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Abstract. Collecting water quality data across large lakes is often done under regulatory mandate, however it is difficult to 

connect nutrient concentration observations to sources of those nutrients and to quantify this relationship. This difficulty arises 

from the spatial and temporal separation between observations, the impact of hydrodynamic forces, and the cost involved in 10 

discrete samples collected aboard vessels. These challenges are typified in Lake Erie, where binational agreements regulate 

riverine loads of total phosphorus (TP) to address the impacts from annual harmful algal blooms (HABs). While it is known 

that the Maumee River supplies 50% of the nutrient load to Lake Erie, the details of how the Maumee River TP load changes 

Lake Erie TP concentration have not been demonstrated. We developed a hierarchical spatially referenced Bayesian state-

space model with an adjacency matrix defined by surface currents. This was applied to a 2km-by-2km grid of nodes, to which 15 

observed lake and river TP concentrations were joined. The model generated posterior samples describing the unobserved 

nodes and observed nodes on unobserved days. We quantified the impact plume of the Maumee River by experimentally 

changing concentration data and tracking the change of in-lake predictions. Our impact plume represents the spatial and 

temporal variation of how river concentrations correlate with lake concentrations. We used the impact plume to scale the 

Maumee River spring TP load to an effective Maumee River TP spring load for each node in the lake. By assigning an effective 20 

load to each node the relationship between load and concentration is consistent throughout our sampling locations. A linear 

model of annual lake node mean TP concentration and effective Maumee River load estimated that in the absence of the 

Maumee River load lake concentrations at the sampled nodes would be 23.1 µg l-1 (± 1.75, 95% credible interval, CI) and that 

for each 100 tons of spring TP effective load delivered to Lake Erie, mean TP concentrations increase by 11 µg l-1 (± 1, 95% 

CI). Our proposed modelling technique allowed us to establish these quantitative connections between Maumee TP load and 25 

Lake Erie TP concentrations which otherwise would be masked by the movement of water through space and time. 

1 Introduction 

In a collective response to the economic, human health, and environmental damage caused by pollution, assessing water quality 

is a regulatory mandate across many waterbodies. In many aquatic ecosystems nutrient concentrations are a primary water 

quality analyte collected. Observed concentrations are driven by both point and non-point sources. Excessive nutrient export 30 
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primarily from agricultural watersheds leads to eutrophication, harmful algae blooms (HABs), and threatens drinking water 

contamination (Brooks et al., 2016; Mellios et al., 2020; Schneider and Bláha, 2020). Individual water bodies present data 

collection challenges, particularly large lakes. Even for those locations with well-funded sample collection schema, trying to 

describe the spatiotemporal heterogeneity in nutrients is difficult. Discernible trends are difficult to assess as samples represent 

discrete spatial data within a system of constantly moving water and asymmetrical spatial extents of riverine nutrient plumes. 35 

 

Lake Erie is an example of a waterbody that is challenging to model (Ho and Michalak, 2017; Steffen et al., 2017; Stow et al., 

2015). While Lake Erie is large (25,700 km2), its western basin is relatively shallow (mean depth 6 m) (Bolsenga and 

Herdendorf, 1993) and intense nutrient export from the agriculturally dominated Maumee River watershed leads to episodic 

HABs (Watson et al., 2016). Commercial fisheries, drinking water, and human health within Lake Erie are all impacted because 40 

of the combination of nutrient addition, HABs, and physical lake properties (Wituszynski et al., 2017). Because of these 

intersecting concerns, a binational effort to regulate phosphorus entering Lake Erie has been active since 1978 (GLWQA, 

2012). Nutrient concentration and physical lake data are pivotal in understanding the causes of western basin Lake Erie water 

quality issues and have been collected by a broad range of federal, state/province, and local agencies throughout western Lake 

Erie (Fig. 1). The goal has been to collect these data at a spatial and temporal scale which should lead to a defined relationship 45 

of how river nutrient load effects lake nutrient concentration; understanding of the influence of riverine load through time and 

space; and ultimately the ability to predict how river load reductions would manifest as altered lake concentrations. 

 

Yet, while western Lake Erie is routinely monitored and the nutrient concentration and flow are estimated daily in rivers, a 

generalizable connection between Maumee River phosphorus load and Lake Erie phosphorus concentrations remains 50 

undefined (i.e., if phosphorus load increases by 100 tons what is the response in lake concentration?) (Rowland et al., 2019). 

Spring Maumee River soluble reactive phosphorus (SRP) export correlates with western Lake Erie HABs extent; this pattern 

has been observed since the SRP loads started to increase in the 1990s (Ho and Michalak, 2017; Michalak et al., 2013; Stow 

et al., 2015). The challenge is that nutrients in the lake move with the water currents, resulting in a complex relationship of 

upstream and downstream current dependence. Moreover, within-lake phosphorus cycling is dynamic and impacted by 55 

biological and physical processes (Li et al., 2021; Matisoff et al., 2016). Additionally, the time between sampling events within 

this time-series and the size of the lake-river system where models need to be applied inherently adds uncertainty and reduces 

the predictive efficacy of transport models linked with hydrodynamic models (Schwab et al., 2009). 

 

Bayesian frameworks can quantify uncertainty in the effect of nutrient load on nutrient distribution within a dynamic system 60 

such as Lake Erie. Bayesian state-space models have been used in ecology to incorporate temporal and spatial autocorrelation 

and quantify observation error separate from the error attributable to the modelled ecological process (Auger‐Méthé et al., 

2021; Durbin and Koopman, 2012; Shumway and Stoffer, 2019). State-space models are widely used in ecology to model 

animal populations (Buckland et al., 2004), movement (Royer et al., 2005), and fisheries stocks (Meyer and Millar, 1999). 
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Non-stationary time-series models have been used in the Great Lakes to model water levels (Lamon and Stow, 2010; Sellinger 65 

et al., 2008) and to predict polychlorinated biphenyls concentration in trout (Stow et al., 2004). The goal of this study was to 

use a spatially dependent time-series state-space model approach to define concentrations at unobserved locations and quantify 

the impact of river nutrient delivery across western Lake Erie. While Spatial models have been used in the Great Lakes for 

predicting HABs biomass, HABs extent, and nutrient transport (Fang et al., 2019; Schwab et al., 2009), we proposed a Bayesian 

framework for similar spatial data. We showed that phosphorus concentration, along with an informed uncertainty, can be 70 

estimated by state-space models that incorporates concentration data from within the lake, the rivers, and lake surface currents. 

Although this approach is informed by the currents, it is does not include all the explicit biogeochemical and physical processes 

that are part of mechanistic models (Rowe et al., 2019). Our contribution to the ecological state space model methodology is 

the incorporation of a surface current derived adjacency matrix, combined disparate agency field data, and inclusion of data 

from rivers as sources of information in fitting estimated values within a system dominated by missing values. Together our 75 

contribution will fit values in the absence of observations and allow experimentation in archival data previously not possible. 

Here, we quantified how well our model fits the data, generated predictions of TP concentrations across western Lake Erie, 

experimentally manipulated the available concentration observations in order to estimate the spatial and temporal impact from 

the Maumee River plume and tested the hypothesis that when water movement is incorporated, there is a linear relationship 

between river load and western Lake Erie water TP concentrations. 80 

2 Methods 

2.1 Study Area and Data Curation 

We limited the model spatial window to western Lake Erie (bounded by the portion of the lake west of -83.1o W, Fig. 1) which 

left ~600 km2 to be defined. We gathered surface concentrations of TP (µg/l) from publicly available databases through 

Environment Climate Change Canada’s Offshore Water Quality Survey, the U.S. Environmental Protection Agency’s Great 85 

Lakes National Program Office, the Canadian Ministry of the Environment, Conservation and Parks Great Lakes Intake 

Program, the U.S. National Oceanographic and Atmospheric Administration (NOAA) Great Lakes Environmental Research 

Laboratory (GLERL) Ecosystem Dynamics Long-Term Research program, and NOAA GLERL Western Lake Erie (WLE) 

Sampling (Table A1). The data used here extended from 2008 to 2018. For riverine TP concentrations from the Maumee River 

and River Raisin across the 2008 to 2018 interval we downloaded data from the National Center for Water Quality Research 90 

(NCWQR) at Heidelberg University (Table A1). When multiple samples were collected from a node on a single day the sample 

average was used. 

2.2 Model Description 

We created a model where day t TP concentrations are predicted based on the concentrations “upstream” at day t-1. The spatial 

adjacency of “upstream” relationships was defined by the direction and magnitude of surface currents.   95 
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To build our adjacency matrix we first defined a hypothetical distance and direction that surface water moved based on surface 

currents. We used surface current data retrieved from the NOAA Great Lakes Coastal Forecasting System (GLCFS, Table A1) 

database. These data are defined by hourly eastward and northward water velocity (m s-1) predicted across Lake Erie on a 2 

km-by-2 km grid (Fig. 1). Hourly northward and eastward velocity (m day-1) for each node for years 2008 to 2018 defined 100 

surface current direction in radians (dLat and dLon) using the node latitude (Lat0) and longitude (Lon0), the Earth’s radius (R, 

6378137 m), the northward velocity offset in meters (dN), and eastward offset in meters (dE) (Eqs 1 and 2). The direction the 

surface water travelled in radians was used to determine the latitude (Lat1) and longitude (Lon1) which represented by each 

hourly movement (Eqs 3 and 4), and was repeated for 24-hours until the final position of the surface water movement from 

each node was determined (Fig B1). 105 

 

𝑑𝐿𝑎𝑡 =
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ோ
            (1) 
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గ
ቁ          (4) 110 

 

The limited model spatial window of western Lake Erie was represented by 254 nodes (Fig. 1). The Lake Erie surface water 

TP concentrations were associated with their closest nodes of the same 2 km-by-2 km grid nodes used in the surface current 

datasets. NCWQR concentration data were collected for the Maumee River (41.5o N, -83.712778o W) and the River Raisin 

(41.960556o N, -83.531111o W) locations ~30 and ~18 km, respectively, inland from Lake Erie. River concentrations were 115 

assigned to the node closest to the river mouth. The assumption that these concentrations represent the conditions at the 

terminus of the rivers adds uncertainty to our modelling, however the spatial extent of this extra uncertainty should end where 

the Lake Erie TP concentration data begins to inform the model posterior samples. 

2.2.1 State-Space Models 

We constructed hierarchical, spatially referenced Bayesian state-space models for each year to estimate TP concentrations for 120 

each node on each day. The temporal range annually was May 20 to October 2, to coincide with the majority of the WLE 

sampling. The distance between each daily offset surface current location (Lat1, Lon1) and each 2 km-by-2 km concentration 

node was measured and the node n with the shortest distance defined the adjacency matrix to associate each node n on day t 

with the node k on day t-1. For nodes subject to the river models, the latent state (xn,t,y) was defined by previous river time-step 

while the lake models use the adjacency matrix to identify which latent state should be used. 125 

𝑦௡,௧,௬ ~ 𝑁൫𝑥௡,௧,௬ , 𝜎ଶ൯           (5) 
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𝑥௡,௧,௬ ~ 𝑁൫𝑥𝑝௡,௧,௬ ,  𝜏ଶ൯     𝑇𝑟𝑢𝑛𝑐(𝑎 ≤ 𝑥௡,௧,௬ ≤ 𝑏)        (6) 

𝑥𝑝௡,௧,௬ =  

⎩
⎪
⎨

⎪
⎧𝑥௞,௧ିଵ,௬ ∗  𝛽௠௔௨    𝑖𝑓 𝑘 = 𝑀𝑎𝑢𝑚𝑒𝑒 𝑅𝑖𝑣𝑒𝑟 𝑁𝑜𝑑𝑒

𝑥௞,௧ିଵ,௬ ∗  𝛽௥௔௜    𝑖𝑓 𝑘 = 𝑅𝑖𝑣𝑒𝑟 𝑅𝑎𝑖𝑠𝑖𝑛 𝑁𝑜𝑑𝑒

𝑥௞,௧ିଵ,௬ ∗  𝛽௦௘௟௙     𝑖𝑓 𝑛 = 𝑘

𝑥௞,௧ିଵ,௬ ∗  𝛽௟௔௞௘    𝑖𝑓 𝑛 ≠ 𝑘

       (7) 

 

Log-transformed TP concentration observations (y) at the nth node on the tth day of the yth year was estimated with a normal 130 

data model sampled from the state variable (x) at the nth node on the tth day of the yth year with standard deviation σ (Eq 5). 

The latent state (xn,t,y; Eq 6) is sampled from a normal distribution of a predicted latent state (xpn,t,y, Eq 7) and standard deviation 

τ. xn,t,y was truncated by the detection limit of TP laboratory analysis (5 µg l-1, a, Eq 6) and the maximum value observed in 

each year (y) within the Maumee River (b, Eq 6), xpn,t,y was defined depending on the node n as being a river or lake node (Eq 

7). River nodes were described by previous state variable of that river (xn,t-1,y). River models were fit using βmau and βrai for the 135 

Maumee River and River Raisin, respectively. These βs are fit in a hierarchical framework to a hyperparameter β with non-

informative normal (N(0, 
ଵ

଴.଴ଵమ )) and gamma hyperpriors (gamma(0.001,0.001)). River model coefficients were fit 

hierarchically because the ecological and anthropogenic processes enacted on these watersheds are similar, if at different 

scales. The two lake models were fit with two independent β coefficients depending on if the nearest adjacent node k is the 

same as the estimated node n (βself) or if a different node k is the nearest (βlake), each with non-informative normal priors. 140 

Separate independent in-lake models were used to capture different potential drivers of TP concentration through time 

depending on whether each node was subject to little surface water movement (βself) or active surface water movement (βlake). 

In 2012 there were no River Raisin observations and so the model in 2012 treats the River Raisin node as a lake node. The 

model was run in R (version 4.0.2) and JAGS (version 4.3.0) (Eddelbuettel, 2017; Microsoft Corporation and Weston, 2020; 

Plummer, 2019). Each year’s model iteration count was 50,000 with a thin of 10, representing 5,000 effective samples along 145 

three independent Markov chains. The chain convergence was monitored by Gelman and Rubin's convergence diagnostic. 

Scale factors less than 1.1 were used to define when chains had converged (Plummer, 2019). Initial conditions for the latent 

state xn,t=1,y were defined as the mean and variance of the previous year first 20 days. The first year (year = 2008) initial 

conditions were estimated as N(12, 5) (Rockwell et al., 2005).. The goodness of fit of the models was described via posterior 

predictive p-values (Gelman, 2013) and Bayesian R2 (Gelman et al., 2019), while the performance between years and across 150 

nodes was assessed with K-Fold cross validation (CV) utility (Geisser and Eddy, 1979; Piironen and Vehtari, 2017) (Eq 8). 

2.2.2 Fitting the SSM 

Posterior predictive p-values were calculated by model year with test statistic mean TP concentration, to compare means of 

observations to the means of the model outputs. For each year, a posterior p-value distribution was described by 15,000 

bootstraps of 100 resamples from the observed node posteriors. Bayesian R2 defined as the fitted variance (varfit) divided by 155 

the sum of varfit and the residual variance (varres) was calculated for each model year. Model varfit was the variance of the 
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modelled predictive mean, while varres is the variance of model predictive mean subtracted from the observations (Gelman et 

al., 2019).  

 

K-Fold CV utility compared model predictive performance across years and across nodes. The cross-validation via leave one-160 

node-out was used to evaluate model predictions where observations are not available. This estimate of model performance is 

needed as our dataset has far fewer observations than the product of nodes and timepoints and estimates of R2 report how well 

the model does while given all the available data. Additionally, the cross-validation estimates aggregated by unobserved node 

(space) or by year (time), defines how well the model estimates TP values irrespective of the node’s proximity to the TP river 

sources or the number and location of annual in-lake observations. The cross validated utility was applied by removing all d 165 

observations from a randomly selected node k with at least 10 observations collected during the model year. K-Fold CV was 

calculated 3 times per year, for years that had less than 3 nodes with at least 10 observations, all nodes that satisfied the 10-

observation cut-off were used. K-Fold CV is the mean leave-one-node-out log predictive density from posterior samples of 

the omitted d observation ŷn,t,y at node n, day t, year y, were compared to observed concentrations at yn,t,y  (Piironen and Vehtari, 

2017) (Eq 8).  170 

K − Fold CV௡,௬ =  
ଵ

ௗ
∑ log 𝑝൫𝑦௡,௧,௬ห𝑦ො௡,௧,௬൯ௗ

ௗୀଵ         (8) 

 

Using a model that describes posterior predictive distributions of mean K-Fold CV across years and nodes we examined if our 

state-space approach preferentially generated predictions that contain the observed values (Eq 9 and 10). 95% credible 

differences between group means (for nodes µn or for years µy) that do not contain 0 were used to determine if groups were 175 

different (e.g., if the 95% credible difference from µ2018- µ2017 contains 0 these means are not considered different). 

K − Fold CV ~𝑁(µ௢௡ + ∑ µ௡ ,ଵ
௡ 𝜎௡

ଶ)         (9) 

K − Fold CV ~𝑁൫µ௢௬ + ∑ µ௬ ,ଵ
௬ 𝜎௬

ଶ൯         (10) 

 

µon and µoy were fit with normal priors ቀ𝑁൫𝐾 − 𝐹𝑜𝑙𝑑 𝐶𝑉തതതതതതതതതതതതതതതതത, 5 ∗ 𝜎௄ி஼௏
ଶ൯ቁ, σKFCV was defined as the standard deviation of the K-180 

Fold CVs. The µn and µy’s were given normal priors ቀ𝑁൫0.1, 𝜎µ
ଶ൯ቁ, and σµ which functions as the within-group variance has 

a gamma prior with rate and shape estimated from the mode and standard deviation of the K-Fold CVs (Kruschke, 2014). 

Finally, σn and σy which represent the between-group variance were fit with a uniform prior ൫𝑢𝑛𝑖𝑓𝑜𝑟𝑚(100ିଵ ∗  𝜎௄ி஼௏ , 10 ∗

 𝜎௄ி஼௏)൯. ∑ µ௡ and ∑ µ௬ were constrained to 0 when fitting µon and µoy. 

2.3 Model Experimentation 185 

Our state-space models were used to test the hypothesis that western Lake Erie TP concentrations are a linear function of 

Maumee River TP load when surface water movement is incorporated. We incorporate water movement into our linear model 
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by first estimating the spatial impact of the Maumee River. The Maumee River impact plume was estimated by artificially 

reducing the Maumee River TP concentrations by 50% ൫𝑦̀ெ௔௨௠௘௘,௧,௬൯, each year’s model was then refit (Eq 5-7). The model 

output for each node was examined and the position of each node’s concentration ൫𝑦̀௡,௧,௬൯ 95% predictive intervals (PI) was 190 

compared to the original model (yn,t,y). The change from the original 95% PI of yn,t,y , which we call the deflection, was 

interpreted as evidence that the Maumee River node was, at some time-step, influencing node n. The annual mean root squared 

sum of the 𝑦̀௡,௧,௬ 95% PI change compared to the yn,t,y  95% PI was then normalized by the largest value for that model year 

(y), this normalized estimate of PI change (dn,y) across the 254 nodes within our spatial window was used to define effective 

Maumee River spring TP impact within Lake Erie. We estimated Maumee River spring load estimates (ly, tons TP) by 195 

multiplying NCWQR daily flow and TP concentration data (Table A1) from March 1 to July 31 annually. Finally, we 

multiplied dn,y and ly to represent a spatially explicit effective Maumee River TP spring load at each node ൫𝑙ሗ௡,௬൯.  

 

A linear model of mean TP concentration (ȳn,y) per year per node (n, where node n had at least one observation) as a function 

of effective spring Maumee River TP load ൫𝑙ሗ௡,௬൯ was used to test for a linear relationship between Maumee River load and 200 

Lake Erie surface water TP concentrations. The model was fit in a Bayesian framework which allowed us to fit the 

heteroskedastic relationship of concentration and effective load by fitting a positive linear relationship to model variance and 

effective load (Eq 11). β1,2 were given non-informative normal priors (N(0, 
ଵ

଴.଴଴ଵమ))  while α1,2 were given non-informative log 

normal priors (logN(0, 
ଵ

଴.଴଴ଵమ))  because they must be positive random variables. 

𝑦ത௡,௬ ~ 𝑁 ቀ𝛽ଵ + 𝛽ଶ ∗ 𝑙ሗ௡,௬, ൫𝛼ଵ + 𝛼ଶ ∗ 𝑙ሗ௡,௬൯
ଶ

ቁ         (11) 205 

3 Results 

The annual data sets defined by TP concentration observations and riverine TP data on our 2-km by 2-km grid in western Lake 

Erie contained an average of 99.1 % missing values. The number of nodes that contained observations ranged from 14 to 40 

among years. The mean number of samples available at each observed lake node during the model year ranged from 2 to 9. 

Within the 252 Lake Erie nodes across the available 11 years, a total of 1,218 observations were collected; our hierarchical 210 

spatially referenced Bayesian state-space model was then able to provide estimates for the 375,774 unobserved TP 

concentrations. Between the Maumee River and River Raisin, a total of 2,258 observations were available in the dataset and 

the missing 734 values were also described by posterior distributions. The mean values of the observed TP concentrations 

within the Maumee River, River Raisin, and western Lake Erie were 170 µg l-1 (95% interval, 3.5 to 438 µg l-1), 80 µg l-1 

(95%, 40 to 215 µg l-1), and 38 µg l-1 (95%, 10 to 203 µg l-1), respectively. 215 
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3.1 State-Space Model Fit 

To assess the goodness-of-fit of the model we determined annual Bayesian R2, posterior predictive p-values, and k-fold CV 

utility. The 11 years of models had mean Bayesian R2 values from 0.86 to ~1 and mean posterior predictive p-values from 0.42 

to 0.59 (Table 1). Posterior predictive p-values of 0.5 indicate a good fit between model output and observations and the 95% 

CI of all our yearly posterior p-value distributions contain 0.5. Finally, the results of the k-fold cross validation utility 95% 220 

credible difference showed no difference across all pairwise comparisons of mean K-fold CV by year or node. 

3.2 State-Space Model Outputs 

Posterior distributions for each node on each day provide estimates for TP concentrations where observations are present and 

in the absence of observations (2018 in Fig. 2, 2008-2018 in Appendix D). Mean and 95% PI model posterior samples of each 

node at every day defined our predicted concentration. By example, the Maumee River node in 2018 shows the model 225 

following the data and widening PIs where observations are missing (Fig. 2a). For Lake Erie nodes that contained observations 

the posterior samples follow the broad trend in the observed data (Fig. 2b). Nodes without any observations also follow the 

trend in downstream observed nodes, and while the uncertainty is larger at unobserved nodes the PIs stay within expected 

values (Fig. 4c). 

3.3 Model Experimentation 230 

After artificially reducing the Maumee River concentrations by 50%, the nodes where TP concentration PIs were altered were 

defined as being within the Maumee River area of impact. The mean square root of each node’s summed squared deflection 

annually normalized by the largest mean value (dn,y) in general was highest near the mouth of the Maumee. The impacted area 

spread south and east along the State of Ohio coast most years, but some years were subject to larger plumes distributed further 

north (Fig. 3, Video Supplement 1).  235 

 

The normalized annual mean Maumee impact estimates (dn,y) generated per node were used to adjust spring load to an effective 

spring load ൫𝑙ሗ௡,௬൯ at each node where samples were collected. Lake Erie TP concentration was linearly correlated to the 

effective Maumee River TP spring load (Mean node concentration = 23.1 (± 1.75, 95% CI) + 0.11 (± 0.01,95% CI) * Effective 

Spring Load (tons TP); Fig. 4). The heteroskedastic error in the mean concentration (ȳn,y) and effective load ൫𝑙ሗ௡,௬൯ relationship 240 

was defined by a linear function ൫𝛼ଵ + 𝛼ଶ ∗ 𝑙ሗ௡,௬൯. α1 was estimated to be 2.9 (± 1.4,95% CI) and α2 was 0.04 (± 0.008,95% 

CI). 
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4 Discussion 

4.1 State-Space Model Fit 

By combining the western Lake Erie TP observations with riverine data and surface currents within a Bayesian model 245 

framework we were able to generate estimates of TP across time and space. The models consistently generated plausible 

posterior samples for mean TP concentration as each 95% CI of annual posterior predictive p-values included 0.5 and annual 

Bayesian R2 95% CI values ranged from 0.83 to 0.99 (Table 1). These indicators of model fit support the use of our framework 

in predicting water quality within large water bodies even with sparse observations within the data. The k-fold CV results 

generated by removing all the observations of a randomly selected node with at least 10 observations showed that model 250 

predictions were equally accurate across years and by node. Predicting equally well across the nodes and within any year 

additionally supports this framework as being a useful application of Bayesian methods in water quality modelling. 

 

TP is a conservative water quality constituent. TP observations are insensitive to biogeochemical transformations of 

phosphorus form because these data represent both the organic and inorganic forms of phosphorus occurring in the water 255 

column. βmau, βrai, βself, and βlake near 1 would then be expected in the absence of dilution. Dilution of TP would happen west 

to east across our spatial model window, however the depth gradient within western Lake Erie is muted. βs larger than 1 would 

indicate in-lake sources of TP. Every βmau, βras, βlake, and βself fit in our models had 95% predictive intervals encompassing a 

value of 1. This framework could be implemented with the coefficients (βMau, βRas, βLake, and βSelf) fit hierarchically by 

year, current restrictions on computer memory prevented that use here. However, for smaller spatial and temporal models it 260 

could be effective.  

 

No identifiability issues were found, this was assessed by visually determining if priors dominated the fit of coefficients 

(Auger‐Méthé et al., 2021) (Figure C1(a) and C1(b)). Fit process model or data model uncertainty were well identified (Figure 

C1(d)). The apportionment of uncertainty between the process model and the data model varied from year to year (Table C1). 265 

This was driven by annual variation in the data model uncertainty. The 2012 Raisin River coefficient (βras) predictive interval 

was larger than other years because of a lack of data in that year. The proportion of uncertainty between process and data 

model also varied only slightly (Table C1), possibly because of the number of or spatial position of observations. We propose 

these annual differences were due to the combination of the number of samples collected and their relative position to the 

surface currents. However, the uncertainty within our models did not prevent accurate outputs estimating TP concentrations at 270 

observed and unobserved nodes. 

4.2 State-Space Model Output 

An important property of this modelling approach is that the surface current derived adjacency matrix we used to define our 

predicted spatially explicit latent state concentration (xn,t,y) also produced estimates of TP concentration at nodes where no 
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observations were available. This approach takes discrete measurements in western Lake Erie and establishes connections 275 

across the lake surface and through the model year. The model does this across 136 days and 254 2km by 2km nodes, yet 

model uncertainties are within the range of TP concentrations expected for western Lake Erie. Nodes along the eastern 

perimeter of the spatial window of our model have additional uncertainty inherent in their position. Occasionally, they will not 

be associated with the proper “down gradient” node because the extent removes those nodes. Within our system there is little 

practical effect as these nodes are far from the Maumee River and are dominated by low concentrations. This is a potential 280 

problem in other systems and may necessitate wider spatial windows to eliminate. The model framework allows information 

from discrete grab samples to be shared across any waterbody where the movement pattern of water is available. This 

modelling technique could be applied at lower temporal resolution (weeks or months) with broadly defined patterns of water 

movement if daily fine scale surface current data are unavailable. Our model also can generate estimates at unobserved node 

or at unobserved time-steps of observed nodes without requiring defined biogeochemical processes of a mechanistic model. 285 

 

Within Lake Erie, having estimates for unobserved nodes and nodes that are infrequently sampled allows a connection between 

discrete point data collected by boat and data layers which cover large sections of lake surface. The spatial distance and 

temporal disconnect between the data generated by multiple actors on the same waterbody often precludes the combined use 

of data from multiple projects. However, state-space models which explicitly incorporate time as well as space via water 290 

movement could harness more of the available data to make predictions beyond the spatial bounds of the original projects. For 

example, remote sensed data layers would be especially useful in this model structure, both as predictor variables and as the 

response variables. Connecting estimates of TP concentrations to chlorophyll-a concentrations would enhance existing 

predictive models of cyanobacteria distribution and biomass (Fang et al., 2019).  

 295 

The agencies and organizations collecting grab samples within Lake Erie would also be able to use the state-space model 

output to select sample locations specific to hypotheses. The model can be used to predict the movement of high nutrient water 

masses which investigators could target. Additionally, projects examining the impact of the Maumee River could sample in 

and out of the Maumee River impact plume. Beyond the impact to field work, this modelling approach can also be used in 

model selection. Since this modelling approach is based entirely on observations in the absence of independent explanatory 300 

variables, it should be used as a benchmark model for future mechanistic or more complex models to be tested against.  

4.3 Model Experimentation 

Having demonstrated the functional capacity of our hierarchical spatially referenced Bayesian state-space model predicting 

TP concentrations, our hypothesis was that a linear relationship exists between spring Maumee River load and observed Lake 

Erie concentrations. By experimentally reducing the concentrations for the Maumee River and rerunning the model we were 305 

able to track the “downstream” repercussions to the lake node predicted values and infer the Maumee River impact plume. 

Tracking a plume of TP impact using the grab samples was not previously possible because of the distances between sampling 
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locations and the fact that the number of unobserved days outnumber the observed days. The plume extent in general follows 

the southern coast (Fig. 3), which would be expected because of the movement associated with the Coriolis effect. Importantly, 

this is not a plume that displays high concentration of TP, rather this is the impact plume of the Maumee River. Concentrations 310 

outside the impact plume are not influenced, or weakly influenced, by the Maumee and thus load reductions within the Maumee 

River would not impact lake concentrations in those areas. Our linear model (Eq 11) estimated that when the effective load of 

the Maumee was 0, the mean annual concentration in the area where samples were collected would be 23.1 µg l-1 ± 1.75, 95% 

CI.  

 315 

Each year the Maumee River TP impact plume dimension and intensity changed. Rowland et al. (2019) demonstrated how a 

linear model of Lake Erie TP observations as a function of Maumee River spring loads defined positive relationships at the 

closest nodes. Here, we were able to fit parameters that define the load to concentration relationship across all western Lake 

Erie. Much of the regulatory attention in addressing Lake Erie HABs has focused on Maumee River spring export and 

providing this quantitative connection is important in furthering watershed TP reduction efforts. Our model estimated that for 320 

each 100 tons of spring TP effective load delivered to Lake Erie, TP concentrations in the lake increase by 11 µg l-1 (± 1, 95% 

CI). We could use our defined linear relationship for hindcasting expected concentration reductions in western Lake Erie based 

on Maumee spring TP loads which were reduced by 40% for all our model years. Additionally, given a mean concentration 

maximum, we could predict the load reductions required in previous years to meet that target. Using our linear relationship 

between lake concentration and spring load to make forecasts for future years is harder. The size and shape of the Maumee 325 

River impact (dn,y) changes each year (Video supplement 1) and our method defines the river impact from observations. 

Without being provided an estimate of dn,y, a forecast of mean western Lake Erie TP concentrations based on a proposed spring 

TP load is not achievable. An achievable next step for this modelling framework could be linking the size of the Maumee 

River plume and Lake Erie TP concentrations to HABs biomass and toxin production, the spatial aspect of such a model could 

explain why the relationship between bloom biomass and Maumee TP export is not linear (Obenour et al., 2014).  330 

 

5 Conclusions  

Our state-space model framework was shown to fit the data well, generated reasonable estimates of concentration at observed 

and unobserved locations, was modified experimentally to estimate a river impact plume, and used the experimentally derived 

plume to test a regulatory relevant hypothesis. Adequately characterizing water quality in a large waterbody is difficult. 335 

Sampling and laboratory analysis is expensive and excessively time consuming to feasibly cover even a portion of Lake Erie 

with high temporal and spatial resolution. However, we demonstrate that a Bayesian state-space framework informed by an 

adjacency matrix defined by surface currents can generate daily TP concentration which are constrained by uncertainties 

appropriate for lake conditions. By combining the data from two rivers entering the lake our model (Eq 5-7) enables the rivers 
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to inform the observed and unobserved lake nodes, the observed lake nodes inform the unobserved lake nodes, and unobserved 340 

lake nodes also inform unobserved and observed nodes. This information sharing across time and space empowers this model 

to connect sparse data across large distances. By experimenting with the model, we were able to estimate a plume of impact 

from the Maumee River and apply the experimental results to hypothesis testing. The model is amenable to using remote 

sensing data and can effectively connect lake wide datasets with discrete grab samples. The application here used TP, but any 

analyte could be modelled in this same structure to generate estimates through time and space, hypothesis test, or to build 345 

baseline models to test process-based models against. 
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Code and Data availability 

Template code for reproducing our model is available publicly on Zenodo; at https://doi.org/10.5281/zenodo.5570508. All the 350 

data used here were from publicly available sources which we provide in Appendix A. On the Zenodo site we made our curated 

data for 2018 available. 

Video supplement 

A supplemental video of Maumee River impact plume through time is available through Copernicus. 
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 370 

Figure 1. Map showing the location of study region in western Lake Erie. The inset map shows the tributaries and loke nodes that 
were included in the model. Our site boundary was defined by the western portions of Lake Erie. A grid of 2 km-by-2 km nodes was 
used to snap existing concentration data and define an adjacency matrix based on surface currents. 
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 375 

Table 1. Bayesian model assessment via p-value (posterior predictive p-values of 0.5 are indicative of a good fit and 95% credible 
intervals (CI) of our yearly results each containing 0.5) and R2 (each year > 0.8) showed the model generated posterior samples 
similar in structure to the observations. 

 

Year Posterior Predictive p-
values R2 

 95% CI 95% CI 

2008 0.4 0.6 0.99 0.999 
2009 0.49 0.68 0.915 0.961 
2010 0.4 0.59 0.835 0.882 
2011 0.37 0.56 0.993 1 
2012 0.4 0.6 0.994 1 
2013 0.32 0.51 0.984 0.996 
2014 0.4 0.59 0.988 0.999 
2015 0.37 0.57 0.95 0.984 
2016 0.41 0.6 0.933 0.979 
2017 0.41 0.61 0.994 1 
2018 0.39 0.59 0.973 0.999 

 380 
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Figure 2. For 2018 the total phosphorus concentration (µg l-1) at observed and unobserved nodes were estimated from the model 
posterior samples. Mean (solid black line) and 95% PI (dashed blue line) for the model posterior samples of each node at every day 
for (a) the Maumee River, (b,c,e,f) western Lake Erie nodes, and (d) the River Raisin.  385 
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Figure 3. Heatmap of the mean Maumee River impact plume from 2008 to 2018. 
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 390 

Figure 4. Mean concentration at the observed nodes for each year was modelled as a function of the relative Maumee River spring 
TP load (Mean concentration = 23.1 (± 1.75, 95% CI) + 0.11 (± 0.01,95% CI) * Effective Load), where variance in concentration 
increased linearly with effective load. Effective load was defined by multiplying the normalized river impact generated by 
experimentally tracing the Maumee River’s impact on Lake Erie nodes annually. 95% predictive intervals of the data (green dotted 
lines) and 95% credible intervals of the linear relationship (blue solid lines) were generated from the model output. 395 

Appendices 

Appendix A 

Table A1. The data sources for total phosphorus concentrations and surface currents were all retrieved from publicly available 

online repositories. 

Agency Link Data Type n (2008 
to 2018) 

Environment 
Climate 
Change 

Digital Object Identifier: 
10.18164/495eb10d-d423-432a-980f-
264ef287d45b 

Total Phosphorus 
Concentration (µg l-1) 

121 
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Canada’s 
Offshore 
Water Quality 
Survey 
U.S. 
Environmental 
Protection 
Agency’s 
Great Lakes 
National 
Program 
Office 

https://cdx.epa.gov/ Total Phosphorus 
Concentration (µg l-1) 

149 

Ministry of the 
Environment, 
Conservation 
and Parks 
Great Lakes 
Intake 
Program 

http://files.ontario.ca/moe_mapping/ 
downloads/2Water/GLIP/All_Lakes_GLIP.csv 

Total Phosphorus 
Concentration (µg l-1) 

637 

National 
Oceanographic 
and 
Atmospheric 
Administration 
(NOAA) Great 
Lakes 
Environmental 
Research 
Laboratory 
(GLERL) 
Ecosystem 
Dynamics 
Long-Term 
Research 
program 

Digital Object Identifier: 
doi.org/10.25921/11da-3x54 

Total Phosphorus 
Concentration (µg l-1) 

111 

NOAA 
GLERL 
Western Lake 
Erie Sampling  

Digital Object Identifier: 
doi.org/10.25921/11da-3x54 

Total Phosphorus 
Concentration (µg l-1) 

1145 

National 
Center for 
Water Quality 
Research at 
Heidelberg 
University 

https://ncwqr-data.org/ Total Phosphorus 
Concentration (µg l-1) 

2258 

NOAA Great 
Lakes Coastal 
Forecasting 
System  

https://www.glerl.noaa.gov/res/glcfs/ Surface Currents (m 
North, m East) 

1020318 

   400 
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Appendix B 

 

 
Figure B1. Surface current data was available hourly within western Lake Erie. These 24-hour data were used to track the daily 
movement of water from each node. 405 
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Appendix C 

 

 410 

Figure C1. Non-informative priors were used to fit the state space coefficients of the Maumee River (βmau, a. all values 

represented as red polygon), River Raisin (βras), the western Lake Erie nodes subject to movement (βlake, b. red polygon), and 

those Lake Erie nodes which did not encounter sufficient water movement to associate to an “upstream” node (βself). The fitted 

values for every year (a. and b., all values represented as black polygon) did not significantly overlap. The log data model and 

process model uncertainty (c) for every year also were well identified (the uncertainty σ was logged to aid in visually comparing 415 

prior and fitted values). 
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Table C1. State space models in western Lake Erie fit coefficients predicting TP concentrations from the previous time-step within the Maumee 
River, the River Raisin, Lake Erie, and lake locations where the current time-step is informed by the same location, βmau, βrai, βlake, and βself, 420 
respectively. The 95% predictive interval (PI) for each year and coefficient was examined. The same models fit annual process model and data 
model precision.  

Year βmau βrai βlake βself Process σ Data σ 

 95% PI 95% PI 95% PI 95% PI 95% PI 95% PI 

2008 0.989 1.008 0.985 1.013 0.986 0.999 0.963 1.012 0.263 0.331 0.02 0.098 

2009 0.993 1.005 0.992 1.007 0.991 1.000 0.984 1.002 0.168 0.193 0.125 0.165 

2010 0.994 1.003 0.993 1.006 0.988 0.994 0.992 1.001 0.13 0.183 0.326 0.404 

2011 0.993 1.006 0.99 1.008 0.991 1.006 0.985 1.007 0.174 0.209 0.017 0.061 

2012 0.993 1.007 0.804 1.186 0.997 1.008 0.983 1.005 0.177 0.218 0.017 0.062 

2013 0.993 1.007 0.992 1.008 0.992 1.003 0.978 1.008 0.181 0.277 0.135 0.25 

2014 0.992 1.005 0.99 1.006 0.991 1.001 0.991 1.018 0.173 0.235 0.145 0.232 

2015 0.992 1.006 0.989 1.007 0.992 1.003 0.982 1.003 0.212 0.264 0.156 0.238 

2016 0.993 1.005 0.991 1.005 0.996 1.004 0.983 1.001 0.161 0.2 0.146 0.214 

2017 0.993 1.006 0.991 1.008 0.995 1.003 0.978 0.998 0.197 0.24 0.019 0.079 

2018 0.992 1.007 0.99 1.008 0.983 0.991 0.966 0.997 0.221 0.26 0.018 0.065 
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Appendix D 425 
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Figure D1. For 2008 the total phosphorus concentration (µg l-1) at observed and unobserved nodes were estimated from the model 
posterior samples. Mean (solid black line) and 95% PI (dashed blue line) for the model posterior samples of each node at every day 
for (a) the Maumee River, (b,c,e,f) western Lake Erie nodes, and (d) the River Raisin.  430 
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Figure D2. For 2009 the total phosphorus concentration (µg l-1) at observed and unobserved nodes were estimated from the model 
posterior samples. Mean (solid black line) and 95% PI (dashed blue line) for the model posterior samples of each node at every day 
for (a) the Maumee River, (b,c,e,f) western Lake Erie nodes, and (d) the River Raisin.  
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Figure D3. For 2010 the total phosphorus concentration (µg l-1) at observed and unobserved nodes were estimated from the model 
posterior samples. Mean (solid black line) and 95% PI (dashed blue line) for the model posterior samples of each node at every day 
for (a) the Maumee River, (b,c,e,f) western Lake Erie nodes, and (d) the River Raisin.  
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Figure D4. For 2011 the total phosphorus concentration (µg l-1) at observed and unobserved nodes were estimated from the model 440 
posterior samples. Mean (solid black line) and 95% PI (dashed blue line) for the model posterior samples of each node at every day 
for (a) the Maumee River, (b,c,e,f) western Lake Erie nodes, and (d) the River Raisin.  
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Figure D5. For 2012 the total phosphorus concentration (µg l-1) at observed and unobserved nodes were estimated from the model 
posterior samples. Mean (solid black line) and 95% PI (dashed blue line) for the model posterior samples of each node at every day 445 
for (a) the Maumee River, (b,c,e,f) western Lake Erie nodes, and (d) the River Raisin.  
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Figure D6. For 2013 the total phosphorus concentration (µg l-1) at observed and unobserved nodes were estimated from the model 
posterior samples. Mean (solid black line) and 95% PI (dashed blue line) for the model posterior samples of each node at every day 
for (a) the Maumee River, (b,c,e,f) western Lake Erie nodes, and (d) the River Raisin.  450 



37 
 

 



38 
 

Figure D7. For 2014 the total phosphorus concentration (µg l-1) at observed and unobserved nodes were estimated from the model 
posterior samples. Mean (solid black line) and 95% PI (dashed blue line) for the model posterior samples of each node at every day 
for (a) the Maumee River, (b,c,e,f) western Lake Erie nodes, and (d) the River Raisin.  
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Figure D8. For 2015 the total phosphorus concentration (µg l-1) at observed and unobserved nodes were estimated from the model 
posterior samples. Mean (solid black line) and 95% PI (dashed blue line) for the model posterior samples of each node at every day 
for (a) the Maumee River, (b,c,e,f) western Lake Erie nodes, and (d) the River Raisin.  



41 
 

 



42 
 

Figure D9. For 2016 the total phosphorus concentration (µg l-1) at observed and unobserved nodes were estimated from the model 460 
posterior samples. Mean (solid black line) and 95% PI (dashed blue line) for the model posterior samples of each node at every day 
for (a) the Maumee River, (b,c,e,f) western Lake Erie nodes, and (d) the River Raisin.  
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Figure D10. For 2017 the total phosphorus concentration (µg l-1) at observed and unobserved nodes were estimated from the model 
posterior samples. Mean (solid black line) and 95% PI (dashed blue line) for the model posterior samples of each node at every day 465 
for (a) the Maumee River, (b,c,e,f) western Lake Erie nodes, and (d) the River Raisin.  
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