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Abstract: Precipitation was the most important water resource in semi-arid regions of China. The 

redistribution of precipitation among atmospheric water, soil water and groundwater are related to 

the land surface ecological system sustainability. The study took widely replanted Pinus sylvestris 

var. mongolica (PSM) in Mu Us Sandy Land (MUSL) as a research object and monitored 

precipitation, soil moisture, sap flow, and deep soil recharge (DSR) to find out moisture 5 

distribution in shallow soil layer. Results showed that the restoration process of PSM in MUSL 

changed the distribution of precipitation. Precipitation was intercepted in shallow soil, 

evapotranspiration increased, and DSR significantly decreased, resulting in up to 466.94 mm of 

precipitation returning to the atmosphere through evapotranspiration in 2016. Vegetation increased 

soil water storage (SWS) capacity, with maximum SWS in PSM plot and bare sandy land (BSL) 10 

being 260 mm and 197 mm per unit horizontal area, respectively in 2016. DSR decreased from 

54.03% of precipitation in BSL to 0.2% of precipitation in PSM in 2016. Infiltration was not only 

intercepted by PSM ecosystem, resulting in a time lag, but was also affected by soil temperature, 

and the infiltration rate in the BSL plot was 11 times of that in the PSM plot from August to 

September in an annual base. SWS decreased 16 mm and 7.58 mm per unit horizontal area over a 15 

one-year period (from March to October) in 2017 and 2019, respectively. The PSM annual sap 

flow was maintained at a relatively constant level of 153.98 mm/yr. This study helps understand 

the role of precipitation-induced groundwater recharge in the process of vegetation restoration in 

semi-arid regions and explains the possible causes of PSM forest degradation. It is necessary to 

reduce PSM density to allow adaptation to extreme drought in the future. 20 

Keywords: Three North Shelterbelt Project, Mu Us Sandy Land, Pinus sylvestris var Mongolica, 

Precipitation Redistribution, Deep Soil Recharge 
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1 Introduction  

China’s semi-arid regions have experienced serious and continuous ecological and environment 

challenges for many decades with one third of the country was classified as desertification area 25 

(Cao et al., 2011;Cao et al., 2018). To remedy the ecological and environmental problems in the 

northern region of China, the Chinese government has implemented a large-scale vegetation 

restoration plan. Since 1978, the Three-North Shelter Project (3NSP) has carried out a large-scale 

vegetation restoration campaign in the arid and semi-arid regions of northern China (Zhang et al., 

2017;Deng et al., 2019). The goal of 3NSP is to increase the forest coverage in the Three-North 30 

region from 5 % to 15 % by 2050. There are four ecological projects of vegetation restoration to 

control desertification in the world (Shi et al., 2020;Wu et al., 2020), all of them choose to rebuild 

vegetation in arid and semi-arid regions. Views on the results of afforestation are different. Some 

researchers argue that the effect is significant, but others argue that afforestation has not reached 

the expected ecological restoration goal for a variety of reasons (Lu et al., 2018;Han et al., 2020). 35 

In view of the long-term influences of vegetation restoration in resolving environmental issues, we 

need to evaluate vegetation restoration activities.  

There are several evaluation methods for the advantages and disadvantages of vegetation 

restoration, considering that water resources as the most important ecological factors in arid and 

semi-arid regions (Yu et al., 2019;Azareh et al., 2019). Some researches have conducted a detailed 40 

and systematic assessment of the hydrological process after vegetation restoration to understand 

the impact of vegetation restoration on the local eco-hydrological environment (Bai et al., 

2020;Shao et al., 2019). 3NSP has alleviated some environmental problems in the north region of 

China such as controlling the sandstorm and reducing the sandy soil erosion (An et al., 2019;Li et 

al., 2017), but the impact of large-scale afforestation on the hydrological cycle is still largely 45 
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unknown (Krause et al., 2018;Doelman et al., 2020;Zeng et al., 2020). Large-scale afforestation 

can affect water cycle like consuming vast majority soil water and regulating water redistribution 

process (Zhou et al., 2019;Zhang et al., 2018). Some researchers suggest that vegetation retains 

water in shallow root layer, but consumes more soil water to survive (Cheng et al., 2020a;Wei et 

al., 2019). The increase of vegetation also increases evapotranspiration (ET) (Bai et al., 2020), 50 

thereby reducing runoff and soil water storage (SWS) (Wang et al., 2020a;Bai et al., 2020). 

Researches also have shown that vegetation restoration can increase regional precipitation (Yang 

et al., 2018;Feng et al., 2018). Some scholars state that vegetation restoration does not reduce the 

water resources amount in a region, but instead changes the distribution of water resources there 

(Su and Shangguan, 2019;Chen et al., 2020). Under the background of global climate change, 55 

hydrological cycle and its interrelationship with artificial vegetation restoration cannot be ignored 

(Li et al., 2018). In Mu Us Sandy Land (MUSL), a typical semi-arid region in 3NSP, vegetation 

restoration reshapes the hydrological cycle and causes the decline of groundwater level and the 

death of some reconstructed vegetation, making the research on hydrological cycle in this region 

particularly important for assessing the water resources (Meng et al., 2020;Zhao et al., 2019). Some 60 

researches attempt to quantify the impacts of afforestation and climate change on the hydrological 

cycle in the region, but there is little information about the overall distribution of water resources 

from top of the canopy to the bottom of the root zone in this region (Wang et al., 2020b).  

Forest ecosystems are vital to our planet, like fixed carbon, and forest ecosystems in Northwest 

China can suppress wind erosion and fix sand (Piao et al., 2020). Most of the forests in the 3NSP 65 

are rain-fed forest(Cheng et al., 2021b), thus whether the precipitation can supply the survival of 

reconstructed PSM and the precipitation redistribution in shallow soil layer is important in this 

rain-fed forest ecosystems, which affect the water balance of forest land and the biochemical cycle 
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of this region. Precipitation flow through the canopy to form throughfall(Marin et al., 2000). 

Throughfall and stem flow can reach the surface soil layer, recharge soil moisture, and eventually 70 

are utilized by plant roots. Due to the importance and complexity of precipitation interception, a 

large number of previous studies have been carried out on this subject for decades (Helvey and 

Patric, 1965;Cheng et al., 2021a), but there are relatively few studies concerning precipitation 

redistribution from atmospheric water to groundwater in rain-fed forest ecosystem such as 3NPS 

in arid and semi-arid regions (Zheng et al., 2018). Among those limited studies in arid and semi-75 

arid regions, shrubs are usually the concern rather than trees, which are not native to this region 

(Zhang et al., 2015), and the tall branches and broad root system of trees make them difficult to 

carry out the controlled field-scale experiments.  

After the successful introduction of Pinus sylvestris var. mongolia (PSM) in MUSL, more and 

more attention has been paid to its excellent characteristics of drought resistance, barren resistance 80 

and strong adaptability(Gao and Huang, 2020). PSM has become the most widely planted tree 

species in northern sandy areas of China include MUSL, and it has played an important role in 

controlling the expansion of sandy land. However, since the 2000s, PSM plantation in MUSL have 

shown signs of degradation. Moreover, PSM forest in MUSL cannot reproduce, thus its 

adaptability has been questioned by the academic community. Some researchers state that the 85 

decrease in precipitation is the main reason for its degradation (Guo et al., 2020), but there are also 

studies showing that precipitation actually increases after vegetation restoration in this region (Yan 

et al., 2015). Indeed, there are few studies on precipitation redistribution of PSM forest, and it is 

crucial to carry out such researches in the forest land of PSM vegetation restoration in MUSL to 

better manage the forest land of PSM. 90 

The scientific community generally agrees that vegetation restoration has changed the 
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redistribution process of precipitation resources, but the amounts of atmospheric water, soil water, 

plant water and groundwater transformed from precipitation have not been quantified 

accurately(Yu et al., 2018). Instead, previous studies have focused on the process of ground water 

distribution rather than the overall distribution of precipitation (Dekker and Ritsema, 95 

1994;Maxwell et al., 2007). The purpose of this study is to find out the effect of rain-fed PSM on 

precipitation redistribution in MUSL through in-situ observation experiments. Based on the 

analysis of the collected dataset, we hope to answer the following questions: Can precipitation 

recharge groundwater after PSM restoration? What are the proportions of evapotranspiration, SWS 

and groundwater on precipitation? Can rain-fed PSM survive under existing annual precipitation 100 

conditions? To answer above problems, we have designed a comprehensive observation 

experiment system through continuous observation of precipitation redistribution process in PSM 

forest land and bare sandy land (BSL) in the northeastern MUSL. We try to understand the 

precipitation redistribution mechanism of PSM replantation and provide a theoretical basis for 

managing sand-fixation plantation in MUSL. We will also try to exam whether the incapability of 105 

PSM reproduction is caused by water shortage. The knowledge gained from this investigation can 

provide insights for vegetation restoration and desertification control in northern China or similar 

regions in other parts of the world. 

2 Material and methods  

2.1 Study area 110 

The study area is located in Taigemiao (39°10 ′ 13.62 ′′ N, 109°31 ′ 51.59 ′′ E) on the northeastern 

of MUSL. MUSL is one of the severe desertification areas in China, thus a large area of vegetation 

restoration has been carried out since 1978. The reconstructed tree species include PSM, Salix 

psammophilous and Artemisia annua. PSM was planted in belts, with a row spacing of 20 meters. 
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This area belongs to typical semi-arid sandy region with dry climate with an average annual 115 

temperature of 6.2 °C and a soil freeze-thaw period of about 150 days. The multi-year average 

annual precipitation is 358.2 mm. The groundwater depth in the study area is 5-8 m, and varies 

with seasons.  

 

Figure 1 Location of research region, the red dots represent BSL plot, and the blue dots represent 120 

PSM plot. 

The source of groundwater recharge entirely come from precipitation in this region. The annual 

precipitation distribution is uneven, with summer (June to August) accounting for more than 70 % 

of the annual precipitation, and spring (March to May) accounting for only 10 % of the annual 

precipitation. Annual potential evaporation is 2200 mm in bare sandy land (BSL). The main soil 125 

type is aeolian sandy soil with a clay content of 0.83%, a silt content of 8.21%, a sand content of 
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90.96%, and an organic matter content of 2.0 ~ 3.5 g · kg-1  (Cheng et al., 2020c;Cheng et al., 

2020a). The revegetation of PSM started in 1987, and the planting density was 1200 plants / ha. 

To compare the characteristics of precipitation redistribution after restoration of PSM, we decide 

to select a BSL plot about 200 meters from PSM forest plot as a comparison and have used the 130 

same experimental setup in the PSM forest plot to monitor the redistribution process of 

precipitation as in the BSL plot. The location of the experimental site is shown in Figure 1. 

2.2 Research method 

To explore the distribution characteristics of precipitation in the reconstructed forest land, we 

assume that the reconstructed forest land belongs to a relatively uniform landform system, thus we 135 

can select a typical sample plot from this system for observation (Taigemiao experimental plot). 

The landform in our study area is flat sandy land, as shown in Figure 1, PSM was planted in this 

area 30 years ago in belts, and the distance between the two belts was 15 meters. Under this 

uniform distribution of PSM forest land, it would be convenient to choose a PSM plot to 

monitoring precipitation redistribution process along the vertical direction instead of studying the 140 

entire region, which is difficult or even impossible. 

To study the redistribution characteristics of PSM forest land in Taigemiao experimental plot of 

MUSL, we set up an in situ observation system to observe the precipitation distribution in canopy 

interception, surface runoff, SWS, DSR and sap flow. Since 2015, the experimental field has been 

established. As the installation of the instrument will inevitably cause soil disturbance, we irrigate 145 

the sample plot after the instrument installation to promote soil layer settlement. The observation 

data were collected a year later, from 2016, and the water distribution of precipitation in the 

atmosphere, soil layer and DSR are recorded and analyzed. 
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DSR is an important factor for regional water balance research, thus we will use a newly designed 

lysimeter to measure DSR. As shown in Figure 2, the water source of PSM in MUSL is mainly 150 

atmospheric water, the PSM has developed a shallow root system parallel to the ground surface to 

maximize the area to intercept the precipitation-induced infiltration.  We have excavated and 

flushed the experiment plot to exam the root system distribution and found that the roots of PSM 

evenly distributed in the open space between the two PSM rows. The root distribution depth is 

concentrated at 80 cm depth, and few roots can reach 100 cm depth. The capillary water holding 155 

height of sandy soil in this area is 80 cm. Therefore, we decide to lay the newly designed lysimeter 

at the depth of 200 cm, which include a 100 cm of root system, a capillary water rise height of 80 

cm and additional 20 cm. Such an installation depth can ensure that the measured DSR will not 

absorbed by the plant root system. Although soil vapor flow may exist in sandy soil, particularly 

at shallow depths, the effect of soil vapor flow is regarded as secondary in this investigation. In 160 

the future, soil vapor flow sensors are probably needed to quantify the exact nature of vapor flow. 

By measuring the DSR and the water content of each soil layer, we can calculate 

evapotranspiration. 

The schematics of the newly designed lysimeter schematics is shown in Figure 2B. The traditional 

lysimeter measuring face is at the ground surface and the measuring depth equals to the height of 165 

the instrument. The newly designed lysimeter can be installed at any depth, depending on the site-

specific requirements. This instrument has two parts, an upper water balance part and a lower 

measuring part. The balance part has a cylinder with an upper opening and a filter mesh at the 

bottom. The filter mesh allows soil water to permeate but no soil particles can pass through. The 

height of the balance part is equal to the height of capillary rise of the in-situ sandy soil. As shown 170 

in Figure 2B, when the soil at layer B is saturated, the soil water can rise to layer A because of the 
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capillary force, but it would not overflow the cylindrical barrel, so as to reach a state of equilibrium. 

When the upper layer A has moisture infiltration, the moisture balance state is broken, and the 

excess water will be discharged from layer B into the measurement part. The measurement section 

uses a tipping bucket water meter to automatically record the infiltration rate. This is the principle 175 

of the newly designed lysimeter. 

It is necessary to reduce the damage to the in-situ soil layer structure when installing the lysimeter. 

As the PSM root system is evenly distributed in the open space of the forest belt, we decide to 

excavate a soil profile in the middle of the PSM forest to install the lysimeter. The sand structure 

is relatively loose and easy to collapse. Therefore, before excavation, we need to irrigate the plot 180 

to reduce the risk of soil collapse during the instrument installation process. After irrigation, we 

will excavate a vertical soil profile in the middle of the forest belt. As the height of the instrument 

is 120 cm and the measuring surface depth is 200 cm, so we need to excavate a soil profile of 320 

cm deep. After reaching a depth of 320 cm, we continue to excavate 100 cm in a direction parallel 

to the forest belt at the bottom of the profile, with a vertical cross section equaling to the side area 185 

of the new lysimeter, 30 cm by 120 cm. This will ensure that the soil layer on the upper part of the 

instrument would remain undisturbed as much as possible. After this, soil moisture probes are 

installed at targeted depths, as shown in Figure 2. Using the in-situ soil to backfill the excavation 

and irrigating the soil profile to facilitate the soil settlement, the installation procedure is then 

completed. It takes a certain time for the soil to settle down, so we need to install the instrument 190 

six months to one year in advance for the soil profile to settle down to its pre-excavation stage. 

After that, the data are collected automatically in a time series fashion. 
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Figure 2 Schematic diagram of in-situ observation instrument installation, PSM plot and control 

group BSL plot. A is the BSL plot, B is the PSM plot, C is the distribution characteristics of 195 

PSM roots planted in the experimental field. (Fig C adapted from Dang et al., 2021) 

2.2.1 Determination of sap flow 

The sap flow flux equal to the transpiration of PSM. To determine the transpiration of PSM, we 

have carried out the sap flow measurement of PSM. The planting years of PSM in this region are 

the same, but the growth is not the same. However, it is impractical to monitor the sap flow of all 200 

PSM. To obtain the transpiration of PSM forest in this region, we need to select a representative 
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PSM in the study area for observation. We measured the diameter at breast height (DBH) of PSM 

in the study area, looking forward to screening suitable samples from the growth state. The 

restoration of PSM plantation was planted according to the row belt. We selected 10 rows of PSM 

with relatively uniform growth to measure DBH (500 columns). The average diameter of PSM 205 

was 189.5 mm, and the median DBH of PSM was 191 mm, showing that the median and average 

of PSM were quite similar to each other. Therefore, we selected the median DBH of PSM as the 

observation objective of sap flow. FLGS-TDP plant sap flow meter (Dynamax, USA) was used to 

measure and calculate the sap flow rate.  

We install the sap flow instrument at the breast height of the PSM, this instrument composed of 210 

two cylindrical probes with a diameter of 2 mm. These two probes were inserted up and down 

along the growth direction of the stem, 2 cm depth into the sapwood with an interval of 10 cm. 

The lower probe contained a heating element to heat the probe continuously. Each probe contained 

a thermocouple to measure the temperature at any moment. The temperature difference between 

these two probes was influenced by the stem sap flux rate. As the sap flow went upward, the 215 

temperature difference between the two probes decreased. Therefore, by monitoring the  

temperature difference between the two probes one can calculate the sap flow rate (Granier, 1987). 

Previous experiences have shown that in northern China, the average flow rate of the whole tree 

can be estimated with high precision using the flow rate on the northern side of the trunk of PSM 

through a simplified model as follows: 220 

V= 0.0119 K-1.231 × 3600, K = (dTm －dT) /dT                                         (1) 

where V is the sap flow rate (cm·hr-1), dTm is the maximum temperature difference between the 

heating probe and the reference probe when there is no sap flow, and dT is the temperature 
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difference between the heating probe and the reference probe when sap flow occurs at any given 

moment. The total volume of sap flow (F) was: 225 

𝐹 = ∑ 𝑉𝑖 × 𝐴𝑠 × ∆𝑡𝑛
𝑖=1                                                            (2) 

where F was the total volume of sap flow (cm3); n was the number of sampling; Vi was the sap 

flow rate during the i-th sampling time interval (cm*hr-1); As was the area of sapwood (cm2), and 

it was 196.755 cm2; Δt was the sampling interval (hr). 

2.2.2 Soil water storage measurement  230 

SWS came from precipitation infiltration and it was the most important water source for vegetation 

in semi-arid areas. As there was no surface runoff in the experimental plot during the observation 

period (2016-2019), the precipitation will contribute entirely to SWS after subtracting the 

evaporation component. To maximize the contact area with shallow soil moisture, PSM roots grew 

preferably along the horizontal direction rather than along the vertical direction. The vertical 235 

distribution of PSM roots in MUSL was concentrated in the depth range of 0-200 cm, which also 

suggested that PSM mainly used precipitation rather than groundwater as its water supply (Cheng 

et al., 2021b). The SWS in this plot was calculated by measuring the volumetric water content and 

soil thickness of each layer where the soil volumetric water content was measured by the EC-5 

(resolution: 0.1 % VWC, METER Environment, USA) soil moisture sensor. The measurement 240 

range was the top 200 cm soil layer, and soil moisture probes were installed at 20, 40, 60, 80, 120, 

160 and 200 cm depths below the ground surface, and the SWS was calculated as follows: 

𝑆𝑊𝑆 = ∑𝑆𝑊𝑆𝑖                                                                      (3) 

    ∆𝑆𝑊𝑆 = ∑𝑆𝑊𝑆𝑡1 − ∑𝑆𝑊𝑆𝑡2                                                                                      (4) 
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where SWS was the soil water storage of the entire soil layer, ΔSWS was the change value of SWS 245 

from t1 to t2. In this research, ΔSWS refers to the difference between the ∑𝑆𝑊𝑆𝑡1 at the end of the 

experiment in November and the ∑𝑆𝑊𝑆𝑡2 at the beginning of the experiment in March. 

2.2.3 Measurement of deep soil recharge 

DSR refers to the infiltration of precipitation into the soil layer at a certain depth (Cheng et al., 

2017b), it is expected that precipitation infiltrated to this depth soil layer will not be absorbed by 250 

the roots or return to atmosphere via evapotranspiration. Strictly speaking, it was possible for soil 

water in any layer to return to atmosphere through the evapotranspiration process with either liquid 

or vapor phase flows(Wei and Dirmeyer, 2019;Cahill and Parlange, 1998). However, the soil water 

at a capillary holding height depth below the root layer was not easily absorbed by the roots or 

volatilized in the form of water vapor. Therefore, vapor flow was regarded as a secondary effect 255 

ad was not taken into consideration in this investigation. In the future, vapor flow sensors will be 

installed in the site to investigate the vapor flow dynamics. DSR was an important indicator for 

several processes. For instance, it could tell if the precipitation infiltration in the region was 

sufficient to sustain the growth of plants or not. More specifically, if DSR could be detected, it 

indicated that the precipitation infiltration could meet the needs of growth of plants, with some 260 

extra water available for recharging the deep groundwater below the root zones. On the other hand, 

if there was no detectable DSR, it suggested that the precipitation infiltration was probably not 

sufficient to meet the consumption of plants in the region.  

Despite of its obvious importance, it was generally difficult to measure DSR directly and there 

were very few studies on this matter up to present. To resolve this issue, our research team has 265 

designed, installed, and tested a field-based and inexpensive DSR measurement instrument, as 

shown in Figure 2 (Cheng et al., 2018). The use of this instrument (DSR, measurement accuracy: 
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0.2 mm, China) for the measurement of DSR has been verified in several previous studies(Cheng 

et al., 2020a;Cheng et al., 2020b).  

3 Results 270 

The in-site experimental instruments recorded the distribution of precipitation in atmosphere (ET), 

shallow soil layer (SWS) and groundwater (DSR) from 2016 to 2019. ET was calculated by the 

water balance equation, and results were shown in Table 1. The 30-year annual average 

precipitation in the Taigemiao was 358.2 mm. We defined the year with a precipitation amount 

higher than the multi-year average precipitation as a wet year, and the year with precipitation lower 275 

than the multi-year average precipitation as a dry year. 

3.1 Statistics of precipitation redistribution process 

As shown in Table 1, the annual precipitation in 2016 reached 506.4 mm, indicating a wet year. 

The precipitation in this year deviated about 41.37 % from the average annual precipitation. It is 

worthwhile to point out that average annual precipitation may not be a good indicator for the actual 280 

precipitation state in the site, as extreme precipitation events occurred frequently in this region. 

Precipitations in the other three years of 2017, 2018 and 2019 were less than the average annual 

precipitation amount, indicating dry years. The precipitation in 2018 was only 239.8 mm, which 

deviated from the average annual precipitation by a deficit of 33.05 % (the multi-year average 

annual precipitation was 358.2 mm). Therefore, we needed to consider the growth prospect of 285 

vegetation under extreme drought and wet conditions in the process of vegetation restoration. This 

study focused on the distribution of precipitation in different parts in two extreme wet and dry 

years (2016, 2018), respectively. 

https://doi.org/10.5194/hess-2021-285
Preprint. Discussion started: 29 June 2021
c© Author(s) 2021. CC BY 4.0 License.



16 
 

In 2016, the distribution ratios of precipitation in atmospheric water (ET), soil water and DSR in 

the PSM plot were 92.2%, 7.5% and 0.3%, respectively. We found that ET accounted for most of 290 

the precipitation, but one should be noted that the observed proportion of ET in precipitation was 

likely to be larger than the true value. This was because PSM not only consume soil moisture 

contributed from precipitation of 2016, it could also consume the residual soil moisture coming 

from precipitations of previous years such as 2015. The distribution ratios of precipitation in BSL 

in atmospheric water, soil water and DSR were 27.1%, 18.9% and 54.03%, respectively. A 295 

comparison of PSM and BSL plots in 2016 revealed that vegetation restoration has considerably 

changed the distribution of precipitation in this region in at least two ways. Firstly, atmospheric 

water increased considerably. ET increased because of the presence of vegetation. In 2016, ET in 

the PSM plot was 2.35 times higher than that in the BSL plot (Table 1). Secondly, in 2016, SWS 

of the PSM plot increased 38.06 mm and that of the BSL plot increased 95.67 mm, whereas SWS 300 

of the PSM plot decreased by 60.2%. Therefore, we could conclude that vegetation restoration 

significantly changed the distribution of precipitation in shallow soil. Precipitation was largely 

converted into groundwater in the BSL plot, while precipitation was intercepted in shallow soil, 

and large amount of precipitation converted to ET in the PSM plot. 

Table 1 Table of precipitation redistribution in the ET, SWS, DSR, etc. on the plots  305 

Time Plot  
Precipitation 

(mm) 

Sap flow 

(mm) 

ΔSWS 

(mm) 

DSR 

(mm) 

ET 

(mm) 

T 

(mm) 

E 

(mm) 

DSR/P 

(100%) 

2016 

PSM  506.4 144.12 38.06 1 466.94 322.82 144.12 0.20 

BSL  506.4 - 95.67 273.6 137.13 137.13 - 54.03 

2017 

PSM  309 165.43 -16.00 0.2 324.60 159.17 165.43 0.06 

BSL  309 - 61.89 67.7 179.41 179.41 - 21.91 

2018 PSM  239.8 90.51 54.75 1.2 183.85 93.34 90.51 0.50 
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BSL  239.8 - 96.8 55.2 87.8 87.8 - 23.02 

2019 

PSM  341.6 152.39 -7.58 0 349.18 196.79 152.39 0.00 

BSL  341.6 - 64.38 124.9 152.32 152.32 - 36.56 

 

2018 is an extremely dry year (with an annual precipitation of 239.8 mm), which deviated from 

the multi-year average precipitation by 54% (the multi-year average annual precipitation was 358.2 

mm). The distribution ratios of ET, SWS and DSR in the PSM plot were 76.7%, 22.8% and 0.5%, 

respectively in 2018, indicating that ET still accounted for most of the precipitation in that year. 310 

The distribution ratios of atmospheric water, SWS and DSR in the BSL plot were 36.6%, 40.4% 

and 23%, respectively in 2018. A comparison of the data for the PSM and BSL plots revealed that 

DSR of the BSL plot was larger than ET, and 23% of the precipitation recharged the deep soil 

layer or groundwater in the BSL plot in 2018. Precipitation was intercepted in the shallow soil 

layer in the PSM plot. In 2018, only 0.5% of precipitation was involved in recharging the deep soil 315 

layer or groundwater in the PSM plot. These results again suggested that whether in dry or wet 

year, the PSM forest has substantially changed the redistribution of precipitation. 

As shown in Table 1, precipitation, sap flow, SWS and DSR varied greatly during the observation 

period of 2016-2019. Traditional studies used a coefficient to determine the amount of DSR was 

found to be questionable, as indicated by Cheng et al. (2017a). Here we applied the Pearson 320 

correlation method to analyze the correlation between precipitation and sap flow, SWS, DSR, ET, 

evaporation (E) and transpiration (T) during the study period (Table 2). In the PSM plot, 

precipitation was closely correlated with ET (P = 0.99706), indicating that the increase of 

precipitation directly promoted the increase of ET. On the other hand, there was no direct 

correlation between sap flow and precipitation.  325 
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As shown in Table 1, the variations of sap flow in 2016, 2017 and 2019 were much smaller than 

the variations of precipitations in these years, suggesting that once vegetation in semi-arid areas 

adapted to the environment, sap flow (transpiration) remained relatively stable despite changes in 

annual precipitation. Furthermore, we can see that the evaporation is positively correlated with the 

precipitation, meaning that the increase in precipitation will not cause a sudden increase in 330 

transpiration, but it will cause an increase in evaporation. Such a correlation indicated that we 

could infer whether a plant was under drought stress or not by measuring the sap flow and then 

determining whether the observed value was lower than the average value. The PSM sap flow 

decreased considerably in 2018 (because that is an extremely dry year), indicating that PSM was 

under drought stress by extreme drought years such as 2018. In future vegetation restoration 335 

activities, attention should be paid to reducing the planting density of PSM to adapt to climate 

change in this area. In contrast, there was no interference of vegetation transpiration in BSL. DSR 

was found to be closely correlated with Precipitation with a Pearson coefficient of 0.9797. The 

correlation between precipitation and evaporation was not significant (with a Pearson coefficient 

of 0.27416). This finding showed that the evaporations of both the PSM and BSL plots did not 340 

change considerably after the vegetation restoration, suggesting that vegetation restoration did not 

reduce surface evaporation.  

Table 2 Correlation analysis of precipitation and each part water distribution amount 

Pearson 

correlation 

analysis 

Plot Sap Flow SWS DSR ET E T 

Precipitation 

PSM 0.4428 0.0594 0.08953 0.95364 0.99706 0.4428 

BSL - 0.22671 0.9797 0.27461 0.27461 - 
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3.2 Sap flow characteristics 345 

Sap flow could be used to directly determine whether an area was under drought stress or not. In 

this study, we used the TDP to measure sap flow where the TDP sap flow meter adopted the 

principle of thermal diffusion. Specifically, we combined the measured sap flow of PSM with the 

measured sapwood area to estimate the evaporation. In this study, we monitored DSR, 

precipitation and SWS through the water balance equation: P = ET + SWS + DSR. The ratios of 350 

ET/P, SWS/P, and DSR/P were estimated for both the PSM and BSL plots and the results are 

shown in Table 1. For the PSM plot, the ET value included transpiration and evaporation, and 

transpiration was calculated from the sap flow measurements taken with the TDP sap flow meter. 

For the BSL plot, the ET value only included evaporation as there was no transpiration when PSM 

and other plants were absent.  355 

The sap flow usually started in early March and ended in October during the four-year period of 

investigation. As shown in Fig. 3a, the sap flow curve had two peaks, the first in June and the 

second in August. Because 2016 was a wet year, the precipitation in July was relatively high, and 

the sap flow was low during the precipitation period. This suggested that the sap flow rate during 

a specific precipitation event might be suppressed by that event, but overall, why was there no 360 

significant change in the annual sap flow rates for the wet year (like 2016) and dry year (like 2019)? 

Recent studies have shown that rising temperatures caused by increasingly strong solar radiation 

can keep plants transpiration even at night (Panwar et al., 2020). The short duration of precipitation 

in this region may be the reasons for little change in the annual sap sap flow amount, which was 

related to the annual net radiation amount.  365 
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Figure 3 Annual variations of DBH sap flow on the north side of PSM, 2016-2019 

As shown in Fig. 3, solar radiation significantly decreased then the sap flow decreased after 

September 7. In drought years, the maximum sap flow rate appeared from June to July with only 

one peak, as shown in Fig. 3(b–d). It should be noted that only one sap flow data point with the 370 

median DBH in this study (we have only one sap flow instrument) was measured and this PSM 

was used to represent the average transpiration for all PSM forest land in this area. The PSM forest 

land in the experimental area was evenly distributed and there was no competition between 

adjacent trees. Thus, there was no difference in sap flow rates among dominant trees, medium trees 

and inferior trees. The four-year measurements of sap flow indicate that there was usually no direct 375 

relationship between annual sap flow and precipitation (except for extreme drought years like 

2018). 

3.3 SWS characteristics 

SWS was calculated according to the soil volumetric water content of each soil layer and soil depth. 

The accuracy of the soil moisture sensor (EC-5) decreased during the freeze–thaw period, thus we 380 
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selected the soil moisture data from March to October for the calculation of SWS in this study. We 

calculated the annual changes in SWS in for the four years, as shown in Table 1. To compare the 

differences in SWS changes between dry and wet years, we selected SWS in a wet year (2016) 

and a dry year (2019) to conduct a more detailed comparison. 

As shown in Table 1, SWS of the PSM plot in 2016 increased by 38.06 mm, and that of the BSL 385 

plot increased by 95.67 mm. The daily accumulations of SWS in these two plots are shown in 

Figure 4. Figure 4a shows daily change of SWS in the PSM plot in 2016. The PSM plot only shows 

one period with negative values of SWS (June 18–28), with positive values for the rest of the year. 

The annual SWS of the BSL plot was positive, reaching 95.67 mm. The variation of SWS varied 

between these two plots. Before the rainy season, SWS in the BSL plot was smaller, whereas SWS 390 

in the PSM plot was larger. Considering that PSM was in a dormant state and did not consumed 

soil water at this stage, the SWS capacity of the PSM plot was considerably improved after 

vegetation restoration. Related studies have also shown that soil texture was improved after 

vegetation restoration. The maximum daily SWS in the PSM plot was 260 mm, whereas that in 

the BSL plot was 197 mm. 395 

 

Figure 4 Daily cumulative SWS in PSM plot (a) and BSL plot (b) in 2016. 
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Annual precipitation in 2019 was 341.6 mm. In the PSM plot, the annually changed value of SWS 

was −7.58 mm in 2019, indicating that PSM consumed SWS to survive under these precipitation 

conditions. The DSR was 0 mm, indicating that there was no precipitation-induced infiltration 400 

penetrating the shallow soil layer, and precipitation was completely intercepted by PSM. The SWS 

in BSL was 96.8 mm and DSR was 55.2 mm, and the distribution ratio of precipitation varied 

considerably among the two plots in 2019. Taking the BSL plot as an example, SWS was high 

before the freeze–thaw period (November 2019) and low after the freeze–thaw period (March 

2020). Moreover, SWS changed during freeze–thaw, suggesting that water vapor flow might be 405 

involved during the freeze–thaw period. Because of the decrease of sensor accuracy in winter, we 

were unable to quantify the SWS change during the freeze–thaw period. The amount of DSR in 

the BSL plot was much greater than that in the PSM plot. The ratio of DSR over precipitation 

reached 37.7%, indicating that a relatively high proportion of precipitation was employed in 

groundwater recharge before PSM restoration. 410 

 

Figure 5 Daily cumulative SWS in PSM plot (a) and BSL plot (b) in 2019 
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To explore the daily change of SWS, we considered the SWS changes in 2016 in more detail. 

Because 2016 was a wet year, there were more precipitation events available for comparison. As 

shown in Fig. 6a, the SWS increased rapidly after precipitation, and SWS was consumed after 415 

precipitation. As shown in Fig. 6(b–d), SWS changed from positive to negative after precipitation 

because of vegetation transpiration and surface evaporation. The attenuation characteristics varied 

among different seasons. In the two precipitation-evapotranspiration events in the growing season, 

the SWS returned to 0 mm on 7 days after the cessation of one precipitation event in July and 

August, but returned to 0 mm on 12 days after the cessation of one precipitation cycle in September 420 

(Fig. 6b, c). The soil evapotranspiration maintained a relatively constant rate after the precipitation 

events in September (Fig. 6d). The main factors affecting soil water storage in summer were 

transpiration and evaporation, whereas in autumn, transpiration reduced and only evaporation 

prevailed. We speculated that PSM had entered the dormancy period in late September, although 

the soil layer had not entered the freeze–thaw period at that time. 425 

 

Figure 6 Daily variation of SWS in PSM plot and the change of SWS in different months, 2016 
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3.4 Characteristics of DSR 

The DSR was determined by using the newly designed lysimeter (Table 1). The DSR values in the 

PSM plot were only 1, 0.2, 1.2 and 0 mm in 2016, 2017, 2018 and 2019, respectively, whereas 430 

those in the BSL plot were 273.6, 67.7, 55.2 and 124.9 mm, respectively. The greatest change in 

the process of precipitation redistribution after vegetation restoration was that of DSR, which 

directly affects groundwater recharge in this region. In the dry year (2018), DSR decreased by 54 

mm, and in the wet year (2016), DSR decreased even more. This suggests that continued large-

scale afforestation in this area will cause the interruption of groundwater recharge in MUSL. 435 

In 2016, only 1 mm DSR occurred in the PSM plot, mainly from September 18 to September 20. 

According to Figure 6d, even in wet years like 2016, precipitation in the PSM plots could not fully 

recharge groundwater. By September, the sap flow decreased sharply (Fig. 3a). Without the PSM 

interception, a small amount of precipitation was able to penetrate the shallow soil layer to become 

DSR. 440 

 

Figure 7 The relationship between precipitation and DSR, (a) was daily scale precipitation and 

infiltration in PSM plot, (b) was daily scale precipitation and infiltration in BSL plot. 
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The rate of DSR varied among different seasons. As shown in Fig. 7b, a precipitation event on 

August 25 reached 50 mm, and 48 hr later, the precipitation-induced infiltration had reached 200 445 

cm soil depth to become DSR. On September 17, daily precipitation reached 40.2 mm, and 168 hr 

later, the precipitation-induced infiltration reached 200 cm soil depth to become DSR. The main 

difference between these two precipitation events was soil temperature. Therefore, understanding 

the soil temperature impact on DSR appeared to be relevant and should be considered in future 

investigations. Previous studies have suggested that the main factors affecting infiltration were the 450 

initial soil moisture and precipitation intensity. In the current study, we found that soil temperature 

also profoundly affected the infiltration rate. A comparison of DSR values in the PSM and BSL 

plots reveals that the infiltration signal at 200 cm soil depth in the PSM plot was observed 24 days 

after the precipitation event, whereas the infiltration signal in the BSL plot was observed 2 days 

after the same precipitation event, indicating that the existence of PSM slowed down the 455 

infiltration rate substantially, as the infiltration rate in the BSL plot was nearly 11 times faster than 

that in the PSM plot. 

4 Discussion 

The soil layer carried the vast majority of terrestrial ecosystems, and soil water played an important 

role in the water cycle between land surface, atmosphere and groundwater, which was the main 460 

role in the water balance of the earth system (Bastin et al., 2019). The concept of the soil–plant–

atmosphere continuum (SPAC) has been formed from the perspective of water redistribution 

(Manzoni et al., 2013). Water was an important component in the SPAC system and the soil–

vegetation–atmosphere transport (SVAT). Based on these theories and associated models (Franks 

et al., 1997), researchers have gradually developed a model of the earth system that quantitatively 465 

describes the feedback of land surface processes in the climate system (Foley et al., 1996). The 
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characteristics of soil moisture on climate anomalies were the most important processes affecting 

climate change, except for the ocean (Entekhabi et al., 1996). However, because of the limitations 

of experimental observation conditions, and large-scale ecological restoration projects were far 

beyond the imagination of scientists, the redistribution process of precipitation in artificial forest 470 

land had not attracted enough attention. In particular, how the change of surface vegetation cover 

affected the groundwater recharge, and ecosystem degradation caused by massive vegetation 

restoration have not yet been quantitatively described. 

The impact of ecosystem degradation on biodiversity and climate has promoted the grand goal of 

ecosystem restoration at all levels in various countries around the world (Ortiz et al., 2021). The 475 

United Nations announced 2021–2030 as the “United Nations ecosystem restoration decade”, and 

the “Bonn challenge” and “New York Forest Declaration” aim to restore 350 million hectares of 

global forest by 2030(Zhao et al., 2020). There was no doubt about the carbon sequestration effect 

of forests, but vegetation restoration shows considerable regional variation (Harmon, 2001). China 

has implemented some large-scale afforestation plans in arid and semi-arid regions, including the 480 

northeast, north and northwest, to prevent desertification and control sandstorms(Cao et al., 2011). 

These vegetation restorations alleviated environmental problems such as desertification, which 

made the study of water resource redistribution in semi-arid areas more important. Some studies 

have criticized this process of vegetation restoration, arguing that vegetation restoration in semi-

arid areas would aggravate ecological problems (Xiao et al., 2020;Fensholt et al., 2012). However, 485 

in our opinion, these projects have been carried out for 40 years and have achieved goals in most 

areas.  

Research has shown that China’s vegetation restoration has made certain contributions for 

increasing the forest cover in the world (Chen et al., 2019). Numerous research results have led to 
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discussions regarding the optimal ecological restoration process for China(Chen et al., 2019). The 490 

uncertainty of vegetation restoration in China can ultimately be attributed to the question of 

whether or not there was a water resources shortage (Cheng et al., 2021b). Many studies have 

shown that vegetation restoration would increase precipitation and transpiration in the region 

(Meng et al., 2020). Some studies on the Loess Plateau have shown that afforestation leaded to an 

increase in ET and decrease in soil moisture and runoff (Zhang et al., 2018;Jia et al., 2017). These 495 

studies also pointed out that revegetation might exacerbate the sustainability of water resources 

management, especially water resource carrying capacity increased by human activity. These 

studies have not specifically observed the distribution of precipitation in the atmosphere and its 

redistribution to plant, soil and groundwater. In this study, we found that previous studies may 

have underestimated the hydrological effects of vegetation greening and also underestimated the 500 

capability of vegetation to redistribute precipitation (Cheng et al., 2017a). This leaded to 

uncertainties in the question of how vegetation changed SWS and DSR during vegetation 

restoration in MUSL. 

Most previous studies used remote sensing method for analysis on a large regional scale, but they 

could not provide sufficient specific experimental data for use in verification (Li and Pan, 505 

2018;Gong et al., 2019). Moreover, remote sensing could not obtain deep soil moisture data, and 

could not obtain DSR. Thus, it was impossible to determine the recharge effect of precipitation on 

groundwater. Some studies focused on the measurement of a single factor, and cannot 

systematically study the precipitation redistribution in the restoration process of PSM forest in 

MUSL (Yu et al., 2018). In this study, most water redistribution factors (except soil vapor and soil 510 

temperature effects) in the vertical direction of the reconstructed vegetation PSM forest land in 

MUSL were monitored, and the factors from atmospheric water, plant sap flow to in situ 
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monitoring data were applied to consider the consequences of vegetation restoration. This study 

has been carried out for 4 years so far, and continuous data collection must be carried out to 

generate a long-term time-series dataset. In addition, we suggest the following areas for future 515 

improvement in this study: 

1. We could not measure the amount of vapor flow in the shallow soil layer. In semi-arid regions, 

vapor flow was likely to vary greatly. We needed to install vapor flow sensors and introduce a 

hydrothermal transport model considering the vapor flow component based on this observation in 

the future.  520 

2. Although we screened a typical PSM plot to represent the general water distribution state of 

PSM in this region, our research was limited to the monitoring of a single experimental plot. Given 

the goal of precipitation redistribution in the 3NSP region, we needed to develop larger-scale 

observation plots in the future to assess the scale-sensitivity of trees, shrubs, grasslands and 

farmlands across different precipitation gradients.  525 

3. There was a freeze–thaw period up to 4 months in this region. In the freeze–thaw period, we 

could not accurately observe the change of soil moisture. In this study, we chose to show the annual 

soil moisture, because the thickness of freeze–thaw layer did not change substantially on a daily 

scale, and the error of soil moisture could be ignored. However, in the analysis at annual scale, we 

did not use the soil moisture during the freeze–thaw period. Based on the difference of SWS at the 530 

end of one year and the beginning of the following year, we found that the soil moisture and DSR 

changed in the freeze–thaw period. Therefore, it was necessary to study the soil moisture change 

during the freeze–thaw season using an alternative method. 

4. Existing studies have shown that vegetation restoration was conducive to the increase of 

precipitation in the region, but our observations showed that precipitation in MUSL exhibited 535 
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significant fluctuations, to the extent that precipitation across most periods were considerably 

lower than the average precipitation across many years, suggesting that instability was likely in 

the future development of PSM in MUSL. To date, vegetation restoration has been carried out for 

40 years. Although the vegetation coverage was relatively low in the early period and had little 

impact on the environment, vegetation coverage increased from 5% to 15% between 1979 and 540 

2020, research was needed to examine whether the regional precipitation intensity changes need 

to be considered in more detail or not. 

5 Conclusions 

This study focused on the redistribution of precipitation in the PSM and BSL plots through 

observation of sap flow, SWS, DSR and annual precipitation in MUSL. In this study, we 545 

determined the threshold of precipitation distribution in each part and replenishment of 

groundwater and compared the characteristics of precipitation redistribution after vegetation 

restoration by comparative experiments. This study aimed to understand the redistribution process 

of precipitation in PSM restoration land, improve the understanding of rain-fed PSM degradation 

and future management of plantations in MUSL. The PSM consumed soil water in the uppermost 550 

soil layers, which might impact the long-term sustainable development of PSM forest in MUSL 

and the decline of the groundwater level might cause an ecological crisis. Our specific conclusions 

were as follows: 

1. MUSL has experienced 40 years of vegetation restoration. The PSM forest has considerably 

changed the process of regional water redistribution. The most obvious change was the decrease 555 

of precipitation-induced recharge to groundwater. The DSR values were 273.6 mm in a wet year 

(2016) and 55.2 mm in a dry year (2018) in the BSL. The DSR value was only 1 mm in a wet year 

(2016) and there was no DSR in a dry year (2018) in the PSM plot. For the wet year (2016) in the 
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BSL plot, DSR accounted for 54.03% of the annual precipitation, whereas for the dry year (2018), 

23.02% of precipitation was transformed to DSR in the BSL plot. 560 

2. There was a clear relationship between evaporation and precipitation but transpiration was not 

correlated with annual precipitation. The surface evaporation of the PSM plot reached 322.82 mm 

in the wet year (2016), whereas that of the BSL plot was only 137.13 mm in the same year.  

3. Through the measurement of sap flow of PSM, we found that sap flow of PSM remained 

relatively stable (with a deviation of 153.98 mm/yr) except for the extreme drought year (2018, 565 

precipitation 239.8 mm, sap flow, 90.51 mm/yr), indicating that in MUSL, precipitation met the 

demand of PSM. However, in extreme drought years, the PSM entered drought stress and 

transpiration decreased, indicating that the cause of PSM degradation was the extreme drought 

conditions. Therefore, it was necessary to reduce PSM forest restoration density to allow 

adaptation to extreme drought in the future. 570 

4. The presence of PSM changed SWS. Compared with BSL, the SWS capacity of the PSM plot 

improved from 195 to 250 mm from 2017 to 2019, but due to transpiration by plants and soil 

evaporation, the SWS entered a deficit of 16 mm in 2017 and 7.58 mm in 2019. In the uncertain 

future under the influences of climate change, continuous drought may cause a water deficit in the 

uppermost soil layers.  575 

5. Vegetation restoration has changed the redistribution process of precipitation in this region. Due 

to the existence of PSM, the infiltration rate was significantly reduced, and the precipitation was 

intercepted in the shallow soil layer, then evapotranspiration increases, DSR significantly decrease. 
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