1	Effects of aquifer geometry on seawater intrusion in annulus	
2	segment island aquifers	
3		
4	Zhaoyang Luo ^{1,2} , Jun Kong ^{1,3,#} , Chengji Shen ¹ , Pei Xin ¹ , Chunhui Lu ¹ , Ling Li ⁴ ,	
5	David Andrew Barry ²	
6		
7	¹ State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai	
8	University, Nanjing, China	
9		
10	² Ecological Engineering Laboratory (ECOL), Environmental Engineering Institute (IIE),	
11	Faculty of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique	
12	Fédérale de Lausanne (EPFL), Lausanne, Switzerland	
13		
13	³ Jiangsu Key Laboratory of Coast Ocean Resources Development and Environment Security,	
	Hohai University, Nanjing, China	
15	nonai University, Ivanjing, China	
16		
17	⁴ School of Engineering, Westlake University, Hangzhou, China	
18		
19	[#] Corresponding author: Jun Kong (<u>kongjun999@126.com</u>)	
20		Deleted: 8
21	Resubmitted to <i>Hydrology and Earth System Sciences</i> on <u>26</u> November 2021	Deleted: 30
		Formatted: Not Highlight

 \exists

24 Abstract

25	Seawater intrusion in island aquifers was considered analytically, specifically for annulus	
26	segment aquifers (ASAs), i.e., aquifers that (in plan) have the shape of an annulus segment.	
27	Based on the Ghijben-Herzberg and hillslope-storage Boussinesq equations, analytical	
28	solutions were derived for steady-state seawater intrusion in ASAs, with a focus on the	
29	freshwater-seawater interface and its corresponding watertable elevation. Predictions of the	
30	analytical solutions compared well with experimental data, and so they were employed to	
31	investigate the effects of aquifer geometry on seawater intrusion in island aquifers. Three	
32	different ASA geometries were compared: convergent (smaller side facing the lagoon <u>e larger</u>	Formatted: Not Highlight
33	side is the internal no-flow boundary, flow converges towards the lagoon), rectangular and	
34	divergent (<u>smaller side is the internal no-flow boundary</u> , larger side facing the sea, <u>flow</u>	Formatted: Not Highlight
35	diverges towards the sea). Depending on the aquifer geometry, seawater intrusion was found	
36	to vary greatly, such that the assumption of a rectangular aquifer to model an ASA can lead to	
37	poor estimates of seawater intrusion. Other factors being equal, compared with rectangular	
38	aquifers, seawater intrusion is more extensive and watertable elevation is lower in divergent	
39	aquifers, with the opposite tendency in convergent aquifers. Sensitivity analysis further	
40	indicated that the effects of aquifer geometry on seawater intrusion and watertable elevation	
41	vary with aquifer width and distance from the circle center to the inner arc (the lagoon	
42	boundary for convergent aquifers <u>or</u> the internal no-flow boundary for divergent aquifers). A	Deleted: while
43	larger aquifer width and distance from the circle center to the inner arc weaken the effects of	
44	aquifer geometry and hence differences in predictions for the three geometries become less	

1

46	pronounced	Deleted:Page Break
47	Keywords: sharp-interface; steady-state analytical solution; atoll aquifer; annulus segment	Formatted: Space Before: 24 pt
48	aquifer, seawater intrusion	
49	Key Points	
50	> Analytical solutions of steady-state seawater intrusion were derived for annulus segment	
51	aquifers	
52	> Among three different aquifer geometries, divergent aquifers have the lowest watertable	
53	and hence the most extensive seawater intrusion	
54	> Aquifer geometry effects on seawater intrusion depend on the aquifer width and distance	
55	from the circle center to the inner arc	

2

57 1. Introduction

58	Islands are extensively distributed throughout the world's oceans. Unfortunately, their	
59	groundwater resources are impacted by sea-level rise and increased demands. According to a	
60	recent estimate, there are approximately 65 million people living in oceanic islands where	
61	groundwater may be the only source of freshwater (Thomas et al., 2020). Fresh groundwater	
62	stored on oceanic islands is mainly from precipitation (usually in the form of a freshwater	
63	lens) and its availability varies due to different factors, e.g., island topography, rainfall	
64	patterns, tides, episodic storms and human activities (White & Falkland, 2010; Storlazzi et al.,	
65	2018). Seawater intrusion is thus an important issue due to its deleterious effect on oceanic	
66	island freshwater storage (e.g., Werner et al., 2017; Lu et al., 2019; Memari et al., 2020).	
67	Over the past few decades, seawater intrusion in oceanic islands has been extensively	
68	investigated in field observations (e.g., Röper et al., 2013; Post et al., 2019), laboratory	
69	experiments (e.g., Stoeckl et al., 2015; Bedekar et al., 2019; Memari et al., 2020), numerical	
70	simulations (e.g., Lam, 1974; Gingerich et al., 2017; Liu & Tokunaga, 2019) and analytical	
71	solutions (e.g., Fetter, 1972; Ketabchi et al., 2014; Lu et al., 2019). Among these, analytical	
72	solutions are effective tools to assess the extent of seawater intrusion (i.e., the location of the	
73	freshwater-seawater interface), although they cannot incorporate complex factors (e.g.,	
74	dispersive mixing and transient oceanic dynamics) (Werner et al., 2013). The advantages of	
75	analytical solutions are that they are computationally efficient, can be used as test cases for	
76	numerical models, and can reveal the explicit relationships between parameters that influence	
77	seawater intrusion (e.g., Fetter, 1972; Ketabchi et al., 2014; Liu et al., 2014; Lu et al., 2019).	

Deleted: In contrast to coastal aquifers where seawater intrudes into freshwater from one direction only, seawater intrusion occurs from four directions for narrow strip islands and from all directions for circular islands.

Deleted: ;

83	Based on the Dupuit-Forchheimer approximation (i.e., ignoring vertical flow) and the
84	Ghijben-Herzberg equation (Drabbe & Badon Ghijben, 1889, English translation given by
85	Post (2018); Herzberg, 1901), Fetter (1972) presented analytical solutions describing the
86	freshwater-seawater interface location and watertable elevation in a circular island. Bailey et
87	al. (2010) further compared these single-layered analytical solutions with field measurements,
88	indicating that the analytical solutions perform well in estimating the freshwater-seawater
89	interface location and watertable elevation. Fetter's solutions formed the foundation for many
90	subsequent analytical studies on seawater intrusion in island aquifers. Again, for a single
91	layer, Chesnaux and Allen (2008) and Greskowiak et al. (2013) developed analytical solutions
92	to predict the steady-state groundwater age distribution in freshwater lenses. In addition, using
93	single-layered analytical solutions, Morgan and Werner (2014) proposed vulnerability
94	indicators of freshwater lenses under sea-level rise and recharge change.
95	Since aquifers are usually heterogeneous, the single-layer analytical solutions were
96	subsequently extended to two-layered island aquifers. Vacher (1988) derived solutions for the
97	freshwater-seawater interface location and watertable elevation for infinite-strip islands
98	composed of different layers. Dose et al. (2014) conducted laboratory experiments to validate
99	and confirm the reliability of analytical solutions proposed by Fetter (1972) and Vacher
100	(1988). Ketabchi et al. (2014) extended Fetter's analytical solutions to calculate the
101	freshwater-seawater interface location and watertable elevation in two-layered circular islands
102	subject to sea-level rise. Their results indicated that land-surface inundation caused by sea-
103	level rise has a considerable impact on fresh groundwater lenses. Recently, Lu et al. (2019)

104	derived analytical solutions for the freshwater-seawater interface location and watertable	
105	elevation for both strip and circular islands with two adjacent layers, i.e., a less permeable	
106	slice along the shoreline of an island, and a more permeable zone inland.	
107	All the abovementioned analytical solutions apply to either strip or circular islands.	
108	According to the classification of sand dunes developed by Stuyfzand (1993; 2017), there are	
109	different island layouts that should be considered, e.g., where the shape of the island is an	
110	annulus segment, instead of a strip or circular disk (Figure 1). Annulus segment-shaped	
111	islands are found in various atolls (i.e., circular chains of islands surrounding a central	
112	lagoon) as found in the Pacific and Indian Oceans (Werner et al., 2017; Duvat, 2019).	
113	Nevertheless, analytical solutions of seawater intrusion are not yet available for annulus	
114	segment aquifers (ASAs). In general, ASAs are conceptually treated as a 2D cross section,	
115	similar to strip islands (e.g., Ayers & Vacher, 1986; Underwood et al., 1992; Bailey et al.,	
116	2009; Werner et al., 2017). Evidently, topography plays an important role in groundwater flow	
117	and hence seawater intrusion (e.g., Zhang et al., 2016; Liu & Tokunaga, 2019). It remains	
118	unclear whether analytical solutions of seawater intrusion for strip islands are appropriate for	
119	ASAs. It is also unclear how island geometry affects the freshwater-seawater interface	
120	location and watertable elevation of ASAs.	
121	In this study, analytical solutions are derived for steady-state seawater intrusion for ASAs,	
122	with a focus on the freshwater-seawater interface location and its corresponding watertable	
123	elevation. After comparing their predictions with experimental data (Memari et al., 2020), the	
124	analytical solutions are employed to investigate the effects of aquifer geometry on the	

Deleted: moreover

Deleted: dditionally

freshwater-seawater interface location and watertable elevation in ASAs. 127

2. Conceptual Model 128

129	Figure 2 shows the conceptual model of an ASA (a slice of an atoll island). The plan	
130	view of the model domain is represented as a sector (<i>EFGH</i>) with an angle θ (Figure 2a).	
131	The sea (<i>EF</i>) and lagoon (<i>HG</i>) boundaries are located at $L + L_0$ [L] and L_0 [L] from the circle	Moved down [
132	center, respectively. Since the longitudinal length is usually much longer than the lateral	
133	length for an atoll island (Werner et al., 2017), seawater intrusion from the lateral sides (EH	
134	and FG , Figure 2a) is negligible in comparison to the longitudinal side, especially for the	
135	middle portion of an ASA. Therefore, EH and FG are treated as lateral no-flow boundaries.	
136	Note that treating the lateral sides as no-flow boundaries is often used in studies of freshwater	
137	lenses on atoll islands (e.g., Ayers & Vacher, 1986; Underwood et al., 1992; Bailey et al.,	
138	2009; Werner et al., 2017). The <u>lateral vertical cross section</u> of the model domain is	Formatted: F
158	2007, Weiter et al., 2017). The lateral vertical eross sector, of the model domain is	
138	conceptualized as a rectangle (<i>ABCD</i>) along the radial direction with dimensions of L [L]	Deleted: side v
139	conceptualized as a rectangle (ABCD) along the radial direction with dimensions of L [L]	
139 140	conceptualized as a rectangle (<i>ABCD</i>) along the radial direction with dimensions of L [L] (width) × d [L] (height) (Figure 2b, c). <i>AD</i> is the impermeable base while <i>BC</i> is the land	
139 140 141	conceptualized as a rectangle (<i>ABCD</i>) along the radial direction with dimensions of L [L] (width) × d [L] (height) (Figure 2b, c). <i>AD</i> is the impermeable base while <i>BC</i> is the land surface through which aquifer recharge flows.	
139 140 141 142	conceptualized as a rectangle (<i>ABCD</i>) along the radial direction with dimensions of L [L] (width) × d [L] (height) (Figure 2b, c). <i>AD</i> is the impermeable base while <i>BC</i> is the land surface through which aquifer recharge flows. Both the sea and lagoon water levels are set to H_s [L], which results in an internal no-	
139 140 141 142 143	conceptualized as a rectangle (<i>ABCD</i>) along the radial direction with dimensions of <i>L</i> [L] (width) × <i>d</i> [L] (height) (Figure 2b, c). <i>AD</i> is the impermeable base while <i>BC</i> is the land surface through which aquifer recharge flows. Both the sea and lagoon water levels are set to H_s [L], which results in an internal no- flow boundary (water divide, where the slope of the watertable is zero) between the sea and	
139 140 141 142 143 144	conceptualized as a rectangle (<i>ABCD</i>) along the radial direction with dimensions of <i>L</i> [L] (width) × <i>d</i> [L] (height) (Figure 2b, c). <i>AD</i> is the impermeable base while <i>BC</i> is the land surface through which aquifer recharge flows. Both the sea and lagoon water levels are set to H_s [L], which results in an internal no- flow boundary (water divide, where the slope of the watertable is zero) between the sea and lagoon (location of the <i>z</i> -axis in Figure 2b,c). The segment between the sea and the internal	

[1]: Radial flow only is considered.

Font color: Text 1

view

150	divergent flow (the aquifer length w [L] increases along the flow direction) in Unit 1 and		
151	convergent flow (w decreases along the flow direction) in Unit 2.		
152	The <i>z</i> -z coordinate origin is placed at the intersection of the internal no-flow boundary		Deleted: x
153	and impermeable base, with the <i>z</i> -axis pointing to the circle center (radial direction) and the <i>z</i> -		Deleted: x
154	axis pointing vertically upward. Further, ϕ [L] is the watertable height, h [L] is the		
155	vertical distance between the watertable and the interface, h_s [L] is the vertical distance		
156	between the sea level and the interface, and $h_c = H_s - h_s$ [L] is the vertical distance from the		
157	impermeable base to the interface for given r (Figure 2b,c). Constant recharge into the		Deleted: x
158	saturated zone, N [LT ⁻¹], is assumed. There are two possibilities for the interface tip (i.e., the	l	
159	location where the freshwater-seawater interface connects to the z-axis or the bottom		
160	boundary): above the aquifer bed (Figure 2b) or on the aquifer bed (Figure 2c). The <i>r</i> -		Deleted: x
161	coordinates of the interface tip in Units 1 and 2 are denoted as r_{11} [L] and r_{22} [L], respectively	- (Deleted: x _{t1}
101		\leq	Deleted: x ₁₂
162	(Figure 2c). Note that $r_{1} = r_{2} = 0$ when the interface tip is above the aquifer bed, as in Figure		<u> </u>
163	2b.		Deleted: x _{t1}
105	20.	l	Deleted: x ₁₂
164	Consistent with previous studies (e.g., Ketabchi et al., 2014; Lu et al., 2016; 2019), the	X	Deleted: flat
165	following assumptions are made: (1) steady-state flow, (2) sharp freshwater-seawater		Deleted: negligible unsaturated flow
ĺ			Deleted: , (5) recharge rainfall
166	interface, (3) homogeneous and isotropic aquifer with a horizontal bottom, (4) rainfall is equal		Deleted: and
167	to the replenishment of the saturated zone with a magnitude that is less than the saturated		Deleted: while
			Deleted: following ponding
168	hydraulic conductivity (else overland flow will appear), (5) vertical flow in the saturated zone	$\langle $	Deleted: and
169	is negligible (the Dupuit-Forchheimer approximation), and (6), the same velocity is assumed		Deleted: 6
		\square	Deleted: 7
170	on the arc (w) for a given radial distance r, leading to radial flow only. Based on this last		Deleted: .Radial flow only is considered.

7

Deleted: x_{t1}
Deleted: x ₁₂
Deleted: <i>x</i> ^{<i>t</i>1}
Deleted: x ₁₂
Deleted: flat
Deleted: negligible unsaturated flow
Deleted: , (5) recharge rainfall
Deleted: and
Deleted: while
Deleted: following ponding
Deleted: and
Deleted: 6
Deleted: 7
Deleted: .Radial flow only is considered.

Moved (insertion) [1]

	189	assumption, the 3D flow problem can be simplified to 1D, making it possible to consider		Deleted: (
				Deleted: 7
	190	geometry effects analytically (Fan & Bras, 1998; Paniconi et al., 2003; Troch et al., 2003).		Deleted: 6)
	191	3. Analytical Solutions		Deleted:
I				Deleted: Groundwater
	192	Under the abovementioned assumptions, groundwater flow in an ASA (Figure 2) can be		Field Code Changed
	193	described as (Fan & Bras, 1998; Paniconi et al., 2003; Troch et al., 2003),		Deleted: $-\frac{\partial}{\partial x}(wq) + Nw = \frac{\partial S}{\partial t}$
		4		Formatted: Normal
	194	$-\frac{a}{dr}(wq) + Nw = 0 \tag{1}$		Deleted: Darcy
		× · · · · · · · · · · · · · · · · · · ·		Deleted: the aquifer
	195	where q [L ² T ⁻¹] is the <u>radial</u> flux per unit length along the radial direction r [L]. Equation	4	Deleted: ,
	196	(1) is a special case of the hillslope-storage Boussinesq equation proposed by Troch et al.	$\overline{\}$	Deleted: x
	190	(1) It <u>a special case of the initisipe-storage boussilesi</u> equation proposed by from et al.		Deleted: represents the distance from the circle center to the
	197	(2003). Paniconi et al. (2003) validated the hillslope-storage Boussinesq equation by		arc, S [L ²] is the total water storage per unit distance alone the aquifer, and t [T] is time.
	198	comparing it with a 3D Richards' equation model and found that predictions of the hillslope-		Deleted: the so-called
	199	storage Boussinesq equation matched well those of the 3D model for seven different	())	Deleted: the
	199	Storage Boussinest equation indered were abse of the 5D model for peven anterent		Deleted: that and was first
	200	geometries, For conciseness, readers are referred to Paniconi et al. (2003) for more details		Deleted: For a given radial distance <i>x</i> , this equation assume
	201	about the validation. Subsequently, the hillslope-storage Boussinesq equation was used to for		that the velocity is the same everywhere on the arc (w). Base
	201	about the vandation. Subsequentry, the missipe storage Boassnesq equation, was used to for	$\langle \rangle$	Deleted: equation (1)
	202	<u>different</u> analyses (Hilbert <u>s</u> et al., 2005, 2007; Hazenberg et al., 2015, 2016; Kong et al.,		Deleted: equation (1)
			$\langle \rangle \rangle$	Deleted: nine
	203	2016; Luo et al., 2018), all of which focus on hillslope aquifers where the aquifer bottom is	$\langle \rangle \rangle$	Deleted:
	204	usually sloping. The hillslope-storage Boussinesq equation assumes that groundwater flow is	///	Deleted: equation (1)
				Deleted: further
	205	parallel to the aquifer bottom (the Dupuit-Forchheimer approximation). Therefore, it can be		Deleted: . A
	206	applied to coastal unconfined aquifers where the aquifer bottom slope is usually mild (Lu et		Deleted: the existing applications based on the hillslope-
				Deleted: be easily extended
	207	<u>al., 2016)</u>		Deleted: pretty
	208	According to Darcy's law and the Dupuit-Forchheimer approximation, the freshwater	\backslash	Deleted: in the saturated zoneunconfined slop pretty ild
				Deleted: ild, even horizontal
	209	flux in the aquifer segment between the seaward boundary and interface tip can be calculated		Deleted: At steady state, equation (1) reduces to,

Deleted:
Deleted: Groundwater
Field Code Changed
Deleted: $-\frac{\partial}{\partial x}(wq) + Nw = \frac{\partial S}{\partial t}$
Formatted: Normal
Deleted: Darcy
Deleted: the aquifer
Deleted: ,
Deleted: x
Deleted: represents the distance from the circle center to the arc, S [L ²] is the total water storage per unit distance along the aquifer, and t [T] is time.
Deleted: the so-called
Deleted: the
Deleted: that and was first
Deleted: For a given radial distance <i>x</i> , this equation assumes hat the velocity is the same everywhere on the arc (<i>w</i>). Based
Deleted: equation (1)
Deleted: equation (1)
Deleted: nine
Deleted:
Deleted: equation (1)
Deleted: further
Deleted: . A
Deleted: the existing applications based on the hillslope-
Deleted: be easily extended

····

as (ϕ is independent of z),

251

257

260

266

$$q = -\int_{h_c}^{\phi} K_s \frac{d\phi}{dr} dz = -K_s \left(\phi - h_c\right) \frac{d\phi}{dr}$$

where K_s [LT⁻¹] is the saturated hydraulic conductivity.

3.1. Interface Tip above the Aquifer Bed

²⁵⁴ We first consider the situation where the interface tip is above the aquifer bed (Figure

255 2b). In Unit 1 where $w = \theta (L_0 + l_2 - r)$, substituting equation (2) into equation (1) and then

256 integrating gives,

$$-\frac{1}{2}\left[\left(L_{0}+l_{2}-r\right)^{2}-\left(L_{0}+l_{2}\right)^{2}\right]N=-\left(L_{0}+l_{2}-r\right)K_{s}\left(\phi-h_{c}\right)\frac{d\phi}{dr}$$

According to the Ghijben-Herzberg equation, the vertical thickness of the freshwater zone (h)

in the interface zone is given by,

$$h = \phi - h_c = (1 + \alpha)(\phi - H_s)$$

where $\alpha = \rho_f / (\rho_s - \rho_f)$ is the dimensionless density difference, and ρ_f [ML⁻³] and ρ_s

 $[ML^{-3}]$ are the freshwater and seawater densities, respectively. Substitution of equation (4)

²⁶³ into equation (3) yields,

264
$$-\frac{1}{2}\left[\left(L_{0}+l_{2}-r\right)^{2}-\left(L_{0}+l_{2}\right)^{2}\right]N=-K_{s}\left(L_{0}+l_{2}-r\right)\left(1+\alpha\right)\left(\phi-H_{s}\right)\frac{d\phi}{dr}$$

Rearranging equation (5) produces,

$$-\frac{(L_0+l_2-r)N}{2} + \frac{N(L_0+l_2)^2}{2(L_0+l_2-r)} = -K_s(1+\alpha)(\phi-H_s)\frac{d\phi}{dr}$$

²⁶⁷ Integrating equation (<u>6</u>) leads to,

$$-\frac{\left(L_{0}+l_{2}\right)^{2}N}{2}\ln\left(L_{0}+l_{2}-r\right)-\frac{1}{2}\left(L_{0}+l_{2}\right)Nr+\frac{1}{4}Nr^{2}+C_{1}=-K_{s}\left(1+\alpha\right)\frac{\left(\phi-H_{s}\right)^{2}}{2}\qquad(7)$$

where C_1 is the integration constant that is determined by the sea boundary condition (i.e.,

9

Deleted: 3

Deleted: 5

Deleted: 5

Deleted: 4

Deleted: 6

Deleted: 7

Deleted: 7

Deleted: 8

(<u>2</u>)

<u>(3</u>)

(<u>4</u>)

(<u>5</u>)

(<u>6</u>)

$$\begin{aligned} r = -l_{i}, \ \phi = H_{i}, \\ \hline \\ r & c_{i} = \left(\frac{l_{i} + l_{i}}{2}\right)^{2} \ln \left(l_{i} + l_{i} + l_{i}\right) - \frac{1}{2}\left(l_{i} + l_{i}\right) | N - \frac{1}{4}l_{i}^{2}N \\ \hline \\ r & \text{The relation between } h, \text{ and } \phi \text{ is given by.} \\ \hline \\ r & h_{i} = \alpha(\phi - H_{i}) \\ \hline \\ r & h_{i} = \alpha(\phi - H_{$$

315	Combining equations (10), (13) and (14) leads to expressions for l_1 and l_2 ,	<	Deleted: 11
	$2II + I^2$		Deleted: 14
316	$l_1 = L + L_0 - \sqrt{\frac{2LL_0 + L^2}{2\ln(L + L_0) - 2\ln(L_0)}} $ (15)		Deleted: 15
	· · · · · · · · · · · · · · · · · · ·		Deleted: 16
317	$l_2 = \sqrt{\frac{2LL_0 + L^2}{2\ln(L + L_0) - 2\ln(L_0)}} - L_0 \tag{16}$	/	Deleted: 17
	$\sqrt{2 \ln(L + L_0) - 2 \ln(L_0)}$		
318	As indicated by equations $(\underline{15})$ and $(\underline{16})$, the internal no-flow boundary between the sea and		Deleted: 16
			Deleted: 17
319	lagoon only depends on L and L_0 . For known l_1 and l_2 , equations (10) and (13) can be		Deleted: 11
320	employed to predict the freshwater-seawater interface location in Units 1 and 2, respectively.		Deleted: 14
321	Once the interface location is determined, h and ϕ are given by,		
322	$h = \frac{1+\alpha}{\alpha} h_s \tag{17}$		Deleted: 18
	α h	/	Deletede 10
323	$\phi = \frac{h_s}{\alpha} + H_s \tag{18}$		Deleted: 19
324	3.2. Interface Tip on the Aquifer Bed		
325	When the interface tip is on the aquifer bed, the location of the internal no-flow		
326			
520	boundary remains the same as for the interface tin above the aquifer hed. The freshwater-		
	boundary remains the same as for the interface tip above the aquifer bed. The freshwater-	/	Deleted: 11
327	boundary remains the same as for the interface tip above the aquifer bed. The freshwater- seawater interface for Units 1 and 2 can be determined by equations (10) and (13) ,		Deleted: 11 Deleted: 4
	seawater interface for Units 1 and 2 can be determined by equations (10) and (13) ,		<u> </u>
327 328			Deleted: 4
	seawater interface for Units 1 and 2 can be determined by equations (10) and (13) ,		Deleted: 4 Deleted: 18 Deleted: x Formatted: Font: Italic
328 329	seawater interface for Units 1 and 2 can be determined by equations (10) and (13), respectively. Then, from equation (17), h at the aquifer segment between the sea boundary and the interface tip is determined. To calculate h for the aquifer segment between the interface tip		Deleted: 4 Deleted: 18 Deleted: x Formatted: Font: Italic Formatted: Font: Italic
328	seawater interface for Units 1 and 2 can be determined by equations (<u>10</u>) and (<u>13</u>), respectively. Then, from equation (<u>17</u>), <i>h</i> at the aquifer segment between the sea boundary and		Deleted: 4 Deleted: 18 Deleted: x Formatted: Font: Italic
328 329	seawater interface for Units 1 and 2 can be determined by equations (10) and (13), respectively. Then, from equation (17), h at the aquifer segment between the sea boundary and the interface tip is determined. To calculate h for the aquifer segment between the interface tip		Deleted: 4 Deleted: 18 Deleted: x Formatted: Font: Italic Formatted: Font: Italic Formatted: Font: Italic, Subscript
328 329 330	seawater interface for Units 1 and 2 can be determined by equations (10) and (13), respectively. Then, from equation (17), h at the aquifer segment between the sea boundary and the interface tip is determined. To calculate h for the aquifer segment between the interface tip and the internal no-flow boundary, the <i>r</i> -coordinate of the interface tip is found. At the		Deleted: 4 Deleted: 18 Deleted: x Formatted: Font: Italic Formatted: Font: Italic Formatted: Font: Italic, Subscript Formatted: Subscript
328 329 330 331 332	seawater interface for Units 1 and 2 can be determined by equations (10) and (13), respectively. Then, from equation (17), <i>h</i> at the aquifer segment between the sea boundary and the interface tip is determined. To calculate <i>h</i> for the aquifer segment between the interface tip and the internal no-flow boundary, the <i>r</i> -coordinate of the interface tip is found. At the interface tip of Unit 1 ($r = r_A \psi$), $h_s = H_s$ (19)		Deleted: 4 Deleted: 18 Deleted: x Formatted: Font: Italic Formatted: Font: Italic Formatted: Font: Italic, Subscript Formatted: Subscript Deleted: $r = r_{r1}$
328 329 330 331	seawater interface for Units 1 and 2 can be determined by equations (10) and (13), respectively. Then, from equation (17), <i>h</i> at the aquifer segment between the sea boundary and the interface tip is determined. To calculate <i>h</i> for the aquifer segment between the interface tip and the internal no-flow boundary, the <i>r</i> -coordinate of the interface tip is found. At the interface tip of Unit 1 ($r = r_{h}$),		Deleted: 4 Deleted: 18 Deleted: x Formatted: Font: Italic Formatted: Font: Italic Formatted: Font: Italic, Subscript Formatted: Subscript Deleted: $r = r_{r1}$ Deleted: 20
328 329 330 331 332	seawater interface for Units 1 and 2 can be determined by equations (10) and (13), respectively. Then, from equation (17), <i>h</i> at the aquifer segment between the sea boundary and the interface tip is determined. To calculate <i>h</i> for the aquifer segment between the interface tip and the internal no-flow boundary, the <i>r</i> -coordinate of the interface tip is found. At the interface tip of Unit 1 ($r = r_A \psi$), $h_s = H_s$ (19)		Deleted: 4 Deleted: 4 Deleted: 18 Deleted: x Formatted: Font: Italic Formatted: Font: Italic, Subscript Formatted: Subscript Deleted: $r = r_{r1}$ Deleted: 20 Deleted: 21

391	equation (19) into equation (13). Then, the watertable (h) of the aquifer segment between the	_	Deleted: 20
392	interface tip and the internal no-flow boundary for Unit 2 is computed by repeating the steps		Deleted: 14
393	from equations (21) to (25).		Deleted: 22
394	4. Results and Discussion		Deleted: 26
395	4.1. Validation of the Analytical Solutions		
396	The analytical solutions were validated by comparing their predictions with experimental		
397	data compiled from Memari et al. (2020), who reported experiments carried out using a 15°		
398	radial tank. The tank contained three distinct chambers: internal no-flow boundary condition,		
399	porous medium and constant-head boundary condition (i.e., sea or lagoon). The internal no-		
400	flow and seaward boundaries were respectively located at 10, and 55.5 cm from the circle		Deleted: cm
401	center, i.e., 45.5 cm from the internal no-flow boundary to the constant-head boundary along		
402	the radial direction. Note that the experimental tank corresponds to Unit 1 of the radial aquifer		Deleted: only
403	with $l_1 = 45.5$ cm and $l_2 = 0$, so the analytical results were calculated using equations (10)		Deleted: 11
404	and (23). The thicknesses of the porous medium and sea level were 28 and 25 cm,		Deleted: 24
405	respectively, with $K_s = 1.23 \times 10^{-2} \text{ m s}^{-1}$. The measured saltwater and freshwater densities		
406	were respectively 1.015 and 0.999 g ml ⁻¹ , leading to $\alpha = 62$. Two different recharge events		
407	with constant N, 2.46 × 10 ⁻⁴ and 1.08 × 10 ⁻⁴ m s ⁻¹ , were considered in the experiments.		
408	Figure 3 shows the comparison between analytical and experimental results of the		
409	freshwater-seawater interface for different recharge events. In general, the analytical solution		
410	predicts the freshwater-seawater interface well for both recharge events, despite there being		
411	some differences between the analytical results and the measurements, particularly in the zone		

⁴²⁰ near the constant-head boundary (r = -45 cm). These deviations are likely due to assumptions ⁴²¹ made in the analytical solution, i.e., (i) a sharp freshwater-seawater interface, (ii) ignoring the ⁴²² effect of freshwater discharge, and (iii) neglecting the vertical flow (the Dupuit-Forchheimer ⁴²³ approximation).

424 **4.2. Effects of Aquifer Geometry on Seawater Intrusion**

440

Previous studies showed that boundary conditions play a critical role in estimates of 425 seawater intrusion (Werner & Simmons, 2009; Lu et al., 2016). Therefore, the internal no-426 flow boundary between the sea and lagoon was examined for various ASAs. As indicated by 427 equations (15) and (16), this internal no-flow boundary depends only on L and L_0 . The values 428 of l_1 and l_2 calculated respectively from equations (<u>15</u>) and (<u>16</u>) are shown in Figure 4 for 429 three typical values of L (500, 1000 and 2000 m) with L_0 varying from 10^2 to 10^6 m. In 430 general, the internal no-flow boundary deviates from the middle of the ASA. When Lo is less 431 than 10^5 m, l_1 is larger than l_2 for the three different values of L, indicating an internal no-432 flow boundary closer to the lagoon boundary. For example, taking L = 2000 m and $L_0 = 100$ m 433 leads to $l_1 = 1240$ m and $l_2 = 760$ m, with a deviation of 240 m (12% of 2000 m) from the 434 middle of the ASA. When L_0 exceeds 10^5 m, however, the location of the internal no-flow 435 boundary can be approximated as being at the middle of the ASA for all considered values of 436 L. This is in contrast to strip and circular aquifers where the internal no-flow boundary is 437 always in the middle of aquifer due to symmetry. 438 Since the internal no-flow boundary location between the sea and lagoon deviates from 439

Deleted: 16 Deleted: 17 Deleted: 16 Deleted: 17

Deleted: s

Deleted: x

14

the middle of the ASA, we expect aquifer geometry to play a significant role in controlling

447	seawater intrusion. As mentioned previously, ASAs can be convergent (Unit 1) or divergent
448	aquifers (Unit 2) where the extent of seawater intrusion may be different. However, for strip
449	aquifers, both Units 1 and 2 are rectangular with the same extent of seawater intrusion.
450	Therefore, three geometries were compared in this study: convergent, rectangular and
451	divergent (Figure 5). These geometries have been widely examined in hillslope hydrology
452	regrading to the effects of aquifer geometry on runoff generation (Troch et al., 2003; Kong et
453	al., 2016; Luo et al., 2018). To present the results more conveniently, we placed the <u>z</u> -z
454	coordinate origin at the intersection of the constant-head boundary (sea or lagoon) and the
455	impermeable base, with the <i>z</i> -axis pointing horizontally to the internal no-flow boundary and
456	the z-axis vertically upward (Figure 5). In addition, the distance between the constant-head
457	boundary and the internal no-flow boundary (aquifer width) is denoted as L^* (Figure 5) while
458	the other parameters remain the same.
459	Following previous studies (e.g., Lu et al., 2016; 2019), different cases were selected to
460	show the effects of aquifer geometry on seawater intrusion (Cases 1 and 2 in Table 1).
461	According to Werner et al. (2017), the width of atoll islands generally varies from 100 to 1500
462	m along the radial direction. In order to focus on the effects of aquifer geometry on seawater
463	intrusion, the same L^* and L_0 were assumed for the three aquifers, with L^* and L_0 equal to
464	1000 and 200 m, respectively. Note that L_0 is the distance from the circle center to the lagoon
465	boundary for convergent aquifers, whereas it represents the distance from the circle center to
466	internal no-flow boundary for divergent aquifers hereafter. The sand characteristics were the
467	same as in the experiments of Memari et al. (2020). Two recharge events were considered

Deleted: re		

Deleted: x

Deleted: *x*

471	(Cases 1 and 2, Table 1). The freshwater-seawater interface was calculated using the
472	analytical solutions for the three different aquifers. Note that the Appendix presents analytical
473	solutions for seawater intrusion in strip aquifers deduced from Lu et al. (2019).
474	Figure 6 shows the freshwater-seawater interface calculated for Cases 1 and 2. As can be
475	seen, the extent of seawater intrusion is noticeably different for the three aquifer geometries.
476	For high recharge (1 \times 10 ⁻⁶ m s ⁻¹), the interface tip is located at around 500 m for the
477	divergent aquifer, which is about twice the value of the rectangular aquifer and six times the
478	value for the convergent aquifer (Figure 6a). When the recharge decreases to 3×10^{-7} m s ⁻¹ ,
479	the interface tip moves further landward for the three aquifers as expected, but the difference
480	between results is still great (Figure 6b). The interface tip is displaced above the aquifer bed
481	for both the rectangular and divergent aquifers, while it remains on the aquifer bed for the
482	convergent aquifer. Regardless of the recharge rate, the most landward freshwater-seawater
483	interface occurs in the divergent aquifer and vice versa for the convergent aquifer. This
484	underlines that aquifer geometry plays a major role in controlling seawater intrusion and
485	hence it is necessary to account for aquifer geometry in analyses of seawater intrusion.
486	4.3. Sensitivity Analysis
487	A sensitivity analysis was conducted to investigate to what extent aquifer geometry
488	affects seawater intrusion. Since we focus on the effects of aquifer geometry on the locations
489	of the freshwater-seawater interface and watertable, values of L_0 and L^* were varied, with
490	other parameters kept constant. When conducting the sensitivity analysis of L_0 , L^* was fixed
491	at 1000 m, which is a typical value for ASAs (Werner et al., 2017). Figure 7 shows the

492	sensitivity of the locations of the freshwater-seawater interface and watertable to changes in	
493	L_0 (Case 3, Table 1). The freshwater-seawater interface and watertable elevation are	
494	independent of L_0 for rectangular aquifers (Appendix). However, the freshwater-seawater	
495	interface and watertable elevation differ greatly when varying L_0 for both convergent and	
496	divergent aquifers, highlighting that L ₀ plays an important role in affecting seawater intrusion.	
497	Specifically, as L_0 increases, the freshwater-seawater interface moves more landward (larger	
498	$L^{/L^*}$, Figure 7a) and its corresponding watertable elevation decreases (Figure 7c) for	 Deleted: x
499	convergent aquifers. In contrast, for divergent aquifers increasing L_0 moves the freshwater-	
500	seawater interface more seaward (smaller $L^{/L^*}$, Figure 7b) and its corresponding watertable	 Deleted: x
501	elevation increases (Figure 7d). For a given L_0 , divergent aquifers have the largest extent of	
502	seawater intrusion and the lowest watertable elevation, and conversely for convergent aquifers	
503	(Figure 7).	
504	Regardless of the freshwater-seawater interface and watertable elevation, the deviation	
505	between rectangular aquifers and divergent or convergent aquifers is significant when L_0 is	
506	less than 2000 m (Figure 7). For example, the <u>z</u> -coordinate of the interface tip ($z = 0$) is 262 m	 Deleted: x
507	for the rectangular aquifer at $L_0 = 200$ m, whereas it is 78 (31% of that in the rectangular	
508	aquifer) and 500 m (191% of that in the rectangular aquifer) for the convergent and divergent	
509	aquifers, respectively. As L_0 increases, the deviation between the three aquifers decreases.	
510	When $L_0 = 2000$ m, the <i>z</i> -coordinate of the interface tip is 262, 209 (80% of that in the	 Deleted: x
511	rectangular aquifer) and 318 m (121% of that in the rectangular aquifer) for the rectangular,	
512	convergent and divergent aquifers, respectively. As L_0 increases to 6000 m, the freshwater-	

517	seawater interface and watertable elevation of both convergent and divergent aquifers tend to
518	those of rectangular aquifers, i.e., geometry effects decrease with increasing L_0 . These results
519	highlight the critical role played by the shape of aquifers. As a result, ignoring the aquifer
520	geometry may lead to an inappropriate management strategy for groundwater resources in
521	atoll islands.

The sensitivity of the freshwater-seawater interface and watertable elevation to L^* was 522 investigated by varying L^* from 600 to 1600 m while fixing L_0 to 200 m (Case 4, Table 1). As 523 shown in Figure 8, contrary to the results for varying L_0 , in this case the freshwater-seawater 524 interface and watertable elevation in all three topographies are related to L^* . Again, the extent 525 of seawater intrusion is greatest in divergent aquifers and least in convergent aquifers for 526 given L*. When L* increases, the freshwater-seawater interface moves seaward and the 527 watertable elevation increases, regardless of aquifer geometry, i.e., the seawater intrusion 528 decreases (Figures 8a-c). This is because the total freshwater flux increases with increasing 529 L^{*}, leading to a higher hydraulic gradient and hence less seawater intrusion (Figures 8d-f). 530 Moreover, an increase in L^* reduces the differences in the seawater intrusion distance among 531 the three geometries, i.e., the effects of aquifer geometry on seawater intrusion are more 532 significant at small L^* . However, even at the maximum L^* considered (1600 m), the deviation 533 between three aquifers remains significant: The r-coordinate of the interface tip is about 148 534 m for the rectangular aquifer, whereas it is about 32 (22% of that in the rectangular aquifer) 535 and 278 m (188% of that in the rectangular aquifer) for the convergent and divergent aquifers, 536 respectively. Both L₀ and L* can greatly impact seawater intrusion estimates for divergent and 537

Deleted: *x*

⁵³⁹ convergent aquifers, highlighting the necessity to include geometry effects in analytical

solutions of seawater intrusion.

541 **5. Conclusions**

542	Based on the Ghijben-Herzberg and hillslope-storage Boussinesq equations, we derived	
543	analytical solutions of steady-state seawater intrusion for ASAs, with a focus on the	
544	freshwater-seawater interface and its corresponding watertable elevation as affected by	
545	recharge. After comparing with experimental data of Memari et al. (2020), the analytical	
546	solutions were employed to examine the effects of aquifer geometry on seawater intrusion in	
547	island aquifers. Three different shapes of island aquifer were compared: convergent,	
548	rectangular and divergent. The results lead to the following conclusions:	
549	• The presented analytical solutions perform well in predicting the experimental freshwater-	
550	seawater interface, suggesting that these analytical solutions can predict seawater intrusion	
551	reasonably in different aquifer geometries.	
552	• Island geometry plays a significant role in affecting the freshwater-seawater interface and	
553	watertable elevation. Other factors being equal, the extent of seawater intrusion is greatest	
553 554	watertable elevation. Other factors being equal, the extent of seawater intrusion is greatest in divergent aquifers, and conversely least in convergent aquifers. In contrast, the	
554	in divergent aquifers, and conversely least in convergent aquifers. In contrast, the	
554 555	in divergent aquifers, and conversely least in convergent aquifers. In contrast, the watertable elevation is lowest in divergent aquifers and highest in convergent aquifers.	
554 555 556	in divergent aquifers, and conversely least in convergent aquifers. In contrast, the watertable elevation is lowest in divergent aquifers and highest in convergent aquifers.The effects of aquifer geometry on seawater intrusion are dependent on the aquifer width	

Deleted: while

weaken, the role played by aquifer geometry and hence lead to a smaller deviation of the
extent of seawater intrusion between the three topographies.
Real island aquifers are expected to exhibit more complexity than considered here, e.g.,
they, will have more complex shapes and are subjected to transient flow conditions caused by Deleted: at
tides, waves and groundwater pumping (Mantoglou et al. 2003; Pool & Carrera., 2011;
Werner et al., 2013). In addition, since the experimental scale of Memari et al. (2020) is
necessarily small, future experiments and field data are needed to further validate and
facilitate the analytical solutions. Despite this, the new analytical solutions, validated against
experiments, can be used as a tool for rapid estimation of seawater intrusion in ASAs once
known island geometry and corresponding soil properties are given.

ī

573 Appendix: Analytical Solutions for Rectangular Aquifers

574	For rectangular aquifers, the seawater intrusion in Unit 1 is identical to that in Unit 2	
575	because of symmetry. With the interface tip on the aquifer bed, analytical solutions for the	
576	freshwater-seawater interface (h_s), watertable elevation (h), and $\underline{\ell}$ -coordinate of the interface	 Deleted: x
577	tip in Unit 2 (<u>r</u> ₂) can be respectively written as (Lu et al., 2019),	 Deleted: x ₁₂
578	$h_s = \alpha \sqrt{\frac{N}{(1+\alpha)K_s} \left(\frac{L^2}{4} - r^2\right)} $ (A1)	
579	$h = \begin{cases} \sqrt{\frac{N}{K_s} \left(r_{t_2}^2 - r^2\right) + \left(\frac{H_s}{\alpha} + H_s\right)} & 0 \le r \le r_{t_2} \\ \sqrt{\frac{N}{K_s} \left(\frac{L^2}{\alpha} - 2\right)} & U \end{cases} $ (A2)	

$$h = \begin{cases} \sqrt{\frac{N}{(1+\alpha)K_{s}} \left(\frac{L^{2}}{4} - r^{2}\right)} + H_{s} & r_{i2} < r \le \frac{L}{2} \end{cases}$$
(A2)

580
$$r_{t2} = \sqrt{\frac{L^2}{4} - \frac{(1+\alpha)K_s}{N} \left(\frac{H_s^2}{\alpha^2}\right)}$$
 (A3)

⁵⁸¹ When the interface tip is above the aquifer bed, the analytical solution for the freshwater-

seawater interface location and watertable elevation in Unit 2 are the same as equations (A1)

⁵⁸³ and (A2), respectively.

21

eleted: x

586 Code/Data availability

587

Experimental data used in this study were compiled from Memari et al. (2020).

Deleted: a

589 Author contributions

- All authors contributed to the design of the research. ZL carried out data collation,
- ⁵⁹¹ developed the analytical solutions and prepared the manuscript with contributions from all
- ⁵⁹² co-authors. All authors contributed to the interpretation of the results and provided feedback.

593 Competing interests

⁵⁹⁴ The authors declare that they have no conflicts of interest.

595 Acknowledgments

- 596 This research was supported by the National Key R&D Program of China
- ⁵⁹⁷ (2019YFC0409004) and the National Natural Science Foundation of China (51979095 and
- ⁵⁹⁸ 41807178). ZL acknowledges EPFL for financial support and JK acknowledges the Qing Lan
- ⁵⁹⁹ Project of Jiangsu Province (2020). <u>We appreciate the constructive comments from the</u>

600 handling Editor Mauro Giudici and three anonymous reviewers, which led to significant

601 <u>improvement of the paper.</u>

Deleted: review

603 References

- Ayers, J. F., & Vacher, H. L. (1986). Hydrogeology of an atoll island: A conceptual model
- from detailed study of a Micronesian example. *Groundwater*, 24(2), 185-198.
- 606 https://doi.org/10.1111/j.1745-6584.1986.tb00994.x
- Bailey, R. T., Jenson, J. W., & Olsen, A. E. (2010). Estimating the ground water resources of
- atoll islands. *Water*, 2(1), 1-27. <u>https://doi.org/10.3390/w2010001</u>
- Bailey, R. T., Jenson, J. W., & Olsen, A. E. (2009). Numerical modeling of atoll island
- 610 hydrogeology. *Groundwater*, 47(2), 184-196. <u>https://doi.org/10.1111/j.1745-</u>
- 611 <u>6584.2008.00520.x</u>
- Bedekar, V. S., Memari, S. S., & Clement, T. P. (2019). Investigation of transient freshwater
- storage in island aquifers. *Journal of Contaminant Hydrology*, 221, 98-107.
- 614 https://doi.org/10.1016/j.jconhyd.2019.02.004
- 615 Chesnaux, R., & Allen, D. M. (2008). Groundwater travel times for unconfined island
- aquifers bounded by freshwater or seawater. *Hydrogeology Journal*, *16*(3), 437-445.
- https://doi.org/10.1007/s10040-007-0241-6
- ⁶¹⁸ Dose, E. J., Stoeckl, L., Houben, G. J., Vacher, H. L., Vassolo, S., Dietrich, J., &
- ⁶¹⁹ Himmelsbach, T. (2014). Experiments and modeling of freshwater lenses in layered
- aquifers: Steady state interface geometry. *Journal of Hydrology*, 509, 621-630.
- 621 https://doi.org/10.1016/j.jhydrol.2013.10.010
- 622 Drabbe J. & Badon Ghijben, W. (1889). Nota in verband met de voorgenomen put boring
- 623 nabij Amsterdam. Tijdschrift van het Koninklijk Instituut van Ingenieurs. pp. 8-22,

624 Gravenhage, Netherlands.

625	Duvat, V. K. E. (2019)	. A global assessment	of atoll island	planform changes	over the past
-----	------------------------	-----------------------	-----------------	------------------	---------------

- decades. *Wiley Interdisciplinary Reviews: Climate Change*, 10(1), e557.
- 627 <u>https://doi.org/10.1002/wcc.557</u>
- Fan, Y., & Bras, R. L. (1998). Analytical solutions to hillslope subsurface storm flow and
 saturation overland flow. *Water Resources Research*, 34(4), 921-927.
 https://doi.org/10.1029/97WR03516
- ⁶³¹ Fetter, C. W. (1972). Position of the saline water interface beneath oceanic islands. *Water*
- 632 Resources Research, 8(5), 1307-1315. <u>https://doi.org/10.1029/WR008i005p01307</u>
- Gingerich, S. B., Voss, C. I., & Johnson, A. G. (2017). Seawater-flooding events and impact
- on freshwater lenses of low-lying islands: Controlling factors, basic management and
- mitigation. Journal of Hydrology, 551, 676-688.
- 636 https://doi.org/10.1016/j.jhydrol.2017.03.001
- Gireskowiak, J., Röper, T., & Post, V. E. (2013). Closed-form approximations for two-
- dimensional groundwater age patterns in a fresh water lens. Groundwater, 51(4), 629-
- 639 634. <u>https://doi.org/10.1111/j.1745-6584.2012.00996.x</u>
- Hazenberg, P., Fang, Y., Broxton, P., Gochis, D., Niu, G. Y., Pelletier, J. D., Troch., P. A., &
- ⁶⁴¹ Zeng, X. (2015). A hybrid-3D hillslope hydrological model for use in Earth system
- 642 models. *Water Resources Research*, *51*(10), 8218-8239.
- 643 <u>https://doi.org/10.1002/2014WR016842</u>
- Hazenberg, P., Broxton, P., Gochis, D., Niu, G. Y., Pangle, L. A., Pelletier, J. D., Troch., P. A.,

-	Formatted:	Font: 小四
		Normal, Indent: Hanging: 2.95 ch, ch, First line: -2.95 ch
-1	Formatted:	Font: 小四, Italic
\mathbb{T}	Formatted:	Font: 小四
Ľ	Formatted:	Font: 小四, Italic
Y	Formatted:	Font: 小四

645	& Zeng, X.	(2016).	Testing the h	vbrid-3-D hi	llslope hvdro	logical model in a

⁶⁴⁶ controlled environment. *Water Resources Research*, 52(2), 1089-1107.

647 https://doi.org/10.1002/2015WR018106

648 Herzberg, A. (1901). Die wasserversorgung einiger Nordseebäder. Journal für

⁶⁴⁹ *Gasbeleuchtung und Wasserversorgung*, *44*, 815-819, *45*, 842-844.

- Hilberts, A. G. J., Troch, P. A., & Paniconi, C. (2005). Storage-dependent drainable porosity
- for complex hillslopes. *Water Resources Research*, *41*(6), W06001.

652 https://doi.org/10.1029/2004WR003725

- Hilberts, A. G., Troch, P. A., Paniconi, C., & Boll, J. (2007). Low-dimensional modeling of
- hillslope subsurface flow: Relationship between rainfall, recharge, and unsaturated
- storage dynamics. *Water Resources Research*, 43(3), W03445.

656 https://doi.org/10.1029/2006WR004964

- 657 Ketabchi, H., Mahmoodzadeh, D., Ataie-Ashtiani, B., Werner, A. D., & Simmons, C. T.
- 658 (2014). Sea-level rise impact on fresh groundwater lenses in two-layer small islands.
- 659 *Hydrological Processes*, 28(24), 5938-5953. <u>https://doi.org/10.1002/hyp.10059</u>
- Kong, J., Shen, C., Luo, Z., Hua, G., & Zhao, H. (2016). Improvement of the hillslope-storage
- Boussinesq model by considering lateral flow in the unsaturated zone. *Water*

662 Resources Research, 52(4), 2965-2984. <u>https://doi.org/10.1002/2015WR018054</u>

- Lam, R. K. (1974). Atoll permeability calculated from tidal diffusion. Journal of Geophysical
- 664 Research, 79(21), 3073-3081. <u>https://doi.org/10.1029/JC079i021p03073</u>
- Liu, J., & Tokunaga, T. (2019). Future risks of tsunami-induced seawater intrusion into

666	unconfined	coastal	aquifers:	Insights	from 1	numerical	simulations	at Niijima	Island,

⁶⁶⁷ Japan. *Water Resources Research*, 55(12), 10082-10104.

668 https://doi.org/10.1029/2019WR025386

- Liu, Y., X. Mao, J. Chen, and D. A. Barry. 2014. Influence of a coarse interlayer on seawater
 intrusion and contaminant migration in coastal aquifers. *Hydrological Processes*, 28(20),
- 671 5162-5175. <u>https://dx.doi.org/10.1002/hyp.10002</u>
- 672 Lu, C., Cao, H., Ma, J., Shi, W., Rathore, S. S., Wu, J., & Luo, J. (2019). A proof-of-concept
- study of using a less permeable slice along the shoreline to increase fresh groundwater
- 674 storage of oceanic islands: Analytical and experimental validation. *Water Resources*
- 675 Research, 55(8), 6450-6463. <u>https://doi.org/10.1029/2018WR024529</u>
- Lu, C., Xin, P., Kong, J., Li, L., & Luo, J. (2016). Analytical solutions of seawater intrusion in
- sloping confined and unconfined coastal aquifers. *Water Resources Research*, 52(9),
- 678 6989-7004. <u>https://doi.org/10.1002/2016WR019101</u>
- ⁶⁷⁹ Luo, Z., Shen, C., Kong, J., Hua, G., Gao, X., Zhao, Z., Zhao, H., & Li, L. (2018). Effects of
- unsaturated flow on hillslope recession characteristics. *Water Resources Research*,
- 681 54(3), 2037-2056. <u>https://doi.org/10.1002/2017WR022257</u>
- Mantoglou, A. (2003). Pumping management of coastal aquifers using analytical models of
 saltwater intrusion. *Water Resources Research*, *39*(12), 1335.
- 684 <u>https://doi.org/10.1029/2002WR001891</u>
- 685 Memari, S. S., Bedekar, V. S., & Clement, T. P. (2020). Laboratory and numerical
- 686 investigation of saltwater intrusion processes in a circular island aquifer. *Water*

687	<i>Resources Research</i> , 56(2), e2019WR025325. <u>https://doi.org/10.1029/2019WR025325</u>
688	Morgan, L. K., & Werner, A. D. (2014). Seawater intrusion vulnerability indicators for
689	freshwater lenses in strip islands. Journal of Hydrology, 508, 322-327.
690	https://doi.org/10.1016/j.jhydrol.2013.11.002
691	Paniconi, C., Troch, P. A., Van Loon, E. E., & Hilberts, A. G. (2003). Hillslope-storage
692	Boussinesq model for subsurface flow and variable source areas along complex
693	hillslopes: 2. Intercomparison with a three-dimensional Richards equation model.
694	Water Resources Research, 39(11), 1317. <u>https://doi.org/10.1029/2002WR001730</u>
695	Pool, M., & Carrera, J. (2011). A correction factor to account for mixing in Ghyben-Herzberg
696	and critical pumping rate approximations of seawater intrusion in coastal aquifers.
697	Water Resources Research, 47(5), W05506. https://doi.org/10.1029/2010WR010256
698	Post, V. E. (2018). Annotated translation of "Nota in verband met de voorgenomen putboring
699	nabij Amsterdam [Note concerning the intended well drilling near Amsterdam]" by J.
700	Drabbe and W. Badon Ghijben (1889). <i>Hydrogeology Journal</i> , 26(6), 1771-1788.
701	https://doi.org/10.1007/s10040-018-1797-z
702	Post, V. E. A., Houben, G. J., Stoeckl, L., & Sültenfuß, J. (2019). Behaviour of tritium and
703	tritiogenic helium in freshwater lens groundwater systems: Insights from Langeoog
704	Island, Germany. Geofluids, Volume 2019, Article ID 1494326.
705	https://doi.org/10.1155/2019/1494326
706	Röper, T., Greskowiak, J., Freund, H., & Massmann, G. (2013). Freshwater lens formation

below juvenile dunes on a barrier island (Spiekeroog, Northwest Germany). Estuarine,

708	Coastal and Shelf Science, 121-122, 40-50. https://doi.org/10.1016/j.ecss.2013.02.004
709	Stoeckl, L., Houben, G. J., & Dose, E. J. (2015). Experiments and modeling of flow processes
710	in freshwater lenses in layered island aquifers: Analysis of age stratification, travel
711	times and interface propagation. Journal of Hydrology, 529, 159-168.
712	https://doi.org/10.1016/j.jhydrol.2015.07.019
713	Storlazzi, C. D., Gingerich, S. B., van Dongeren, A., Cheriton, O. M., Swarzenski, P. W.,
714	Quataert, E., Voss, C. I., Field, D. W., Annamalai, H., Piniak, G. A., & McCall, R.
715	(2018). Most atolls will be uninhabitable by the mid-21st century because of sea-level
716	rise exacerbating wave-driven flooding. Science Advances, 4(4), eaap9741.
717	https://doi.org/10.1126/sciadv.aap9741
718	Strack, O. D. L. (1976). A single-potential solution for regional interface problems in coastal
719	aquifers. Water Resources Research, 12(6), 1165-1174.
720	https://doi.org/10.1029/WR012i006p01165
721	Stuyfzand, P. J. (2017). Observations and analytical modeling of freshwater and rainwater
	Stuffizind, 1. 5. (2017). Observations and analytical modering of neshwater and ramwater
722	lenses in coastal dune systems. <i>Journal of Coastal Conservation</i> , 21(5), 577-593.
722 723	
	lenses in coastal dune systems. Journal of Coastal Conservation, 21(5), 577-593.
723	lenses in coastal dune systems. <i>Journal of Coastal Conservation</i> , 21(5), 577-593. https://doi.org/10.1007/s11852-016-0456-6
723 724	lenses in coastal dune systems. <i>Journal of Coastal Conservation</i> , 21(5), 577-593. <u>https://doi.org/10.1007/s11852-016-0456-6</u> Stuyfzand, P. J. (1993). <i>Hydrochemistry and hydrology of the coastal dune area of the Western</i>

and small island developing states. *Annual Review of Environment and Resources*,

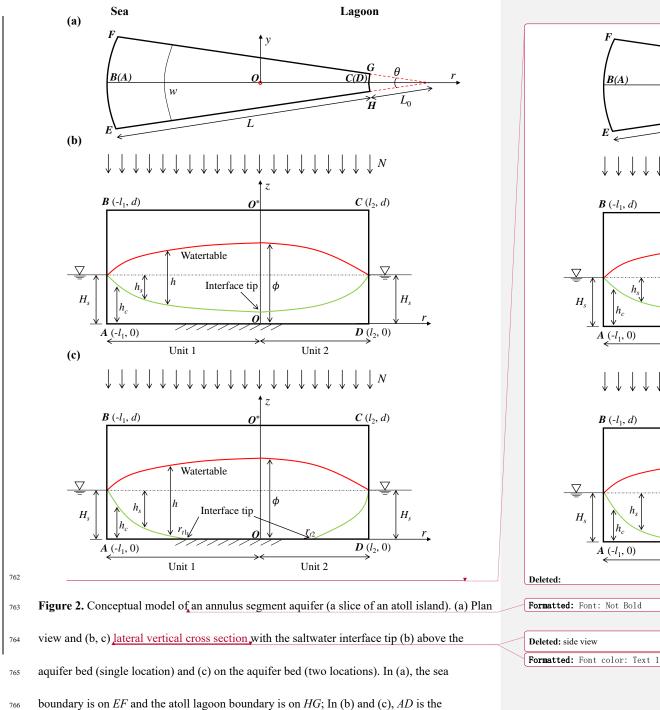
729 45(1), 1-27. <u>https://doi.org/10.1146/annurev-environ-012320-083355</u>

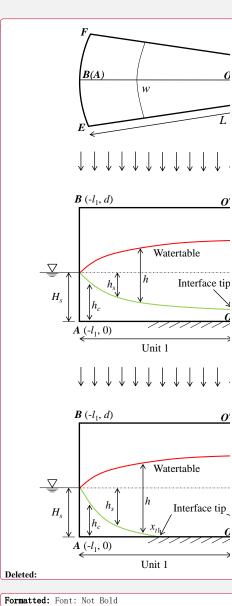
- 730 Troch, P. A., Paniconi, C., & Emiel van Loon, E. (2003). Hillslope-storage Boussinesq model
- ⁷³¹ for subsurface flow and variable source areas along complex hillslopes: 1.
- ⁷³² Formulation and characteristic response. *Water Resources Research*, *39*(11), 1316.
- 733 https://doi.org/10.1029/2002WR001728
- ⁷³⁴ Underwood, M. R., Peterson, F. L., & Voss, C. I. (1992). Groundwater lens dynamics of atoll
- r35 islands. Water Resources Research, 28(11), 2889-2902.
- 736 https://doi.org/10.1029/92WR01723
- Vacher, H. L. 1988. Dupuit-Ghyben-Herzberg analysis of strip-island lenses. *Geological*
- ⁷³⁸ Society of America Bulletin, 100, 580-591. <u>https://doi.org/10.1130/0016-</u>
- 739 <u>7606(1988)100<0580:DGHAOS>2.3.CO;2</u>
- Werner, A. D., Sharp, H. K., Galvis, S. C., Post, V. E., & Sinclair, P. (2017). Hydrogeology
- and management of freshwater lenses on atoll islands: Review of current knowledge
- and research needs. *Journal of Hydrology*, 551, 819-844.
- 743 https://doi.org/10.1016/j.jhydrol.2017.02.047
- ⁷⁴⁴ Werner, A. D., Bakker, M., Post, V. E., Vandenbohede, A., Lu, C., Ataie-Ashtiani, B.,
- ⁷⁴⁵ Simmons, C. T., & Barry, D. A. (2013). Seawater intrusion processes, investigation
- and management: Recent advances and future challenges. Advances in Water
- 747 Resources, 51, 3-26. <u>https://doi.org/10.1016/j.advwatres.2012.03.004</u>
- 748 Werner, A. D., & Simmons, C. T. (2009). Impact of sea-level rise on sea water intrusion in
- ⁷⁴⁹ coastal aquifers. *Groundwater*, 47(2), 197-204. <u>https://doi.org/10.1111/j.1745-</u>

750 <u>6584.2008.00535.x</u>

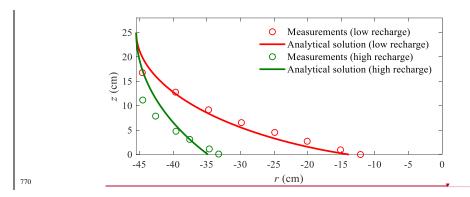
751	White, I., & Falkland, T. (2010). Management of freshwater lenses on small Pacific islands.
752	Hydrogeology Journal, 18(1), 227-246. https://doi.org/10.1007/s10040-009-0525-0
753	Zhang, Y., Li, L., Erler, D. V., Santos, I., & Lockington, D. (2016). Effects of alongshore
754	morphology on groundwater flow and solute transport in a nearshore aquifer. Water
755	Resources Research, 52(2), 990-1008. https://doi.org/10.1002/2015WR017420

							$K_s (m s^{-1})$	
	1	1000	200	38	45	40	1.23 × 10 ⁻²	1 × 10 ⁻⁶
C	2	1000	200	38	45	40	1.23×10^{-2}	3×10^{-7}
Cases	3	1000	ţ	38	45	40	1.23 × 10 ⁻²	1 × 10 ⁻⁶
	4	t	200	38	45	40	1.23 × 10 ⁻²	1 × 10 ⁻⁶


756 **Table 1.** List of parameters use in different simulations.


⁷⁵⁷ [†]The parameter is varied: The range of L_0 is from 200 to 6000 m, whereas the range of L^* is

758 from 600 to 1600 m.


- 759
- Figure 1. Island with an annulus segment in the Namu Atoll, Marshall Islands (© Google
- 761 Earth).

 $_{769}$ $\,$ impermeable base and OO^{*} is the internal no-flow boundary.

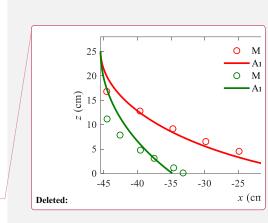


Figure 3. Comparison between analytical and experimental (data compiled from Memari et

al., 2020) results for the freshwater-seawater interface location for different recharge events.

⁷⁷³ Note that the left and right sides are the sea and internal no-flow boundaries, respectively.

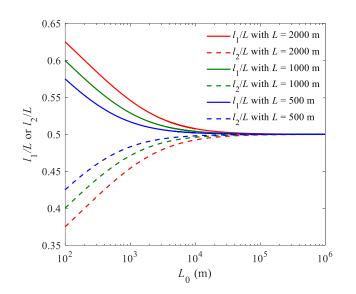
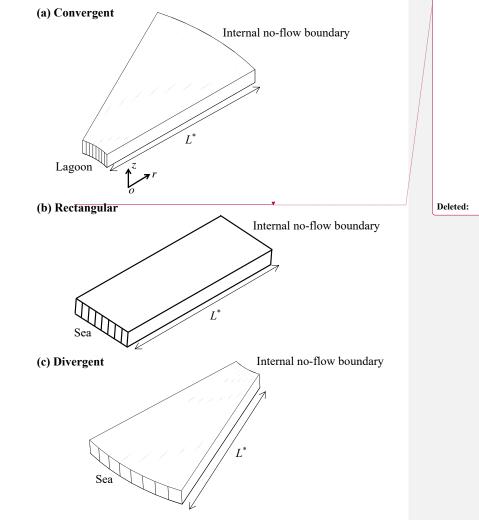
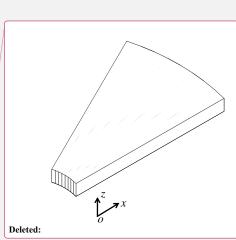
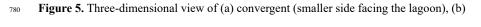
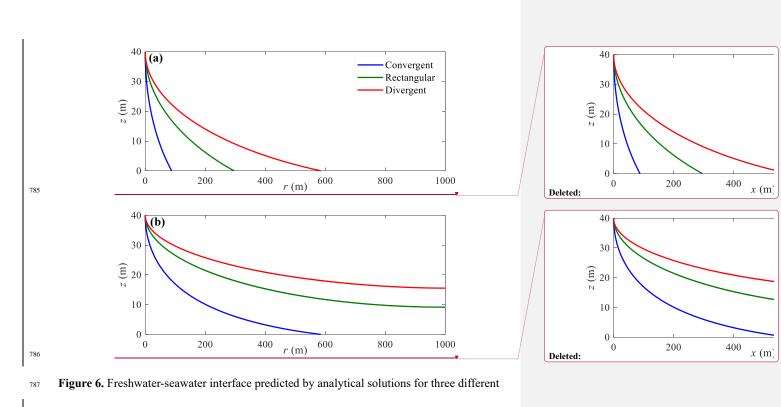




Figure 4. Widths of Unit 1 and Unit 2 versus L_0 for aquifers with different total width L.



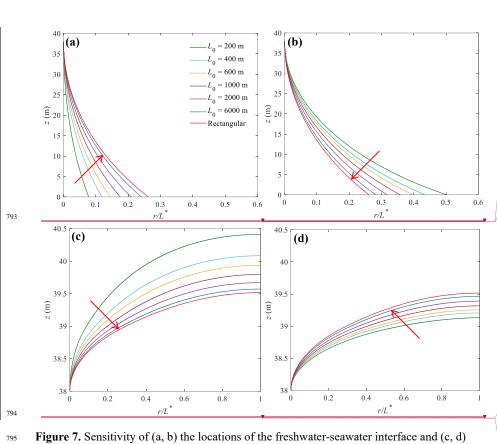
779

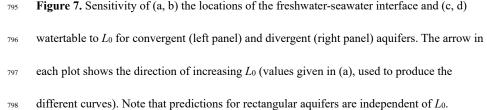
777

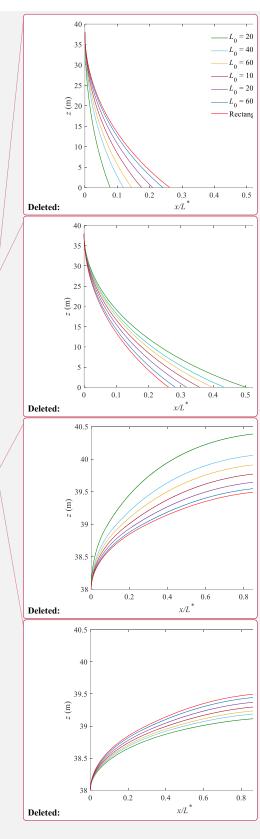

778

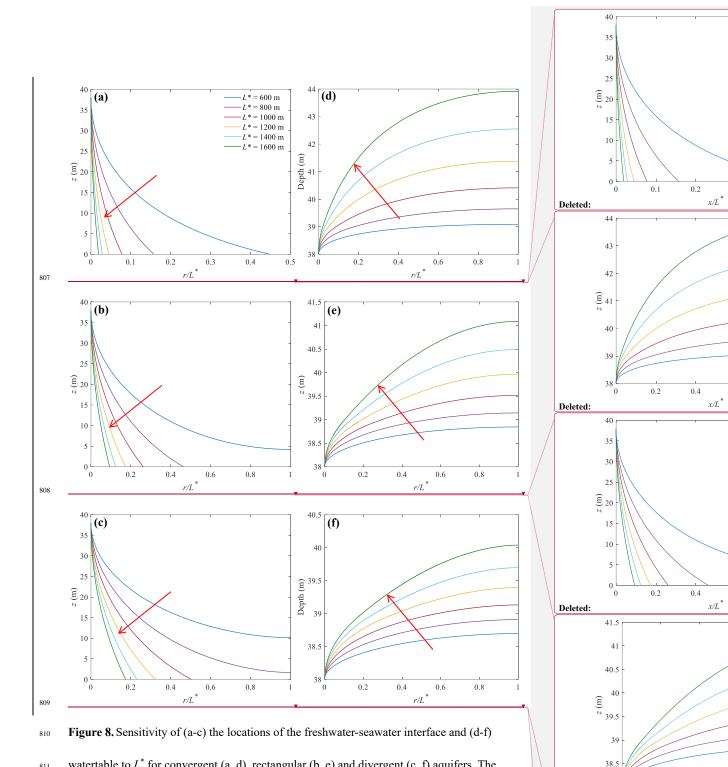
rectangular and (c) divergent aquifers (larger side facing the sea) compared in this study. L^*

represents the distance from the sea/lagoon to the internal no-flow boundary, i.e., l_1 or l_2 in


⁷⁸³ Figure 2. The internal no-flow boundary corresponds to the *z*-axis in Figure 2.




Deleted: x


aquifers with (a) high and (b) low recharge (Cases 1 and 2 in Table 1). Note that <u>r = 1000 m is</u>

the internal no-flow boundary in Figure 5.

L* =

0.4

0.8

0.8

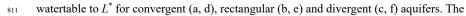
0.8

0.6

x/L*

0.6

38 L


Deleted:

0.2

0.4

0.3

0.6

- arrow in each plot points to the increase of L^* values used to construct each curve (values
- s25 indicated in (a)).