank you your valuable review of our manuscript. Specifically, we thank you for 

pointing  out the limitation on literature review. We will include a summary of the literature 

review to address the concern. We agree that a considerable work exists on identifying drivers, 

we provided this approach as an alternate/complementary procedure to understand the drivers 

of rising limbs and recessions using indices related to rising and falling limbs. 

 

We have also responded to the comments in the annotated PDF. 

 

In my opinion, the paper currently does not provide what the title indicates, namely a way to 

identify the catchment drivers of hydrograph[s]. Instead, the paper merely shows that certain 

catchment attributes in the CAMELS data correlate with certain streamflow signatures. The 

fact that these attributes and signatures show correlations is not particularly instructive for 

hydrologic understanding unless it can be explained why these correlations exist. This 

connection is currently not discussed in the paper, apart from a single mention on line 250. 

Multiple papers already exist that investigate the relationship between CAMELS attributes and 

a variety of other things (model performance, streamflow signatures, catchment similarity, etc), 

and unless hypotheses about the catchment processes that explain the correlations seen in this 

paper are added and tested, the main novelty of this paper seems to be that we now know that 

the CAMELS attributes correlate with four previously unseen streamflow signatures. In my 

opinion this is not enough to warrant publication. 

 

Response: We thank you for the critical concerns raised. Reviewer #1 also has raised similar 

concerns.   

 

Since this concern relates closely to that of Reviewer# 1 on Section 6.1, our response to the 

specific comments of reviewer #1 on Section 6.1 above may kindly be examined, in this context 

(reproduced below for convenience). In particular, we would like to state that we have drawn 

interpretations based on the Jehn et al., 2020 paper.  We will add these discussions in the revised 

manuscript. We will also improve the literature review in the revised manuscript to include 

earlier relevant work on CAMELS attributes. 
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--- Reviewer # 1 Comment on Section 6.1 and our Response ---- 

Section 6.1: several statements in this section are not justified by the results and figures 

presented by the authors. This occurs e.g., in lines 219-220 “these clusters … respectively”, 

lines 221-222 “as these clusters … rapid snowmelt”, lines 226-229 “These catchments ... 

forest.”, lines 321-232 “This is because … regions”, lines 238-239 “This is due to… regions”, 

lines 240-241 “dominant with … snowmelt” and line 246. Please support your statements with 

additional figures/results. 

Response: We thank you for this advice. We acknowledge that we did not provide adequate 

supporting references for the statements. 

 

For Section 6.1, the features/characteristics of the 10 clusters provided by Jehn et al. (2020) are 

used to interpret the findings of the results.  For explaining these statements, lines 219-220 

“these clusters … respectively”, lines 221-222 “as these clusters … rapid snowmelt”, lines 

226-229 “These catchments ... forest.”, lines 321-232 “This is because … regions”, lines 238-

239 “This is due to… regions”, lines 240-241 “dominant with … snowmelt” and line 246 – we 

start by identifying the regions in the United States where high/low values of streamflow 

indices occur. The dominant catchment attributes of these identified regions are also identified 

using corresponding clusters. Finally, the streamflow indices and the dominant catchment 

attribute are related to interpret the process behind the obtained findings.  

 

We will add these discussions in the manuscript. 

 

in lines 219-220: We found the regions with the highest rising limb densities, as well as the 

dominant catchment characteristics in these clusters: high forest proportion, low aridity, and a 

high frequency of high precipitation events (Jehn et al., 2020).  The higher the forest proportion, 

therefore, higher is the precipitation intercepted, resulting in  shallow rising limbs. A high 

frequency of high precipitation episodes, on the other hand, can result in more rising limbs and 

higher rising limb densities. 

 

lines 221-222: Reproduced from the manuscript [Northwestern Forested Mountains (Clusters 

3, 4), located in the mountains of the western US, experience low values of rising limb density 

as these clusters are characterized by a dominant summer peak of discharge caused by rapid 

snowmelt (Fig. 6.a)].  

 

In these clusters, we identified regions with low rising limb densities and the main catchment 

characteristics as dominant summer discharge peaks induced by quick snowmelt (Jehn et al., 

2020).  A long lag time and shallow rising limb might be caused by snow on the ground; hence 

low values of rising limbs might be caused by a longer lag time. 

 

lines 226-229: Reproduced from the manuscript [Clusters (5, 7) over the Northwestern 

Forested Mountains of CONUS experience very high values of rising limb scale parameters. 

These catchments have the highest discharge, especially in the early summer, due to a 

combination of high precipitation and snowmelt (Jehn et al., 2020). Further, the region in the 

Continental US which receives the highest precipitation is included in Cluster 5 (Jehn et al., 
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2020). Again, Cluster 7 with high values of rising limb scale parameter is characterized by high 

fraction of precipitation falling as snow (Jehn et al., 2020)].   

 

High precipitation and snowmelt might result in a large outflow. Higher discharges can create 

higher values of rising scale parameters because the rising limb scale parameter regulates the 

magnitude of the rising limb. 

 

lines 231-232: Reproduced from the manuscript [Low values of rising limb scale parameters 

are shown by Clusters 2, 8, 9. This is because of low water availability, low snow fraction 

precipitation falling as snow, and high evaporation experienced in these regions].  

 

Low discharge and thus lower rising limb scale parameters can be caused by excessive 

evaporation, low water availability, and a low snow fraction of precipitation falling as snow. 

 

lines 238-239: Reproduced from the manuscript [All the catchments located in the Southern 

states of the US (Cluster 9), Great Plains and North American deserts (Cluster 8), and the 

Central Plains (Cluster 2) characterize low values of rising limb shape parameters (Fig. 6.c). 

This is due to low water availability, low snow fraction precipitation falling as snow, low leaf 

area index, and high evaporation experienced in these regions].   

 

Low discharge- long lag time and thus lower rising limb shape parameters can be caused by 

excessive evaporation, low water availability, and a low snow fraction of precipitation falling 

as snow. 

 

lines 240-241:  Reproduced from the manuscript [High values of rising limb shape parameters 

are seen in Clusters 3, 4 (Fig. 6.c) located in the Northwestern Forested Mountains of the 

western US, dominant with a summer peak of discharge caused by rapid snowmelt].   

 

The rapid snowmelt can cause flashy hydrographs with high values of rising limb shape 

parameters. 

 

line 246:  Reproduced from the manuscript [Clusters 6, 7 over Marine West Coast Forests and 

Western Cordillera smaller falling limb densities (Fig. 8.a). This is due to less presence of 

forest cover in these arid regions].  

 

Our interpretation is that the falling limb density shows a positive association with the arid 

climate.  

 

We considered the clusters provided by Jehn et al. (2020) for this study. Even though the 

CAMELS dataset provides an excellent overview of many kinds of catchments in contrasting 

climatic and topographic regions, a comprehensive dataset like CAMELS does not allow easy 

to find a conclusive set of clusters to explain catchment hydrologic behavior. In order to tackle 

this difficulty, we transformed the streamflow indices and presented them in clusters that 

represent distinct hydrological behavior which facilitates the interpretation of hydrological 
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processes easier. The ten clusters represent groups of catchments with distinct hydrological 

behavior and have distinct spatial patterns as well. The clusters presented by Jehn et al. (2020) 

are formed based on agglomerative hierarchical clustering with ward linkage on the principal 

components of the hydrological signatures. The hydrological signatures that are identified with 

the highest spatial predictability are used to cluster 643 catchments from the CAMELS dataset.  

--- 

 

 

 

Methods 

The paper does a good job of explaining what was done but it is somewhat incomplete in 

explaining why various choices are made and how certain methods are implemented. For 

example: 

 

Why are these six signatures chosen? Why not other ones? 

Response: We have considered signatures directly associated with rising limbs and recession 

limbs. This distinction can help us easily distinguish the underlying processes associated with 

the steeper ascending and gradual descending limbs of the hydrograph. And therefore, we 

consider only these six signatures. 

 

Why is only a subset of the CAMELS catchment attributes used and why specifically were 

those 15 attributes selected? How much independent information is contained in these 15 

attributes? 

Response: Thank you very much for raising this concern. Note that not all of the CAMELS 

attributes are used in this study. We used the same attributes in each class of vegetation, 

topography, soil, geology, climate which are consistent with the study of (Jehn et al., 2020), 

where they cluster 643 catchments from the CAMELS dataset using hydrological signatures 

with the highest spatial predictability (Addor et al., 2018).  

 

The attributes used in the different classes are:  

1) climate: aridity, frequency of high-precipitation events, fraction of precipitation falling 

as snow, precipitation seasonality 

2) vegetation: forest fraction, green vegetation fraction maximum, leaf area index (LAI) 

maximum 

3) topography: mean slope, mean elevation, catchment area 

4) soil: clay fraction, depth to bedrock, sand fraction 

5) geology: subsurface porosity, subsurface permeability. 

 

We also acknowledge that we have not performed analysis on CAMELS attributes to exclude 

the redundant information. These catchment attributes are chosen because they are relatively 

easy to obtain, which will allow a transfer of this approach to other groups of catchments 

worldwide (Jehn et al., 2020). Jehn et al. (2020) also describe the resulting 10 clusters 

concerning their behavior, location, and attributes, used in this study to interpret the results. 
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Why are the catchments divided into clusters for part of the analysis and why these clusters 

specifically? 

Response: Even though the CAMELS dataset provides an excellent overview of many kinds 

of catchments in contrasting climatic and topographic regions, a large dataset such as  

CAMELS renders interpretations from analyses a little difficult. In order to tackle this 

difficulty, we transformed the streamflow indices and presented them in clusters that represent 

distinct hydrological behavior which facilitates the interpretation of hydrological processes 

easier.  

 

We also acknowledge that the findings depend on the size of the clusters and catchment 

attributes considered.  

 

We considered the clusters provided by Jehn et al. (2020). The reason for choosing these 

clusters is illustrated below: 

 

The clusters presented by Jehn et al. (2020) are formed based on agglomerative hierarchical 

clustering with ward linkage on the principal components of the hydrological signatures. The 

hydrological signatures identified as those with the highest spatial predictability are used to 

cluster 643 catchments from the CAMELS dataset. The ten clusters that resulted represent 

groups of catchments with distinct hydrological behavior and capture the diversity since they 

closely follow ecological regions. 

 

How are the number of rising limbs and number of falling limbs determined? 

Response: The definition of rising limb density and falling limb density is as follows: 

RLD is defined as the ratio of the number of rising limbs and the cumulative time of rising 

limbs.  

RLD =  
NRL

TR
 

FLD is defined as the ratio of the number of falling limbs and the cumulative time of falling 

limbs.  

FLD =  
NFL

TF
 

The calculation of rising limbs and falling limbs is illustrated through an example as follows: 

Suppose there are 10 days and corresponding streamflow states as follows:  

 

Days 1 2 3 4 5 6 7 8 9 10 

States 1 1 1 0 0 0 1 1 1 1 

 

State 1- represents a wet day, and state 0, a dry day. In the above example, a rising limb (first 

three days) is followed by a recession limb (next three days), and then it is further followed by 

a rising limb of four days. If there is no increase or decrease in the flow with respect to the 
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previous day, it is reckoned as part of the recession limb. We then take the ratio of all the rising 

limbs in a time series to the cumulative time of rising limbs. A similar procedure is used to 

determine the falling limb density. 

 

How are the Weibull and exponential regressions fitted to rising and falling limbs respectively? 

Response: Please see our response to major comment # 1 of the reviewer #1 (reproduced here 

for convenience): 

 

We sincerely apologize for the lack of clarity in the text. To obtain the diurnal increments of 

streamflow for wet days [Fig 1 (a)], we first identify the hydrologic state of the stream 

(ascension and recession) (Mathai and Mujumdar, 2019). To determine the hydrologic state of 

a stream - increasing (wet) or decreasing (dry) - on a given day, a time series of diurnal 

increments is extracted by differencing the original time series with its one-day lagged time 

series. The positive increments are identified as diurnal increments for wet days (ascension 

limb). 

 
Fig 1. Schematic representation of flow series (a) ascension limb and (b) recession limb. 

The diurnal increments (indicating 𝛿𝑄) of the ascension limb (wet days) are fitted with an 

appropriate probability density function. The Weibull distribution is proven to be a reasonable 

fit as an extreme value distribution to the diurnal increments of the streamflow (Stagge and 

Moglen, 2013; Szilagyi et al., 2006). The Weibull pdf is positive only for positive values of 𝑥, 

and is zero otherwise. For strictly positive values of the scale parameter 𝑎 and shape parameter 

𝑏, the density function is given by 

𝑓(𝑥; 𝑎, 𝑏) =  {
𝑏

𝑎
(

𝑥

𝑎
)

𝑏−1

𝑒−(𝑥 𝑎⁄ )𝑏
           𝑥 ≥ 0,

 0                                         𝑥 < 0 ,
 

where 𝑎 > 0, 𝑏 > 0. The shape and scale parameters of the Weibull distribution are estimated 

for each catchment from the observed diurnal increments of the streamflow. 
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The steps to obtain recession coefficients 𝑏1 and 𝑏2 are explained below (Mathai and 

Mujumdar, 2019): 

 

Modeling of the recession limb (dry days) of the daily hydrograph is carried out in two stages 

to capture the underlying dynamics of the flow (Aksoy, 2003; Aksoy and Bayazit, 2000). 

Practically, the upper recession [Fig 1 (b)] corresponds to the rapid flow following a storm 

event and the lower recession corresponds to the baseflow recession (Stagge and Moglen, 

2013). Barnes (1939) represented the emptying of water from the basin after a storm with an 

exponential recession given as, 

 𝑄𝑡 = 𝑄0𝑒−𝑏𝑡  

where 𝑏 is the recession coefficient, 𝑡 is time, 𝑄𝑡 is the flow 𝑡 days after the peak and 𝑄0 is the 

peak flow. Mean flow value is chosen as an appropriate measure (Sargent, 1979) to divide the 

recession into two stages.  

 

The limbs with a peak flow value greater than the observed mean flow value are considered as 

upper recessions and those with peak flow values smaller than the observed mean as lower 

recessions. The upper recession is assumed to take the form of: 

 𝑄𝑡 = 𝑄0𝑒−𝑏1𝑡  

where 𝑏1 is the recession coefficient for the upper part of the recession limb, 𝑡 is the number of 

days after the peak, 𝑄𝑡  is flow 𝑡 days after the peak, 𝑄0 is the preceding peak flow. The lower 

recession is assumed to take the form of: 

 𝑄𝑡 = 𝑄0
∗𝑒−𝑏2(𝑡−𝑡∗)  

where 𝑏2  is the recession coefficient for the lower part of the recession limb, 𝑡∗ is the time 

from the start of the lower recession, Q0
∗  is the initial flow in the lower part of the recession.  

 

The recession expressions for upper and lower recession are fitted by regressing ln (𝑄𝑡/𝑄0) 

versus 𝑡 and ln (𝑄𝑡/𝑄0
∗) versus 𝑡 − 𝑡∗ respectively. These linear regressions are performed on 

each individual recession sequence. The average of the upper/lower recession parameters is 

taken as the upper/lower recession parameter of that catchment (on daily time series data). 

 

How accurate are these fits for each catchment and what does this mean for the resulting 

correlations with catchment attributes? 

Response: From the literature, it can be seen that the Weibull distribution is proven to be a 

reasonable fit as an extreme value distribution to the diurnal increments of the streamflow 

(Stagge and Moglen, 2013; Szilagyi et al., 2006). We admit that the distribution fits in this 

study were not checked for accuracy, and only an assumption is made on the distribution. 

 

The rising limb scale and shape parameters are obtained after the Weibull distribution is fitted 

to the diurnal increments of the streamflow. The scale parameter controls the magnitude of the 

increasing limb, whilst the shape parameter reflects the flashiness of the increasing limb. The 

scale parameter is related to the magnitude of storm events which mirrors the general shape of 

flows in the stream. As a result, correlating these parameters with catchment attributes reveals 

which catchment attributes drive the magnitude and flashiness of rising limbs. 
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Which correlations are shown in Tables 3 and 4? Why are some correlations missing in these 

tables? 

Response: In the results section (Section 6.2), we used Spearman rank correlation for the 

correlation analysis (in Tables 3 and 4 of the manuscript). Green-colored coefficients represent 

positive correlation, and the red-colored correlation coefficients represent negative correlation. 

Table 3 and Table 4 have certain columns that are blank because only significant correlation 

values are provided in the table. 

 

Manuscript flow 

The manuscript is well-written but may benefit from some restructuring. For example, Section 

3 (“Contributions of this study”) could be moved to be part of the introduction. 

Response: Thank you for the valuable suggestions. We will move Section 3 (Contributions of 

the study) to the end of the introduction section. 

 

As far as I can tell, Section 6.1 relies quite heavily on descriptions of clusters in Jehn et al. 

(2020). To fully understand the results shown in 6.1 the reader currently needs to flip back and 

forth between the current manuscript and searching through Jehn et al. (2020). I suggest to 

make this easier for the reader by showing/reproducing the relevant data that supports these 

catchment/cluster descriptions in the current manuscript or in the Supporting Information if 

space is an issue. 

Response: Thank you for this valuable suggestion. In order to better explain and interpret the 

spatial variability of streamflow indices shown in Section 6.1, we have used the cluster 

classification provided by Jehn et al. (2020). We will include the relevant details of the clusters 

(clusters, location, behavior, and dominating catchment attributes) in the manuscript to make 

it easy for the reader to follow the results.  

 

References 

Addor, Nearing, G., Prieto, C., Newman, A. J., Le Vine, N. and Clark, M. P.: A Ranking of 

Hydrological Signatures Based on Their Predictability in Space, Water Resour. Res., 54(11), 

8792–8812, doi:10.1029/2018WR022606, 2018. 

Addor, N., Newman, A. J., Mizukami, N. and Clark, M. P.: The CAMELS data set: 

Catchment attributes and meteorology for large-sample studies, Hydrol. Earth Syst. Sci., 

21(10), 5293–5313, doi:10.5194/hess-21-5293-2017, 2017. 

Aksoy, H.: Markov chain-based modeling techniques for stochastic generation of daily 

intermittent streamflows, Adv. Water Resour., 26(6), 663–671, doi:10.1016/S0309-

1708(03)00031-9, 2003. 

Aksoy, H. and Bayazit, M.: A model for daily flows of intermittent streams, Hydrol. Process., 

14(10), 1725–1744, doi:10.1002/1099-1085(200007)14:10<1725::AID-HYP108>3.0.CO;2-

L, 2000. 

Barnes, B. S.: The structure of discharge-recession curves, Eos Trans. Am. Geophys. Union, 

20(4), 721–725, doi:10.1029/TR020i004p00721, 1939. 



18 
 

Jehn, F. U., Bestian, K., Breuer, L., Kraft, P. and Houska, T.: Using hydrological and climatic 

catchment clusters to explore drivers of catchment behavior, Hydrol. Earth Syst. Sci., 24(3), 

1081–1100, doi:10.5194/hess-24-1081-2020, 2020. 

Mathai and Mujumdar, P. P.: Multisite Daily Streamflow Simulation With Time 

Irreversibility, Water Resour. Res., 55(11), 9334–9350, doi:10.1029/2019WR025058, 2019. 

Sargent, D. M.: A simplified model for the generation of daily streamflows/Modèle simplifié 

pour la génération des événements d’écoulement total journaliers, Hydrol. Sci. J., 24(4), 509–

527, doi:10.1080/02626667909491890, 1979. 

Stagge, J. H. and Moglen, G. E.: A nonparametric stochastic method for generating daily 

climate-adjusted streamflows, Water Resour. Res., 49, 6179–6193, doi:10.1002/wrcr.20448, 

2013. 

Szilagyi, J., Balint, G. and Csik, A.: Hybrid, Markov chain-based model for daily streamflow 

generation at multiple catchment sites, J. Hydrol. Eng., 11(3), 245–256, 2006. 

 

 


