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Abstract. Streamflow regimes are rapidly changing in many regions of the world. The ability to attribute these changes to

specific hydrological processes and their underlying climatic and anthropogenic drivers is essential to formulate effective

water policy. Traditional approaches to hydrologic attribution rely on the ability to infer hydrological processes through the

development of catchment-scale hydrological models. However, such approaches are challenging to implement in practice.

In particular, models have difficulty capturing hydrological regime shifts, where changes in the dominant hydrological pro-5

cesses alters the relationship among hydrological fluxes. Additionally, observational uncertainties might preclude closure of

the catchment-scale water balance, which is a pre-requisite for most catchment-scale hydrological models. Here we present an

alternative approach to hydrological attribution that leverages the method of multiple hypotheses. We generate and empirically

evaluate a series of alternative and complementary hypotheses that pertain to hydrological change. These hypotheses concern

distinct components of the water balance and are evaluated independently. This process allows a holistic understanding of10

watershed-scale processes to be developed, even if the catchment-scale water balance remains open. We apply the approach

to understand changes in the Upper Jhelum river, an important tributary headwaters of the Indus basin, where streamflow has

declined dramatically since 2000 and has yet to be adequately attributed to its corresponding drivers. Using remote sensing and

secondary data collected from the watershed, we explore changes in climate, surface water, and groundwater. The evidence

reveals that climate, rather than land use, had a considerably stronger influence on reductions in streamflow, both through15

reduced precipitation and increased evapotranspiration.

1 Introduction

Water resources are changing throughout the world under anthropogenic pressures including climate change, land use change,

and changes in water management (Vörösmarty et al., 2004; Milly et al., 2008; Ceola et al., 2019). These drivers pose chal-

lenges for water policy by increasing climatic variability (Smirnov et al., 2016), exacerbating water-scarcity (Srinivasan et al.,20

2017), and reducing our ability to predict hydrological variables (Ehret et al., 2014). In arid and semi-arid regions, these con-

cerns are particularly alarming given the concurrent challenges of increasing hydrological uncertainty and competition for

scarce water resources (Flörke et al., 2018; Aeschbach-Hertig and Gleeson, 2012). In many such regions, mitigation and adap-

tation strategies are urgently needed but require accurate understanding of the underlying drivers of change (Thompson et al.,
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2013; Penny et al., 2020a). In order to address the management challenges of mitigation and adaptation, observed changes in25

the hydrological processes must be correctly attributed to corresponding hydrological drivers. However, despite advances in

computational power, large-scale hydrological models, and the satellite-driven big data revolution (Kitchin, 2014; Sheffield

et al., 2018), the relative importance of various hydrological drivers in many watersheds remain unknown. Even the basic task

of accurately measuring the water balance may create considerable obstacles (Kampf et al., 2020). Changes in the water bal-

ance may go unnoticed and attributing the drivers of change creates additional scientific obstacles (Wine and Davison, 2019).30

Water policy will therefore benefit from approaches to attribution that address hydrological science questions at scales pertinent

to management (Müller and Levy, 2019; Penny et al., 2020b).

Attribution seeks to explain hydrological processes by demonstrating a causal relationship between observed outcomes

and their associated drivers. Hydrological attribution has been approached through a variety of methods including hydrological

simulation (Liu et al., 2019), fingerprinting (Viglione et al., 2016), ecohydrological signatures (Tomer and Schilling, 2009), and35

Budyko-based models (Ning et al., 2018). In each of these methods, causal relationships are incorporated into models which are

then tested against hydrological records (Dey and Mishra, 2017). Goodness-of-fit and other model evaluation metrics influence

which models are given more credibility (Müller and Thompson, 2019) and which models are, in turn, used to identify the

causal processes in the attribution. This approach is referred to as predictive inference (Ferraro et al., 2019), which mirrors the

widely recognized approach of “top-down” hydrological modeling. A defining feature of both predictive inference and top-40

down hydrological modeling is that hypotheses are incorporated into models and tested against observations (Savenije, 2009).

Predictive inference is appealing given the flexibility of the approach to a range of hydrological systems and because it can be

easily adapted to generate counterfactual scenarios to assess the effects of specific drivers. The major challenge of using such

top-down approaches for attribution is the difficulty in validating hydrological processes within the model. These difficulties

can arise due to equifinality (cannot distinguish drivers by considering outcomes only, Beven, 2006), nonlinearity (drivers are45

not linearly separable, Sivapalan, 2006), hydrological regime shifts (Foufoula-Georgiou et al., 2015; Gober et al., 2017), or

lack of appropriate data (cannot test hypotheses pertaining to specific processes, Sheffield et al., 2018). Calibrated models

have particular difficulty with hydrological regime shifts, where the underlying mechanisms of streamflow generation change

yet these change cannot be directly observed (Savenije, 2009). Additionally, limited data is particularly problematic given the

common difficulties in closing the water balance at both large (e.g., watershed) and small (e.g., hillslope or plot) scales (Kampf50

and Burges, 2010; Safeeq et al., 2021).

Here, we advance an alternative, “bottom-up”, approach to attribution, wherein several plausible hypotheses are generated

and each is evaluated separately. The approach is grounded in the method of multiple working hypotheses (Chamberlin, 1965)

and has two key benefits. First, the approach does not rely on constructing and calibrating a fully integrated catchment-scale

hydrological model. The approach only relies on the specific sets of empirical observations that are necessary to individually55

test each hypothesis. As such, it is particularly helpful in data-scarce catchments, where limited hydrological records preclude

complete characterization of the water balance and data collection may be difficult. Relatedly, the bottom-up approach allows us

to explicitly account for uncertainties in hydrological fluxes or issues with data integrity. These issues might cause some (though

not all) hypotheses to be inconclusively evaluated. This contrasts with the top-down approach, where integrity issues with some
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of the data might cause the whole analysis to be inconclusive, or worse, be concealed within the model calibration process (e.g.,60

due to equifinality issues). Second, the approach mitigates against conceptual biases in which certain hypotheses are favored

based on preconceived notions of change (Railsback et al., 1990). By employing separate analyses for each hypothesis, we

construct a process-based narrative of attribution in which each analysis comprises part of the whole and serves to corroborate

or contradict other analyses. Indeed, the method of multiple hypotheses advocates broader understanding of the whole over

in-depth understanding of individual components. By favoring breadth over depth we seek to develop a coherent and holistic65

narrative of change.

Although initially proposed in 1890 (and later republished as Chamberlin, 1965), few studies have applied the method of

multiple hypotheses towards hydrological attribution. Harrigan et al. (2014) used the method of multiple hypotheses to demon-

strate the combined effect of changing precipitation and catchment drainage in producing greater streamflow. Additionally,

Srinivasan et al. (2015) sought to attribute hydrological change in a drying river by generating (and subsequently testing) a70

set of hypotheses based on stakeholder knowledge. Here, we apply the bottom-up approach and employ the water balance as

a guiding framework to generate hypotheses regarding hydrological processes while using stakeholder knowledge to provide

additional context with respect to water management. We note that this differs from bottom-up hydrological modeling, which

seeks to aggregate catchment-scale hydrological processes by simulating physical mechanisms at small scales, and has been

criticized for taking a reductionist approach to catchment scale processes (Sivapalan et al., 2003; Savenije, 2009). We avoid75

reductionism by focusing on catchment-scale processes and linking finding from multiple hypotheses to develop a coherent

understanding.

Our empirical approach to hydrological attribution by leverages remote sensing information to complement gaps in observa-

tional data. We focus on the Upper Jhelum watershed which serves as one of the main headwaters of the Indus river and where

changes in hydrology (Wetlands International South Asia, 2007) have produced considerably less streamflow since the year80

2000. The Upper Jhelum provides critical ecosystem services and water supply in the Kashmir Valley and irrigation down-

stream in Pakistan (Romshoo, 2012). Water security in both countries is threatened by climate change, land use change, and

competition for scarce water resources (Akhter, 2017). Given the importance of this river, scientific understanding of changing

hydrological processes is essential to support effective domestic and transboundary water management. Considerable hydrolog-

ical research at the basin scale has focused on streamflow forecasting (e.g., Mahmood and Jia, 2016; Badar et al., 2013), along85

with empirical work characterizing streamflow in tributaries and the hinterlands (Jeelani, 2008; Jeelani et al., 2013; Romshoo

et al., 2015). As yet, little empirical research has addressed changes in the main stem of the Upper Jhelum. Political turmoil in

the basin poses challenges for data collection and research, meaning that a combination of remote sensing and secondary data

analysis currently represent an important opportunity for understanding hydrological change. This research therefore serves

the dual purposes of advancing a new approach to hydrological attribution and providing a scientific foundation that supports90

regional water management. Furthermore, many of the scientific and management challenges in the Upper Jhelum are common

in arid- and semi-arid regions and low- and middle- income countries, including a limited ability to collect data (Sheffield et al.,

2018), strong reliance on water resources for economic productivity by a large portion of the population (Alexandratos, 2005),

and inequities in water access and water scarcity that pose considerable risks to rural livelihoods (Hussain and Hanjra, 2003).
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Observational field studies have served as the foundation for understanding hydrological processes because they must con-95

tend with hydrological complexity. Field studies have been used extensively to understand causal relationships at a range of

spatial scales. However, field studies are limited by resource constraints (time and money), inaccessibility of field locations, or

inability to observe historical processes ex-post. The latter challenge can be addressed in some cases by using space-for-time

substitution or water infrastructure to generate historical data (Penny et al., 2020b). Yet considerable challenges remain, espe-

cially in human-impacted catchments, due to the difficulty in capturing spatial complexity and ruling out potential alternative100

drivers of change (Srinivasan et al., 2015).

In that context, remote sensing offers tremendous potential to overcome both major limitations of field experimentation in

terms of capturing spatial heterogeneity and generating observational datasets after hydrological changes occur and are de-

tected (e.g., Valentín and Müller, 2020). The increasing availability of remote sensing products has provided satellite estimates

of precipitation, evapotranspiration, and changes in water storage including surface water, soil moisture, and groundwater105

(Montanari and Sideris, 2018). As satellite missions become operational, the ability to retrospectively generate hydrological

datasets grows to encompass the time period extending back to the satellite launch. However, satellites are currently unable

to directly monitor key components of the water balance (e.g., streamflow) or are limited in terms of resolution or accuracy.

For instance, precipitation estimates must be calibrated to gauged data and contain considerable uncertainty, particularly in

mountainous regions because the relationship between cloud top temperature and rainfall intensity is altered for orographic110

effects (Müller and Thompson, 2013). Catchment-scale groundwater storage is particularly challenging to monitor. Radar sen-

sors (e.g., the Soil Moisture Active Passive mission) can monitor the dielectric properties of soils (associated with their water

content), but only up to depths of the order of 10−1m (Chan et al., 2016). Interferometric synthetic aperture radars (InSAR)

can measure soil subsidence but requires substantial ancillary data to relate it to groundwater depletion (Levy et al., 2020).

Large scale changes in groundwater storage can be detected by monitoring the near-surface gravity field of Earth (i.e., through115

the Gravity Recovery and Climate Experiment, or GRACE mission), but require a spatial averaging on the scale of 105 m

(Long et al., 2015). More fundamentally, most relevant satellites were launched circa 2000, providing a record over the last two

decades. This precludes analyses that extend into the 1990s, which is often necessary to establish a “pre-change” baseline. The

Landsat record provides coverage extending back to 1972, but many images prior to Landsat 7 (launched in 1999) are missing

from the publicly available USGS record, especially for regions outside the U.S. Despite these limitations, remote sensing120

provides unique opportunities to attribute hydrological change in data-scarce regions (Müller et al., 2016; Penny et al., 2018).

This study demonstrates this potential in the context of a bottom-up attribution approach based on the method of multiple

hypotheses.

We first present an overview of the hydrogeophysical characteristics of the upper Jhelum and its change in flow regime

(Sect. 2). We then construct multiple hypotheses to explain the change in flow regime, considering possible changes in the125

water balance due to changing climate, land use, and water storage (Sect. 3). For each of the hypotheses, we provide a detailed

description of the datasets (in Sect. 3) and present the results (Sect. 4). We then synthesize these results to construct a plausible

narrative of hydrological change in the catchment (Sect. 5), and conclude by discussing the potential for bottom-up attribution

and remote sensing to support understanding of hydrological change in data-scarce regions (Sect. 6).
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2 Study site130

2.1 Catchment layout

The upper Jhelum river serves as one of the six main tributaries of the Indus river (Fig. 1a), supporting residents in both

India and Pakistan. The watershed covers approximately 13,000 km2 and is bounded by the Himalayan range to the northeast

and Pir Panjal range to the southwest, both of which drain into the Kashmir valley. The river flows east to west along the

Kashmir valley, passing through Wular lake before discharging at the outlet (Fig. 1b). The valley rests upon a layer of alluvial135

sediment which partially overlays a layer of glacial till, the combination of which extends nearly 1 km into the subsurface (Dar

et al., 2014). Both mountain ranges on either side consist of limestone Karst formations, and streamflow is supported both by

groundwater recharge in the valley and karst springs emerging from mountainsides (Jeelani, 2008).

The valley receives an average annual precipitation of 700–1250 mm per year, depending on elevation. Precipitation is

dominated by Mediterranean westerlies in the spring (March–May) and the Indian monsoon in the summer (June–September)140

(Zaz et al., 2019). Average valley temperatures range from 8◦C in January to 29◦C in August. Higher elevations remain below

freezing in winter and streamflow receives a boost from snow melt as temperatures warm throughout the spring.

The main stem of the upper Jhelum is intercepted by Wular lake (Fig. 1d) between gauges (iii) and (iv). A number of other,

smaller lakes intersect tributaries within the watershed and seasonally inundated wetlands occupy much of the center of the

valley (Fig. 1e). Agricultural land comprises the majority of the valley and supports rice paddy, maize, and wheat, as well as145

noticeably increasing fruit orchards (DES, 2015).

2.2 Declining streamflow

Streamflow in the main stem of the Upper Jhelum has declined over time. In particular, annual streamflow timeseries reveal a

dramatic decline around the year 2000 (Fig. 1c). Average annual streamflow at the watershed outlet (Fig. 1b, gauge v) during

the 2000-2013 period (419 mm y−1) reduced by 50% compared to the 1984-1999 period (852 mm y−1), and by 27% compared150

to the 1944-1983 baseline (670 mm y−1).

In addition to the above metrics for annual streamflow at the watershed outlet, streamflow observations were obtained from

the The Department of Irrigation and Flood Control for Jammu and Kashmir at four additional stations (Fig. 1b) for the period

1955-2013. Standard data integrity checks (Searcy and Hardison, 1960) and flow separation (Nathan and McMahon, 1990)

procedures were applied to ensure temporal and spatial consistency (see Supplementary Information). We used these data in155

our evaluation of hypotheses, as described below.
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Figure 1. Study site and hydrological change. (a) Himalayan water towers including the Indus basin and location of the Upper Jhelum. (b)

Upper Jhelum watershed including locations of streamflow records (gauges i-v), climate records (stations ii and vi-ix), and bounding boxes

for (d-f). (c) Annual streamflow normalized by catchment area, with long-term averages for the periods 1955–1983 (670 mm, no climate

data), 1984–1999 (852 mm, pre-2000 with climate data), and 2000–2013 (419 mm, post-2000). The remaining panels highlight water storage

within the Upper Jhelum including (d) Wular lake, (e) valley inundation, (f) snow pack in May, and (g) Kolahoi glacier in August. In these

images (d-g), Landsat bands swir2-swir1-red are mapped to red-green-blue, so that water and snow are clearly visible as dark and blue pixels,

respectively. MODIS imagery in (a) (Vermote, 2015) and Landsat composite imagery in (b, d-g) from U.S. Geological Survey were prepared

and downloaded using © Google Earth Engine (Gorelick et al., 2017).
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Figure 2. Hypothesis generation and evaluation. We develop a general empirical approach to attribution that (a) utilizes the water balance to

(b) generate overarching research questions and (c) construct multiple hypotheses. The hypotheses are addressed (d) using remote sensing

and in situ secondary data and (e) by applying empirical analyses, the results of which are (f) used to infer relationships regarding changing

hydrological processes. We implement this approach in the Upper Jhelum watershed by defining the long-term water balance in terms of

streamflow (Q), precipitation (P ), evapotranspiration (ET ), and changes in catchment water storage (∆S). Specific research questions (red),

data (blue), and analyses (green) focus on the detection and characterization of changing water balance fluxes in the Upper Jhelum. The

inference step is contingent on understanding how each flux has changed and provides a deeper understanding of watershed hydrological

processes.

3 Methods

3.1 Implementing the method of multiple hypotheses

We use the water balance as a guiding framework to attribute the decrease in Jhelum streamflow. In particular, it serves as a

conceptual tool to build alternative hypotheses regarding changes in each of the water balance fluxes that could explain the160

observed reduction in streamflow (Fig. 2). Testing these hypotheses individually allows us to build understanding about the

different pathways of hydrologic change throughout the catchment. Importantly, this approach does not rely on the predictive

ability of an aggregate hydrological model, where calibration would depend upon on specific information that is not necessarily

available. The multiple hypotheses are developed for each component of the water balance in the following paragraphs, along

with approaches and datasets (also see Fig. 2, Table 1) to evaluate these hypotheses.165
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Table 1. Datasets used in analyses.

Dataset Type Source Time period Recurrence

Streamflow Gauged The Department of Irrigation and Flood

Control (J&K Govt)

1955–2013 Daily–monthly

Precipitation Station Indian Meteorological Department (Sri-

nagar)

1984–2013 Monthly

Temperature Station Indian Meteorological Department (Sri-

nagar)

1984–2013 Monthly

Precipitation Satellite PERSIANN 1984–2013 Daily

Evapotranspiration Satellite MODIS ET Product 2000–2013 8-daily

Land use Satellite MODIS Land cover Product 2001, 2010 Annual

Snow and water extent

analyses

Satellite Landsat Missions 5, 7, 8 1989–2013 Varies

3.2 Precipitation

3.2.1 Hypotheses

Changes in precipitation (P ) could occur through different mechanisms that would have distinct impacts on streamflow. For

instance, a reduction in precipitation would decrease the water balance inputs and reduce the water available to generate

streamflow. Alternatively, an increase in storm frequency and reduction in average storm size could produce an increase in170

vadose zone water storage, greater evapotranspiration (ET), and reduced streamflow (Zhao et al., 2019). We therefore pose the

following hypotheses:

– Hypothesis 1: Changing climate led to a reduction of annual precipitation.

– Hypothesis 2: Changing climate led to a change in rainfall seasonality.

The first hypothesis represents a direct reduction in the water input to the catchment that would generate a reduction in stream-175

flow. The second hypotheses represents a shift in the availability of water throughout the year. Such a shift in precipitation from

a season with low ET to high ET could decrease average streamflow.

– Hypothesis 3: Changing climate led to greater storm frequency.

A reduction in storm size would reduce the “fast” component of streamflow (i.e., quickflow, McCaig, 1983) and combined

with an increase in storm frequency the fraction of rain that is captured within the vadose zone would increase, leading to180

greater bare soil evaporation and plant water use (Zhao et al., 2019). These changes would reduce quickflow and groundwater

recharge, and thus ultimately reduce annual streamflow volume.
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3.2.2 Data sources

To address these hypotheses, monthly precipitation data were obtained from the Indian Meteorological Department (IMD,

Srinagar) for the period 1984–2013 at Srinagar, Kupwara, and Pahalgam stations (stations ii, vi, and vii in Fig. 1b). We185

interpolated monthly precipitation to the watershed scale using Thiessen polygons, which we found were able to close the

water balance better than less parsimonious approaches that account for elevation gradients (see Sect. S2, Fig. S3).

The monthly frequency of the IMD precipitation dataset precluded analysis of storm recurrence. Therefore, we utilized

daily precipitation records from the gridded PERSIANN Climate Data Record (CDR, Ashouri et al., 2015). The purpose of

PERSIANN CDR is to provide consistent precipitation data for long-term climate analysis dating back to 1984 at 0.25 degree190

resolution. We used PERSIANN data as an indication of temporal variation in the distribution of storm size and frequency. In

particular, we counted the number of storms each year in each pixel to see if storm recurrence had changed.

3.3 Evapotranspiration

3.3.1 Hypotheses

Evapotranspiration (ET) affects streamflow by reducing the volume of water stored in the vadose zone that could have otherwise195

produced streamflow. A reduction in streamflow could therefore be generated by an increase in ET, either through changes in

potential evapotranspiration or vegetation properties and land use. We therefore include the following hypotheses:

– Hypothesis 4: Climate change and warmer air temperatures led to greater evapotranspiration.

– Hypothesis 5: Land use change toward water-intensive crops led to greater evapotranspiration.

Both hypotheses are grounded in observed, ongoing changes within the watershed. Temperatures have been warming (Zaz200

et al., 2019) and there has been a notable shift towards orchard plantations in portions of the valley (Romshoo and Rashid,

2014), which may use more water than traditional crops due to a longer growing season (Allen et al., 1998) and better access

to subsurface water storage (Zhang et al., 2018). Both changes might have led to increased evapotranspiration and a reduction

in streamflow.

3.3.2 Data Sources205

We required an approach to estimate seasonal and annual evapotranspiration for the periods before and after 2000. Multiple

approaches have been developed to estimate evapotranspiration (ET) using remote sensing products, but few provide robust

estimates that would allow consistent comparisons of the the pre- and post-2000 periods. For instance, MODIS provides an

8-day ET product (Mu et al., 2013), but this dataset is only available since the launch of the Terra satellite in late 1999. The

surface energy balance approach (SEBAL, Bastiaanssen et al., 1998) can be used to estimate ET from Landsat imagery prior210

to 2000, but relatively few Landsat images were available during this time period and the instantaneous nature of SEBAL may

therefore present biased estimates of seasonal ET.
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We therefore applied a regression framework based on the concept of reference evapotranspiration (Allen et al., 1998),

where evapotranspiration is defined as ET = ET0× k. In this equation, actual evapotranspiration (ET ) is characterized by a

reference evapotranspiration (ET0) and mediated by a crop coefficient (k), which respectively capture the effect of climate215

and land use (i.e., vegetation). For calculating reference ET, we used the Hargreaves equation (Hargreaves and Samani, 1985),

which provides estimates of ET0 at monthly timescales or larger. The Hargreaves equation captures the effect of climate drivers

and accounts for extraterrestrial radiation (Ra), air temperature (TA), and the diurnal temperature range (TR):

ET0 = 0.0023Ra(TA + 17.8)
√

TR . (1)

Extraterrestrial radiation Ra varies seasonally with changing solar declination angles which are associated with latitude and

topography. The diurnal temperature range TR depends on a variety of climate conditions including humidity, soil moisture,220

precipitation, and cloud cover (Dai et al., 1999; Geerts, 2003). We group these parameters into a single seasonal parameter,

as ∝RaT 0.5
R , which represents mean climate conditions within each season and captures the seasonal variability in the Upper

Jhelum watershed. We assume that the greenness of the vegetation canopy exerts the primary control on the stomatal con-

ductance, such that we can define the crop coefficient as k ≈NDV Ic, where c is a calibrated parameter. This assumption is

supported by empirical evidence (Duchemin et al., 2006; Groeneveld et al., 2007). We can therefore re-write the equation for225

evapotranspiration in the form of a nonlinear regression:

ETi,s,y = as× (TA,i,s + 17.8)×NDV Ic
i,s,y + εi,s,y (2)

where ETi,s,t is average MODIS ET for an individual pixel i in season s and year y, TA,i,s is the interpolated post-2000

seasonal average air temperature (See Sect S3), and NDV Ii,s,y is the average Landsat NDVI for the same year-season-pixel

combination. The regression coefficients as represent the estimated average effect of extra-terrestrial radiation Ra and diurnal

temperature range TR, and c mediates the effect of NDVI on the the crop coefficient. These coefficients are assumed to be230

stationary across pixels (homogeneous) and years (stationary). We used a cross-validation analysis to evaluate how robust our

ET estimates were to uncalibrated data. A calibration sample was formed by independently drawing 80% of pixels from each

image, which we used to to estimate the regression coefficients as and c. The estimated coefficients were then used to predict

ET on the remaining 20% of the pixels using Equation 2. Predictions matched ET observation on the validation with a high

degree of accuracy (R2 = 0.87).235

The cross-validation analysis results allowed us to build confidence in our assumptions that c and ac were stationary and

homogeneous. We relied on these assumptions to predict pre-2000 ET using Equation 2 and regression coefficients as and c

estimated using post-2000 observations.

Finally, Strahler et al. (1999) provide annual classification of 17 land use categories using MODIS imagery. We combined

these categories into six super classes to represent major land use categories within the watershed: grassland and shrubs, forest,240

cropland, mosaic vegetation, open water (lakes), urban, and barren land. Within the Upper Jhelum, the mosaic vegetation

class indicates the presence of orchard plantations (see Fig. S4). Land use change involving the cropland and mosaic classes

are therefore likely to have an outsize effect on ET in the watershed, representing the primary component of locally-driven
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anthropogenic changes. We used the MODIS land cover classification from 2001 (the earliest available year) to approximate

land use prior to the observed hydrological change, and the land classification from 2010 to represent land use after the change.245

3.4 Catchment storage

3.4.1 Hypotheses

The Upper Jhelum contains a variety of storage reservoirs including surface water bodies, groundwater, snow, and glaciers

(Figure 1 d-g). From the water balance, a decrease in storage (e.g., glacial melt) must be matched by a corresponding increase in

the outgoing fluxes, evapotranspiration or streamflow. As such, a long-term decrease in catchment storage could have produced250

a corresponding increase in streamflow followed by a similar decrease as catchment storage stabilizes. We hypothesize that

there could have been a long-term reduction in permanent water storage leading to a subsequent decline in streamflow. For

instance:

– Hypothesis 6: A long-term decline in glaciers produced an increase and subsequent decrease in streamflow

– Hypothesis 7: A long-term decline in permafrost produced an increase and subsequent decrease in streamflow255

These hypotheses are grounded in studies of other catchments showing that a warming climate could temporarily increase

streamflow through glacial loss (Singh and Kumar, 1997; Schaner et al., 2012) or permafrost melting (Kurylyk et al., 2016;

Qiang et al., 2019). Such changes have been predicted to occur in high-elevation montane regions and could have contributed

to the increase in streamflow in the 1980s and 1990s and subsequent decline after 2000 (Figure 1c).

In addition to these long term effects, catchment storage at the seasonal time scale scale creates a time lag between precipi-260

tation and streamflow. Understanding how snow cover, groundwater, and surface water storage have changed over time would

provide additional insight into the processes governing hydrological change in the catchment. Specifically, we hypothesize

that:

– Hypothesis 8: Reduced snow cover and earlier snow melt generated an earlier peak in annual hydrograph.

– Hypothesis 9: Reduced groundwater recharge led to a reduction in the baseflow contribution to streamflow throughout265

the watershed.

All things being equal, earlier snow melt would tend to increase the amount of streamflow early in the year and decrease

streamflow later in the year. Earlier snow melt would also allow greater vegetation activity and evapotranspiration earlier in

the spring, thereby reducing groundwater recharge. In aggregate, the processes involved in these two hypotheses might have

increased the proportion of annual precipitation exiting the catchment as evapotranspiration instead of streamflow.270

3.4.2 Data sources: Glaciers and permafrost

High altitude hillslopes and mountain peaks in the Upper Jhelum exhibit sufficiently cold annual temperatures to support both

glaciers and permafrost. In particular, Kolahoi glacier sits along the northeastern edge of the watershed and has been melting
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over recent decades. The glacier was approximately 14.5 km2 in 1962 and 11.3 km2 in 2014 (Shukla et al., 2017).We rely on

estimates of glacial mass lost from published studies to determine whether these losses are sufficient to explain the observed275

variations in streamflow (Sect 4).

We also consider the potential for loss of permafrost to have produced an increase and subsequent decrease in streamflow.

For example, Qiang et al. (2019) found that melting permafrost generated a temporary increase in streamflow in the upper

Yellow river of 5%. To evaluate the possibility for this process in the Upper Jhelum, data were downloaded from the Global

Permafront Zonation Index (GPZI) map (Gruber, 2012). Given the uncertainty in permafrost occurrence, the GPZI is presented280

on a scale that indicates the likelihood of permafrost, with a minimum indicating that “permafrost exists only in most favorable

conditions” and maximum indicating that “permafrost exists in nearly all conditions.” We binned this scale into five groups

of permafrost likelihood including low, medium-low, medium, medium-high, and high. The upper Jhelum contains no pixels

with medium-high or high likelihood of permafrost and in most of the areas where permafrost is possible, the likelihood is low

(see Fig. S8). To evaluate the potential for permafrost to affect streamflow, we compared the areal extent of the GPZI with the285

necessary loss of frozen water storage to produce the observed changes in streamflow.

3.4.3 Data sources: Snow

Winter precipitation occurs largely as snowfall and remains in some parts of the catchment until the late summer. Because

different regions of the watershed may be affected by missing pixels (e.g., clouds) on any given acquisition date, we separated

the watershed into 15 distinct zones of roughly equal areas defined by three elevation bands (<1650 m, 1650–2200 m, and290

>2200 m) in the five local subwatersheds corresponding to the available stream gauges. Snow contains a distinct spectral

signature with high reflectance in visible and near-infrared bands and low reflectance in shortwave infrared bands, and can

therefore be detected by from normalized different snow index (NDSI), which is defined as (Green - SWIR)/(Green + SWIR)

(Dietz et al., 2012). We generated timeseries of snow cover in each of the 15 zones using Landsat 5 imagery by applying a

threshold of 0.5 to NDSI to distinguish snow and water cover from dry land. We further distinguish snow (bright) from open295

water (dark) using a threshold of 0.2 on the NIR band reflectance (Kulkarni et al., 2002). For each zone, we selected only

the dates where missing pixels constituted less than 25% of the zone, leaving an average of 79 and 65 observations in each

zone before and after 2000, respectively. We generated an adjusted snow estimate for each zone and date by dividing raw

snow cover estimates by the fraction of missing pixels. We then estimated average daily snow cover by fitting locally weighted

non-parametric time regressions (LOESS) (Cleveland et al., 1992) to snow cover observations, for each zone, before and after300

2000. The final smoothed estimate of snow cover was taken as the sum of snow cover across all zones, with 95% confidence

intervals calculated from the sum of standard errors across the zones.

3.4.4 Data sources: Groundwater

We were unable to obtain in situ groundwater observations and remotely sensed observations from GRACE satellite were

inadequate due the large spatial averaging kernel (≈ 40,000 km2, compared to a catchment area of approximately 13,000 km2)305

and lack of observations prior to 2002. We therefore relied on proxies to assess changes in groundwater behavior.
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First, we considered changes in baseflow discharge an indication of changes in groundwater. Commonly applied (non-

)linear reservoir models assume that baseflow discharge follows a monotonic relationship with groundwater storage. Therefore

a change in baseflow over time (see Sect. 2.2) would indicate a change in groundwater storage.

Second, we looked for hysteresis in the relationship between surface water storage and streamflow as indicative of a ground-310

water surface water connectivity. We assumed that high groundwater levels in the riparian sedimentary aquifer would allow it

to be hydrologically connected to the lakes and wetlands in the valley bottom. A weak or non-existent hysteresis might be in-

dicative of a weak influence of groundwater on streamflow, whereas a strong hysteresis would indicate both a greater influence

of groundwater and the occurrence of meaningful fluctuations in the water table, including the possibility that the water table

might periodically disconnected from the surface water system. We evaluated possible hysteresis before and after 2000 using315

the results of the surface water classification and the trimonthly timeseries of streamflow directly downstream of the surface

reservoirs.

3.4.5 Data sources: Surface water

A number of lakes and wetlands exist throughout the valley including Wular lake, which intersects the main stem of the Upper

Jhelum between gauges (iii) and (iv), and seasonally inundated valley wetlands which capture flow from the subwatershed that320

drains into gauge (iv) (see Fig. 1). The actual volumetric surface water storage of the catchment is difficult to estimate. Instead,

we focus on changes in surface water area using remote sensing imagery. We classify surface water extent in Wular lake and

in the wetlands in all available Landsat imagery over the period 1984–2013.

Open water is highly absorptive in short-wave infrared bands and more reflective in bands with shorter wavelengths. We

use the modified normalized-difference water index (MNDWI Xu, 2006) as an indication of the likelihood of open surface325

water, with a threshold distinguishing between land and water pixels. Because water exhibits spatial coherence dictated by

topography, we gap-filled missing pixels in Landsat 7 bands due to the scan-line corrector error by propagating edge pix-

els towards the center of the gap (as in Penny et al., 2018). We used a fixed MNDWI threshold across all images to clas-

sify surface water. Clouds were identified using the rudimentary Simple Cloud Score algorithm in Google Earth Engine

(ee.Algorithms.Landsat.simpleCloudScore()) on top-of-atmosphere images. We applied this classification ap-330

proach to 66 images (Landsat 5) before 2000 and 237 images (Landsat 5 & 7) after 2000 for Wular lake and valley inundation.

4 Results

Our estimates of rainfall, streamflow, evapotranspiration and storage change allowed the water balance to be closed for the

1984-1999 and 2000-2013 periods with an error of ±15% (Fig. 3). This suggests that the total watershed fluxes are estimated

with reasonable confidence, particularly given uncertainty in rainfall interpolation and remote sensing models of evapotranspi-335

ration.

However, the analysis did not allow us to close the differential water balance (i.e., changes in the water balance) between the

two periods. We observed an average decrease in precipitation of 117 mm per year and an increase in ET of 32 mm per year,
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Figure 3. Water balance for the Upper Jhelum. (left) Average annual fluxes (P, Q, and ET) for the periods 1984–1999 and 2000-2013. (right)

Average annual change in water balance fluxes between the two periods.

which together do not close the observed decrease in streamflow of 433 mm per year. We do not find evidence of a change

in long term storage processes (e.g., decrease in glacial melt) that would close the balance. The issue, therefore, appears that340

biases on individual watershed fluxes (e.g., an equivalent underestimation of P and ET) might compensate each other and close

the water balance at individual periods, while underestimating the components of changes in Q. This issue illustrates the limits

of a top-down approach, where attribution of hydrological change relies on the predictive ability of an aggregate hydrological

model, including one as simple as the catchment-scale water balance. Closing the differential water balance would have allowed

to attribute the observed changes in streamflow to corresponding changes in other fluxes. In contrast, the bottom up approach345

to attribution does not rely on our ability to close the differential water balance. Instead, the hypotheses developed above

(Section 3) are investigated individually, as described below. While data limitations might prevent a subset of the hypotheses

from being conclusively tested, the approach nevertheless reveals a process-based understanding of hydrological change in the

Upper Jhelum watershed.

4.1 Precipitation: hypotheses 1-3350

Precipitation exhibited notable changes in total volume, as annual precipitation fell by 117 mm, corroborating Hypothesis 1.

Precipitation also exhibited changes across seasons (Fig. 4), consistent with Hypothesis 2. These changes were driven almost

entirely by a loss of spring precipitation of 117 mm. The other seasons saw modest and statistically insignificant changes in

precipitation (+20 mm in winter, -14 mm in summer, -5 mm in autumn).

Additionally, the number of storms greater than 1 mm increased in all seasons except spring, thus supporting Hypothesis 3355

(Fig. 4c). Combined with the fact that precipitation either decreased or remained constant, this entails a decrease in average

14

https://doi.org/10.5194/hess-2021-274
Preprint. Discussion started: 1 June 2021
c© Author(s) 2021. CC BY 4.0 License.



0

200

400

600

Winter Spring Summer   Autumn

P
re

ci
pi

ta
tio

n,
 m

m

a

0

20

40

60

Winter Spring Summer   Autumn

N
um

be
r 

of
 s

to
rm

s

b

10

20

Winter Spring Summer   Autumn

Te
m

pe
ra

tu
re

, °
C

Pre−2000

Post−2000

c

0

200

400

600

800

Winter Spring Summer   Autumn

S
tr

ea
m

flo
w

, c
um

ec

d

Figure 4. Seasonal climate and hydrology in the Pre-2000 (1984–1999) and Post-2000 (2000-2013) periods including (a) mean seasonal

gauge precipitation, and (b) mean number of storms greater than 1 mm in PERSIANN grid cells, (c) mean gauge temperature, and (d) mean

streamflow at the watershed outlet (gauge v, Baramulla station). Statistically significant differences from t-tests are noted for p < 0.05 (∗)

and p < 0.1 (×). Notably, spring exhibited dramatic changes in temperature (+1.9◦C) and precipitation (-117 mm). The number of storms

increased in summer and autumn, yet remained relatively constant in spring. Reductions in streamflow were statistically significant in all

seasons.

storm size across all seasons. The implications of these findings in relation to the water balance are revisited in the Discussion

(Sect. 5).

4.2 Evapotranspiration: hypotheses 3-4

Annual average watershed evapotranspiration increased by 32 mm, from 311 mm before 2000 to 343 mm after 2000. The two360

hypotheses pertaining to ET seek to attribute this increase to either changing climate or changing land use. Both drivers have

contributed to ET increase in the catchment, as indicated by increases in both air temperature and the NDVI. Based on simple

averages of gauge data, temperature increased significantly in winter (+0.8◦C), spring (+1.9◦C), and autumn (+1.0◦C, Fig. 4).

The most dramatic increases in ET occurred within agricultural land cover classes (cropland and mosaic vegetation, i.e.

orchards), which constituted 27% of the catchment area in 2001. In these classes, NDVI increased substantially in the spring and365
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Figure 5. Spatial changes in evapotranspiration after 2000. (a) Spring and (b) summer changes in NDVI. (c) Annual change in evapotran-

spiration (ET). (d) MODIS land cover map from 2010. (e) The same MODIS 2010 land cover map, with pixel transparency determined by

the magnitude of positive change in annual ET from (c). The 2000 m contour separates the low-elevation valley from moderate elevation

hillslopes in both mountain ranges. Changes in ET are clustered in the valley, especially in cropland and mosaic vegetation (i.e., orchards),

with increasing ET in natural vegetation just above 2000 m. See text for details.

summer seasons (Fig. 5). Between 2001 and 2011, the catchment exhibited notable expansion of the mosaic land cover class,

including approximately 230 km2 converted from traditional crops to mosaic. The largest local increases in ET are associated

with this expansion, including land cover transitions to mosaic vegetation (see Fig. 6a), with ET increasing by 70 mm (mosaic

to mosaic), 78 mm (cropland to mosaic), and 82 mm (shrubs and grassland to mosaic). In addition, noticeable increases in ET

also occurred in the large portion of the watershed area (53%) that was consistently classified as shrubs and grassland in both370

2001 and 2011. NDVI increased along the hills on the southwest and northeast portions of the watershed, resulting in higher

ET in grassland / shrubs and forest land cover. NDVI remained constant in the Wular lake in spring but increased considerably

in summer, likely due to increasing fertilizer application supporting algae and other aquatic vegetation in the lake (Wetlands

International South Asia, 2007). In contrast, regions where NDVI appears to have decreased are dominated by urbanization in

the center of the valley (visible in Fig 5ab) and mountain peaks with near-constant cloud cover in the summer, which occur375

along the southeastern and northwestern watershed boundaries. In these pixels, few (≤5) summer NDVI observations are

available before 2000 due to cloud cover, suggesting a substantial level of uncertainty in the reported negative NDVI trend (see

Fig. S6).
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Figure 6. Changes in land use and evapotranspiration. (a) MODIS Land use change from 2001 to 2010, including the average increase in

evapotranspiration within each combination of categories. (b) Watershed average effect of each land use category on evapotranspiration.

Most of the increase in watershed ET (27 mm) occurred in regions where land cover remained consistent from 2001 to 2010 (outlined in

black), compared with regions where land cover changed (5 mm).

Overall, of the 32 mm annual increase in ET that we detected, approximately 17% can be attributed directly to increasing air

temperature, and the remaining 83% to an increase in NDVI. The largest net contributors to watershed-averaged increases in380

ET were shrubs and grassland (15 mm), cropland (11 mm) and forest (3 mm). Although associated with strong local increases

in evapotranspiration, mosaic vegetation covered only 2.7% of the watershed in 2011 and only contributed a 2 mm increase

to watershed-average ET. The black boxes in Fig 6b encompass the change in ET for regions of the watershed that maintained

consistent land cover in 2001 and 2010, accounting for a total increase in ET of 27 mm compared with 5 mm in regions where

land cover changed. We can therefore say that climate change had a clear effect on watershed evapotranspiration, both through385

increasing temperature and increasing NDVI within naturally vegetated land classes, consistent with Hypothesis 4. Regarding

Hypothesis 5, land use change has led to large local increases in ET. However, the overall effect on the catchment water balance

is small compared to climate-related increases of ET in the much higher number of remaining pixels where land use did not

change between 2000 and 2011.

4.3 Catchment storage: hypotheses 6-9390

Observational records indicate decreasing water storage over time in the Upper Jhelum. Kolahoi glacer has lost considerable

volume over time, estimated as 0.3 km3 in the period 1962-2013 (Rashid et al., 2017). This corresponds to an average loss of

23.3 m thickness across the glacier over the entire five decades, or 0.456 m year−1 loss in glacial thickness. Because the glacial
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extent is approximately 0.1% of the catchment area (Shukla et al., 2017), such losses would amount to 0.456 mm year−1 of

annual streamflow at the outlet of the Jhelum. These losses are several orders of magnitude smaller than the observed changes395

in streamflow, allowing us to reject Hypothesis 6.

Overall, roughly 0.19% of the watershed has at least a medium likelihood of permafrost (Fig. S8). In a larger portion (6.4%)

permafrost has a low likelihood and therefore requires extremely favorable conditions and is therefore likely to be shallow

(Gruber, 2012). In that context, the 50 mm per year increase in Upper Jhelum streamflow necessary to close the differential

water balance would require a loss of 780 m per year of permafrost in all regions where permafrost is likely to be shallow. Such400

a permafrost loss is orders of magnitude greater than observed changes in permafrost in other basins. For example in upper

reach of the Yellow River Basin where Qiang et al. (2019) estimated less than 1 cm loss of ground ice per year. We conclude

that permafrost cannot be considered an important driver of changes in streamflow and we can reject Hypothesis 7.

Snow cover follows a seasonal signal, with a maximum in late winter followed by receding snow pack in spring. After

2000, the maximum snow cover cover extent was reduced and was followed by more rapid snow melt (Fig. 7a). The extent of405

the influence of snow on the hydrograph appears to be reflected by an earlier peak in the hydrograph. This finding supports

Hypothesis 8, although observational data is missing to quantify the implicated changes in storage volumes. Earlier snow-melt

and its hypothesized effect on the water balance is nonetheless consistent with the observed increased in ET during the spring

(see Sect. 5 for further discussion).

Remote sensing observations of open water extent suggests that surface water storage declined dramatically during the study410

period, both in Wular lake and the neighboring wetlands (Fig. 7b). Both of these surface reservoirs connect to the main stem of

the Upper Jhelum between gauges iii. and iv. (see Fig. 1), and likely play an important role in streamflow generation along this

reach. To investigate this effect, we computed locally generated baseflow as the difference in baseflow between gauges iii. and

iv. Baseflow along this reach peaks earlier and at a much lower amplitude after 2000 (Fig. 7c). It also transitions much earlier

(mid-summer) to losing conditions (i.e. negative local streamflow values), compared to pre-2000 where baseflow transitioned to415

losing conditions only at the end of autumn and beginning of winter. Additionally, the relationships between locally generated

baseflow and open water extent (of the lake and the wetlands) exhibit a seasonal hysteresis (see Fig. S7), which we interpret as

indication that groundwater plays an important role mediating streamflow generation in the valley bottom. Although the shape

of the hysteresis remains similar, the amplitude of the hysteresis behavior is reduced considerably after 2000.

The implication of changing groundwater storage can be better understood by comparing temporal trends in streamflow420

below Wular lake (iv., Sopore station) and the most upstream gauge of the watershed (i., Sangam station). The streamflow

timeseries at both locations exhibit statistically significant decreasing trends over the period 1960–2013 (Fig. 8a). Baseflow

separation, however, reveals important differences between both streamflow timeseries. Baseflow decreases over time only in

the downstream gauge (Fig. 8b) whereas quickflow decreases only in the upstream gauge (Fig. 8c). Temporal changes in the

baseflow index (B = QB/QTotal) of each of these gauges therefore occurs in opposite directions, with decreasing B near the425

outlet and increasing B in the hinterlands (Fig. 8d). This lends credence to Hypothesis 9, and we further discuss potential

causes and implications of these opposing trends in the baseflow index with respect to saturated and unsaturated groundwater

storage in the Discussion (Sect. 5).

18

https://doi.org/10.5194/hess-2021-274
Preprint. Discussion started: 1 June 2021
c© Author(s) 2021. CC BY 4.0 License.



0

5K

10K

Jan Apr Jul Oct

S
no

w
, k

m
2

a
Valley Wular

1990 2000 2010 1990 2000 2010
0

30

60

90

W
at

er
 e

xt
en

t, 
km

2

b

0
10
20
30

Winter Spring Summer AutumnO
be

rv
at

io
ns

, %c

−100

0

100

200

Jan Apr Jul Oct

B
as

ef
lo

w
 d

iff
er

en
ce

, c
um

ec

d

Extent weight 0.0 0.5 1.0 Pre−2000 Post−2000

Figure 7. Declining water storage and baseflow. (a) Landsat observations of snow cover with loess smoothing, highlighting earlier spring

snowmelt after 2000. (b) Long-term trends in valley inundation and Wular lake indicating decreasing surface water storage over time. The

loess smoothing of water extent is weighted by cloud cover given by exp(−Acloud/Atotal). (c) The percent of satellite images used to

assess water extent was seasonally consistent before and after 2000. (d) Baseflow at gauge iv. (Sopore) minus baseflow at gauge iii. (Asham),

encompassing the river reach that includes Wular lake. After 2000, baseflow peaks and depletes earlier in the year, as does a transition from

gaining to losing conditions.

5 Discussion

We now synthesize the results presented above to develop a narrative of hydrological change by reconciling the various fluxes430

that have either increased or decreased over time (Fig. 9, red and blue arrows). Taken together, the observed changes in

hydrological fluxes indicate additional unobserved changes in fluxes connecting surface and groundwater that might play an

important role in explaining hydrological change in the catchment. As discussed in the following paragraphs, evidence suggests

that these fluxes have decreased over time (Fig. 9, pink arrows).

– The largest seasonal precipitation occurs in spring, when the prevailing climate is driven by westerlies, yet spring pre-435

cipitation declined considerably during the study period. At the same time, vegetation activity increased across most of

the watershed within both anthropogenic (cropland, orchards) and natural (forest, shrubs and grassland) land use classes

(Fig 5a), producing an increase in evapotranspiration. The corresponding reduction in spring streamflow was partially

compensated by higher temperatures and earlier snow melt. Near the end of the study period, the snow pack was nearly

always exhausted by the end of spring (Fig 7a).440
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bined with the observed sign of change. Pink arrows indicate groundwater fluxes that have been inferred and hypothesized to decrease over

the study period. See text for details.
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– Springtime seepage generates high groundwater recharge throughout the valley, both from the highlands and from within

the valley (Jeelani, 2008). High groundwater levels at the end of the spring season are reflected by the peak in baseflow

along the reach of the stream that includes Wular lake (Fig. 7d). Prior to 2000, this peak occurred near the transition

between spring and summer. After 2000, this peak occurred earlier in spring and at a much lower level of baseflow. This

suggests considerably lower groundwater storage over time, reflected in the reduced groundwater recharge fluxes (Fig 9,445

Spring).

– In summer, the prevailing climate is driven by the Indian monsoon and precipitation is generally less than westerly

precipitation in the spring (Fig 4a). Consequently, hydrology within the watershed is controlled largely by water storage

(snow, lakes and groundwater) left over from spring. Prior to 2000, the seasonal recession of the baseflow hydrograph

starts high at the end of spring and continues to produce discharge throughout the summer season (Fig 7d). The river450

then transitions to losing conditions in autumn and earlier winter before baseflow increases with winter precipitation and

snow melt (Fig 7d). After 2000, snow pack at the beginning of summer is nearly exhausted, and surface water (Fig. S5)

and groundwater (Fig. 7d) storage are also reduced. The receding limb of the hydrograph starts low at the beginning

of summer and quickly depletes, transitioning to losing conditions within the summer season. Indeed, the recovery of

local baseflow in autumn (i.e., baseflow becoming less negative, see Fig. 7d, brown) is driven by declining baseflow455

downstream rather than increasing baseflow upstream. Additionally, summer evapotranspiration after 2000 increased

throughout much of the watershed including in natural and anthropogenic land use classes.

– The hydrological cycle in the watershed is mostly dormant in autumn and winter. In autumn, little precipitation falls and

the hydrograph recedes into winter. Notably, lake storage depletes and the lake transitions to losing conditions in several

years, particularly before 2000 (Fig. 7d). Winter precipitation arrives mostly as snowfall, replenishing snow storage.460

Winter rain and snow melt serve as the early primers for the seasonal cycle to renew in spring.

To summarize, climate appears to be the primary cause of hydrological change within the Upper Jhelum. The most influential

driver is the decline of spring westerly precipitation. Other studies have associated this decrease with warming temperatures

(Zaz et al., 2019). This effect is compounded by an array of other drivers that affect watershed processes. Notably, the loss

of baseflow downstream of Wular lake suggests a decrease in groundwater storage in the valley. This decline in groundwa-465

ter is facilitated both by reduced rainfall during the spring and increasing watershed evapotranspiration. The latter might be

exacerbated by an increase in the number of storms for precipitation falling outside of the spring season. This observation

from the PERSIANN CDR dataset allows us to hypothesize that the shift towards a larger number of smaller storms results in

reduced overland and macropore flow, along with more stable and persistent soil moisture and ultimately more water “lost” to

vegetation uptake. In this case, seepage would be increasingly likely to occur via slow drainage processes, rather than macro-470

pore flow activated in large storms. Such changes have been observed in other karst catchments (Zhao et al., 2019) and are

supported by the evidence that quickflow declined and the baseflow index increased in the most upstream gauge in the Upper

Jhelum (Fig. 8). The increase in evapotranspiration appears to have occured throughout the catchment. Our evapotranspiration

model indicates that increasing air temperature had a small direct effect on ET (a 2% increase) and that most of the overall
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increase in ET (83%) occurred due to changes in NDVI, which increased in all natural and anthropogenic vegetation classes.475

The climate signal therefore manifested itself by providing favorable conditions for plant biomass growth, as represented by

increasing greenness. Such a change would be expected with warming temperatures and reduced snow cover early in the year,

in addition to greater energy availability (temperature) and water availability (soil moisture) that arose due to climate warming

and increased storm frequency, respectively. Evapotranspiration exhibited the greatest increases in regions that transitioned to

orchard cultivation, but these areas represent a small fraction of the overall watershed and increase in ET. Evapotranspiration480

also increased considerably in cropland areas, likely due to the aforementioned climatic changes in addition to agricultural

intensification. Indeed, increasing fertilizer use in the catchment has been noted in other studies (Wetlands International South

Asia, 2007) and might have contributed to the increased ET in agricultural land use classes. It is also an important driver

contributing to the growth of aquatic vegetation and increasing ET in Wular lake in the summer (see Figs 5,6).

6 Conclusions485

In this study, we develop a bottom-up approach to hydrological attribution to understand the drivers of dramatic changes in

the annual streamflow of the Upper Jhelum river. We found that much of the observed decrease in streamflow is associated

with decreases in westerly precipitation in spring, in addition to greater evapotranspiration. While land-use change to orchard

plantations and agricultural intensification are likely contributing factors, we attribute most of the increase in evapotranspiration

to non-local anthropogenic causes, most notably increased vegetation activity in spring due to increased temperature and earlier490

snow melt.

The approach focuses on the development of a process understanding of hydrological change in the catchment by separately

evaluating multiple hypotheses about specific mechanisms, rather than relying on a basin-wide aggregate model for predictive

inference. As such, it is a promising tool to attribute hydrological change in situations where process uncertainty might be

compounded by hydrologic regime shifts. Additional uncertainty in the water balance, due to bias in hydrological observa-495

tions, limits the utility of catchment-scale models, including a model as simple as the water balance. Indeed, detection biases

associated the different remote sensing sources might compound and prevent the proper calibration of an aggregate model, as

seen in our inability to close the differential water balance. Instead of being used as a predictive tool, the water balance (or

any other conceptual model) is here used as a framework to generate hypotheses that can be investigated individually. While

outcomes associated with individual hypotheses might exhibit considerable uncertainty, especially in data-scarce catchments,500

together the multiple hypotheses provide multiple strands of evidence to support (or refute) specific mechanisms and ultimately

attribute hydrological change.

Data availability. The secondary data that support the findings of this study are available on request from the corresponding monitoring and

collection agencies. Remote sensing products used in this study are freely available from the respective providers (see in-text citations).
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