1	Effects of aquifer geometry on seawater intrusion in annulus	•	Formatted: Indent: Left: 2 cm, Right: 2 cm
2	segment island aquifers		
3			
	Zhaoyang Luo ^{1,2} , Jun Kong ^{1,3,#} , Chengji Shen ¹ , Pei Xin ¹ , Chunhui Lu ¹ , Ling Li ⁴ ,		
4			
5	David Andrew Barry ²		
6			
7	¹ State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai		
8	University, Nanjing, China		
9			
10	² Ecological Engineering Laboratory (ECOL), Environmental Engineering Institute (IIE),		
11	Faculty of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique		
12	Fédérale de Lausanne (EPFL), Lausanne, Switzerland		
13			
14	³ Jiangsu Key Laboratory of Coast Ocean Resources Development and Environment Security,		
15	Hohai University, Nanjing, China		
16			
17	⁴ School of Engineering, Westlake University, Hangzhou, China		
18			
19	[#] Corresponding author: Jun Kong (<u>kongjun999@126.com</u>)		
20			Deleted: 7
			Formatted: Font: Not Bold, Not Italic
21	Resubmitted to <i>Hydrology and Earth System Sciences</i> on 27, August 2021	\ll	Deleted: 1
			Deleted: February

Abstract 25

I

26	Seawater intrusion in island aquifers was considered analytically, specifically for annulus		Formatted: Indent: First spacing: Double, No wide
27	segment aquifers (ASAs), i.e., aquifers that (in plan) have the shape of an annulus segment.		
28	Based on the Ghijben-Herzberg and hillslope-storage Boussinesq equations, analytical		
29	solutions were derived for steady-state seawater intrusion in ASAs, with a focus on the		
30	freshwater-seawater interface and its corresponding watertable elevation. Predictions of the	_	Formatted: Not Highlight
31	analytical solutions compared well with experimental data, and so they were employed to	<	Formatted: Not Highlight Formatted: Not Highlight
32	investigate the effects of aquifer geometry on seawater intrusion in island aquifers. Three		rormatted. Not highlight
33	different ASA geometries were compared: convergent (smaller side facing the lagoon),	<	Formatted: Not Highlight
34	rectangular and divergent (larger side facing the sea). Depending on the aquifer geometry,		rormatted. Not highlight
35	seawater intrusion was found to vary greatly, such that the assumption of a rectangular aquifer		
36	to model an ASA can lead to poor estimates of seawater intrusion. Other factors being equal,		
37	compared with rectangular aquifers, seawater intrusion is more extensive and watertable		
38	elevation is lower in divergent aquifers, with the opposite tendency in convergent aquifers.		
39	Sensitivity analysis further indicated that the effects of aquifer geometry on seawater intrusion		
40	and watertable elevation vary with aquifer width and distance from the circle center to the		
41	inner arc (the lagoon boundary for convergent aquifers while the internal no-flow boundary	_	Deleted: to the (interior)
42	for divergent aquifers). A larger aquifer width and distance from the circle center to the inner		
43	arc weaken the effects of aquifer geometry and hence differences in predictions for the three	_	Deleted: no-flow boundary
44	geometries become less pronounced		

1

atted: Indent: First line: 2 ch, Line ing: Double, No widow/orphan control

tted: Not Highlight

tted: Not Highlight tted: Not Highlight

Formatted: Font: 8 pt Formatted: Font: 8 pt

47	Keywords: sharp-interface; steady-state analytical solution; atoll aquifer; annulus segment	
48	aquifer, seawater intrusion,	Deleted:Page Break
49	Key Points	
50	> Analytical solutions of steady-state seawater intrusion were derived for annulus segment	Deleted: a
51	aquifers	
52	> Among three different aquifer geometries, divergent aquifers have <u>the</u> lowest watertable	
53	and hence the most extensive seawater intrusion	
54	> Aquifer geometry effects on seawater intrusion depend on the aquifer width and distance	
55	from the circle center to the inner arc	

Formatted: Font: 8 pt Formatted: Font: 8 pt

2

I

58 1. Introduction

L

59	Islands are extensively distributed <u>throughout the world's oceans. Unfortunately, their</u>	\langle
60	groundwater resources are impacted by sea-level rise and increased demands. According to a	
61	recent estimate, there are approximately 65 million people living in oceanic islands, where	
62	groundwater may be the only source of freshwater (Thomas et al., 2020). Fresh groundwater	
63	stored on oceanic islands is mainly from precipitation (usually in the form of a freshwater	_
64	lens) and its availability varies due to different factors, e.g., island topography, rainfall	_
65	patterns, tides, episodic storms and human activities (White & Falkland, 2010; Storlazzi et al.,	$\langle \rangle$
66	2018). <u>Seawater intrusion is thus an important issue due to its deleterious effect on oceanic</u>	
67	island freshwater storage (e.g., Werner et al., 2017; Lu et al., 2019; Memari et al., 2020).	$\langle \rangle$
68	In contrast to coastal aquifers where seawater intrudes into freshwater from one direction	
69	only, seawater intrusion occurs from two directions for narrow strip islands and from all	
70	directions for circular islands. Over the past few decades, seawater intrusion in oceanic	
71	islands has been extensively investigated in field observations (e.g., Röper et al., 2013; Post et	_
72	al., 2019), laboratory experiments (e.g., Stoeckl et al., 2015; Bedekar et al., 2019; Memari et	
73	al., 2020), numerical simulations (e.g., Lam, 1974; Gingerich et al., 2017; Liu & Tokunaga,	
74	2019), and analytical solutions (e.g., Fetter, 1972; Ketabchi et al., 2014; Lu et al., 2019).	
75	Among these, analytical solutions are effective tools to assess the extent of seawater intrusion_	
76	(i.e., the location of the freshwater-seawater interface), although they cannot incorporate	_
77	complex factors (e.g., dispersive mixing and transient oceanic dynamics) (Werner et al.,	/
78	2013). The advantages of analytical solutions are that they are computationally efficient, can	/

ĺ	Deleted: in
ĺ	Deleted: global
$\left(\right)$	Deleted: and soare considered as vulnerable places due to
$\left(\right)$	Deleted: and human population growth
$\left(\right)$	Deleted: ,
$\left(\right)$	Deleted: fresh
$\left(\right)$	Deleted: recharged
$\left(\right)$	Deleted: can be impacted by
	Deleted:
	Deleted: a variety of
ĺ	Deleted: many
ſ	Deleted: including
ĺ	Deleted: Among these, s
ĺ	Deleted: another
ĺ	Deleted: that greatly affects
ſ	Deleted: and is thus of considerable interest

1	Deleted: in multiple ways, either directly		
	Deleted: by		
-	Deleted: or indirectly by		
	Deleted: al measurement		
-	Deleted: .		

-	Deleted: despite that
λ	Deleted: (1)
1	Deleted: rapidly and easily comput
X	Formatted: Font: 8 pt
/ /	Formatted: Font: 8 pt

103	be used as test cases for numerical models, and can reveal the explicit relationships between
104	parameters that influence seawater intrusion (e.g., Fetter, 1972; Ketabchi et al., 2014; Liu et

105 <u>al., 2014; Lu et al., 2019;</u>).

I

106	Based on the Dupuit-Forchheimer approximation (i.e., ignoring vertical flow) and the
107	Ghijben-Herzberg equation (Drabbe & Badon Ghijben, 1889, English translation given by
108	Post (2018); Herzberg, 1901), Fetter (1972) presented analytical solutions describing the
109	freshwater-seawater interface location and watertable elevation in a circular island. Bailey et
110	al. (2010) further compared these single-layered analytical solutions with field measurements,
111	indicating that the analytical solutions perform well in estimating the freshwater-seawater
112	interface location and watertable elevation. Fetter's solutions formed the foundation for many
113	subsequent analytical studies on seawater intrusion in island aquifers. Again, for a single
114	layer, Chesnaux and Allen (2008) and Greskowiak et al. (2013) developed analytical solutions
115	to predict the steady-state groundwater age distribution in freshwater lenses. In addition, using
116	single-layered analytical solutions, Morgan and Werner (2014) proposed vulnerability
117	indicators of freshwater lenses under sea-level rise and recharge change.
118	Since aquifers are usually heterogeneous, the single-layer analytical solutions were
119	subsequently extended to two-layered island aquifers. Vacher (1988) derived solutions for the
120	freshwater-seawater interface location and watertable elevation for infinite-strip islands
121	composed of different layers. Dose et al. (2014) conducted, laboratory experiments to validate
122	and confirm the reliability of analytical solutions proposed by Fetter (1972) and Vacher
123	(1988), Ketabchi et al. (2014) extended Fetter,'s analytical solutions to calculate the

A

Deleted: ed,		
Deleted: (2) th	ey	
Deleted: give		
Deleted: Liu e	t al., 2014	
Deleted: the		

1	Deleted: (1972)
	Deleted: funda
	Deleted: ment
	Deleted: that aimed at
	Deleted: Based on this single-layered analytical theory

Formatted: Font: 8 pt Formatted: Font: 8 pt

1	Deleted: in reality
1	Deleted: ed
	Deleted: a
	Deleted: subsequently
4	
	Deleted: arried out
1	Deleted: and confirmed their reliability
1	Deleted: (1972)

142	freshwater-seawater interface location and watertable elevation in two-layered circular islands
143	subject to sea-level rise. Their results indicated that land-surface inundation caused by sea-
144	level rise has a considerable impact on fresh groundwater lenses, Recently, Lu et al. (2019)
145	derived analytical solutions for the freshwater-seawater interface location and watertable
146	elevation for both strip and circular islands with two adjacent layers, i.e., a less permeable
147	slice along the shoreline of an island, and a more permeable zone inland,
148	All the abovementioned analytical solutions apply to either strip or circular islands.
149	According to the classification of sand dunes developed by Stuyfzand (1993; 2017), there are
150	different <u>island</u> layouts that should be considered, e.g., where the shape of the island is an
151	annulus segment, instead of a strip or circular disk (Figure 1). Annulus segment-shaped
152	islands are found in various atolls (i.e., circular chains of islands surrounding a central
153	lagoon) as found in the Pacific and Indian Oceans (Werner et al., 2017; Duvat, 2019).
154	Nevertheless, analytical solutions of seawater intrusion are not yet available, for annulus
155	segment aquifers (ASAs). In general, ASAs are conceptually treated as a 2D cross section,
156	similar to strip islands (e.g., Ayers & Vacher, 1986; Underwood et al., 1992; Bailey et al.,
157	2009; Werner et al., 2017). Evidently, topography plays an important role in groundwater flow
158	and hence seawater intrusion (e.g., Zhang et al., 2016; Liu & Tokunaga, 2019). It remains
159	unclear whether analytical solutions of seawater intrusion for strip islands are appropriate for
160	ASAs. It is moreover additionally unclear, how island geometry affects the freshwater-
161	seawater interface location and watertable elevation of ASAs.
162	In this study, analytical solutions are derived for steady-state seawater intrusion for ASAs,

5

I

Deleted: the

Deleted: . The analytical solutions of Ketabchi et al. (2014)
and Vacher (1998) assumed an island with two horizontal
layers

Deleted: More r

Deleted: For more studies associated withregarding seawater intrusion in oceanic islands, readers are referred to the comprehensive review of Werner et al. (2017).

1	Deleted: Figure 1,
1	Deleted: le
1	Deleted: This configuration is
1	Deleted: widely distributed

1	Deleted: no	
	Deleted: have been	
	Deleted: developed	
1	Deleted: like	

_	Deleted: the
_	Deleted: s and
	Deleted: we derive
	Deleted: of the
	Formatted: Font: 8 pt
/ /	Formatted: Font: 8 pt

with a focus on the freshwater-seawater interface location and its corresponding watertable elevation. After comparing their predictions with experimental data (Memari et al., 2020), the analytical solutions are employed to investigate the effects of aquifer geometry on the freshwater-seawater interface location and watertable elevation in ASAs.

187 2. Conceptual Model

Figure 2 shows the conceptual model of an ASA (a slice of an atoll island). The plan 188 view of the model domain is represented as a sector (*EFGH*) with an angle θ (Figure 2a). 189 Radial flow only is considered. The sea (EF) and lagoon (HG) boundaries are located at L_+_ 190 L_0 [L] and L_0 [L] from the circle center, respectively. Since the longitudinal length is <u>usually</u> 191 much longer than the lateral length for an atoll island (Werner et al., 2017), seawater intrusion 192 from the lateral sides (EH and FG, Figure 2a) is negligible in comparison to the longitudinal 193 side, especially for the middle portion of an ASA. Therefore, EH and FG are treated as lateral 194 no-flow boundaries. Note that treating the lateral sides as no-flow boundaries is often used in 195 studies of freshwater lenses on atoll islands (e.g., Ayers & Vacher, 1986; Underwood et al., 196 1992; Bailey et al., 2009; Werner et al., 2017). The side view of the model domain is 197 conceptualized as a rectangle (ABCD) along the radial direction with dimensions of L [L] 198 (width) $\times d$ [L] (height) (Figure 2b, c). AD is the impermeable base while BC is the land 199 surface through which aquifer recharge flows. 200 <u>B</u>oth the sea and lagoon water levels are set to H_s [L], which results in an internal no-201 flow boundary (water divide, where the slope of the watertable is zero) between the sea and 202 lagoon (location of the z-axis in Figure 2b,c). The segment between the sea and the internal 203

Deleted: compiled from
Deleted: (

Deleted: s	
Deleted: in reality	
Deleted: it can be expected that	
Deleted: would have	
Deleted: influence on that from	
Deleted: art	
Deleted: In order t	
Deleted: o facilitate analytical derivations, t	
Deleted: It should be n	
Deleted: d	
Deleted: assuming	
Deleted: boundary	
Deleted: a	
Deleted: y	
Deleted: (e.g., <i>EH</i> and <i>FG</i>)	
Deleted: has been	
Deleted:	
Deleted: widely adopted in previous	
Deleted: related to	
Deleted: and BC are	
Deleted: and	
Deleted: boundariesy, respectively	
Deleted:	
Deleted: For simplicity, t	
Formatted: Font: 8 pt	
Formatted: Font: 8 pt	

230	no-flow boundary, is referred to as Unit 1, whereas the segment between the internal no-flow
231	and lagoon boundaries is referred to as Unit 2 (Figure 2). The widths of Units 1 and 2 are l_1
232	[L] and l_2 [L], respectively. In addition, the flow is asymmetrical in Units 1 and 2, with
233	divergent flow (the aquifer width w [L] increases along the flow direction) in Unit 1 and
234	convergent flow (w, decreases along the flow direction) in Unit 2.
235	The <i>x-z</i> coordinate origin is placed at the intersection of the <u>internal no-flow</u> boundary
236	and impermeable base, with the <i>x</i> -axis pointing to the circle center and the <i>z</i> -axis pointing
237	vertically upward. Further, ϕ [L] is the watertable height, h [L] is the vertical distance
238	between the watertable and the interface, h_s [L] is the vertical distance between the sea level
239	and the interface, and $h_c = H_s - h_s$ [L] is the vertical distance from the impermeable base to
240	the interface for given x (Figure 2b,c). Constant recharge into the saturated zone, N [LT ⁻¹], is
241	assumed. There are two possibilities for the interface tip (i.e., the Jocation where the
242	freshwater-seawater interface connects to the <i>z</i> -axis or the bottom boundary); above the
243	aquifer bed (Figure 2b) <u>or on the aquifer bed (Figure 2c). The x-coordinates of the interface</u>
244	tip, in Units 1 and 2 are denoted as x_{t1} [L] and x_{t2} [L], respectively. (Figure 2c). Note that $x_{t1} =$
245	$x_{12} = 0$ when the interface tip is above the aquifer bed, as in Figure 2b.
246	Consistent with previous studies (e.g., Ketabchi et al., 2014; Lu et al., 2016; 2019), the
247	following assumptions are made: (1) <u>steady-state</u> flow, (2) <u>sharp freshwater-seawater</u>
248	interface, (3) homogeneous and isotropic, aquifer, (4) negligible unsaturated flow, (5) recharge
249	is <u>less</u> than the saturated hydraulic conductivity (<u>else overland flow which will appear</u>
•	

-	Deleted: no-flow	
A	Deleted: length idth w [L] increases along the flow direction) in Unit 1 and convergent flow (the aquifer length [L]	
Ì	<u></u>	<u></u>
A	Deleted: no-flow	
1	Deleted: horizontally	
	Deleted: h [L] is the vertical distance between the	
$\ $	watertable and the interface h_{s} [L] is the vertical	
	distance between the sea level and the interface, and	
	$h_c = H_s - h_s$ [L] is the vertical distance from the	
	impermeable base to the interface for given x (Figure 2b)	,c).
	Constant rRcharge into the saturated zone, N [LT-1], is	
	assumed to be uniform with value of N [LT ⁻¹]	<u></u>
	Deleted: pointocation where the freshwater-seawater	·
/	interface connects to the no-flow boundary	<u> </u>
/ j	Formatted: Font color: Auto	
//	Deleted: location	
//	Deleted: and	
X	Formatted: Not Highlight	
Ά	Deleted: For the condition with the interface tip on the	
	aquifer bed, t	
-	Formatted: Font: Italic	
1	Deleted: locations(the location of the interface tip)	<u></u>
X	Formatted	<u></u>
A	Deleted: theteady-state flow	<u></u>
Ά	Deleted: system	
λ	Deleted: is steady -state (2) a	<u></u>
Λ	Deleted: exists between freshwater and seawater	
1	Deleted: theaquifer	<u></u>
	Deleted: hydraulic properties are	
	Deleted: is homogeneous and isotropic (4) negligible	<u></u>
	Deleted: ected	
Y	Deleted: smalleress than the saturated hydraulic	<u></u>
Ì	Formatted	

Deleted: ies

7

I

1			
319	following ponding occurs), and (6) vertical flow in the saturated zone is negligible (Dupuit-	_	Deleted: will
1	Forchheimer approximation).		Deleted:
320	rotennet approximation).		Deleted: and analytica
321	3. Analytical Solutions,		Deleted: no ponding
322	Groundwater flow in an ASA (Figure 2) can be described as (Paniconi et al., 2003; Troch	$\langle \rangle$	Deleted: is neglected
322	Groundwater now in an ASA (Figure 2) can be described as (Fameoni et al., 2005, 110en		Deleted: ignorable
323	et al., 2003),		Deleted: i.e.,
324	$-\frac{\partial}{\partial x}\left(wq\right) + Nw = \frac{\partial S}{\partial t} \tag{1}$	Ň	Deleted: Derivation
325	where $q [L^2T^{-1}]$ is the Darcy flux per unit length along the aquifer; $S [L^2]$ is the total		
326	water storage per unit distance along the aquifer, and t [T] is time. Equation (1) is derived		
327	from the hillslope-storage Boussinesq equation reformulated in terms of soil water storage		
328	rather than watertable elevation, as widely used previously (e.g., Stagnitti et al., 1986; Troch		
329	et al., 2003; Hilberts et al., 2005; Kong et al., 2016; Luo et al., 2018). At steady state, equation	<	Deleted:
330	(1) reduces to,		Deleted: -
I	∂ () \mathcal{V} ()		Deleted: can be
331	$-\frac{\partial}{\partial x}(wq) + Nw = 0 \tag{2}$		Deleted: d
332	According to Darcy's law and the Dupuit-Forchheimer approximation, the freshwater		Deleted: s
333	flux in the aquifer segment between the seaward boundary and interface tip can be calculated		
334	as $(\phi \text{ is independent of } z)$,	_	Formatted: Font: It
335	$q = -\int_{h_c}^{\phi} K_s \frac{d\phi}{dx} dz = -K_s \left(\phi - h_c\right) \frac{d\phi}{dx} $ (3)		Field Code Changed
336	where K_s [LT ⁻¹] is the saturated hydraulic conductivity.		
337	3.1. Interface Tip above the Aquifer Bed		
338	We first consider the situation where the interface tip is above the aquifer bed (Figure		
339	2b). In Unit 1 where $w = \theta (L_0 + l_2 - x)$, substituting equation (3) into equation (2) and then		Formatted: Font: 8 Formatted: Font: 8
I	Å		

Deleted: v	vill
Deleted:	
Deleted:	and analytical solutions cannot apply to
Deleted: r	10 ponding
Deleted: i	s neglected
Deleted: i	gnorable
Deleted: i	.e.,
Deleted:	Derivation

Italic

8 pt 8 pt

integrating gives (based on the Dupuit-Forchheimer approximation), 353

354

357

361

363

365

368

I

$$-\frac{1}{2}\left[\left(L_{0}+l_{2}-x\right)^{2}-\left(L_{0}+l_{2}\right)^{2}\right]N=-\left(L_{0}+l_{2}-x\right)K_{s}\left(\phi-h_{c}\right)\frac{d\phi}{dx}$$

According to the Ghijben-Herzberg equation, the vertical thickness of the freshwater zone (h)355

in the interface zone is given by, 356

$$h = \phi - h_c = (1 + \alpha)(\phi - H_s) \tag{5}$$

 $h = \phi - h_c = (1 + \alpha)(\phi - H_s)$ where $\alpha = \rho_f / (\rho_s - \rho_f)$ is the dimensionless density difference, and ρ_f [ML⁻³] and ρ_s 358

[ML⁻³] are the freshwater and seawater densities, respectively. Substitution of equation (5) 359

into equation (4) yields, 360

$$-\frac{1}{2}\left[\left(L_{0}+l_{2}-x\right)^{2}-\left(L_{0}+l_{2}\right)^{2}\right]N=-K_{s}\left(L_{0}+l_{2}-x\right)\left(1+\alpha\right)\left(\phi-H_{s}\right)\frac{d\phi}{dx}$$
(6)

Rearranging equation (6) produces, 362

$$-\frac{(L_0+l_2-x)N}{2} + \frac{N(L_0+l_2)^2}{2(L_0+l_2-x)} = -K_s(1+\alpha)(\phi-H_s)\frac{d\phi}{dx}$$
(7)

Integrating equation (7) leads to, 364

$$-\frac{\left(L_{0}+l_{2}\right)^{2}N}{2}\ln\left(L_{0}+l_{2}-x\right)-\frac{1}{2}\left(L_{0}+l_{2}\right)Nx+\frac{1}{4}Nx^{2}+C_{1}=-K_{s}\left(1+\alpha\right)\frac{\left(\phi-H_{s}\right)^{2}}{2}$$
(8)

where C_1 is the integration constant that is determined by the sea boundary condition (i.e., 366

 $x = -l_1, \quad \phi = H_s),$ 367

$$C_{1} = \frac{\left(L_{0} + l_{2}\right)^{2} N}{2} \ln\left(L_{0} + l_{2} + l_{1}\right) - \frac{1}{2}\left(L_{0} + l_{2}\right) l_{1} N - \frac{1}{4} l_{1}^{2} N$$
(9)

The relation between h_s and ϕ is given by, 369

$$h_s = \alpha \left(\phi - H_s \right) \tag{10}$$

9

Combining equation (8) with equation (10) and eliminating ϕ yields. 371

λ	Formatted:	Font:	8	pt
Ά	Formatted:	Font:	8	pt

1	Deleted: being
1	Deleted: densities of
	Deleted:

(4)

Field Code Changed

Field Code Changed

Deleted: and can be

$$-\frac{\left(L_{0}+l_{2}\right)^{2}N}{2}\ln\left(L_{0}+l_{2}-x\right)-\frac{1}{2}\left(L_{0}+l_{2}\right)Nx+\frac{1}{4}Nx^{2}+C_{1}=-K_{s}\left(1+\alpha\right)\frac{h_{s}^{2}}{2\alpha^{2}}$$
(11)

Equation (11) gives the freshwater-seawater interface location in Unit 1 once l_1 and l_2 are 377

determined. 378

3'

384

388

391

392

I

Equation (8) applies to Unit 2 by replacing C_1 with C_2 , 379

$$-\frac{\left(L_{0}+l_{2}\right)^{2}N}{2}\ln\left(L_{0}+l_{2}-x\right)-\frac{1}{2}\left(L_{0}+l_{2}\right)Nx+\frac{1}{4}Nx^{2}+C_{2}=-K_{s}\left(1+\alpha\right)\frac{\left(\phi-H_{s}\right)^{2}}{2}$$
(12)

where C_2 is chosen to satisfy the lagoon boundary condition ($x = l_2$, $\phi = H_s$), 381

$$C_{2} = \frac{\left(L_{0} + l_{2}\right)^{2} N}{2} \ln\left(L_{0}\right) + \frac{1}{2} \left(L_{0} + l_{2}\right) l_{2} N - \frac{1}{4} l_{2}^{2} N$$
(13)

Combining equations (10) and (12) and eliminating ϕ generates, 383

$$-\frac{\left(L_{0}+l_{2}\right)^{2}N}{2}\ln\left(L_{0}+l_{2}-x\right)-\frac{1}{2}\left(L_{0}+l_{2}\right)Nx+\frac{1}{4}Nx^{2}+C_{2}=-K_{s}\left(1+\alpha\right)\frac{h_{s}^{2}}{2\alpha^{2}}$$
(14)

Equation (14) gives the freshwater-seawater interface location in Unit 2 once l_2 is 385

determined. Since the sea level and lagoon water level are the same, an internal no-flow 386

boundary exists between the sea and lagoon, i.e., 387

$$=0, \ (h_s)_{unit1} = (h_s)_{unit2}$$
(15)

where $(h_s)_{unit1}$ and $(h_s)_{unit2}$ represent h_s in Units 1 and 2, respectively. 389

Combining equations (11), (14) and (15) leads to expressions for l_1 and l_2 , 390

x

$$l_{1} = L + L_{0} - \sqrt{\frac{2LL_{0} + L^{2}}{2\ln\left(L + L_{0}\right) - 2\ln\left(L_{0}\right)}}$$
(16)

$$l_{2} = \sqrt{\frac{2LL_{0} + L^{2}}{2\ln(L + L_{0}) - 2\ln(L_{0})}} - L_{0}$$
(17)

As indicated by equations (16) and (17), the internal no-flow boundary between the sea and 393

	Formatted:	Font:	8	pt
/ /	Formatted:	Font:	8	pt

Deleted: can also Deleted: y

Deleted: As mentioned before, s Deleted: assumed to be

	Delete	d: no-t	flow	
				_
1	Field	Code	Changed	J
	Field	Code	Changed	٦

1			
399	lagoon only depends on L and L_{0} . For known l_1 and l_2 , equations (11) and (14) can be	/	Deleted: under steady state
400	employed to predict the freshwater-seawater interface location in Units 1 and 2, respectively.		
401	Once the interface location is determined, h and ϕ are given by,	~	Deleted: we can further calculate
402	$h = \frac{1+\alpha}{\alpha} h_s \tag{18}$		Deleted: as follows
	а. С		
403	$\phi = \frac{h_s}{\alpha} + H_s \tag{19}$		
404	3.2. Interface Tip on the Aquifer Bed		Formatted: Font: 7 pt
405	When the interface tip is on the aquifer bed, the location of the <u>internal no-flow</u>		Deleted: no-flow
406	boundary remains the same as for the interface tip above the aquifer bed. The freshwater-		
407	seawater interface for Units 1 and 2 can be determined by equations (11) and (14),		Deleted: respectively
408	<u>respectively</u> . Then, from equation (18), h at the aquifer segment between the sea boundary and		Deleted: we can calculate
409	the interface tip is determined. To calculate h for the aquifer segment between the interface tip		Deleted: according to equation (18)
410	and the internal no-flow boundary, the x-coordinate of the interface tip is found. At the	\mathbb{N}	Deleted: .
			Deleted: In order
411	interface tip of Unit $1(x = x_{t1})$,	$\neg \mathbb{N}$	Deleted: t
412	$h_s = H_s \tag{20}$		Deleted: calculate
	$1+\alpha$		Deleted: no-flow
413	$\phi = \frac{1+\alpha}{\alpha} H_s \tag{21}$		Formatted: Font: Italic
414	<u>With equations (11) and (21), x_{tl} is given by</u> ,		Deleted: interface tip location
I			Deleted: should be determined first
415	$-\frac{\left(L_{0}+l_{2}\right)^{2}N}{2}\ln\left(L_{0}+l_{2}-x_{t_{1}}\right)-\frac{1}{2}\left(L_{0}+l_{2}\right)Nx_{t_{1}}+\frac{1}{4}Nx_{t_{1}}^{2}=-C_{1}-K_{s}\left(1+\alpha\right)\frac{H_{s}^{2}}{2\alpha^{2}}$ (22)		Deleted:
I	2 2 4 2α		Moved down [1]: $(x = x_{t1})$
416	Let,		Moved (insertion) [1]
417	$a = \frac{1}{2}N$ (23a)		Deleted: we have,
418	$a = \frac{1}{4}N$ (23a) $b = -\frac{1}{2}(L_0 + l_2)N$ (23b)		
710	$2^{\binom{2}{10}+\binom{2}{2}}$		
		/	Formatted: Font: 8 pt
			Formatted: Font: 8 pt
1	<u></u>		

$$c = -\frac{\left(L_0 + l_2\right)^2 N}{2}$$
 (23c)

437 and

436

438

440

442

444

446

448

I

$$m = -C_1 - K_s (1+\alpha) \frac{H_s^2}{2\alpha^2}$$
(23d)

then equation (22) becomes, 439

$$ax_{t1}^{2} + bx_{t1} + c\ln\left(L_{0} + l_{2} - x_{t1}\right) = m$$
(24)

which is solved by a root-finding method. 441

The freshwater discharge for the aquifer segment between the interface tip and the

internal no-flow boundary is calculated as, 443

$$-\frac{1}{2}\left[\left(L_{0}+l_{2}-x\right)^{2}-\left(L_{0}+l_{2}\right)^{2}\right]N=-\left(L_{0}+l_{2}-x\right)K_{s}\phi\frac{d\phi}{dx}$$
(25)

Repeating the steps from equations (4) to (8) gives, 445

$$-\frac{\left(L_{0}+l_{2}\right)^{2}N}{2}\ln\left(L_{0}+l_{2}-x\right)-\frac{1}{2}\left(L_{0}+l_{2}\right)Nx+\frac{1}{4}Nx^{2}+C_{3}=-\frac{K_{s}}{2}\phi^{2}$$
(26)

where C_3 is determined by substituting equation (21) into equation (26). Then, equation (26) 447 can be adopted to calculate h for the segment between the interface tip and the internal no-

<u>flow</u> boundary where $h = \phi$. 449

Similarly, the <u>x-coordinate of the interface tip in</u> Unit $2_{(x_{12})}$ is obtained by substituting 450 equation (20) into equation (14). Then, the watertable (h) of the aquifer segment between the 451 interface tip and the internal no-flow boundary for Unit 2 is computed by repeating the steps 452

from equations (22) to (26). 453

1	Deleted: no-flow
1	Deleted: can be

-	Deleted: no-flow
Λ	Deleted: interface tip location
Λ	Deleted: of
-	Deleted:
Η	Formatted: Font: Italic
1	Deleted: 21
\sum	Deleted: a
$\langle \rangle \rangle$	Deleted: the value of
(\)	Formatted: Font: Not Italic
	Deleted: for
Ì	Deleted: no-flow
Å	Formatted: Font: 8 pt
/ λ	Formatted: Font: 8 pt

4. Results and Discussion

I

4.1. Validation of <u>the</u> Analytical Solutions

467	The analytical solutions were validated by comparing their predictions with experimental
468	data compiled from Memari et al. (2020), who reported experiments carried out using a 15°
469	radial tank, The tank contained three distinct chambers: internal no-flow boundary condition,
470	porous medium and <u>constant-head</u> boundary condition (i.e., sea or lagoon). The internal no-
471	flow and seaward boundaries were respectively located at 10 cm and 55.5 cm from the circle
472	center, i.e., 45.5 cm from the internal no-flow boundary to the constant-head boundary along
473	the radial direction. Note that the experimental tank only corresponds to Unit 1 of the radial
474	aquifer with $l_1 = 45.5 \text{ cm}$ and $l_2 = 0$, so the analytical results were calculated using
475	equations (11) and (24). The thicknesses of the porous medium and sea level were 28 and 25
476	cm, respectively. The sand used in experiments had a saturated hydraulic conductivity of 1.23
477	$\times 10^{-2}$ m s ⁻¹ and an effective porosity of 0.40. The measured saltwater and freshwater densities
478	were respectively 1.015 and 0.999 g ml ⁻¹ , leading to $\alpha = 62$. Two different recharge events
479	with constant N, 2.46×10^{-4} and 1.08×10^{-4} m s ⁻¹ , were considered in the experiments.
480	Figure 3 shows the comparison between analytical and experimental results of the
481	freshwater-seawater interface for different recharge events. In general, the analytical solution
482	predicts the freshwater-seawater interface well for both recharge events, despite there being
483	some differences between the analytical results and the measurements, particularly in the zone
484	near the <u>constant-head</u> boundary $(x = -45 \text{ cm})$. These deviations are likely due to assumptions
485	made in the analytical solution, i.e., (i) a sharp freshwater-seawater interface, (ii) ignoring the

A	Deleted: . Their
//	Deleted: were
//	Deleted: that can be considered as an ASA
//	Deleted: radial
Λ	Deleted: no-flow
Λ	Deleted: seaward
/	Deleted: no-flow
A	Deleted: no-flow
Λ	Deleted: seaward
1	Deleted:
Λ	Deleted: (L^*) .
Λ	Deleted: L*
Α	Deleted: while
-1	Formatted: Font: Not Italic
/	Deleted: s
	Deleted: XXX
	Deleted: cm
/	Deleted: /
-	Formatted: Font: 小四, Superscript
1	Deleted: /
-	Formatted: Font: 小四, Superscript
1	Deleted: m s ⁻¹
	Deleted: m/s
Ń	Deleted: m/s
$\langle \rangle \rangle$	Deleted:
	Deleted: For clarity, e
Ì	Deleted: The experimental parameters are summarized in
	Table 1
Ŋ	Deleted: performs well in predicting t
Ì	Deleted: that there are small
Y	Deleted: sea
X	Formatted: Font: 8 pt
1	Formatted: Font: 8 pt
/	

effect of freshwater discharge, and (iii) neglecting the vertical flow (the Dupuit-Forchheimer

515 <u>approximation</u>).

516 4.2. Effects of Aquifer Geometry on Seawater Intrusion

517 Previous studies showed that boundary conditions play a critical role in estimates of seawater intrusion (Werner & Simmons, 2009; Lu et al., 2016). Therefore, the internal no-518 flow boundary between the sea and lagoon was examined for various ASAs. As indicated by 519 equations (16) and (17), this internal no-flow boundary depends only on L and L_0 . The values 520 of l_1 and l_2 calculated respectively from equations (16) and (17) are shown in Figure 4 for 521 three typical values of L (500, 1000, and 2000 m) with L_0 varying from 10^2 to 10^6 m. In 522 general, the <u>internal no-flow</u> boundary deviates from the middle of the ASA. When L_0 is <u>less</u> 523 than 10^5 m, l_1 is larger than l_2 for the three different values of L, indicating an internal no-524 <u>flow</u> boundary closer to the lagoon boundary. For example, <u>taking</u> L = 2000 m and $L_0 = 100$ m 525 leads to $l_1 = 1240$ m and $l_2 = 760$ m, with a deviation of 240 m (12% of 2000 m) from the 526 middle of the ASA. When L_0 exceeds 10^5 m, however, the location of the internal no-flow 527 boundary can be approximated as being at the middle of the ASA for all considered values of 528 L. This is in contrast to strip and circular aquifers where the internal no-flow boundary is 529 always in the middle of aquifers due to symmetry, 530 Since the internal no-flow boundary location between the sea and lagoon deviates from 531 the middle of the ASA, we expect aquifer geometry to play a significant role in controlling 532 seawater intrusion. As mentioned previously, ASAs can be convergent (Unit 1) or divergent 533 aquifers (Unit 2) where the extent of seawater intrusion may be different. However, for strip 534

14

-	Deleted: indicated
	Deleted: affecting
	Deleted: no-flow
-	Deleted: (Table 1)
-	Deleted: no-flow
	Deleted: only
	Deleted: m
	Deleted: m,
	Deleted: varying
	Deleted: no-flow
	Deleted: smaller
	Deleted: no-flow
	Deleted: assuming
	Deleted: no-flow
/	Deleted: to be
1	Deleted: no-flow
1	Deleted: ic flow
/ 1	

Deleted: Moreover, l_1 approaches l_2 with increasing L_0 ,

which suggests a movement of the no-flow boundary to the middle of the ASA. This is because, as L_0 increases, the island shape approaches to be be be more asingly approximates a rectangle with ular and hence leading to the flow parallel with to *EH* and *FG*. By comparison, at a given L_0 smaller than 10^5 m, the no-flow boundary location deviates more from the middle of the ASA with increasing *L*.

Deleted: no-flow

Formatted:	Font:	8	pt
Formatted:	Font:	8	pt

561	aquifers, both Units 1 and 2 are rectangular with the same extent of seawater intrusion.
562	Therefore, three geometries were compared in this study: convergent, rectangular and
563	divergent (Figure 5). These geometries have been widely examined in hillslope hydrology
564	regrading to the effects of aquifer geometry on runoff generation (Troch et al., 2003; Kong et
565	al., 2016; Luo et al., 2018). To present the results more conveniently, we replaced the <i>x-z</i>
566	coordinate origin at the intersection of the constant-head boundary (sea or lagoon) and the
567	impermeable base, with the x-axis pointing horizontally to the internal no-flow boundary and
568	the z-axis vertically upward (Figure 5). In addition, the distance between the constant-head
569	boundary and the internal no-flow boundary (aquifer width) is denoted as L_{\star}^{*} (Figure 5) while
570	the other parameters remain the same.
571	Following previous studies (e.g., Lu et al., 2016; 2019), different cases were selected to
572	show the effects of aquifer geometry on seawater intrusion (Cases 1 and 2 in Table 1).
573	According to Werner et al. (2017), the width of atoll islands generally varies from 100 to 1500
574	m along the radial direction. In order to focus on the effects of aquifer geometry on seawater
575	intrusion, the same L^* and L_0 were assumed for the three aquifers, with L^* and L_0 equal to
576	1000 and 200 m, respectively. Note that L_0 is the distance from the circle center to the lagoon
577	boundary for convergent aquifers, whereas it represents the distance from the circle center to
578	internal no-flow boundary for divergent aquifers hereafter. The sand characteristics were the
579	same as in the experiments of Memari et al. (2020). Two recharge events were considered
580	(Cases 1 and 2, Table 1). The freshwater-seawater interface was calculated using the
580 581	(Cases 1 and 2, Table 1). The freshwater-seawater interface was calculated using the analytical solutions for the three different aquifers. Note that <u>the Appendix presents analytical</u>

15

L

Deleted: For the sake of simplicity,
Deleted: seawater
Deleted: horizontally
Deleted: no-flow

1	Deleted: no-flow
	Deleted: redefined
X	Formatted: Font: Italic
Ì	Formatted: Superscript
Y	Deleted: keep
	Deleted: hypothesized
Ì	Deleted: design
-(Deleted: m

Deleted: we assumed

1	Deleted: A	
λ	Formatted:	Font: 8 pt
λ	Formatted:	Font: 8 pt

594	solutions for seawater intrusion in strip aquifers deduced from Lu et al. (2019).
595	Figure 6 shows the freshwater-seawater interface calculated for Cases 1 and 2. As can be
596	seen, the extent of seawater intrusion is <u>noticeably</u> different for the three aquifer <u>geometries</u> .
597	For high recharge $(1 \times 10^{-6} \text{ m s}^{-1})$, the interface tip is located at around 500 m for the
598	divergent aquifer, which is about twice the value of the rectangular aquifer and six times the
599	value for the convergent aquifer (Figure 6a). When the recharge decreases to $3 \times 10^{-7} \text{ m s}^{-1}$
600	the interface tip moves <u>further</u> , landward for the three aquifers as expected, but the difference
601	between results is still great (Figure 6b). The interface tip is displaced above the aquifer bed
602	for both <u>the</u> rectangular and divergent aquifers, while it remains on the aquifer bed for the
603	convergent aquifer. Regardless of the recharge rate, the most landward freshwater-seawater
604	interface occurs in <u>the</u> divergent aquifer, and vice versa for convergent aquifer, This underlines
605	that aquifer geometry plays a major role in controlling seawater intrusion and hence it is
606	necessary to account for aquifer geometry in analyses of seawater intrusion.
607	4.3. Sensitivity Analysis
608	A sensitivity analysis was conducted to investigate to what extent aquifer geometry
609	affects seawater intrusion, Since we focus on the effects of aquifer geometry on the locations
610	of the freshwater-seawater interface and watertable, values of L_0 and L^* were varied, with
611	other parameters kept constant. When conducting the sensitivity analysis of L_0 , L^* was fixed
612	at 1000 m, which is a typical value for ASAs (Werner et al., 2017). Figure 7 shows the
613	sensitivity of the locations of the freshwater-seawater interface and watertable to changes in
614	L_0 (Case 3, Table 1). The freshwater-seawater interface and watertable elevation are
•	

A	Deleted: greatly
Χ	Deleted: different
Λ	Deleted: the
	Deleted: give the value
	Formatted: Superscript
A	Deleted:
Λ	Deleted: m/s
Λ	Deleted: more
Λ	Deleted: of three aquifers
Χ	Deleted: rises
A	Deleted: s
M	Deleted: s
7/	Deleted: significant
//	Deleted: the
//	Deleted: effects of
///	Deleted: effects
Ά	Deleted: tical solutions
A	Deleted: will
	Deleted: A sensitivity analysis was conducted to investigate
$\left \right $	at which the degree to which of curvature the deviation of
	seawater intrusion between three different aquifers becomes
	significant
/	Deleted: thewe focus
	Deleted: is
1	Deleted: on the effects of aquifer geometry on seawater
	intrusion
Λ	Deleted: that
Å	Deleted: the
Λ	Deleted: depth
-	Deleted: elevation
1	Deleted: As expected, t
X	Formatted: Font: 8 pt
Χ	Formatted: Font: 8 pt

T

645	independent of L_0 for rectangular aquifers (Appendix). However, the freshwater-seawater	
646	interface and watertable elevation differ greatly when varying L_0 for both convergent and	
647	divergent aquifers, highlighting that L_0 plays an important role in affecting seawater intrusion.	
648	Specifically, as L_0 increases, the freshwater-seawater interface moves more landward (<u>larger</u>	
649	x/L_{\bullet}^{*} Figure 7a) and its corresponding watertable elevation decreases (Figure 7c) for	
650	convergent aquifers. <u>In contrast, for divergent aquifers increasing L₀ moves the freshwater-</u>	\leq
651	seawater interface more seaward (smaller x/L^* , Figure 7b) and its corresponding watertable	
652	elevation increases (Figure 7d), For a given L_0 , divergent aquifers have the largest extent of	
653	seawater intrusion and the lowest watertable elevation, and conversely for convergent aquifers	
654	(Figure 7),	
655	Regardless of the freshwater-seawater interface and watertable elevation, the deviation	
656	between rectangular aquifers and divergent or convergent aquifers is significant when L_0 is	
657	less than 2000 m (Figure 7). For example, the <u><i>x</i>-coordinate of the interface tip ($z = 0$)</u> is 262 m	
658	for the rectangular aquifer at $L_0 = 200$ m, whereas it is 78 (31% of that in the rectangular	\mathbb{N}
659	aquifer) and 500 m (191% of that in the rectangular aquifer) for the convergent and divergent	
660	aquifers, respectively. As L_0 increases, the deviation between the three aquifers decreases.	
661	When $\underline{L}_{\varrho} = 2000 \text{ m}$, the x-coordinate of the interface tip is 262, 209 (80% of that in the	
662	rectangular aquifer) and 318 m (121% of that in the rectangular aquifer) for the rectangular,	
663	convergent and divergent aquifers, respectively. As L_0 increases to 6000 m, the freshwater-	
664	seawater interface and watertable elevation of both convergent and divergent aquifers tend to	
665	those of rectangular aquifers, i.e., geometry effects decrease with increasing L_0 . These results	
1		

_	Deleted: L
_	Deleted: This is contrary to
	Deleted:
	Deleted: where for
	Deleted: moves

Deleted: with increasing L₀

1	Deleted: Consistent with the experimental results of			
	Hilberts et al. (2005), the steady-state watertable elevation is			
	lower in the divergent aquifer than in the convergent aquifer			
	for the same rainfall.			
	Deleted: By comparison,			
	Deleted: ,			
	Deleted: regardless of the freshwater-seawater interface and			
	watertable elevation,			
ľ,	Formatted: Font: Italic			
	Deleted: toe location			
()	Formatted: Font: Italic			
	Deleted: m			
١	Formatted: Font: Not Italic			
+	Formatted: Font: Italic			
1	Formatted: Subscript			
	Deleted: the interface toe location			
-	Deleted: When $L_0 = 2000$ m, the interface toe location is 262,			
	209 (80% of that in the rectangular aquifer) and 318 m (121%			
	of that in the rectangular aquifer), respectively.			
	Deleted: continues to			
J	Formatted: Font: 8 pt			
1	Formatted: Font: 8 pt			

I

highlight the critical role played by the shape of aquifers. As a result, ignoring geometry
effects may lead to an inappropriate management strategy for groundwater resources in atoll
islands.

The sensitivity of the freshwater-seawater interface and watertable elevation to L^* was 690 investigated by varying L^* from 600 to 1600 m while fixing L_0 to 200 m (Case 4, Table 1). As 691 shown in Figure 8, contrary to the results for varying L_{0} , in this case the freshwater-seawater 692 interface and watertable elevation in all three topographies are related to L^* . Again, the extent 693 of seawater intrusion is greatest in divergent aquifers and least in convergent aquifers for 694 given L^* . When L^* increases, the freshwater-seawater interface moves seaward and the 695 watertable elevation increases, regardless of aquifer geometry, i.e., the seawater intrusion 696 697 decreases (Figures 8a-c). This is because the total freshwater flux increases with increasing L^* , leading to a higher hydraulic gradient and hence less seawater intrusion (Figures 8d-f). 698 Moreover, an increase in L* reduces the differences in the seawater intrusion distance among 699 the three geometries, i.e., geometry effects on seawater intrusion are more significant at small 700 L^* . However, even at the maximum L^* considered (1600 m), the deviation between three 701 aquifers remains significant: The x-coordinate of the interface tip is about 148 m for the 702 rectangular aquifer, whereas it is about 32 (22% of that in the rectangular aquifer) and 278 m 703 (188% of that in the rectangular aquifer) for the convergent and divergent aquifers, 704 respectively. Both L_0 and L^* can greatly impact seawater intrusion estimates for divergent and 705 convergent aquifers, highlighting the necessity to include geometry effects in analytical 706 solutions of seawater intrusion. 707

18

I

Deleted: fresh

1	Deleted: further conducted with
1	Deleted: at
1	Deleted: in
ĺ	Formatted: Font: Not Italic
1	Deleted: is

Deleted: more

	Deleted: between
-[Deleted: given in this study
-{	Deleted: remain
	Deleted: i
$\langle \rangle$	Deleted: s
	Deleted: t
	Deleted:
	Formatted: Font: Italic
	Deleted: interface toe location
	Deleted: to
λ	Formatted: Font: 8 pt

Deleted: induces a smaller deviation of

Formatted: Font: 8 pt

724 **5. Conclusions**

Based on the Ghijben-Herzberg and hillslope-storage Boussinesq equations, we derived 725 analytical solutions of steady-state seawater intrusion for ASAs, with a focus on the 726 727 freshwater-seawater interface and its corresponding watertable elevation as affected by recharge. After comparing with experimental data of Memari et al. (2020), the analytical 728 solutions were employed to examine the effects of aquifer geometry on seawater intrusion in 729 island aquifers. Three different shapes of island aquifer were compared: convergent, 730 rectangular and divergent. The results lead to the following conclusions: 731 (1) The presented analytical solutions perform well in predicting the experimental 732 freshwater-seawater interface, suggesting that these analytical solutions can predict seawater 733 intrusion reasonably in different aquifer geometries. 734 (2) Island geometry plays a significant role in affecting the freshwater-seawater interface 735 and watertable elevation. Other factors being equal, the extent of seawater intrusion is greatest 736 in divergent aquifers, and conversely least in convergent aquifers. In contrast, the watertable 737 elevation is lowest in divergent aquifers and highest in convergent aquifers. 738 (3) The effects of aquifer geometry on seawater intrusion are dependent on the aquifer 739 width and distance from the circle center to the internal no-flow boundary (Figures 7 and 8). 740 A larger aquifer width and distance from the circle center to the inner arc (the lagoon 741 boundary for convergent aquifers while the internal no-flow boundary for divergent aquifers). 742 weakens the role played by aquifer geometry and hence lead to a smaller deviation of the 743 extent of seawater intrusion between the three topographies. 744

Deleted: for both recharge events

	Deleted: T
ſ	Deleted: the most serious
ſ	Deleted: while the lightest
ſ	Deleted: the
ſ	Deleted: while
ſ	Deleted: the
ſ	Deleted: f
ĺ	Deleted: no-flow
ſ	Deleted: xx
Ē	Formatted: Not Highlight
1	Deleted: Both a
ſ	Deleted: or
ſ	Deleted: from the circle center to the interior no-flow
ł	poundary
ſ	Deleted: can
Æ	Formatted: Font: 8 pt
F	Formatted: Font: 8 pt

760	Real island aquifers are expected to exhibit more complexity than considered here, e.g.,		
761	that will have more complex shapes and are subjected to transient flow conditions caused by	_	Deleted: with regards to their topographies and subjecting to
762	tides, waves and pumping (Mantoglou et al. 2003; Pool & Carrera., 2011; Werner et al.,	_	Deleted: and
763	2013). In addition, since the experimental scale of Memari et al. (2020) is necessarily small,		
764	future experiments and field data are needed to further validate and facilitate the analytical		
765	solutions. Despite this, the new analytical solutions, validated against experiments, can be		
766	used as a tool to rapidly estimate seawater intrusion in ASAs once known island geometry and	_	Deleted: fast

⁷⁶⁷ <u>corresponding soil properties are given.</u>

I

Formatted: Font: 8 pt Formatted: Font: 8 pt

771	Appendix: Analytical Solutions for Rectangular Aquifers	(
772	For rectangular aquifers, the seawater intrusion in Unit 1 is identical to that in Unit 2	(
773	because of symmetry. With the interface tip on the aquifer bed, analytical solutions for the	<1
774	freshwater-seawater interface (h_{s}) , watertable elevation (h) , and <u>x-coordinate of the interface</u>	
775	tip in Unit 2 (x ₂) can be respectively written as (Lu et al., 2019),	
776	$h_s = \alpha \sqrt{\frac{N}{(1+\alpha)K_s} \left(\frac{L^2}{4} - x^2\right)} $ (A1)	l
777	$h = \begin{cases} \sqrt{\frac{N}{K_{s}} \left(x_{t_{2}}^{2} - x^{2}\right) + \left(\frac{H_{s}}{\alpha} + H_{s}\right)} & 0 \le x \le x_{t_{2}} \\ \sqrt{\frac{N}{\left(1 + \alpha\right)K_{s}} \left(\frac{L^{2}}{4} - x^{2}\right)} + H_{s} & x_{t_{2}} < x \le \frac{L}{2} \end{cases} $ (A2)	
778	$x_{t2} = \sqrt{\frac{L^2}{4} - \frac{(1+\alpha)K_s}{N} \left(\frac{H_s^2}{\alpha^2}\right)} $ (A3)	
779	When the interface tip is above the aquifer bed, the analytical solution for the freshwater-	
780	seawater interface location and watertable elevation in Unit 2 are the same as equations (A1)	

Deleted: A					
Deleted: s					
Deleted: ical groundwater flow					
Deleted: ica	l groundwater flow				
Deleted: ica Deleted: of	l groundwater flow				

Field Code Changed

⁷⁸¹ and (A2), respectively.

I

Formatted: Font: 8 pt Formatted: Font: 8 pt

787 Code/Data availability

I

788 <u>Experimental data used in this study are compiled from</u> Memari et al. (2020).

Formatted: Font: 8 pt Formatted: Font: 8 pt

789 Author contribution

I

- All authors contributed to the design of the research. ZL carried out data collation,
- ⁷⁹¹ developed the analytical solutions and prepared the manuscript with contributions from all
- ⁷⁹² co-authors. All authors contributed to the interpretation of the results and provided feedback.

Formatted: Font: 8 pt Formatted: Font: 8 pt

793 Competing interests

794

I

The authors declare that they have no conflicts of interest.

Formatted: Font: 8 pt Formatted: Font: 8 pt

795 Acknowledgments

I

- 796 This research was supported by the National Key R&D Program of China
- 797 (2019YFC0409004) and the National Natural Science Foundation of China (51979095,
- ⁷⁹⁸ 41807178). ZL acknowledges EPFL for financial support and JK acknowledges the Qing Lan

25

⁷⁹⁹ Project of Jiangsu Province (2020).

Formatted: Font: 8 pt Formatted: Font: 8 pt

800	References
-----	------------

801	Ayers, J. F., & Vacher, H. L. (1986). Hydrogeology of an atoll island: A conceptual model
802	from detailed study of a Micronesian example. Groundwater, 24(2), 185-198.
803	https://doi.org/10.1111/j.1745-6584.1986.tb00994.x
804	Bailey, R. T., Jenson, J. W., & Olsen, A. E. (2010). Estimating the ground water resources of
805	atoll islands. Water, 2(1), 1-27. https://doi.org/10.3390/w2010001
806	Bailey, R. T., Jenson, J. W., & Olsen, A. E. (2009). Numerical modeling of atoll island
807	hydrogeology. Groundwater, 47(2), 184-196. https://doi.org/10.1111/j.1745-
808	<u>6584.2008.00520.x</u>
809	Bedekar, V. S., Memari, S. S., & Clement, T. P. (2019). Investigation of transient freshwater
810	storage in island aquifers. Journal of Contaminant Hydrology, 221, 98-107.

811 https://doi.org/10.1016/j.jconhyd.2019.02.004

- ⁸¹² Chesnaux, R., & Allen, D. M. (2008). Groundwater travel times for unconfined island
- aquifers bounded by freshwater or seawater. *Hydrogeology Journal*, *16*(3), 437-445.
- 814 <u>https://doi.org/10.1007/s10040-007-0241-6</u>
- ⁸¹⁵ Dose, E. J., Stoeckl, L., Houben, G. J., Vacher, H. L., Vassolo, S., Dietrich, J., &
- Himmelsbach, T. (2014). Experiments and modeling of freshwater lenses in layered

aquifers: Steady state interface geometry. *Journal of Hydrology*, *509*, 621-630.

818 <u>https://doi.org/10.1016/j.jhydrol.2013.10.010</u>

1

- ⁸¹⁹ Drabbe J. & Badon Ghijben, W. (1889). *Nota in verband met de voorgenomen put boring*
- 820 nabij Amsterdam, Tijdschrift van het Koninklijk Instituut van Ingenieurs, pp. 8-22,

Deleted:,

Deleted: *** Tijdschr. Kon. Inst. Ing.,*** Don't abbreviate *** Formatted: Font: 8 pt Formatted: Font: 8 pt

824	Gravenhage, Netherlands.	
825	Duvat, V. K. E. (2019). A global assessment of atoll island planform changes over the past	
826	decades. Wiley Interdisciplinary Reviews: Climate Change, 10(1), e557.	
827	https://doi.org/10.1002/wcc.557	
828	Fetter, C. W. (1972). Position of the saline water interface beneath oceanic islands. Water	
829	Resources Research, 8(5), 1307-1315. <u>https://doi.org/10.1029/WR008i005p01307</u>	
830	Gingerich, S. B., Voss, C. I., & Johnson, A. G. (2017). Seawater-flooding events and impact	
831	on freshwater lenses of low-lying islands: Controlling factors, basic management and	
832	mitigation. Journal of Hydrology, 551, 676-688.	
833	https://doi.org/10.1016/j.jhydrol.2017.03.001	
834	Greskowiak, J., Röper, T., & Post, V. E. (2013). Closed-form approximations for two-	
835	dimensional groundwater age patterns in a fresh water lens. Groundwater, 51(4), 629-	
836	634. <u>https://doi.org/10.1111/j.1745-6584.2012.00996.x</u>	
837	Herzberg, A. (1901). Die wasserversorgung einiger Nordseebäder. Journal für	
838	Gasbeleuchtung und Wasserversorgung, 44, 815-819, 45, 842-844.	Deleted: -
839	Hilberts, A. G. J., Troch, P. A., & Paniconi, C. (2005). Storage-dependent drainable porosity	
840	for complex hillslopes. Water Resources Research, 41(6), W06001.	
841	https://doi.org/10.1029/2004WR003725	
842	Ketabchi, H., Mahmoodzadeh, D., Ataie-Ashtiani, B., Werner, A. D., & Simmons, C. T.	
843	(2014). Sea-level rise impact on fresh groundwater lenses in two-layer small islands.	
844	Hydrological Processes, 28(24), 5938-5953. https://doi.org/10.1002/hyp.10059	Formatted: Font: 8 pt
1	27	Formatted: Font: 8 pt

	846	Kong, J., Shen, C., Luo, Z., Hua, G., & Zhao, H. (2016). Improvement of the hillslope-storage	
	847	Boussinesq model by considering lateral flow in the unsaturated zone. Water	
	848	Resources Research, 52(4), 2965-2984. https://doi.org/10.1002/2015WR018054	
	849	Lam, R. K. (1974). Atoll permeability calculated from tidal diffusion. Journal of Geophysical	
	850	Research, 79(21), 3073-3081. https://doi.org/10.1029/JC079i021p03073	
	851	Liu, J., & Tokunaga, T. (2019). Future risks of tsunami-induced seawater intrusion into	
	852	unconfined coastal aquifers: Insights from numerical simulations at Niijima Island,	
	853	Japan. Water Resources Research, 55(12), 10082-10104.	
	854	https://doi.org/10.1029/2019WR025386	
	855	Liu, Y., X. Mao, J. Chen, and D. A. Barry. 2014. Influence of a coarse interlayer on seawater	
	856	intrusion and contaminant migration in coastal aquifers. Hydrological Processes, 28(20),	Formatted: F
	857	5162-5175. https://dx.doi.org/10.1002/hyp.10002	Formatted: F Formatted: F Formatted: F
	858	Lu, C., Cao, H., Ma, J., Shi, W., Rathore, S. S., Wu, J., & Luo, J. (2019). A proof-of-concept	
	859	study of using a less permeable slice along the shoreline to increase fresh groundwater	
	860	storage of oceanic islands: Analytical and experimental validation. Water Resources	
I	861	Research, 55(8), 6450-6463. https://doi.org/10.1029/2018WR024529	
	862	Lu, C., Xin, P., Kong, J., Li, L., & Luo, J. (2016). Analytical solutions of seawater intrusion in	
	863	sloping confined and unconfined coastal aquifers. Water Resources Research, 52(9),	
	864	6989-7004. https://doi.org/10.1002/2016WR019101	
•	865	Luo, Z., Shen, C., Kong, J., Hua, G., Gao, X., Zhao, Z., Zhao, H., & Li, L. (2018). Effects of	
	866	unsaturated flow on hillslope recession characteristics. Water Resources Research,	Formatted: F
			Formatted: F

28

I

ont: 小四 ont: 小四, Not Bold, Italic ont: 小四 ont: 小四

nt: 8 pt nt: 8 pt

867	54(3), 2037-2056. https://doi.org/10.1002/2017WR022257	
868	Mantoglou, A. (2003). Pumping management of coastal aquifers using analytical models of	
869	saltwater intrusion. <i>Water Resources Research</i> , 39(12), 1335.	Formatted: Font: 小四, Italic
		Formatted: Font: 小四, Italic
870	https://doi.org/10.1029/2002WR001891	Formatted: Font: 小四, Italic
		Formatted: Font: 小四, Italic
871	Memari, S. S., Bedekar, V. S., & Clement, T. P. (2020). Laboratory and numerical	
872	investigation of saltwater intrusion processes in a circular island aquifer. Water	
873	Resources Research, 56(2), e2019WR025325. https://doi.org/10.1029/2019WR025325	
874	Morgan, L. K., & Werner, A. D. (2014). Seawater intrusion vulnerability indicators for	
875	freshwater lenses in strip islands. Journal of Hydrology, 508, 322-327.	
876	https://doi.org/10.1016/j.jhydrol.2013.11.002	
877	Paniconi, C., Troch, P. A., Van Loon, E. E., & Hilberts, A. G. (2003). Hillslope-storage	
878	Boussinesq model for subsurface flow and variable source areas along complex	
879	hillslopes: 2. Intercomparison with a three-dimensional Richards equation model.	
880	Water Resources Research, 39(11), 1317. https://doi.org/10.1029/2002WR001730	
881	Pool, M., & Carrera, J. (2011). A correction factor to account for mixing in Ghyben-Herzberg	
882	and critical pumping rate approximations of seawater intrusion in coastal aquifers.	
883	Water Resources Research, 47(5), W05506. https://doi.org/10.1029/2010WR010256	Formatted: Font: 小四, Italic Formatted: Font: 小四, Italic
884	Post, V. E. (2018). Annotated translation of "Nota in verband met de voorgenomen putboring	
885	nabij Amsterdam [Note concerning the intended well drilling near Amsterdam]" by J.	
886	Drabbe and W. Badon Ghijben (1889). Hydrogeology Journal, 26(6), 1771-1788.	
887	https://doi.org/10.1007/s10040-018-1797-z	
00/	<u>maps/rdoi.org/10.100//510040-010-1/2/72</u>	Formatted: Font: 8 pt
		Formattad: Font: 9 nt

i

I

ormatted: Font: 小四, Italic ormatted: Font: 小四, Italic ormatted: Font: 小四, Italic ormatted: Font: 小四, Italic

ormatted: Font: 8 pt Formatted: Font: 8 pt

888	Post, V. E. A., Houben, G. J., Stoeckl, L., & Sültenfuß, J. (2019). Behaviour of tritium and	
889	tritiogenic helium in freshwater lens groundwater systems: Insights from Langeoog	
890	Island, Germany. Geofluids, Volume 2019, Article ID 1494326	$\langle \langle$
891	https://doi.org/10.1155/2019/1494326	
892	Röper, T., Greskowiak, J., Freund, H., & Massmann, G. (2013). Freshwater lens formation	
893	below juvenile dunes on a barrier island (Spiekeroog, Northwest Germany). Estuarine,	
894	Coastal and Shelf Science, 121-122, 40-50. https://doi.org/10.1016/j.ecss.2013.02.004	
895	Stagnitti, F., Parlange, M. B., Steenhuis, T. S., & Parlange, JY. (1986). Drainage from a	
896	uniform soil layer on a hillslope. Water Resources Research, 22(5), 631-634.	
897	https://doi.org/10.1029/WR022i005p00631	
898	Stoeckl, L., Houben, G. J., & Dose, E. J. (2015). Experiments and modeling of flow processes	
899	in freshwater lenses in layered island aquifers: Analysis of age stratification, travel	
900	times and interface propagation. Journal of Hydrology, 529, 159-168.	
901	https://doi.org/10.1016/j.jhydrol.2015.07.019	
902	Storlazzi, C. D., Gingerich, S. B., van Dongeren, A., Cheriton, O. M., Swarzenski, P. W.,	
903	Quataert, E., Voss, C. I., Field, D. W., Annamalai, H., Piniak, G. A., & McCall, R.	
904	(2018). Most atolls will be uninhabitable by the mid-21st century because of sea-level	
905	rise exacerbating wave-driven flooding. Science Advances, 4(4), eaap9741.	
906	https://doi.org/10.1126/sciadv.aap9741	
907	Strack, O. D. L. (1976). A single-potential solution for regional interface problems in coastal	
908	aquifers. Water Resources Research, 12(6), 1165-1174.	Â
		/

Deleted: *** 1-16

Deleted: *** Fix this: Geofluids Volume 2019, Article ID 1494326 ***

I

Formatted: Font: 8 pt Formatted: Font: 8 pt

912	https://doi.org/10.1029/WR012i006p01165	
913	Stuyfzand, P. J. (2017). Observations and analytical modeling of freshwater and rainwater	
914	lenses in coastal dune systems. Journal of Coastal Conservation, 21(5), 577-593.	
915	https://doi.org/10.1007/s11852-016-0456-6	
916	Stuyfzand, P. J. (1993). Hydrochemistry and hydrology of the coastal dune area of the Western	Deleted: ***
917	Netherlands. Ph.D. Thesis. Vrije University, Amsterdam, KIWA, ISBN 90-74741-01-	Deleted: *** correct use of uppercase/lowercase? ***
918	0. http://dare.ubvu.vu.nl/handle/1871/12716	Deleted: ** comma or full stop needed here ***
ļ		Deleted: *** Univ. ***
919	Thomas, A., Baptiste, A., Martyr-Koller, R., Pringle, P., & Rhiney, K. (2020). Climate change	Deleted: ***
	and an all internal developing states. Annual Devices of Francisco and Decomposition	Deleted: published by
920	and small island developing states. Annual Review of Environment and Resources,	Formatted: Not Highlight
921	45(1), 1 _z 27. <u>https://doi.org/10.1146/annurev-environ-012320-083355</u>	Deleted: , 366 p*** . *** Is the period needed here? ***
l		Deleted: -
922 923	Troch, P. A., Paniconi, C., & Emiel van Loon, E. (2003). Hillslope-storage Boussinesq model for subsurface flow and variable source areas along complex hillslopes: 1.	
924	Formulation and characteristic response. Water Resources Research, 39(11), 1316.	
925	https://doi.org/10.1029/2002WR001728	
926	Underwood, M. R., Peterson, F. L., & Voss, C. I. (1992). Groundwater lens dynamics of atoll	
927	islands. Water Resources Research, 28(11), 2889-2902.	
928	https://doi.org/10.1029/92WR01723	
929	Vacher, H. L. 1988. Dupuit-Ghyben-Herzberg analysis of strip-island lenses. <i>Geological</i>	Deleted: *** Bulletin
930	Society of America <u>Bulletin</u> , 100, 580-591. https://doi.org/10.1130/0016-	Deleted: *** Change to <i>Geological Society of America</i> Bulletin ***
		Formatted: Font: Not Italic
931	<u>7606(1988)100<0580:DGHAOS>2.3.CO;2</u>	Deleted: *** : *** should be a comma here ***
932	Werner, A. D., Sharp, H. K., Galvis, S. C., Post, V. E., & Sinclair, P. (2017). Hydrogeology	Formatted: Font: Not Italic, Not Highlight
	,	Formatted: Font: 8 pt
		Formatted: Font: 8 pt

31

I

945	and management of freshwater lenses on atoll islands: Review of current knowledge	
946	and research needs. Journal of Hydrology, 551, 819-844.	
947	https://doi.org/10.1016/j.jhydrol.2017.02.047	
948	Werner, A. D., Bakker, M., Post, V. E., Vandenbohede, A., Lu, C., Ataie-Ashtiani, B.,	
949	Simmons, C. T., & Barry, D. A. (2013). Seawater intrusion processes, investigation	
950	and management: Recent advances and future challenges. Advances in Water	Deleted: r
951	Resources, 51, 3-26. https://doi.org/10.1016/j.advwatres.2012.03.004	
952	Werner, A. D., & Simmons, C. T. (2009). Impact of sea-level rise on sea water intrusion in	
953	coastal aquifers. Groundwater, 47(2), 197-204. https://doi.org/10.1111/j.1745-	
954	<u>6584.2008.00535.x</u>	
955	White, I., & Falkland, T. (2010). Management of freshwater lenses on small Pacific islands.	
956	Hydrogeology Journal, 18(1), 227-246. https://doi.org/10.1007/s10040-009-0525-0	
957	Zhang, Y., Li, L., Erler, D. V., Santos, I., & Lockington, D. (2016). Effects of alongshore	
958	morphology on groundwater flow and solute transport in a nearshore aquifer. Water	
959	Resources Research, 52(2), 990-1008. <u>https://doi.org/10.1002/2015WR017420</u>	Deleted:

Formatted: Font: 8 pt Formatted: Font: 8 pt

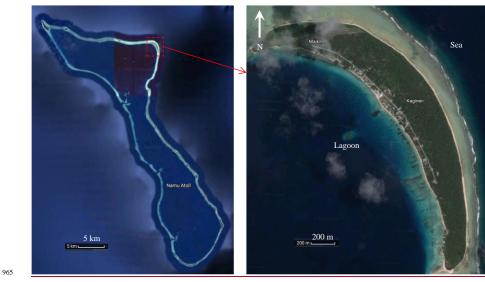
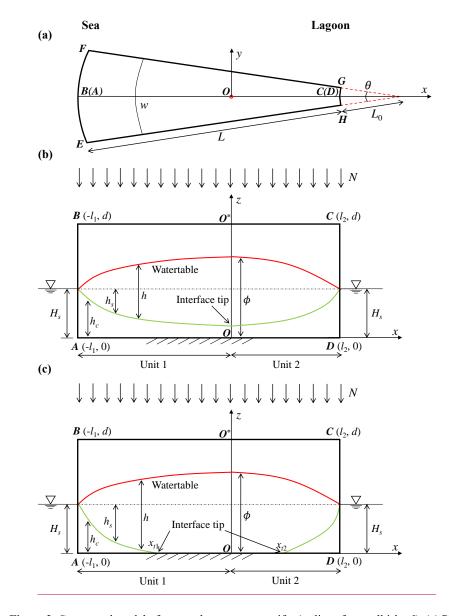
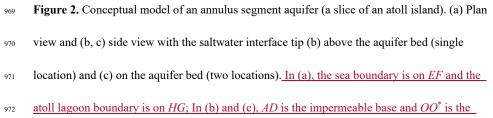
32

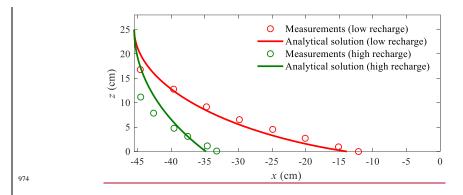
I

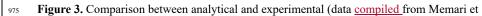
List of parameters				$H_{\rm cm}$	d (m)	α (-)	<i>n</i> ()	$V_{(m,c^{-1})}$	N (m
	<u>No.</u>	<u>L* (m)</u>	<u>L₀ (m)</u>	<u><i>H_s</i> (m)</u>	<u>d (m)</u>		<u>ne (-)</u>	<u>K_s (m s⁻¹)</u>	<u>N (m</u>
	<u>1</u>	<u>1000</u>	<u>200</u>	<u>38</u>	<u>45</u>	<u>40</u>	<u>0.4</u>	1.23×10^{-2}	<u>1 × </u>]
Cases	<u>2</u>	<u>1000</u>	<u>200</u>	<u>38</u>	<u>45</u>	<u>40</u>	<u>0.4</u>	<u>1.23 × 10⁻²</u>	<u>3 × 1</u>
Simulated	<u>3</u>	<u>1000</u>	ţ	<u>38</u>	<u>45</u>	<u>40</u>	<u>0.4</u>	1.23×10^{-2}	<u>1 × 1</u>
	<u>4</u>	Ţ	<u>200</u>	<u>38</u>	<u>45</u>	<u>40</u>	<u>0.4</u>	1.23×10^{-2}	<u>1 × 1</u>

⁹⁶³ <u>The parameter is varied: The range of L_0 is from 200 to 6000 m, whereas the range of L^* is from 600 to 1600 m,</u>

Deleted: .


Figure 1. Island with an annulus segment in the Namu Atoll, Marshall Islands (© Google 966


Earth). 967

973 <u>internal no-flow boundary.</u>

al., 2020) results for the freshwater-seawater interface location for different recharge events.

⁹⁷⁷ Note that the left and right sides are the sea and <u>internal no-flow</u> boundaries, respectively.

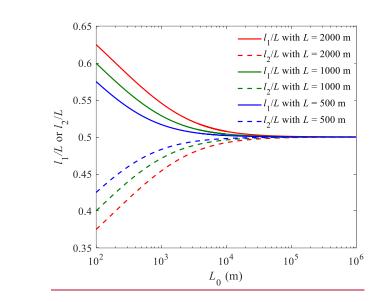
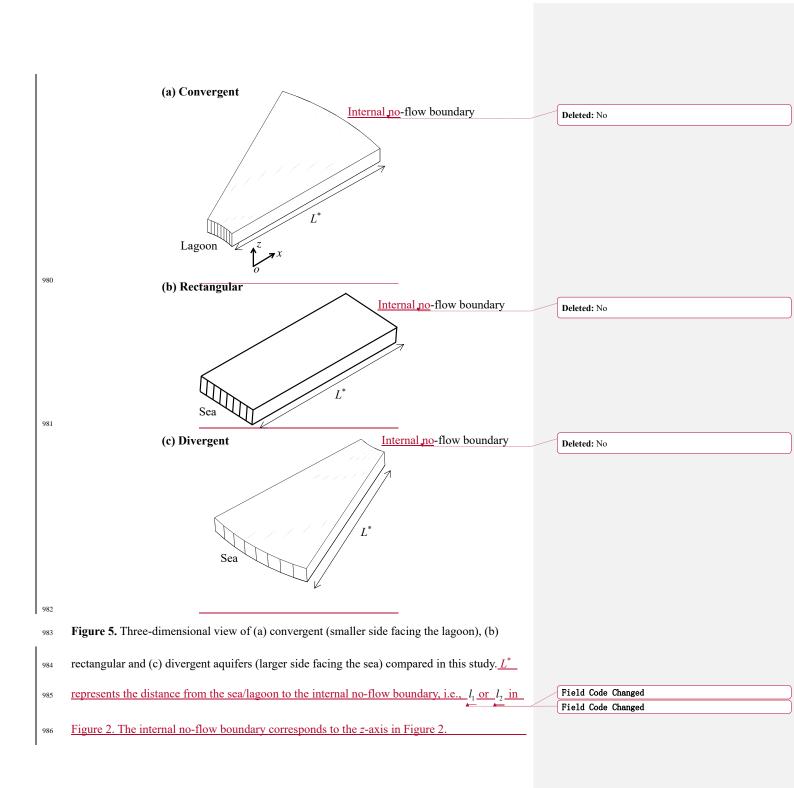
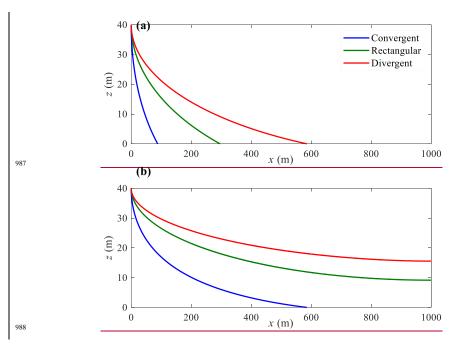
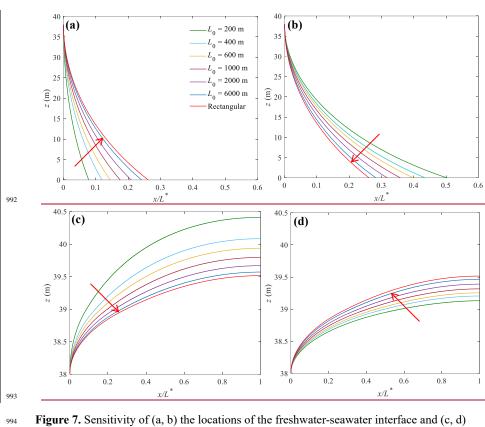




Figure 4. Widths of Unit 1 and Unit 2 versus L_0 for aquifers with different total width L.



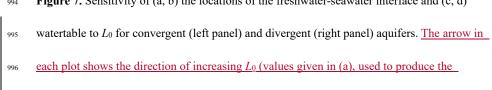
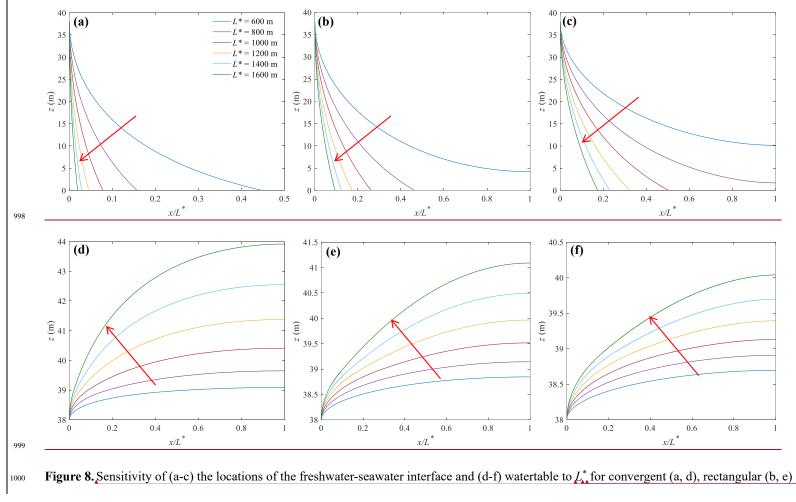


Figure 6. Freshwater-seawater interface predicted by analytical solutions for three different


aquifers with (a) high and (b) low recharge (Cases 1 and 2 in Table 1). Note that x = 1000 m is

991 the internal no-flow boundary in Figure 5.

997 different curves). Note that predictions for rectangular aquifers are independent of $L_{0.}$

	Formatted:	Font:	Not	Bold	
	Formatted:	Font:	Not	Bold,	Italic
$\left \right\rangle$	Formatted:	Font:	Not	Bold,	Superscript
	Formatted:	Font:	Not	Bold	
	Formatted:	Font:	8 pt	t	
	Formatted:	Font:	10 g	pt	
	<u> </u>		-		

and divergent (c, f) aquifers. The arrow in each plot points to the increase of L_{aa}^* values used to construct each curve (values indicated in (a)).

1003

1

Formatted:	Font:	Not	Bold,	Italic		
Formatted:	Font:	Not	Bold,	Superscript		
Formatted:	Font:	Not	Bold			
Deleted: n plot						
Formatted:	Font:	Not	Bold			

	Formatted:		
1	Formatted:	Font:	10 pt