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Abstract 25 

Seawater intrusion in island aquifers was considered analytically, specifically for annulus 26 

segment aquifers (ASAs), i.e., aquifers that (in plan) have the shape of an annulus segment. 27 

Based on the Ghijben-Herzberg and hillslope-storage Boussinesq equations, analytical 28 

solutions were derived for steady-state seawater intrusion in ASAs, with a focus on the 29 

freshwater-seawater interface and its corresponding watertable elevation. Predictions of the 30 

analytical solutions compared well with experimental data, and so they were employed to 31 

investigate the effects of aquifer geometry on seawater intrusion in island aquifers. Three 32 

different ASA geometries were compared: convergent (smaller side facing the lagoon), 33 

rectangular and divergent (larger side facing the sea). Depending on the aquifer geometry, 34 

seawater intrusion was found to vary greatly, such that the assumption of a rectangular aquifer 35 

to model an ASA can lead to poor estimates of seawater intrusion. Other factors being equal, 36 

compared with rectangular aquifers, seawater intrusion is more extensive and watertable 37 

elevation is lower in divergent aquifers, with the opposite tendency in convergent aquifers. 38 

Sensitivity analysis further indicated that the effects of aquifer geometry on seawater intrusion 39 

and watertable elevation vary with aquifer width and distance from the circle center to the 40 

inner arc (the lagoon boundary for convergent aquifers while the internal no-flow boundary 41 

for divergent aquifers). A larger aquifer width and distance from the circle center to the inner 42 

arc weaken the effects of aquifer geometry and hence differences in predictions for the three 43 

geometries become less pronounced.  44 
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Key Points 49 

➢ Analytical solutions of steady-state seawater intrusion were derived for annulus segment 50 

aquifers 51 

➢ Among three different aquifer geometries, divergent aquifers have the lowest watertable 52 
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from the circle center to the inner arc  55 
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1. Introduction 58 

Islands are extensively distributed throughout the world’s oceans. Unfortunately, their 59 

groundwater resources are impacted by sea-level rise and increased demands. According to a 60 

recent estimate, there are approximately 65 million people living in oceanic islands where 61 

groundwater may be the only source of freshwater (Thomas et al., 2020). Fresh groundwater 62 

stored on oceanic islands is mainly from precipitation (usually in the form of a freshwater 63 

lens) and its availability varies due to different factors, e.g., island topography, rainfall 64 

patterns, tides, episodic storms and human activities (White & Falkland, 2010; Storlazzi et al., 65 

2018). Seawater intrusion is thus an important issue due to its deleterious effect on oceanic 66 

island freshwater storage (e.g., Werner et al., 2017; Lu et al., 2019; Memari et al., 2020). 67 

In contrast to coastal aquifers where seawater intrudes into freshwater from one direction 68 

only, seawater intrusion occurs from two directions for narrow strip islands and from all 69 

directions for circular islands. Over the past few decades, seawater intrusion in oceanic 70 

islands has been extensively investigated in field observations (e.g., Röper et al., 2013; Post et 71 

al., 2019), laboratory experiments (e.g., Stoeckl et al., 2015; Bedekar et al., 2019; Memari et 72 

al., 2020), numerical simulations (e.g., Lam, 1974; Gingerich et al., 2017; Liu & Tokunaga, 73 

2019) and analytical solutions (e.g., Fetter, 1972; Ketabchi et al., 2014; Lu et al., 2019). 74 

Among these, analytical solutions are effective tools to assess the extent of seawater intrusion 75 

(i.e., the location of the freshwater-seawater interface), although they cannot incorporate 76 

complex factors (e.g., dispersive mixing and transient oceanic dynamics) (Werner et al., 77 

2013). The advantages of analytical solutions are that they are computationally efficient, can 78 
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be used as test cases for numerical models, and can reveal the explicit relationships between 103 

parameters that influence seawater intrusion (e.g., Fetter, 1972; Ketabchi et al., 2014; Liu et 104 

al., 2014; Lu et al., 2019;). 105 

Based on the Dupuit-Forchheimer approximation (i.e., ignoring vertical flow) and the 106 

Ghijben-Herzberg equation (Drabbe & Badon Ghijben, 1889, English translation given by 107 

Post (2018); Herzberg, 1901), Fetter (1972) presented analytical solutions describing the 108 

freshwater-seawater interface location and watertable elevation in a circular island. Bailey et 109 

al. (2010) further compared these single-layered analytical solutions with field measurements, 110 

indicating that the analytical solutions perform well in estimating the freshwater-seawater 111 

interface location and watertable elevation. Fetter’s solutions formed the foundation for many 112 

subsequent analytical studies on seawater intrusion in island aquifers. Again, for a single 113 

layer, Chesnaux and Allen (2008) and Greskowiak et al. (2013) developed analytical solutions 114 

to predict the steady-state groundwater age distribution in freshwater lenses. In addition, using 115 

single-layered analytical solutions, Morgan and Werner (2014) proposed vulnerability 116 

indicators of freshwater lenses under sea-level rise and recharge change. 117 

Since aquifers are usually heterogeneous, the single-layer analytical solutions were 118 

subsequently extended to two-layered island aquifers. Vacher (1988) derived solutions for the 119 

freshwater-seawater interface location and watertable elevation for infinite-strip islands 120 

composed of different layers. Dose et al. (2014) conducted laboratory experiments to validate 121 

and confirm the reliability of analytical solutions proposed by Fetter (1972) and Vacher 122 

(1988). Ketabchi et al. (2014) extended Fetter’s analytical solutions to calculate the 123 
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freshwater-seawater interface location and watertable elevation in two-layered circular islands 142 

subject to sea-level rise. Their results indicated that land-surface inundation caused by sea-143 

level rise has a considerable impact on fresh groundwater lenses. Recently, Lu et al. (2019) 144 

derived analytical solutions for the freshwater-seawater interface location and watertable 145 

elevation for both strip and circular islands with two adjacent layers, i.e., a less permeable 146 

slice along the shoreline of an island, and a more permeable zone inland. 147 

All the abovementioned analytical solutions apply to either strip or circular islands. 148 

According to the classification of sand dunes developed by Stuyfzand (1993; 2017), there are 149 

different island layouts that should be considered, e.g., where the shape of the island is an 150 

annulus segment, instead of a strip or circular disk (Figure 1). Annulus segment-shaped 151 

islands are found in various atolls (i.e., circular chains of islands surrounding a central 152 

lagoon) as found in the Pacific and Indian Oceans (Werner et al., 2017; Duvat, 2019). 153 

Nevertheless, analytical solutions of seawater intrusion are not yet available for annulus 154 

segment aquifers (ASAs). In general, ASAs are conceptually treated as a 2D cross section, 155 

similar to strip islands (e.g., Ayers & Vacher, 1986; Underwood et al., 1992; Bailey et al., 156 

2009; Werner et al., 2017). Evidently, topography plays an important role in groundwater flow 157 

and hence seawater intrusion (e.g., Zhang et al., 2016; Liu & Tokunaga, 2019). It remains 158 

unclear whether analytical solutions of seawater intrusion for strip islands are appropriate for 159 

ASAs. It is moreover additionally unclear how island geometry affects the freshwater-160 

seawater interface location and watertable elevation of ASAs. 161 

In this study, analytical solutions are derived for steady-state seawater intrusion for ASAs, 162 
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with a focus on the freshwater-seawater interface location and its corresponding watertable 183 

elevation. After comparing their predictions with experimental data (Memari et al., 2020), the 184 

analytical solutions are employed to investigate the effects of aquifer geometry on the 185 

freshwater-seawater interface location and watertable elevation in ASAs. 186 

2. Conceptual Model 187 

Figure 2 shows the conceptual model of an ASA (a slice of an atoll island). The plan 188 

view of the model domain is represented as a sector (EFGH) with an angle   (Figure 2a). 189 

Radial flow only is considered. The sea (EF) and lagoon (HG) boundaries are located at L + 190 

L0 [L] and L0 [L] from the circle center, respectively. Since the longitudinal length is usually 191 

much longer than the lateral length for an atoll island (Werner et al., 2017), seawater intrusion 192 

from the lateral sides (EH and FG, Figure 2a) is negligible in comparison to the longitudinal 193 

side, especially for the middle portion of an ASA. Therefore, EH and FG are treated as lateral 194 

no-flow boundaries. Note that treating the lateral sides as no-flow boundaries is often used in 195 

studies of freshwater lenses on atoll islands (e.g., Ayers & Vacher, 1986; Underwood et al., 196 

1992; Bailey et al., 2009; Werner et al., 2017). The side view of the model domain is 197 

conceptualized as a rectangle (ABCD) along the radial direction with dimensions of L [L] 198 

(width) × d [L] (height) (Figure 2b, c). AD is the impermeable base while BC is the land 199 

surface through which aquifer recharge flows. 200 

Both the sea and lagoon water levels are set to sH  [L], which results in an internal no-201 

flow boundary (water divide, where the slope of the watertable is zero) between the sea and 202 

lagoon (location of the z-axis in Figure 2b,c). The segment between the sea and the internal 203 
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no-flow boundary is referred to as Unit 1, whereas the segment between the internal no-flow 230 

and lagoon boundaries is referred to as Unit 2 (Figure 2). The widths of Units 1 and 2 are 1l  231 

[L] and 2l  [L], respectively. In addition, the flow is asymmetrical in Units 1 and 2, with 232 

divergent flow (the aquifer width w [L] increases along the flow direction) in Unit 1 and 233 

convergent flow (w decreases along the flow direction) in Unit 2. 234 

The x-z coordinate origin is placed at the intersection of the internal no-flow boundary 235 

and impermeable base, with the x-axis pointing to the circle center and the z-axis pointing 236 

vertically upward. Further,   [L] is the watertable height, h  [L] is the vertical distance 237 

between the watertable and the interface, sh  [L] is the vertical distance between the sea level 238 

and the interface, and c s sh H h= −  [L] is the vertical distance from the impermeable base to 239 

the interface for given x (Figure 2b,c). Constant recharge into the saturated zone, N [LT-1], is 240 

assumed. There are two possibilities for the interface tip (i.e., the location where the 241 

freshwater-seawater interface connects to the z-axis or the bottom boundary): above the 242 

aquifer bed (Figure 2b) or on the aquifer bed (Figure 2c). The x-coordinates of the interface 243 

tip in Units 1 and 2 are denoted as xt1 [L] and xt2 [L], respectively (Figure 2c). Note that xt1 = 244 

xt2 = 0 when the interface tip is above the aquifer bed, as in Figure 2b. 245 

Consistent with previous studies (e.g., Ketabchi et al., 2014; Lu et al., 2016; 2019), the 246 

following assumptions are made: (1) steady-state flow, (2) sharp freshwater-seawater 247 

interface, (3) homogeneous and isotropic aquifer, (4) negligible unsaturated flow, (5) recharge 248 

is less than the saturated hydraulic conductivity (else overland flow which will appear 249 
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following ponding occurs), and (6) vertical flow in the saturated zone is negligible (Dupuit-319 

Forchheimer approximation). 320 

3. Analytical Solutions 321 

Groundwater flow in an ASA (Figure 2) can be described as (Paniconi et al., 2003; Troch 322 

et al., 2003), 323 

 ( )
S

wq Nw
x t

 
− + =
 

 (1)324 

where q  [L2T-1] is the Darcy flux per unit length along the aquifer; S  [L2] is the total 325 

water storage per unit distance along the aquifer, and t [T] is time. Equation (1) is derived 326 

from the hillslope-storage Boussinesq equation reformulated in terms of soil water storage 327 

rather than watertable elevation, as widely used previously (e.g., Stagnitti et al., 1986; Troch 328 

et al., 2003; Hilberts et al., 2005; Kong et al., 2016; Luo et al., 2018). At steady state, equation 329 

(1) reduces to, 330 

 ( ) 0wq Nw
x


− + =


 (2) 331 

According to Darcy’s law and the Dupuit-Forchheimer approximation, the freshwater 332 

flux in the aquifer segment between the seaward boundary and interface tip can be calculated 333 

as (ϕ is independent of z), 334 

 ( )
ch

s cs

d
q K dz

dx

d
K h

dx

 



= −− = −  (3) 335 

where sK  [LT-1] is the saturated hydraulic conductivity. 336 

3.1. Interface Tip above the Aquifer Bed 337 

We first consider the situation where the interface tip is above the aquifer bed (Figure 338 

2b). In Unit 1 where ( )0 2w L l x= + − , substituting equation (3) into equation (2) and then 339 
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integrating gives (based on the Dupuit-Forchheimer approximation), 353 

 ( ) ( ) ( ) ( )
2 2

0 2 0 2 0 2

1

2
s c

d
L l x L l N L l x K h

dx




 
− 

 
− + − + = − + − −  (4)354 

According to the Ghijben-Herzberg equation, the vertical thickness of the freshwater zone (h) 355 

in the interface zone is given by, 356 

 ( )( )1c sh h H = = + −−  (5) 357 

where ( )/
f s f

   = −  is the dimensionless density difference, and 
f

  [ML-3] and 
s

  358 

[ML-3] are the freshwater and seawater densities, respectively. Substitution of equation (5) 359 

into equation (4) yields, 360 

 ( ) ( ) ( )( )( )
2 2

0 2 0 2 0 2

1
1

2
s sL l x L l N L

d
H

dx
lK x


 − + − + − + − − = + −

 
 (6) 361 

Rearranging equation (6) produces, 362 

 
( ) ( )

( )
( )( )

2

0 2 0 2

0 22
1

2
s s

d
K H

L l x N N L

dx

l

L l x


 

+ − +
− +

+ −
= − + −  (7) 363 

Integrating equation (7) leads to, 364 

 
( )

( ) ( ) ( )
( )

2

0 2

0 2 0 2

2

2

1

1 1
ln 1

2 2 4 2

s

s

L l
L l x L l

N H
Nx Nx C K




−
− − + + = − +

+
+ − +  (8) 365 

where 1C  is the integration constant that is determined by the sea boundary condition (i.e., 366 

1x l= − , sH = ), 367 

 
( )

( ) ( )
2

0 2

1

2

0 2 1 0 2 1 1

1 1
ln

2 2 4

L l
L l l

N
C Nl NL l l

+
+ − −+= +  (9) 368 

The relation between sh  and   is given by, 369 

 ( )s sh H = −  (10) 370 

Combining equation (8) with equation (10) and eliminating   yields, 371 
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( )

( ) ( ) ( )
2

0 2

0 2 0 2

2
2

1 2

1 1
ln 1

2 2 4 2

s
s

L l
L l x L l

N h
Nx Nx C K 


− − + + = − +

+
+ − +  (11) 376 

Equation (11) gives the freshwater-seawater interface location in Unit 1 once 1l  and 2l  are 377 

determined. 378 

Equation (8) applies to Unit 2 by replacing 1C  with 2C , 379 

 
( )

( ) ( ) ( )
( )

2

0 2

0 2 0 2

2

2

2

1 1
ln 1

2 2 4 2

s

s

L l
L l x L l

N H
Nx Nx C K




−
− − + + = − +

+
+ − +  (12) 380 

where 2C  is chosen to satisfy the lagoon boundary condition ( 2x l= , sH = ), 381 

 
( )

( ) ( )
2

0 2 2

0 0 2 2 22

1 1
ln

2 2 4

L l
L L l l l

N
C N N= + −

+
+  (13) 382 

Combining equations (10) and (12) and eliminating   generates, 383 

 
( )

( ) ( ) ( )
2

0 2

0 2 0 2

2
2

2 2

1 1
ln 1

2 2 4 2

s
s

L l
L l x L l

N h
Nx Nx C K 


− − + + = − +

+
+ − +  (14) 384 

Equation (14) gives the freshwater-seawater interface location in Unit 2 once 2l  is 385 

determined. Since the sea level and lagoon water level are the same, an internal no-flow 386 

boundary exists between the sea and lagoon, i.e., 387 

  = 0x , ( ) ( )
1 2
= s sunit unit

h h  (15) 388 

where ( )
1s unit

h  and ( )
2s unit

h  represent hs in Units 1 and 2, respectively. 389 

Combining equations (11), (14) and (15) leads to expressions for 1l  and 2l , 390 

 
( ) ( )

2

0
1 0

0 0

2

2ln 2ln

LL L
l L L

L L L

+
= + −

+ −
 (16) 391 

 
( ) ( )

2

0
2 0

0 0

2

2ln 2ln

LL L
l L

L L L

+
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+ −
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As indicated by equations (16) and (17), the internal no-flow boundary between the sea and 393 
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lagoon only depends on L and L0. For known 1l  and 2l , equations (11) and (14) can be 399 

employed to predict the freshwater-seawater interface location in Units 1 and 2, respectively. 400 

Once the interface location is determined, h  and   are given by, 401 

 
1

sh h




+
=  (18) 402 

 +s
s

h
H


=  (19) 403 

3.2. Interface Tip on the Aquifer Bed 404 

When the interface tip is on the aquifer bed, the location of the internal no-flow 405 

boundary remains the same as for the interface tip above the aquifer bed. The freshwater-406 

seawater interface for Units 1 and 2 can be determined by equations (11) and (14), 407 

respectively. Then, from equation (18), h at the aquifer segment between the sea boundary and 408 

the interface tip is determined. To calculate h for the aquifer segment between the interface tip 409 

and the internal no-flow boundary, the x-coordinate of the interface tip is found. At the 410 

interface tip of Unit 1 ( 1tx x= ), 411 

 s sh H=  (20) 412 

 
1+

sH





=  (21) 413 

With equations (11) and (21), xt1 is given by, 414 

 
( )

( ) ( ) ( )
2

0 2

0 2

2
2

1 1 11 0 22

1 1
ln 1

2 2 4 2

s
t tt s

N H
N

L l
L l x x NL Kl x C 



+
+ −− − = − − ++ +  (22) 415 

Let, 416 

 
1

4
a N=  (23a) 417 

 ( )0 2

1

2
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( )

2

0 2

2

NL
c

l+
= −  (23c) 436 

and 437 

 ( )
2

1 2
1

2

s
s

H
m C K 


= − − +  (23d) 438 

then equation (22) becomes, 439 

 ( )1 12

2

1 0lnt t tLax x c xlb m++ + − =  (24) 440 

which is solved by a root-finding method. 441 

The freshwater discharge for the aquifer segment between the interface tip and the 442 

internal no-flow boundary is calculated as, 443 

 ( ) ( ) ( )
2 2

0 2 0 2 0 2
2

1
s

d
L l x L l N L l x K

dx




 
−− 

 
+ − + = − + −  (25)444 

Repeating the steps from equations (4) to (8) gives, 445 

 
( )

( ) ( )
2

0 2

0 2 0 2

2 2

3

1 1
ln

2 2 4 2

s
L l N K

Nx Nx CL l x L l − − + + = −
+

+ − +  (26) 446 

where 3C  is determined by substituting equation (21) into equation (26). Then, equation (26) 447 

can be adopted to calculate h for the segment between the interface tip and the internal no-448 

flow boundary where h = . 449 

Similarly, the x-coordinate of the interface tip in Unit 2 (xt2) is obtained by substituting 450 

equation (20) into equation (14). Then, the watertable (h) of the aquifer segment between the 451 

interface tip and the internal no-flow boundary for Unit 2 is computed by repeating the steps 452 

from equations (22) to (26). 453 
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4. Results and Discussion 465 

4.1. Validation of the Analytical Solutions 466 

The analytical solutions were validated by comparing their predictions with experimental 467 

data compiled from Memari et al. (2020), who reported experiments carried out using a 15° 468 

radial tank. The tank contained three distinct chambers: internal no-flow boundary condition, 469 

porous medium and constant-head boundary condition (i.e., sea or lagoon). The internal no-470 

flow and seaward boundaries were respectively located at 10 cm and 55.5 cm from the circle 471 

center, i.e., 45.5 cm from the internal no-flow boundary to the constant-head boundary along 472 

the radial direction Note that the experimental tank only corresponds to Unit 1 of the radial 473 

aquifer with 1l  = 45.5 cm and 2l  = 0, so the analytical results were calculated using 474 

equations (11) and (24). The thicknesses of the porous medium and sea level were 28 and 25 475 

cm, respectively. The sand used in experiments had a saturated hydraulic conductivity of 1.23 476 

× 10-2 m s-1 and an effective porosity of 0.40. The measured saltwater and freshwater densities 477 

were respectively 1.015 and 0.999 g ml-1, leading to 62 = . Two different recharge events 478 

with constant N, 2.46 × 10-4 and 1.08 × 10-4 m s-1, were considered in the experiments. 479 

Figure 3 shows the comparison between analytical and experimental results of the 480 

freshwater-seawater interface for different recharge events. In general, the analytical solution 481 

predicts the freshwater-seawater interface well for both recharge events, despite there being 482 

some differences between the analytical results and the measurements, particularly in the zone 483 

near the constant-head boundary (x = -45 cm). These deviations are likely due to assumptions 484 

made in the analytical solution, i.e., (i) a sharp freshwater-seawater interface, (ii) ignoring the 485 
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effect of freshwater discharge, and (iii) neglecting the vertical flow (the Dupuit-Forchheimer 514 

approximation). 515 

4.2. Effects of Aquifer Geometry on Seawater Intrusion 516 

Previous studies showed that boundary conditions play a critical role in estimates of 517 

seawater intrusion (Werner & Simmons, 2009; Lu et al., 2016). Therefore, the internal no-518 

flow boundary between the sea and lagoon was examined for various ASAs. As indicated by 519 

equations (16) and (17), this internal no-flow boundary depends only on L and L0. The values 520 

of 1l  and 2l  calculated respectively from equations (16) and (17) are shown in Figure 4 for 521 

three typical values of L (500, 1000 and 2000 m) with L0 varying from 102 to 106 m. In 522 

general, the internal no-flow boundary deviates from the middle of the ASA. When L0 is less 523 

than 105 m, 1l  is larger than 2l  for the three different values of L, indicating an internal no-524 

flow boundary closer to the lagoon boundary. For example, taking L = 2000 m and L0 = 100 m 525 

leads to 1l  = 1240 m and 2l  = 760 m, with a deviation of 240 m (12% of 2000 m) from the 526 

middle of the ASA. When L0 exceeds 105 m, however, the location of the internal no-flow 527 

boundary can be approximated as being at the middle of the ASA for all considered values of 528 

L. This is in contrast to strip and circular aquifers where the internal no-flow boundary is 529 

always in the middle of aquifers due to symmetry. 530 

Since the internal no-flow boundary location between the sea and lagoon deviates from 531 

the middle of the ASA, we expect aquifer geometry to play a significant role in controlling 532 

seawater intrusion. As mentioned previously, ASAs can be convergent (Unit 1) or divergent 533 

aquifers (Unit 2) where the extent of seawater intrusion may be different. However, for strip 534 
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aquifers, both Units 1 and 2 are rectangular with the same extent of seawater intrusion. 561 

Therefore, three geometries were compared in this study: convergent, rectangular and 562 

divergent (Figure 5). These geometries have been widely examined in hillslope hydrology 563 

regrading to the effects of aquifer geometry on runoff generation (Troch et al., 2003; Kong et 564 

al., 2016; Luo et al., 2018). To present the results more conveniently, we replaced the x-z 565 

coordinate origin at the intersection of the constant-head boundary (sea or lagoon) and the 566 

impermeable base, with the x-axis pointing horizontally to the internal no-flow boundary and 567 

the z-axis vertically upward (Figure 5). In addition, the distance between the constant-head 568 

boundary and the internal no-flow boundary (aquifer width) is denoted as L* (Figure 5) while 569 

the other parameters remain the same. 570 

Following previous studies (e.g., Lu et al., 2016; 2019), different cases were selected to 571 

show the effects of aquifer geometry on seawater intrusion (Cases 1 and 2 in Table 1). 572 

According to Werner et al. (2017), the width of atoll islands generally varies from 100 to 1500 573 

m along the radial direction. In order to focus on the effects of aquifer geometry on seawater 574 

intrusion, the same L* and L0 were assumed for the three aquifers, with L* and L0 equal to 575 

1000 and 200 m, respectively. Note that L0 is the distance from the circle center to the lagoon 576 

boundary for convergent aquifers, whereas it represents the distance from the circle center to 577 

internal no-flow boundary for divergent aquifers hereafter. The sand characteristics were the 578 

same as in the experiments of Memari et al. (2020). Two recharge events were considered 579 

(Cases 1 and 2, Table 1). The freshwater-seawater interface was calculated using the 580 

analytical solutions for the three different aquifers. Note that the Appendix presents analytical 581 

Deleted: For the sake of simplicity,582 

Deleted: seawater 583 

Deleted: horizontally 584 

Deleted: no-flow585 

Deleted: no-flow586 

Deleted: redefined587 

Formatted: Font: Italic

Formatted: Superscript

Deleted: keep588 

Deleted: hypothesized 589 

Deleted: design590 

Deleted:  m591 

Deleted: we assumed 592 

Deleted: A 593 



16 

Formatted: Font: 8 pt

Formatted: Font: 8 pt

solutions for seawater intrusion in strip aquifers deduced from Lu et al. (2019). 594 

Figure 6 shows the freshwater-seawater interface calculated for Cases 1 and 2. As can be 595 

seen, the extent of seawater intrusion is noticeably different for the three aquifer geometries. 596 

For high recharge (1 × 10-6 m s-1), the interface tip is located at around 500 m for the 597 

divergent aquifer, which is about twice the value of the rectangular aquifer and six times the 598 

value for the convergent aquifer (Figure 6a). When the recharge decreases to 3 × 10-7 m s-1, 599 

the interface tip moves further landward for the three aquifers as expected, but the difference 600 

between results is still great (Figure 6b). The interface tip is displaced above the aquifer bed 601 

for both the rectangular and divergent aquifers, while it remains on the aquifer bed for the 602 

convergent aquifer. Regardless of the recharge rate, the most landward freshwater-seawater 603 

interface occurs in the divergent aquifer and vice versa for convergent aquifer. This underlines 604 

that aquifer geometry plays a major role in controlling seawater intrusion and hence it is 605 

necessary to account for aquifer geometry in analyses of seawater intrusion. 606 

4.3. Sensitivity Analysis 607 

A sensitivity analysis was conducted to investigate to what extent aquifer geometry 608 

affects seawater intrusion. Since we focus on the effects of aquifer geometry on the locations 609 

of the freshwater-seawater interface and watertable, values of L0 and L* were varied, with 610 

other parameters kept constant. When conducting the sensitivity analysis of L0, L* was fixed 611 

at 1000 m, which is a typical value for ASAs (Werner et al., 2017). Figure 7 shows the 612 

sensitivity of the locations of the freshwater-seawater interface and watertable to changes in 613 

L0 (Case 3, Table 1). The freshwater-seawater interface and watertable elevation are 614 
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independent of L0 for rectangular aquifers (Appendix). However, the freshwater-seawater 645 

interface and watertable elevation differ greatly when varying L0 for both convergent and 646 

divergent aquifers, highlighting that L0 plays an important role in affecting seawater intrusion. 647 

Specifically, as L0 increases, the freshwater-seawater interface moves more landward (larger 648 

x/L*, Figure 7a) and its corresponding watertable elevation decreases (Figure 7c) for 649 

convergent aquifers. In contrast, for divergent aquifers increasing L0 moves the freshwater-650 

seawater interface more seaward (smaller x/L*, Figure 7b) and its corresponding watertable 651 

elevation increases (Figure 7d). For a given L0, divergent aquifers have the largest extent of 652 

seawater intrusion and the lowest watertable elevation, and conversely for convergent aquifers 653 

(Figure 7). 654 

Regardless of the freshwater-seawater interface and watertable elevation, the deviation 655 

between rectangular aquifers and divergent or convergent aquifers is significant when L0 is 656 

less than 2000 m (Figure 7). For example, the x-coordinate of the interface tip (z = 0) is 262 m 657 

for the rectangular aquifer at L0 = 200 m, whereas it is 78 (31% of that in the rectangular 658 

aquifer) and 500 m (191% of that in the rectangular aquifer) for the convergent and divergent 659 

aquifers, respectively. As L0 increases, the deviation between the three aquifers decreases. 660 

When L0 = 2000 m, the x-coordinate of the interface tip is 262, 209 (80% of that in the 661 

rectangular aquifer) and 318 m (121% of that in the rectangular aquifer) for the rectangular, 662 

convergent and divergent aquifers, respectively. As L0 increases to 6000 m, the freshwater-663 

seawater interface and watertable elevation of both convergent and divergent aquifers tend to 664 

those of rectangular aquifers, i.e., geometry effects decrease with increasing L0. These results 665 
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highlight the critical role played by the shape of aquifers. As a result, ignoring geometry 687 

effects may lead to an inappropriate management strategy for groundwater resources in atoll 688 

islands. 689 

The sensitivity of the freshwater-seawater interface and watertable elevation to L* was 690 

investigated by varying L* from 600 to 1600 m while fixing L0 to 200 m (Case 4, Table 1). As 691 

shown in Figure 8, contrary to the results for varying L0, in this case the freshwater-seawater 692 

interface and watertable elevation in all three topographies are related to L*. Again, the extent 693 

of seawater intrusion is greatest in divergent aquifers and least in convergent aquifers for 694 

given L*. When L* increases, the freshwater-seawater interface moves seaward and the 695 

watertable elevation increases, regardless of aquifer geometry, i.e., the seawater intrusion 696 

decreases (Figures 8a-c). This is because the total freshwater flux increases with increasing 697 

L*, leading to a higher hydraulic gradient and hence less seawater intrusion (Figures 8d-f). 698 

Moreover, an increase in L* reduces the differences in the seawater intrusion distance among 699 

the three geometries, i.e., geometry effects on seawater intrusion are more significant at small 700 

L*. However, even at the maximum L* considered (1600 m), the deviation between three 701 

aquifers remains significant: The x-coordinate of the interface tip is about 148 m for the 702 

rectangular aquifer, whereas it is about 32 (22% of that in the rectangular aquifer) and 278 m 703 

(188% of that in the rectangular aquifer) for the convergent and divergent aquifers, 704 

respectively. Both L0 and L* can greatly impact seawater intrusion estimates for divergent and 705 

convergent aquifers, highlighting the necessity to include geometry effects in analytical 706 

solutions of seawater intrusion. 707 
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5. Conclusions 724 

Based on the Ghijben-Herzberg and hillslope-storage Boussinesq equations, we derived 725 

analytical solutions of steady-state seawater intrusion for ASAs, with a focus on the 726 

freshwater-seawater interface and its corresponding watertable elevation as affected by 727 

recharge. After comparing with experimental data of Memari et al. (2020), the analytical 728 

solutions were employed to examine the effects of aquifer geometry on seawater intrusion in 729 

island aquifers. Three different shapes of island aquifer were compared: convergent, 730 

rectangular and divergent. The results lead to the following conclusions: 731 

(1) The presented analytical solutions perform well in predicting the experimental 732 

freshwater-seawater interface, suggesting that these analytical solutions can predict seawater 733 

intrusion reasonably in different aquifer geometries. 734 

(2) Island geometry plays a significant role in affecting the freshwater-seawater interface 735 

and watertable elevation. Other factors being equal, the extent of seawater intrusion is greatest 736 

in divergent aquifers, and conversely least in convergent aquifers. In contrast, the watertable 737 

elevation is lowest in divergent aquifers and highest in convergent aquifers. 738 

(3) The effects of aquifer geometry on seawater intrusion are dependent on the aquifer 739 

width and distance from the circle center to the internal no-flow boundary (Figures 7 and 8). 740 

A larger aquifer width and distance from the circle center to the inner arc (the lagoon 741 

boundary for convergent aquifers while the internal no-flow boundary for divergent aquifers) 742 

weakens the role played by aquifer geometry and hence lead to a smaller deviation of the 743 

extent of seawater intrusion between the three topographies. 744 
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Real island aquifers are expected to exhibit more complexity than considered here, e.g., 760 

that will have more complex shapes and are subjected to transient flow conditions caused by 761 

tides, waves and pumping (Mantoglou et al. 2003; Pool & Carrera., 2011; Werner et al., 762 

2013). In addition, since the experimental scale of Memari et al. (2020) is necessarily small, 763 

future experiments and field data are needed to further validate and facilitate the analytical 764 

solutions. Despite this, the new analytical solutions, validated against experiments, can be 765 

used as a tool to rapidly estimate seawater intrusion in ASAs once known island geometry and 766 

corresponding soil properties are given.  767 
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Appendix: Analytical Solutions for Rectangular Aquifers 771 

For rectangular aquifers, the seawater intrusion in Unit 1 is identical to that in Unit 2 772 

because of symmetry. With the interface tip on the aquifer bed, analytical solutions for the 773 

freshwater-seawater interface (hs), watertable elevation (h), and x-coordinate of the interface 774 

tip in Unit 2 (xt2) can be respectively written as (Lu et al., 2019), 775 
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When the interface tip is above the aquifer bed, the analytical solution for the freshwater-779 

seawater interface location and watertable elevation in Unit 2 are the same as equations (A1) 780 

and (A2), respectively.  781 
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Table 1. List of parameters use in different simulations. 962 

 No. L* (m) L0 (m) Hs (m) d (m)  (-) ne (-) Ks (m s-1) N (m s-1) 

Cases 

Simulated 

1 1000 200 38 45 40 0.4 1.23 × 10-2
 1 × 10-6

 

2 1000 200 38 45 40 0.4 1.23 × 10-2
 3 × 10-7

 

3 1000 
† 38 45 40 0.4 1.23 × 10-2

 1 × 10-6
 

4 
† 200 38 45 40 0.4 1.23 × 10-2

 1 × 10-6 

†The parameter is varied: The range of L0 is from 200 to 6000 m, whereas the range of L* is from 600 to 1600 m. 963 Deleted: .964 



34 

 965 

Figure 1. Island with an annulus segment in the Namu Atoll, Marshall Islands (© Google 966 

Earth).  967 
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 968 

Figure 2. Conceptual model of an annulus segment aquifer (a slice of an atoll island). (a) Plan 969 

view and (b, c) side view with the saltwater interface tip (b) above the aquifer bed (single 970 

location) and (c) on the aquifer bed (two locations). In (a), the sea boundary is on EF and the 971 

atoll lagoon boundary is on HG; In (b) and (c), AD is the impermeable base and OO* is the 972 
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internal no-flow boundary.  973 
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 974 

Figure 3. Comparison between analytical and experimental (data compiled from Memari et 975 

al., 2020) results for the freshwater-seawater interface location for different recharge events. 976 

Note that the left and right sides are the sea and internal no-flow boundaries, respectively.  977 
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 978 

Figure 4. Widths of Unit 1 and Unit 2 versus L0 for aquifers with different total width L.979 
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 980 

 981 

 982 

Figure 5. Three-dimensional view of (a) convergent (smaller side facing the lagoon), (b) 983 

rectangular and (c) divergent aquifers (larger side facing the sea) compared in this study. L* 984 

represents the distance from the sea/lagoon to the internal no-flow boundary, i.e., 1l
 or 2l

 in 985 

Figure 2. The internal no-flow boundary corresponds to the z-axis in Figure 2.  986 
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 987 

 988 

Figure 6. Freshwater-seawater interface predicted by analytical solutions for three different 989 

aquifers with (a) high and (b) low recharge (Cases 1 and 2 in Table 1). Note that x = 1000 m is 990 

the internal no-flow boundary in Figure 5.  991 
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 992 

 993 

Figure 7. Sensitivity of (a, b) the locations of the freshwater-seawater interface and (c, d) 994 

watertable to L0 for convergent (left panel) and divergent (right panel) aquifers. The arrow in 995 

each plot shows the direction of increasing L0 (values given in (a), used to produce the 996 

different curves). Note that predictions for rectangular aquifers are independent of L0.997 
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999 

Figure 8. Sensitivity of (a-c) the locations of the freshwater-seawater interface and (d-f) watertable to L* for convergent (a, d), rectangular (b, e) 1000 
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and divergent (c, f) aquifers. The arrow in each plot points to the increase of L* values used to construct each curve (values indicated in (a)). 1001 

 1003 

Formatted: Font: Not Bold, Italic

Formatted: Font: Not Bold, Superscript

Formatted: Font: Not Bold

Deleted: n plot1004 

Formatted: Font: Not Bold


