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Abstract

Seawater intrusion in island aquifers was considered analytically, specifically for annulus+—— { Formatted:
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segment aquifers (ASAS), i.e., aquifers that (in plan) have the shape of an annulus segment.

Based on the Ghijben-Herzberg and hillslope-storage Boussinesq equations, analytical

solutions were derived for steady-state seawater intrusion in ASAs, with a focus on the

freshwater-seawater interface and its corresponding watertable elevation. Predictions of the [Formatted: Not Highlight
analytical solutions compared well with experimental data, and so they were employed to (Pormatted: Not Highlight
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investigate the effects of aquifer geometry on seawater intrusion in island aquifers. Three
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rectangular and divergent (larger side facing the sea). Depending on the aquifer geometry,

seawater intrusion was found to vary greatly, such that the assumption of a rectangular aquifer

to model an ASA can lead to poor estimates of seawater intrusion. Other factors being equal,

compared with rectangular aquifers, seawater intrusion is more extensive and watertable

elevation is lower in divergent aquifers, with the opposite tendency in convergent aquifers.

Sensitivity analysis further indicated that the effects of aquifer geometry on seawater intrusion

and watertable elevation vary with aquifer width and distance from the circle center to the

inner arc (the lagoon boundary for convergent aquifers while the jnternal no-flow boundary {D leted: to the (interior)

for divergent aquifers). A larger aquifer width and distance from the circle center to the inner

arc,weaken the effects of aquifer geometry and hence differences in predictions for the three {D leted: no-flow boundary

geometries become less pronounced.
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1. Introduction

Islands are extensively distributed throughout the world’s oceans. Unfortunately, their

groundwater resources are impacted by, sea-level rise_and increased demands, According to a

recent estimate, there are approximately 65 million people living in oceanic islands, where

tin

: global

¢ and soare considered as vulnerable places due to

groundwater may be the only source of freshwater (Thomas et al., 2020). Fresh groundwater

stored on oceanic islands is mainly from precipitation (usually in the form of a freshwater

: and human population growth

‘s

: fresh

lens) and its availability yaries due to different, factors, e.g., island topography, rainfall

: recharged

patterns, tides, episodic storms and human activities (White & Falkland, 2010; Storlazzi et al.,

2018). Seawater intrusion is thus an important issue due to its deleterious effect on pceanic

: can be impacted by

: a variety of

island freshwater storage (e.g., Werner et al., 2017; Lu et al., 2019; Memari et al., 2020).

In contrast to coastal aquifers where seawater intrudes into freshwater from one direction
only, seawater intrusion occurs from two directions for narrow strip islands and from all
directions for circular islands. Over the past few decades, seawater intrusion in oceanic

islands has been extensively investigated jn field observations (e.g., Rtper et al., 2013; Post et

al., 2019), laboratory gxperimentg (e.g., Stoeckl et al., 2015; Bedekar et al., 2019; Memari et

al., 2020), numerical simulations (e.g., Lam, 1974; Gingerich et al., 2017; Liu & Tokunaga,

2019),and analytical solutions (e.g., Fetter, 1972; Ketabchi et al., 2014; Lu et al., 2019).
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Deleted:

including

Deleted:

Among these, s

Deleted:

another

Deleted:

that greatly affects

Deleted:

and is thus of considerable interest

(D U, D | U, U WD | U, G W | U | G, G W | U | G | " |

: in multiple ways, either directly

: by

: or indirectly by

: al measurement

Among these, analytical solutions are effective tools to assess the extent of seawater intrusion_
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be used as test cases for numerical models, and can reveal, the explicit relationships between

parameters that influence seawater intrusion (e.g., Fetter, 1972; Ketabchi et al., 2014; Liu et

al., 2014; Lu et al., 2019;).
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freshwater-seawater interface location and watertable elevation in two-layered circular islands
subject to sea-level rise. Their results indicated that land-surface inundation caused by sea-

level rise has a considerable impact on fresh groundwater lenses, Recently, Lu et al. (2019)

derived analytical solutions for the freshwater-seawater interface location and watertable
elevation for both strip and circular islands with two adjacent layers, i.e., a less permeable

slice along the shoreline of an island, and a more permeable zone inland,,
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with a focus on the freshwater-seawater interface location and its corresponding watertable

elevation. After comparing their predictions with experimental data (Memari et al., 2020), the

analytical solutions are employed to investigate the effects of aquifer geometry on the
freshwater-seawater interface location and watertable elevation in ASAs.

2. Conceptual Model

view of the model domain is represented as a sector (EFGH) with an angle 6 (Figure 2a).
Radial flow only is considered. The sea (EF) and lagoon (HG) boundaries are located at L +_
Lo [L] and Lo [L] from the circle center, respectively. Since the longitudinal length is usually

much longer than the lateral length for an atoll island (Werner et al., 2017), seawater intrusion |
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3.1. Interface Tip above the Aquifer Bed

We first consider the situation where the interface tip is above the aquifer bed (Figure
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According to the Ghijben-Herzberg equation, the vertical thickness of the freshwater zone (%)

in the interface zone is given by,

h=¢-h =(1+a)(¢—H,) ®)

where a=p, /( £, — P ) is the dimensionless density difference, and p, [ML?]and p,

[ML"] are the freshwater and seawater densities, respectively. Substitution of equation (5)
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Integrating equation (7) leads to,

_Mm(l_ﬁlz—x)—%(%ﬂz),\lﬂiNX2+01:_KS (1+a)(¢_2H5) ®

where C, is the integration constant that is determined by the sea boundary condition (i.e.,

x=-l, ¢=H,),
2
SR L VLTI TR RV o)
2 2 4
The relation between h; and ¢ is given by,
h =a(s¢—H,) (10)

Combining equation (8) with equation (10) and eliminating ¢ yields,
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Equation (11) gives the freshwater-seawater interface location in Unit 1 once |, and |, are
determined.

Equation (8) applies to Unit 2 by replacing C, with C,,

_(%+;)N"w%+h_@_%(%+gﬂw+%Nﬁ+Cz:4Q@+“ﬁ£%;ﬁ‘ (12)

where C, is chosen to satisfy the lagoon boundary condition (x=1,, ¢=H,),

(L+L)°N 1 1,
C, = (L) (L +, )LN — N (13)

Combining equations (10) and (12) and eliminating ¢ generates,

(L)’ N a1 NI he
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Equation (14) gives the freshwater-seawater interface location in Unit 2 once |, is

determined. Since the sea level and lagoon water level are the same, an jnternal no-flow
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lagoon only depends on L and Lo'. For known |, and |,, equations (11) and (14) can be

employed to predict the freshwater-seawater interface location in Units 1 and 2, respectively.

Once the interface location is determined, 'h and ¢ are given by,

3.2. Interface Tip on the Aquifer Bed,
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then equation (22) becomes,
ax +bx, +cIn(Ly+1,—x%,)=m (24)
which is solved by a root-finding method.
The freshwater discharge for the aquifer segment between the interface tip and the

Jnternal no-flow boundary js calculated as,

= d
_E[(LO+'2‘X)2—(L0+lz)2}N:—(Lo+|2—x)|<s¢on<j (25)
Repeating the steps from equations (4) to (8) gives,
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4. Results and Discussion
4.1. Validation of the Analytical Solutions
The analytical solutions were validated by comparing their predictions with experimental

data compiled from Memari et al. (2020), who reported experiments carried out using a 15°

radial tank, The fank contained three distinct chambers: jnternal no-flow boundary condition,

porous medium and constant-head, boundary condition (i.e., sea or lagoon). The jnternal no-

flow and seaward boundaries were respectively located at 10 cm and 55.5 cm from the circle

center, i.e., 45.5 cm from the jnternal no-flow boundary to the constant-head boundary along

the radial direction, Note that the experimental tank only corresponds to Unit 1 of the radial

aquifer with |, =45.5 cmand |, =0, so the analytical results were calculated using

equations, (11) and (24), The thicknesses of the porous medium and sea level were 28 and 25

cm, respectively. The sand used in experiments had a saturated hydraulic conductivity of 1.23

x 102 m,s= and an effective porosity of 0.40. The measured saltwater and freshwater densities

were respectively 1.015 and 0.999 g ml-, leading to « =62 . Two different recharge events_
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with constant N, 2.46 x 10 and 1.08 x 10“.m s, were considered in the experiments,

Figure 3 shows the comparison between analytical and experimental results of the
freshwater-seawater interface for different recharge events. In general, the analytical solution

predicts the freshwater-seawater interface well for both recharge events, despite there being
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some differences between the analytical results and the measurements, particularly in the zone

near the constant-head boundary (x = -45 cm). These deviations are likely due to assumptions
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effect of freshwater discharge, and (iii) neglecting the vertical flow_(the Dupuit-Forchheimer

approximation).

4.2. Effects of Aquifer Geometry on Seawater Intrusion

Previous studies showed that boundary conditions play a critical role in gstimates of

Deleted: indicated

seawater intrusion (Werner & Simmons, 2009; Lu et al., 2016). Therefore, the internal no-

Deleted: affecting

Deleted: no-flow
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aquifers, both Units 1 and 2 are rectangular with the same extent of seawater intrusion.
Therefore, three geometries were compared in this study: convergent, rectangular and
divergent (Figure 5). These geometries have been widely examined in hillslope hydrology
regrading to the effects of aquifer geometry on runoff generation (Troch et al., 2003; Kong et

al., 2016; Luo et al., 2018). To present the results more conveniently, we replaced the x-z

coordinate origin at the intersection of the constant-head boundary (sea or lagoon) and the
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intrusion, the same L” and Lo were assumed for the three aquifers, with L* and Lo equal to

{
{
Q\
N

. {Deleted: keep
!
[
{

Deleted: redefined

Formatted: Font: Italic

Formatted: Superscript

Deleted: hypothesized

Deleted: design

Deleted: m

e G L )

1000 and 200 m, respectively. Note that Lo is the distance from the circle center to the lagoon

boundary for convergent aquifers, whereas it represents the distance from the circle center to

internal no-flow boundary for divergent aquifers hereafter. The sand characteristics were the

same as in the experiments of Memari et al. (2020). Two recharge events were considered
(Cases 1 and 2, Table 1). The freshwater-seawater interface was calculated using the
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solutions for seawater intrusion in strip aquifers deduced from Lu et al. (2019).
Figure 6 shows the freshwater-seawater interface calculated for Cases 1 and 2. As can be

seen, the extent of seawater intrusion is poticeably different for the three aquifer geometries.
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4.3. Sensitivity Analysis

A sensitivity analysis was conducted to investigate to what extent aquifer geometry

affects seawater intrusion, Since we focus on the effects of aquifer geometry on the locations |~

of the freshwater-seawater interface and watertable, values of Lo and L* were varied, with
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independent of Lo for rectangular aquifers (Appendix). However, the freshwater-seawater
interface and watertable elevation differ greatly when varying Lo for both convergent and
divergent aquifers, highlighting that Lo plays an important role in affecting seawater intrusion.
Specifically, as Lo increases, the freshwater-seawater interface moves more landward (larger

x/L", Figure 7a) and its corresponding watertable elevation decreases (Figure 7¢c) for

convergent aquifers. Jn contrast, for divergent aquifers jncreasing Lo moves the freshwater-
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effects may lead to an inappropriate management strategy for groundwater resources in atoll
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5. Conclusions

Based on the Ghijben-Herzberg and hillslope-storage Boussinesq equations, we derived
analytical solutions of steady-state seawater intrusion for ASAs, with a focus on the
freshwater-seawater interface and its corresponding watertable elevation_as affected by
recharge. After comparing with experimental data of Memari et al. (2020), the analytical
solutions were employed to examine the effects of aquifer geometry on seawater intrusion in
island aquifers. Three different shapes of island aquifer were compared: convergent,
rectangular and divergent. The results lead to the following conclusions:

(1) The presented analytical solutions perform well in predicting the experimental

freshwater-seawater interface, suggesting that these analytical solutions can predict seawater

intrusion reasonably in different aquifer geometries.

(2) Island geometry plays a significant role in affecting the freshwater-seawater interface

and watertable elevation. Other factors being equal, the extent of seawater intrusion is greatest /~
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A larger aquifer width and distance from the circle center to the inner arc (the lagoon

boundary for convergent aquifers while the internal no-flow boundary for divergent aquifers),

weakens the role played by aquifer geometry and hence lead to a smaller deviation of the

extent of seawater intrusion between the three topographies.
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Real island aquifers are expected to exhibit more complexity than considered here, e.g.,

that will have more complex shapes and are subjected to fransient flow conditions caused by

tides, waves and pumping (Mantoglou et al. 2003; Pool & Carrera., 2011; Werner et al.,
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2013). In addition, since the experimental scale of Memari et al. (2020) is necessarily small,

future experiments and field data are needed to further validate and facilitate the analytical

solutions. Despite this, the new analytical solutions, validated against experiments, can be

used as a tool to rapidly estimate seawater intrusion in ASAs once known island geometry and

)

corresponding soil properties are given.
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Appendix; Analytical Solutions for Rectangular Aquifers

For rectangular aquifers, the seawater intrusion in Unit, 1 is identical to that in Unit 2

because of symmetry. With the interface tip on the aquifer bed, analytical solutions for, the

freshwater-seawater interface (/;), watertable elevation_(4), and x-coordinate of the interface

tip,in Unit 2 (x2) can be respectively written as (Lu et al., 2019),

N2,
_ L Al
h=a (1+a)KS[4 Xj (A1)
\/Kﬁ(xtzz—xz)+(%+H ) 0< X< X,
h=4' " (A2)
N (L2,
(L+a)K (T_X} A X2 <X=5
2 (+a)K, [ H?
_ = 2l A
%z \/4 N (aZJ @)

When the interface tip is above the aquifer bed, the analytical solution for the freshwater-
seawater interface location and watertable elevation in Unit 2 are the same as equations (A1)

and (A2), respectively.
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962 Table 1. List of parameters use in different simulations.

No. L'(m) Lo(m)  Hi(m) d (m) a(-) ne (=) Ki(ms!)h  N(@ms?h)

1 1000 200 38 45 40 0.4 1.23x10%  1x10°

Cases 2 1000 200 38 45 40 0.4 123 x102  3x107
Simulated 3 1000 t 38 45 40 0.4 1.23 x 1072 1 x10°
4 t 200 38 45 40 0.4 1.23x10%  1x10°

93 | The parameter is varied: The range of Lo is from 200 to 6000 m, whereas the range of L" is from 600 to 1600 m, [Deleted: )
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o6 Figure 1. Island with an annulus segment in the Namu Atoll, Marshall Islands (© Google

967 Earth).
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Figure 2. Conceptual model of an annulus segment aquifer (a slice of an atoll island). (a) Plan
view and (b, ¢) side view with the saltwater interface tip (b) above the aquifer bed (single

location) and (c) on the aquifer bed (two locations). In (a), the sea boundary is on EF and the

atoll lagoon boundary is on HG: In (b) and (c), AD is the impermeable base and OO is the
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Figure 3. Comparison between analytical and experimental (data compiled from Memari et
al., 2020) results for the freshwater-seawater interface location for different recharge events.

Note that the left and right sides are the sea and internal no-flow boundaries, respectively.
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Figure 6. Freshwater-seawater interface predicted by analytical solutions for three different

aquifers with (a) high and (b) low recharge (Cases 1 and 2 in Table 1). Note that x = 1000 m is

the internal no-flow boundary in Figure 5.
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Figure 7. Sensitivity of (a, b) the locations of the freshwater-seawater interface and (c, d)
watertable to Lo for convergent (left panel) and divergent (right panel) aquifers. The arrow in

each plot shows the direction of increasing Lo (values given in (a), used to produce the

different curves). Note that predictions for rectangular aquifers are independent of Lo.
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and divergent (c, f) aquifers. The arrow in each plot points to the increase of [, values used to construct each curve (values indicated,in (a)).
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