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Abstract. Streamflow regimes are rapidly changing in many regions of the world. The-ability-to-attribute-Attribution of these
changes to specific hydrological processes and their underlying climatic and anthropogenic drivers is essential to formulate
effective water policy. Traditional approaches to hydrologic attribution rely on the ability to infer hydrological processes
through the development of catchment-scale hydrological models. However, such approaches are challenging to implement in

practice —In

using models to accurately associate changes in observed outcomes with corresponding drivers. Here we present an alternative
approach to-hydrelogical-attribution-that leverages the method of multiple hypotheses to attribute changes in streamflow in
the Upper Jhelum watershed, an important tributary headwaters of the Indus basin, where a dramatic decline in streamflow.
since 2000 has yet to be adequately attributed to its corresponding drivers. We generate and empirically evaluate a series of
alternative and complementary hypotheses that-pertain-to-hydrelogical-change-—These-hypotheses-concern—concerning distinct
components of the water balanceand-are-evaluated-independently. This process allows a holistic understanding of watershed-
scale processes to be developed, even if-though the catchment-scale water balance remains open. We-apply-the-approach-to

tvers—Using remote sensing
and secondary datacoHeeted-from-the-watershed, we explore changes in climate, surface water, and groundwater. The evidence
reveals that climate, rather than land use, had a considerably stronger influence on reductions in streamflow, both through
reduced precipitation and increased evapotranspiration. Baseflow analyses suggest different mechanisms affecting streamflow
decline in upstream and downstream regions, respectively. These findings offer promising avenues for future research in the
Upper Jhelum, and an alternative approach to hydrological attribution in data-scarce regions.

1 Introduction

Water resources are changing throughout the world under anthropogenic pressures including climate change, land use change,

and changes in water management (Vorosmarty et al., 2004; Milly et al., 2008; Ceola et al., 2019). These drivers pose chal-
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lenges for water policy by increasing climatic variability (Smirnov et al., 2016), exacerbating water-seareity-water scarcity
(Srinivasan et al., 2017), and reducing our ability to predict hydrological variables (Ehret et al., 2014). In arid and semi-
arid regions, these concerns are particularly alarming given the concurrent challenges of increasing hydrological uncertainty
and competition for scarce water resources (Florke et al., 2018; Aeschbach-Hertig and Gleeson, 2012). In many such re-
gions, mitigation and adaptation strategies are urgently needed but require accurate understanding of the underlying drivers

of change (Thompson et al., 2013; Penny et al., 2020a). In order to address the management challenges of mitigation and
adaptation, observed changes in the-hydrological processes must be correctly attributed to eorresponding-hydrological-drivers—

that cause changes in hydrology).

Here, we focus on attribution of hydrological changes in the Upper Jhelum watershed, a headwater catchment of the Indus
basin and an important source of water for both India and Pakistan (Romshoo, 2012). The Upper Jhelum provides essential
ecosystem services in the Kashmir valley, yet many of these services have been threatened in recent decades with lakes and
wetland shrinking, fish populations declining, and less water available for agriculture (Wetlands International South Asia, 2007)
- Each of these ecosystem services depends on streamflow, which has declined dramatically in the Upper Jhelum since the year
2000, This decline is concerning given that the watershed is increasingly vulnerable to water stess due to population growth
(Showgi et al., 2014), increasing pollution (Rather et al., 2016), and climate change (Rashid et al., 2015). These concerns are
compounded by the transboundary nature of the Upper Jhelum watershed, and yet attribution is complicated by the myriad

of potential drivers and changing processes occurring within the basin. Streamflow is fed by a variety of sources within the

basin, including precipitation, seasonal snowmelt, and glacier melt (Romshoo et al., 2015). The valley contains a thick surficial

aquifer which is recharged directly from the surrounding karst mountains, meaning that there may be considerable flows that
bypass tributary streams (Jeelani, 2008). Furthermore, the large scale of the basin (nearly 13 000 km?), varying topograph

elevation spans 1500 m to over 5000 m above sea level), and rapidly changing land use (agricultural intensification and increasing orchards

make it such that adequately estimating hydrological variables is difficult.

This research builds upon previous studies that associated declining streamflow in the Upper Jhelum with potential drivers
of change. For instance, Romshoo et al. (2013) found that declining streamflow in the headwaters of the Upper Jhelum were
associated with glacier recession and changes in snowmelt in the basin. Another study by Romshoo and Ali (2018) identified
negative trends in precipitation as a key driver of losses in streamflow, and analysis by Zaz et al. (2019) indicated that changes
in precipitation may have resulted from global warming. Badar et al. (2013a) identified changing land use change as a ke
contributor to changes in runoff, but the implications on streamflow changes in the river remained unclear. Considerable
hydrological research at the basin scale has focused on streamflow forecasting (e.g.. Mahmood and Jia, 2016; Badar et al., 2013b)
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along with empirical work characterizing streamflow in tributaries and the hinterlands (Jeelani, 2008; Jeelani et al., 2013; Romshoo et al.

- These studies have tended to focus on particular aspects of hydrological change and a coherent understanding of the causes
of hydrological change has therefore yet to be achieved.

Given the importance of this river, scientific understanding of changing hydrological processes is essential to support
effective domestic and transboundary water management. Nevertheless. the difficulties in conducting hydrological attribution in
this basin are common to many regions, as measurement challenges often make it difficult to accurately close the water balance
(Kampf et al., 2020) and changes in its key components may go unnoticed. These difficulties make the broader challenge
of attributing hydrological changes ex post to their landscape and climatic drivers a substantial ongoing scientific challenge
(Wine and Davison, 2019).

The most common approaches to hydrological
attribution (see Dey and Mishra, 2017; Luan et al., 2021, for recent reviews) are unlikely to be appropriate for the Upper Jhelum.
In perhaps the most common approach, watershed modeling is used to simulate streamflow, and the calibrated model is used to
infer hydrological relationships and conduct the attribution (e.g., Liu et al., 2019). Goodness-of-fit and other model evaluation
metrics influence which models or calibration parameters are given more credibility (Miiller and Thompson, 2019) and which

models are, in turn, used to identify the causal processes in the attribution. This-approach-isreferred-to-as-predietive-inferenee

13 2} o - . A

drivers—The major challenge of usingsuch-top-down-approaches-this approach for attribution is the difficulty in validating
hydrological processes within the model. These difficulties can arise due to equifinality (cannot distinguish drivers by consid-

ering outcomes only, Beven, 2006), nonlinearity (drivers are not linearly separable, Sivapalan, 2006), hydrological regime
shifts (Foufoula-Georgiou et al., 2015; Gober et al., 2017), or lack of appropriate data (cannot test hypotheses pertaining to
specific processes, Sheffield et al., 2018). Calibrated models have particular difficulty with hydrological regime shifts, where

large(e—g—watershed)-and-small-This general approach to attribution is known as predictive inference (Ferraro et al., 2019)
because the accuracy of predictions is used to validate the model which is then used to infer the underlying causal processes.
Another approach to attribution utilizes hydrological fingerprinting, but this approach requires that the effects of specific

drivers (i.e., “signatures”) are specified a priori and used to identify or separate the effects of multiple drivers in particular

situations (Viglione et al., 2016). This approach is not suitable to analyzing streamflow decline the Upper Jhelum because




95 multiple drivers may have similar signatures in terms of streamflow outcomes. A third set of approaches use the relationship
between the water balance and energy balance (via the latent heat flux) to assess how precipitation is partitioned into streamflow
and evapotranspiration as a basis for understanding changes over time (e.g., Ning et al., 2018; Tomer and Schilling, 2009).
Although these approaches associate changes in streamflow with changes in climate or land use, the partitioning approach is
100 been used for hydrological attribution (Penny et al., 2020b), but may require extensive resources and often cannot be applied in
be logistically complicated where accessibility is challenging (e.g., hitlstope-or plot) seales (Kampf-and Burges; 2040; Safeeqetal-202H
~due to remoteness or political instability) and considerable methodological challenges remain, especially in human-impacted
catchments, due to the difficulty in capturing spatial complexity and ruling out potential alternative drivers of change (Srinivasan et al., 2015
105 .
Here, we advance an alternative ;~bettem-up~-approach to attribution, wherein several plausible hypotheses are generated
and each is evaluated separately. The approach is grounded in the method of multiple working hypotheses (Chamberlin, 1965)
and has two key benefits. First, the approach does not rely on constructing and calibrating a fully integrated catchment-scale
hydrological model—Fhe-approach-onlyrelies—on—the—, but rather relies on specific sets of empirical observations that are
110 necessary to individually test each hypothesis. As such, it is particularly helpful in data-scarce catchments, where limited
hydrological records preclude complete characterization of the water balance and data collection may be difficult. Relatedly,
the bettem-up-approach allows us to explicitly account for uncertainties in hydrological fluxes or issues with data integrity.
These issues might cause some (though not all) hypotheses to be inconclusively evaluated. This contrasts with the tep-dewn
predictive inference approach, where integrity issues with some of the data might cause the whole analysis to be inconclusive,
115 or worse, be concealed within the model calibration process (e.g., due to equifinality issues). Second, the approach mitigates
against observational and conceptual biases in which certain hypotheses are favored based on preconceived notions of change
(Railsback et al., 1990). By-Using consistent observational datasets before and after 2000 ensures that only a nonstationary bias
would affect the results of the analyses. Further, by employing separate analyses for each hypothesis, we construct a process-
based narrative of attribution in which each analysis comprises part of the whole and serves to corroborate or contradict other
120 analyses. Indeed, the method of multiple hypotheses advocates broader understanding of the whole over in-depth understanding
of individual components. By favoring breadth over depth we seek to develop a coherent and holistic narrative of change.
Although initially proposed in 1890 (and later republished as Chamberlin, 1965), few studies have applied the method of
multiple hypotheses towards hydrological attribution. Harrigan et al. (2014) used the method of multiple hypotheses to demon-
strate the combined effect of changing precipitation and catchment drainage in producing greater streamflow. Additionally;
125 Srinivasan et al. (2015) sought to attribute hydrological change in a drying river by generating (and subsequently testing) a set
of hypotheses based on stakeholder knowledge. Here, we apply-the-bettom-up-approach-and-employ the water balance as a
guiding framework to generate hypotheses regarding hydrological processes while using stakeholder knowledge via published

literature to provide additional context with respect to water management. We-nete-thatthis-differsfrombottom-up-hydrologieat
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Tn-that-eontext—Previous studies using the method of multiple hypothesis to attribute hydrological change were grounded
in building empirical evidence through extensive field research. However, given the challenges associated with field research

described above), remote sensing offers tremendous potential to overcome both major limitations of field experimentation

160 in terms of capturing spatial heterogeneity and generating observational datasets after hydrological changes occur and are
detected (e.g., Valentin and Miiller, 2020). The increasing availability of remote sensing products has-provided-now provides
satellite estimates of precipitation, evapotranspiration, and changes in water storage including surface water, soil moisture, and

groundwater (Montanari and Sideris, 2018).
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1972, and many relevant
175 satellites were launched circa 2000, prov1d1ng a record over the last two decades. %&pfee}udes—afm%yses—fh&eeﬁeﬂdﬁm&e

Remote sensing therefore provides unique opportunities

to attribute hydrological change in data-scarce regions (Miiller et al., 2016; Penny et al., 2018)-, particularly when combined
180 %cmmm&m@wmm study demonstrates
he-by using secondary data and remote sensing
observations to apply the method of multiple hypotheses in the Upper Jhelum watershed.

this potential in
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2 Studysite

190 2 Study site: The Upper Jhelum watershed
2.1 €atchmentlayout

TFhe-upperJhelum-
The Upper Jhelum Watershed in the Western Himalayas lies between the Karakorum mountain range in the north, the Pir

Panjal range in the south and west and Zanskar range in the east. The river serves as one of the six main tributaries of the
195 Indus river(Fig. 1a), supportmg residents in both India and Pakistan. The watershed covers approx1mately 13,000 km? and

ain-drains into
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the Kashmir valley —The-where the river flows east to west along-the Kashmir-valley—passing-through-Wularlake-before

diseharging-before discharging through a deep gorge at the outlet along the western side of the basin (Fig. 1b). The valley
rests upon a layer of alluvial sediment which partially overlays a layer of glacial till, the combination of which extends nearly

1 km into the subsurface (Dar et al., 2014). Beth-meuntain-Mountain ranges on either side of the valley consist of limestone
Karst formations, and streamflow is supported both by groundwater recharge in the valley and karst springs emerging from

mountainsides (Jeelani, 2008).

The climate in Kashmir is characterized by four seasons (Mahmood et al., 2015) including winter (December—February)
spring (March—May), summer (June—August), and autumn (September—November). The valley receives an average annual

precipitation of 700—1250 mm per year, depending on elevation. Preeipitation-Although precipitation occurs throughout the
year, it is dominated by Mediterranean westerlies in the spring (March-May) and the Indian monsoon in the summer (June—

September) (Zaz et al., 2019). Average valley temperatures range from 8°C in January to 29°C in August. Higher elevations
remain below freezing in winter and streamflow receives a boost from snew-melt-snowmelt as temperatures warm throughout
the spring.

The main stem of the upper Jhelum is intercepted by Wular lake (Fig. 1d) between gauges (iii) and (iv). A number of other,

smaller lakes intersect tributaries within the watershed and seasonally inundated wetlands occupy much of the center of the

valley (Fig. le). Tributaries connect the valley to surrounding hill stations where tourism services are a mainstay of economic

roduction (Malik and Bhat, 2015). The Upper Jhelum also provides transport services, for ferrying people as well as timber
extracted from forests (Raina, 2002). Agricultural land comprises the majority of the valley and supports riee-paddy, maize,

and wheat, as well as noticeably increasing fruit orchards (DES, 2015). Summer is the primary growing season for paddy and
maize, which are sown in the spring and harvested in the late summer or early autumn. Wheat is typically planted in October

2.1 Declining streamflow

Streamflow-Streamflow observations were obtained from the The Department of Irrigation and Flood Control for Jammu and
Kashmir at five stream gauging stations throughout the Upper Jhelum catchment (Fig. 1b) for the period 1955-2013. Standard

data integrity checks (Searcy and Hardison, 1960) were applied to ensure temporal and spatial consistency (see Supplementar
Information, Sect. S1). Streamflow in the main stem of the Upper Jhelum has declined over time. In particular, annual stream-
flow timeseries reveal a dramatic decline around the year 2000 (Fig. 1c). Average annual streamflow at the watershed outlet at
Baramulla station (Fig. 1b, gauge v) during the 2000-2013 period (419 mm y ') reduced by 50% compared to the 1984-1999
period (852 mm y—!), and by 27% compared to the 1944-1983 baseline (670 mmy').

were observed at the four additional streamflow gauges (see Fig. +b)for-the-period1955-2013—Standard-data-integrity-cheeks
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Figure 1. Study site and hydrological change. (a) Himalayan water towers including the Indus basin and location of the Upper Jhelum. (b)
Upper Jhelum watershed including locations of streamflow records (gauges i-v), climate records (stations ii and vi-ix), and bounding boxes
streamflow normalized by catchment area, with long-term averages for the periods 1955-1983 (670 mm, no climate data), 1984-1999 (852
mm, pre-2000 with climate data), and 2000-2013 (419 mm, post-2000). The remaining panels highlight water storage within the Upper
Jhelum including (d) Wular lake, (e) valley inundation, (f) srew-pack-snowpack in May, and (g) Kolahoi glacier in August. In these images
(d-g), Landsat bands swir2-swirl-red are mapped to red-green-blue, so that water and snow are clearly visible as dark and blue pixels,
respectively. MODIS imagery in (a) (Vermote, 2015) and Landsat composite imagery in (b, d-g) from U.S. Geological Survey were prepared
and downloaded using Google Earth Engine (Gorelick et al., 2017).
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Table 1. Datasets used in analyses.

Dataset Type Source Time period Recurrence
Streamflow The Department of Irrigation and Flood  1955-2013 Daily—monthly
Gauged QUM ¢oniro] (J&K Govt)

Precipitation Station Indian Meteorological Department (Sri-  1984-2013 Monthly
nagar)

Temperature Station Indian Meteorological Department (Sri-  1984-2013 Monthly
nagar)

Precipitation Satellite PERSIANN 1984-2013 Daily

Evapotranspiration Satellite MODIS ET Product 2000-2013 8-daily

Land use Satellite MODIS Land cover Product 2001, 2010 Annual

Snow and water extent Satellite Landsat Missions 5, 7, 8 1989-2013 Varies

analyses

below—S2). Multiple hypotheses on the drivers and hydrological processes underlying this streamflow decline are introduced
and evaluated in the remainder of the paper.

3 Methods
3.1 Implementing the method of multiple hypotheses

We use the water balance as a guiding framework to attribute the decrease in Jhelum streamflow. In particular, it serves as a
conceptual tool to build alternative hypotheses regarding changes in each of the water balance fluxes that could explain the
observed reduction in streamflow (Fig. 2). Testing these hypotheses individually allows us to build understanding about the
different pathways of hydrologic change throughout the catchment. Importantly, this approach does not rely on the predictive
ability of an aggregate hydrological model, where calibration would depend upon on specific information that is not necessarily
available. The multiple hypotheses are developed for each component of the water balance in the following paragraphs, along

with approaches and datasets (also-see-Fig. 2, Table 1) to evaluate these hypotheses.
3.2 Precipitation
3.2.1 Hypotheses

Changes in precipitation (P) could occur through different mechanisms that would have distinct impacts on streamflow. For
instance, a reduction in precipitation would decrease the water balance inputs and reduce the water available to generate

streamflow. Alternatively, an increase in storm frequency and reduction in average storm size could produce an increase in



250

255

e, Q = P — ET — AS

b. Research How can changes in Q be explained by changes in P, ET, or AS?
questions

C. Precipitation Evapotranspiration Permanent Seasonal

w storage storage
@ 1. Total P 4. Climate r
= warming | 6. Glaciers 8. Snow 10. Surface
@ [—2. Seasonal P water
> 5. Land use
T _ change 7. Permafrost !
3. Storm properties 9. Groundwater
y
d. &8 Gauged P Gauged T
© Loy Remote sensing <
o Satellite P Satellite NDVI products 9 i
. and land use Gauged Q
e. 8 ; Spatial l
o interpolation
=) Binned FAO + Hargreaves Area, Volume Voo
g event sizes ET model l Baseflow analysis
f. Inference Infer relationships among changing hydrological processes «——

Figure 2. Hypothesis generation and evaluation. We develop a general empirical approach to attribution that (a) utilizes the water balance to
(b) generate overarching research questions and (c) construct multiple hypotheses. The hypotheses are addressed (d) using remote sensing
and in situ secondary data and (e) by applying empirical analyses, the results of which are (f) used to infer relationships regarding changing
hydrological processes. We implement this approach in the Upper Jhelum watershed by defining the long-term water balance in terms of
streamflow (Q)), precipitation (P), evapotranspiration (£7"), and changes in catchment water storage (A.S). Specific research questions (red),
data (blue), and analyses (green) focus on the detection and characterization of changing water balance fluxes in the Upper Jhelum. The
inference step is contingent on understanding how each flux has changed and provides a deeper understanding of watershed hydrological

processes.

vadose zone water storage, greater evapotranspiration (ET), and reduced streamflow (Zhao et al., 2019), even if aggregate
recipitation volumes remain unchanged. We therefore pose the following hypotheses:

— Hypothesis 1: Changing-climateled-to-areduction-of-annual-preeipitation-Annual precipitation declined.
— Hypothesis 2: Changing-climate-Jed-te-Climate exhibited a change in rainfall seasonality.

The first hypothesis represents a direct reduction in the water input to the catchment that would generate a corresponding
reduction in streamflow. The second hypotheses represents a shift in the availability of water throughout the year. Such a shift

in precipitation from a season with low ET to high ET could decrease average streamflow.

— Hypothesis 3: Changing-climateled-to-greaterstormfrequeneyLThe distribution of precipitation events changed.

10



A reduetion-in-storm-size-would-shift in the distribution of rainfall events could have various effects. A shift towards smaller
event sizes would likely reduce the “fast” component of streamflow (i.e., quickflow, McCaig, 1983) and eombined-with-an

sotl-evaporation—and-plant-water-use(Zhao-et-al; 2019 leave a greater fraction that is directly intercepted, re-evaporated, or
260 infiltrated. In other words, a shift in precipitation patterns towards more frequent small events and fewer large events could

lead to a reduction in runoff and increase in evapotranspiration. These changes would reduce quickflow and groundwater
recharge, and thus ultimately reduce annual streamflow volume.

3.2.2 Data sources

To address these hypotheses, monthly precipitation data were obtained from the Indian Meteorological Department (IMD,
265 Srinagar) for the period 1984-2013 at Srinagar, Kupwara, and Pahalgam stations (stations ii, vi, and vii in Fig. 1b). We
interpolated monthly precipitation to the watershed scale using Thiessen polygons;-which-we-fotund-were-able-to-elose-. We also

@M%WWWIWNW&WWMMMWWM
to overestimate precipitation at the water balance i i i i
scale (see Sect. S2, Fig. %mmwmm
270 that this decision did not introduce any bias in our analysis because both interpolations produced similar results in terms of the

change in precipitation (Fig. S6).
The monthly frequency of the IMD precipitation dataset precluded analysis of stermrecurreneethe distribution of precipitation

event sizes. Therefore, we utilized daily precipitation records from the gridded PERSIANN Climate Data Record (CDR,
Ashouri et al., 2015). The purpose of PERSIANN CDR is to provide consistent pre(:1p1tat1on data for long-term climate analy-
275 sis dating back to 1984 at 0.25 degree resolution.

-Consistent

with the daily frequency of PERSIANN rainfall data, we here define a precipitation event as any day with precipitation > 2
mm. In order to determine a shift in the distribution of sterm-size-and-frequency—In-particular—we-counted-event sizes, we

binned events into three groups: small (2—7.4 mm), medium (7.4-18.6 mm), and large (>18.6 mm) events. The size of the bins

was determined such that the total precipitation from all events within each bin was equivalent (i.e., the sum of precipitation
280  from all events in the small bin was equivalent to the sum in the medium and large bins). We then determined whether or not
the number of precipitation events in each bin changed before and after 2000.

To formally test these hypotheses, we bootstrapped confidence intervals (N = 10%) for annual precipitation, seasonal precipitation,
and the number of s tf-eachpi ad-ehanged-precipitation events in each category.
In each case, the null hypothesis (no change before and after 2000) was rejected if the 95% confidence interval excluded zero.

285 Asarobustness check for the change in event size, we re-ran the same analyses using minimum event sizes of 1 mm and 3 mm
and adjusting the bins accordingly. The hypothesis tests resulting from these robustness checks yield identical results (Sect. 82,
Table S1).

11



290

295

300

305

310

315

3.3 Evapotranspiration
3.3.1 Hypotheses

Evapotranspiration (ET) affects streamflow by reducing the volume of water stored in the vadose zone that could have otherwise
produced streamflow. A reduction in streamflow could therefore be generated by an increase in ET, either through changes in

potential evapotranspiration or vegetation properties and land use. We therefore include the following hypotheses:
— Hypothesis 4: Climate change and warmer air temperatures led to greater evapotranspiration.
— Hypothesis 5: Land use change toward water-intensive crops led to greater evapotranspiration.

Both hypotheses are grounded in observed, ongoing changes within the watershed. Temperatures have been warming (Zaz
et al., 2019) and there has been a notable shift towards orchard plantations in portions of the valley (Romshoo and Rashid,
2014), which may use more water than traditional crops due to a longer growing season (Allen et al., 1998) and better access
to subsurface water storage (Zhang et al., 2018). Both changes might have led to increased evapotranspiration and a reduction

in streamflow.
3.3.2 Data Sources

We required an approach to estimate seasonal and annual evapotranspiration for the periods before and after 2000. Multiple
approaches have been developed to estimate evapotranspiration (ET) using remote sensing products, but few provide robust
estimates that would allow consistent comparisons of the the pre- and post-2000 periods. For instance, MODIS provides an
8-day ET product (Mu et al., 2013), but this dataset is only available since the launch of the Terra satellite in late 1999. The
surface energy balance approach (SEBAL, Bastiaanssen et al., 1998) can be used to estimate ET from Landsat imagery prior

to 2000, but relatively few Landsat images were available during this time periodand-the-, The instantaneous nature of SEBAL

may therefore present biased estimates of seasonal ET, as usable Landsat imagery is predominantly available for cloudless
days that may not be representative of average seasonal ET conditions.

We therefore applied a regression framework based on the concept of reference evapotranspiration (Allen et al., 1998), where
actual evapotranspiration (E'T) is eharacterized-by-areference
evapotranspiration-defined as the product between the evapotranspiration value (£7p) and-mediated-by-of a reference crop

under well-watered conditions, and a crop coefficient (k);-whieh-. These two terms respectively capture the effect of climate

(E£T)) and land use (i-e-vegetationk, representing the effect of the type of vegetation on its ability to evapotranspire water). For
calculating reference ET, we used the Hargreaves equation (Hargreaves and Samani, 1985), which provides estimates of ETj

at monthly timescales or larger. The-Hargreaves equation captures the effect of climate drivers and accounts for extraterrestrial

radiation (R,,), air temperature (1'4), and the diurnal temperature range (1T'r):

ETy = 0.0023R, (T4 +17.8)\/Tk. (1)

12



Extraterrestrial radiation R, varies seasonally with changing solar declination angles which are associated with latitude and
topography. The diurnal temperature range Tz depends on a variety of climate conditions including humidity, soil moisture,
precipitation, and cloud cover (Dai et al., 1999; Geerts, 2003). We group these parameters into a single seasonal parameter, a; <
320 R,TH®, which represents mean climate conditions within each season and captures the seasonal variability in the Upper Jhelum
watershed. We assume that the greenness of the vegetation canopy exerts the primary control on the stomatal conductance, such
that we can define the crop coefficient as k =~ N DV I¢, where c is a calibrated parameter and NDVI is the normalized-difference

vegetation index (Carlson and Ripley, 1997). This assumption is supported by empirical evidence (Duchemin et al., 2006;
Groeneveld et al., 2007). We-can-therefore re-write-the equationforevapotranspirationin-the fermef-Combining the Hargreaves

325 Equation with this parameterization of the crop coefficient k allows evapotranspiration at any pixel (7) season (s) and year (
to be expressed as a nonlinear regression:

ET;sy=0s%x(Ta;s+178) x NDVI  +¢€i sy 2)

1,5,Y

where £+ T ¢, is average MODIS ET for an individual pixel 7 in season s and year y, T'4 ; s is the interpolated post-2000
seasonal average air temperature (See-see Sect S3), and NDVI; , , is the average Landsat NDVI for the same year-season-
pixel combination. The regression coefficients a, represent the estimated average effect of extra-terrestrial radiation R, and
330 diurnal temperature range T'r, and c mediates the effect of NDVI on the the crop coefficient. These coefficients are assumed to
be stationary across pixels (homogeneous) and years (stationary). We used a cross-validation analysis to evaluate how robust
our ET estimates were to uncalibrated data. A calibration sample was formed by independently drawing 80% of pixels from
each image, which we used to to estimate the regression coefficients as and c. The estimated coefficients were then used to
predict 1" on the remaining 20% of the pixels using Equation 2. Predictions matched ET" observation on the validation with
335 ahigh degree of accuracy (R? = 0.87).

The cross-validation ¢

results give confidence in the assumptions that
c and a. were stationary and homogeneous. We relied on these assumptions to predict pre-2000 ET" using Equation 2 and

regression coefficients as and ¢ estimated using post-2000 observations.

~Temperature and land use modulate evapotranspiration by

340 affecting potential evapotranspiration (PET) and vegetation characteristics (e.g., morphology, stomatal conductance). Within
the hypothesis testing framework, we assume that the primary control of temperature on ET occurs through the effect on PET,
as described in Eq. 1, and that the effect of land use occurs primarily through the effect on NDVI. In order to account for the
possibility of additional links among temperature, land use, and ET (see Figure 3), we provide additional robustness checks as
described below and presented in the Results (Sect. 4).

345 Wetested both the hypotheses that temperature (H4) and land use (H3, via NDVI) increased evapotranspiration by bootstrapping
confidence intervals in each season. For temperature, treated each year-season as an independent observation to bootstrap
confidence intervals (N = 10%) on the change in seasonal temperature and used the results to predict the effect on evapotranspiration.
For NDVI, we assumed that the uncertainty occurred due to our inability to precisely measure the relationship between pixel
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Figure 3. Separating local and climatic drivers of evapotranspiration (ET). Temperature (T) modulates ET directly through the effect on

, and therefore NDVI.

otential evapotranspiration (PET), or indirectly by changing growing conditions, vegetation structure and phenolo

Land use modulates ET by directly changing land cover characteristics, or indirectly by affecting air temperature. We evaluate the effects

depicted by the solid red lines and decouple the effects of the dashed lines via the Hargreaves model and maps of land use change (see text

NDVI and ET. We therefore created NDVI bins (with width of 0.02) and boot strapped confidence intervals (N = 10*) for ET

by sampling the associated ET for each pixel NDVI value from the associated NDVI bin.

As a robustness check to better evaluate the above assumptions, we evaluated changes in land use based on the 17 land use
categories proposed by Strahler et al. (1999) using MODIS imagery. We combined these categories into six super classes to

represent major land use categories within the watershed: grassland and shrubs, forest, cropland, mosaic vegetation, open water

(lakes), urban, and barren land. Within the Upper Jhelum, the mosaic vegetation class indicates the presence of orchard planta-
tions (see Fig. $4S9). Land use change involving the cropland and mosaic classes are therefore likely to have an outsize effect
on ET in the watershed, representing the primary component of locally-driven anthropogenic changes. We used the MODIS
land cover classification from 2001 (the earliest available year) to approximate land use prior to the observed hydrological

change, and the land classification from 2010 to represent land use after the change.
3.4 Catchment storage
3.4.1 Hypotheses

The Upper Jhelum contains a variety of storage reservoirs including surface water bodies, groundwater, snow, and glaciers
(Figure 1 d-g). From the water balance, a decrease in storage (e.g., glacial melt) must be matched by a corresponding increase in
the outgoing fluxes, evapotranspiration or streamflow. As such, a long-term decrease in catchment storage could have produced
a corresponding increase in streamflow followed by a similar decrease as catchment storage stabilizes. We hypothesize that
there could have been a long-term reduction in permanent water storage leading to a subsequent decline in streamflow. For

instance:
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— Hypothesis 6: A long-term decline in glaciers produced an increase and subsequent decrease in streamflow.

— Hypothesis 7: A long-term decline in permafrost produced an increase and subsequent decrease in streamflow,

These hypotheses are grounded in studies of other catchments showing that a warming climate could temporarily increase
streamflow through glacial loss (Singh and Kumar, 1997; Schaner et al., 2012) or permafrost melting (Kurylyk et al., 2016;
Qiang et al., 2019). Such changes have been predicted to occur in high-elevation montane regions and could have contributed
to the increase in streamflow in the 1980s and 1990s and subsequent decline after 2000 (Figure 1c).

In addition to these long term effects, catchment storage at the seasonal time scale seale-creates a time lag between precipi-
tation and streamflow. Understanding how snow cover, groundwater, and surface water storage have changed over time would
provide additional insight into the processes governing hydrological change in the catchment. Specifically, we hypothesize

that:

— Hypothesis 8: Reduced-snow-cover-and-earlier snow-melt-generated-Earlier snowmelt contributed to an earlier peak in
the annual hydrograph.

— Hypothesis 9: Re
the-watershed—Groundwater storage in the saturated zone of the riparian aquifer declined.

— Hypothesis 10: Surface water storage in lakes and wetlands in the valley decreased.

The processes involved in these three hypotheses might have increased the proportion of annual precipitation exiting the
catchment as evapotranspiration instead of streamflow. All things being equal, earlier snew—melt-snowmelt would tend to

increase the amount of streamflow early in the year and decrease streamflow later in the year. Earlier srow-mel-snowmelt would

also allow greater vegetation activity and evapotranspiration earlier in the spring, thereby reducing groundwater recharge.

vorvea—1in WO PO § g av a c propo on—otr—anhdar ) pitatio

< spiration-ins < -A storage reduction, both in the saturated zone of the riparian
aquifer and in the riparian lakes and wetlands in the valley bottom, could be indicative of reduced seepage and increased
evapotranspiration from the unsaturated vadose zone (see Discussion in Sect. 5).

3.4.2 Data sources: Glaciers and permafrost

High altitude hillslopes and mountain peaks in the Upper Jhelum exhibit sufficiently cold annual temperatures to support both
glaciers and permafrost. In particular, Kolahoi glacier sits along the northeastern edge of the watershed and has been melting
over recent decades. The glacier was approximately 14.5 km? in 1962 and 11.3 km? in 2014 (Shukla et al., 2017).We rely on

estimates of glacial mass lestloss from published studies to determine whether these losses are sufficient to explain the observed

variations in streamflow{Seet4)—. In particular, we use the average annual loss of glacial mass as an upper bound on the potential
for deglaciation to have contributed to the observed reduction in streamflow. Rashid et al. (2017) estimated that Kolahoi glacier
lost 0.3 km® of volume over the period 1962 to 2010, but did not estimate errors associated with this value. Instead, we
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approximate confidence intervals using estimates of the error on areal changes in the Glacier from Shukla et al. (2017), who
provided bounded estimates on the loss of glacier area over time as 3.18 & 0.34 km” over the period 1962-2014. By assuming
the volumetric loss was associated with the midpoint of glacial extent, we can translate the volumetric loss to a depth loss and
provide an upper bound on the volumetric water loss. In reality the effect of glacier melt on the change in streamflow would be

lower, which reduces the propensity to mistakenly rejecting hypothesis 6.
We also consider the potential for loss of permafrost to have produced an increase and subsequent decrease in streamflow.

For example, Qiang et al. (2019) found that melting permafrost generated a temporary increase in streamflow in the upper
Yellow river of 5%, corresponding to 1 cm per year of permafrost melt. To evaluate the possibility for this process in the
Upper Jhelum, data were downloaded from the Global Permafront Zonation Index (GPZI) map (Gruber, 2012). Given the
uncertainty in permafrost occurrence, the GPZI is presented on a scale that indicates the likelihood of permafrost, with a
minimum indicating that “permafrost exists only in most favorable conditions” and maximum indicating that “permafrost exists
in nearly all conditions.” We binned this scale into five groups of permafrost likelihood including low, medium-low, medium,
medium-high, and high. The upper-Upper Jhelum contains no pixels with medium-high or high likelihood of permafrost and in

most of the areas where permafrost is possible, the likelihood is low (see Fig. S8S12). To evaluate the potential for permafrost

to affect streamflow, we compared-th exten h § eces v-loss en-W . g he
observed-ehanges-in-streamflowassumed the rate of permafrost melt to be 10 mm (as in Qiang et al., 2019) from all areas with
permafrost likelihood greater than zero. This provides an upper bound on the potential for permafrost melt to contribute to
streamflow decline which, again, decreases the propensity of mistakenly rejecting Hypothesis 7.

3.4.3 Data sources: Snow

Winter precipitation occurs largely as snowfall and remains in some parts of the catchment until the late summer. Because
different regions of the watershed may be affected by missing pixels (e.g., clouds) on any given acquisition date, we separated
the watershed into 15 distinct zones of roughly equal areas defined by three elevation bands (<1650 m, 1650-2200 m, and
>2200 m) in the five local subwatersheds corresponding to the available stream gauges. Snow contains a distinct spectral
signature with high reflectance in visible and near-infrared bands and low reflectance in shortwave infrared bands, and can
therefore be detected by-from normalized different snow index (NDSI), which is defined as (Green - SWIR)/(Green + SWIR)
(Dietz et al., 2012). We generated timeseries of snow cover in each of the 15 zones using Landsat 5 imagery and Landsat 7
imagery (prior to the failure of the scan-line corrector in May 2003, see Scaramuzza and Barsi, 2005) by applying a threshold
of 0.5 to NDSI to distinguish snow and water cover from dry land. We further distinguish snow (bright) from open water
(dark) using a threshold of 0.2 on the NIR band reflectance (Kulkarni et al., 2002). For each zone, we selected only the dates
where missing pixels constituted less than 25% of the zone, leaving an average of 79-and-65-112 and 141 observations in

each zone before and after 2000, respectively. W
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We evaluated this hypothesis by considering changes in the dates of peak snow cover and peak streamflow. The date of peak
snow cover was determined using a LOESS regression (Cleveland et al.. 1992) to smooth snow cover before and after 2000.
More specifically, because different regions of the watershed were imaged by Landsat on different days, and in some cases
parts of the watershed contained considerable cloud cover, the watershed was divided into five sub-basins (based on the stream
gauges in Figure 1) and three elevation bands, creating 15 sub-regions, Within each region, LOESS regression was used to
generate a smoothed snow cover curve spanning the calendar year (combining all images for the pre- and post-2000 periods,
producing two curves for each sub-region). The results were then aggregated to the entire watershed. The peak value of the
smoothed LOESS curve was used to determine the date of peak snow cover. Confidence intervals for peak snow cover were
bootstrapped (N = 10%) by re-sampling the set of Landsat observations in each sub-region and calculating the dates of peak
snow cover (pre- and post-2000) for each bootstrap iteration. We similarly bootstrapped confidence intervals on the date of
peak streamflow using LOESS regression. sampling from all of the streamflow observations before and after 2000 to estimated
the “average” annual hydrograph using a LOESS regression. For each bootstrap iteration, the date of peak streamflow of the

LOESS curve was extracted.

We also consider two additional analyses as robustness checks. First, we use MODIS data to estimate snow cover extent
which provides improved temporal representation of seasonal snow cover after 2000. Fhe-final-smoothed-estimate-of-snow

errors—aeross—the—zonesSecond, in order to account for seasonal changes in the volumetric contribution of snow storage to
streamflow, we compared total monthly snowmelt before and after 2000 using ERAS-Land data (Mufioz-Sabater et al., 2021)
spanning 1984-2013. These analyses are presented in the Supplementary Information (Figs S13 and S14).

3.4.4 Data sources: Groundwater

We were unable to obtain in situ groundwater observations and remotely sensed observations from GRACE satellite were
inadequate due the large spatial averaging kernel (=~ 40 ;000 km?, compared to a catchment area of approximately 13 ;000

km?) and lack of observations prior to 2002. Vv

we conceptualize the catchment as a (potentially non-linear) ‘bucket’ reservoir (Wittenberg, 1999; Jothityangkoon et al., 2001
in which baseflow discharge is positively related with mobile groundwater storage S

Qp=aSs’, 3)

where a and b are positive recession coefficients. Under these conditions, a reduction in baseflow can be considered indicative
of a reduction in groundwater storage.

To evaluate whether baseflow declined, we apply a recursive digital filter (Nathan and McMahon, 1990) to the streamflow

data to separate quickflow and baseflow (see Figure S3). We used two decades of daily flow at Baramulla station (the most

downstream station) to calibrate the filter, which requires a single smoothing parameter, o. We first set o = 0.925 for dail
flow based on analysis from Nathan and McMahon (1990), and then tuned the value of alpha to 0.45 for three-monthly flow
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so that the annual baseflow index o matched that of daily flow (Figure S4). Lastly, to ensure the results were not

sensitive to the specific selection of a, we re-ran the analysis with o = 0.4 and o = 0.5. Although the baseflow index changed,
the changes were immaterial for the before-after comparisons as the results were highly correlated across combinations of all
three values of a (R? > 0.999).

To formally evaluate Hypothesis 9, we bootstrapped confidence intervals (N = 107) to determine if there was a decline in
annual baseflow in the valley in the periods before and after 2000. We also used linear regressions on quickflow, baseflow, and

Seeond;-Additionally, to better assess our assumptions, we looked for a hysteresis in the relationship between surface water

storage and streamflowas-indicative-of-a-g

A clear hysteresis would build confidence that there is a connection between subsurface storage and streamflow, because this
connection can only occur if groundwater levels are sufficiently high to reach the elevation of the lake and wetlands. A weak or

non-existent hysteresis might be indicative of a weak influence of groundwater on streamflow;-whereas-. In contrast, a strong

hysteresis would indicate both a greater influence of groundwater and the occurrence of meaningful fluctuations in the water

streamflow—directly-downstream—of-the-surfacereservoirs., Comparison between surface water extent (both Wular lake and
valley inundation) and streamflow reveals a clear seasonal hysteresis (Fig. S11). We interpret these results as an indication that
roundwater plays an important role mediating streamflow generation in the valley bottom.

3.4.5 Data sources: Surface water

A number of lakes and wetlands exist throughout the valley including Wular lake, which intersects the main stem of the Upper
Jhelum between gauges (iii) and (iv), and seasonally inundated valley wetlands which capture flow from the subwatershed that
drains into gauge (iv) (see Fig. 1). The actual volumetric surface water storage of the catchment is difficult to estimate. Instead,
we focus on changes in surface water area using remote sensing imagery. We classify surface water extent in Wular lake and
in the wetlands-center of the valley in all available Landsat imagery over the period 1984-2013.

Open water is highly absorptive in short-wave infrared bands and more reflective in bands with shorter wavelengths. We
use the modified normalized-difference water index (MNDWI Xu, 2006) as an indication of the likelihood of open surface
water, with a threshold distinguishing between land and water pixels. Because water exhibits spatial coherence dictated by
topography, we gap-filled missing pixels in Landsat 7 bands due to the scan-line corrector error by propagating edge pix-
els towards the center of the gap (as in Penny et al., 2018). We used a fixed MNDWI threshold across all images to clas-

sify surface water. Clouds were identified using the rudimentary Simple Cloud Score algorithm in Google Earth Engine
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Figure 4. Water balance for the Upper Jhelum. (fefta) Average annual fluxes (P, Q, and ET) for the periods 1984-1999 and 2000-2013.
(rightb) Average annual change in water balance fluxes between the two periods, given by the bars, with each flux estimated independently.

The change in water balance fluxes estimated from water balance residuals is given by the arrows. In other words, each flux is calculated

using the equation AP — AQ — AET = 0 and estimates of the other two fluxes.

(ee.Algorithms.Landsat.simpleCloudScore ()) on top-of-atmosphere images. We applied this classification ap-
proach to 66 images (Landsat 5) before 2000 and 237 images (Landsat 5 & 7) after 2000 for Wular lake and valley inundation.
We formally test Hypothesis 10 by bootstrapping (N = 10%) confidence intervals to compare the average water extent of

Waular Lake and valley inundation before and after 2000. Seasonal analyses reveal a similar downward trend in surface water
for both Wular Lake and valley inundation (Fig. S10), and images were evenly spaced across season in both the before and

after time periods, meaning that our findings were not affected by a change in seasonal selection bias.

4 Results

Our estimates of rainfatprecipitation, streamflow, evapotranspiration, and storage change allowed the water balance to be
closed for the 1984-1999 and 2000-2013 periods with an error of +15% of total precipitation (Fig. 4). This suggests that the
total watershed fluxes are estimated with reasonable confidence, particularly given uncertainty in rainfall interpolation and
remote sensing models of evapotranspiration.

However, the analysis did not allow us to close the differential water balance (i.e., changes in the water balance) between the
two periods. We observed an average decrease in precipitation of 117 mm per year and an increase in ET of 32 mm per year,
which together do not close the observed decrease in streamflow of 433 mm per year. We do not find evidence of a change
in long term storage processes (e.g., decrease in glacial melt) that would close the balance. The issue, therefore, appears that

biases on individual watershed fluxes (e.g., an equivalent underestimation of P and ET) might compensate each other and close
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the water balance at individual periods, while underestimating the components of changes in Q. This-issue-iHustrates-the limits

mm compared with -117 mm, see Fig. 4b). The residual estimate of the change in ET was much higher than the empirical
estimate of the change in ET (316 mm versus 32 mm). The magnitude of the residual for the remaining flux, streamflow, was
therefore considerably less than the observed change in streamflow (148 mm versus -433 mm). Results were similar when
i i ig. S6).
On one hand, these discrepancies highlight the uncertainty in our approach to estimate each component of the water balance
individually. On the other, it illustrates the limitations of using an approach that requires water balance closure to calculate

articularly because the water balance itself does not indicate

residuals or to reconcile discrepancies (e.g., predictive inference)

where uncertainties or biases might exist. To address this issue, we evaluate the hypotheses presented above through formal
hypothesis testing (Table 2) and complementary analyses as as described above (Sect. 3). We then use the results of the analysis
to construct a coherent narrative of change (Sect. 5).

4.1 Precipitation: hypotheses 1-3

Precipitation exhibited notable changes in total volume, as annual precipitation fel-decreased by 117 mm ;-ecerroberating-and

the 95% confidence interval excluded zero, confirming Hypothesis 1 —Precipitation-also—exhibited-changes—aeross—seasons
(Fig—5);consistent-with-Hypothesis2(Table 2). These changes were driven almost entirely by a loss of spring precipitation of
117 mm —Fhe-(Fi

with Hypothesis 2, keeping in mind that spring was the only season with a statistically significant change in precipitation
Table 2). The other seasons saw modest and statistically insignificant changes in precipitation (on average, +20 mm in winter,

. 5). The loss of spring precipitation resulted in more uniform seasonal precipitation (Fig. 5a), confirmin

-14 mm in summer, -5 mm in autumn).

#dditionatty-There was a clear, statistically significant increase in the number of storms-greater-than—-small precipitation
events (2-7.4 mm) and decrease in the number of large events (> 18.6 mm), confirming Hypothesis 3 (Table 2). Changes in
medium events (7.4-18.6 mm) were statistically insignificant at the annual scale. The number of small events increased in all
seasons except spring, Wﬂﬁﬁefﬁﬁ%%#”% VWMW%W&W (Fig. 5¢).
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Table 2. Summary of hypothesis tests, with 95% bootstrapped confidence intervals. Statistical significance occurs when the confidence

interval excludes zero.

1~ Total precipitation [1721,-107.2] mm Y

2. MWinter precipitation (615,613 mm
Spring precipitation. [-185.3.-448] mm Y
Summer precipitation [57.6,307]  mm
Autumn precipitation [37.9.298] mm

3. Number of large events [-338.-2.5] S Y
Number of medium events (0.5, 1.0]
Number of small events [14.1, 18.0] - Y

4. Temperature effect on Winter ET ~ [:0.9,1.3] mm
Temperature effect on Spring ET [ 1.2,5.2] mm Y
Temperature effect on Summer ET ~ [:2.3, 1.9] mm
Temperature effect on Auumn ET ~ [0.1, 23] mm

5. NDVleffect on Winter ET. [:0.6,-0.3] mm Y
NDVI effect on Spring ET (70,73 mmo Y
NDVI effect on Summer ET. (127.1371  mm Y
NDVI effect on Autumn ET [238,3.2] mm Y

6 Glacier melt (upper bound) [NA, 0.0] mm

7. Permafrost melt (upper bound) [NA, 0.6] mm

8_ Peaksnow cover date [27.0,:50]  days Y
Peak streamflow date. [:28.0,0.0] days, Y

9 Annualbaseflow (4368, 24171 mm Y

10 Waular lake extent [241,-82]  km’ Y
Valley inundation (140,301 km? Y

results were robust to changes in the minimum event size (1-3 mm) and corresponding changes to the bins (see Sect. 5)-S2,
Table S1).

550 4.2 Evapotranspiration: hypotheses 3-44-5

Both temperature and NDVI increased evapotranspiration in the Upper Jhelum. The changes were statistically significant for
temperature in the spring and for NDVI in all seasons. This confirmed Hypothesis 4 and Hypothesis 5 (Table 2), noting that the

only statistically significant increase in temperature occurred in spring (+1.9°C). There were statistically insignificant increases

in temperature in the remaining seasons including winter (+0.8°C), summer (+0.4°C) and autumn (+1.0°C, Fig. 5).
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Figure 5. Seasonal climate and hydrology in the Pre-2000 (1984-1999) and Post-2000 (2000-2013) periods including (a) mean seasonal
gauge precipitation, and (b) mean number of storms greater than 1 mm in PERSIANN grid cells, (c) mean gauge temperature, and (d) mean
streamflow at the watershed outlet (gauge v, Baramulla station). Statistically significant differences from-t-tests-are noted for-p—<-6-65-by

() and-p—<-B-1-<ywhen the 95% bootstrapped confidence intervals exclude zero. Notably, spring exhibited dramatic changes in tempera-
ture (+1.9°C) and precipitation (-117 mm). The number of small storms increased in-summer-and-autumnacross all seasons, yet-remained

relatively—constant-while large storms decreased in s

summer.

all seasons except

Annual average watershed evapotranspiration increased by 32 mm, from 311 mm before 2000 to 343 mm after 2000.
Although this change is smaller than the uncertainty in water balance closure (i.e., 15% of precipitation), the results are
The two hypotheses pertaining to ET seek to attribute this increase to either changing-elimate-increasing temperature or

changing land use. Both drivers have contributed to ET increase in the catchment, as indicated by increasesin-both-4
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Figure 6. Spatial changes in evapotranspiration after 2000. (a) Spring and (b) summer changes in NDVI. (c) Annual change in evapotran-
spiration (ET). (d) MODIS land cover map from 2010. (e) The same MODIS 2010 land cover map, with pixel transparency determined by
the magnitude of positive change in annual ET from (c). The 2000 m contour separates the low-elevation valley from moderate elevation
hillslopes in both mountain ranges. Changes in ET are clustered in the valley, especially in cropland and mosaic vegetation (i.e., orchards),

with increasing ET in natural vegetation just above 2000 m. See text for details.

spring-(+9°C)andauntumn(+-02C-As noted in Fig. 3, however, it is possible that land use may also affect temperature
e.g., through radiative forcing and the sensible and latex heat fluxes) and that temperature can also affect NDVI (e.g., through

changing phenology) (Figure 3). To better evaluate these factors, we further consider changes in ET within different land use
classes (Fig. 56).

The most dramatic increases in ET occurred within agricultural land cover classes (cropland and mosaic vegetation, i.e.
orchards), which constituted 27% of the catchment area in 2001. In these classes, NDVI increased substantially in the valley
in the spring and summer seasons (Fig. 6)ab), corresponding with the primary growing season for paddy, maize, and orchards.
Between 2001 and 2011, the catchment exhibited notable expansion of the mosaic land cover class, including approximately
230 km? converted from traditional crops to mosaic. The largest local increases in ET are associated with this-expansion—
includingtand-cover-transitions-to-mesaie-vegetation-the expansion of the mosaic class (see Fig. 7a), with ET increasing by 70
mm (mosaic to mosaic), 78 mm (cropland to mosaic), and 82 mm (shrubs and grassland to mosaic). In-addition; neticeable-

Noticeable increases in ET also occurred in the large portion of the watershed area (53%) that was consistently classified
as shrubs and grassland in both 2001 and 2011. NDVTI increased along the hills on the southwest and northeast portions of the

watershed, resulting in higher ET in grassland / shrubs and forest land cover. NDVI remained constant in the Wular lake in
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Figure 7. Changes in land use and evapotranspiration. (a) MODBIStand-Change in evapotranspiration within each combination of land

use ehs categories from 2001 to-2646and 2010. The size of the circle represents the fractional area covered by each pairwise grouping,

inetading-and the shading of the circle indicates the average change in ET per unit area. For instance, the largest increase in evapetranspiration
within-each-eombination-ET occurred in pixels that changed from crops in 2001 to mosaic in 2010 (+80 mm), but this represented a small
fraction of eategeriesthe watershed (<5%). ET increased in every category. (b) Watershed-average The cumulative change in ET by 2010 land
use category (note that the y-axis continues across both panels). The cumulative effect of(or watershed-average) ET is equal to the Change

Crops in 2001 to Mosaic in 2010 reduced ET by 1.4 mm when averaged over the entire watershed. Overall, most of the increase in watershed
ET (27 mm) occurred in regions where land cover remained consistent from 2001 to 2010 (b, see bars outlined in black), compared with

regions where land cover changed (5 mm, no outline).

spring but increased considerably in summer, likely due to increasing fertilizer application supporting algae and other aquatic
vegetation in the lake (Wetlands International South Asia, 2007). In contrast, regions where NDVI appears to have decreased
are dominated by urbanization in the center of the valley (visible in Fig 6ab) and mountain peaks with near-constant cloud

cover in the summer, which occur along the southeastern and northwestern watershed boundaries. In these pixels, few (<5)

summer NDVI observations are available before 2000 due to cloud cover, suggesting-a-substantial-level-ofuneertainty-and
these piexels exhibit a downward bias in the reported negative NDV-trend-NDVI change relative to pixels with more images
(see Fig. S6)-S8). This suggests that any potential bias would lead to a conservative estimate on the change in ET.
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OverallOn average, of the 32 mm annual increase in ET that we detected, approximately 17% can be attributed directly
to increasing air temperature through its effect on PET, and the remaining 83% to an increase in NDVI. The largest net
contributors to watershed-averaged increases in ET were shrubs and grassland (15 mm), cropland (11 mm) and forest (3 mm).
Although associated with strong local increases in evapotranspiration, mosaic vegetation covered only 2.7% of the watershed
in 2011 and only contributed a 2 mm increase to watershed-average ET. The black boxes in Fig 7b encompass the change in ET
for regions of the watershed that maintained consistent land cover in 2001 and 2010, accounting for a total increase in ET of 27
mm compared with 5 mm in regions where land cover changed. We can therefore say-thatelimate-change-infer that warming
temperatures not only had a clear effect on watershed evapotranspiration s-beth-through-inereasing-temperature-and-inereasing
through the direct effect on PET, but also indirectly by increasing NDVI within naturally vegetated land classes;—consistent

with-, This indicates that our findings for Hypothesis 4 —RegardingHypothesis-Sare likely conservative. Regarding Hypothesis
5, land use change has led to large local increases in ET-Hewever-the-, but the watershed-average effect of land use indicated

by Table 2 is likely to be overestimated. This is because the overall effect on the catchment water balance in pixels where land
use changed is small compared to elimate-related-inereases-of ET-in-the-much-higher number-of remaining-the effect in pixels

where land use did-net-change-between2000-and-204H—remained the same. Nevertheless, it is possible there were additional

changes in land management (e.g., increased irrigation) that could have affected these results and were not captured by the land

use classification from Strahler et al. (1999).

4.3 Catchment storage: hypotheses 6-96-10

o-might play an important role in the water
balance in some tributaries, the overall effect on the watershed as a whole was small. The upper bound on average annual

lacial contribution to streamflow was 0.003 mm, and the upper bound for the permafrost contribution was 0.64 mm. We
reject Hypothesis 6 —

and Hypothesis 7 on the basis that

the effect on watershed streamflow is likely negligible. The primary reason these contributions to streamflow are so small is
due to the limited spatial extent of glaciers (1%) and permafrost (<6.4%, Fig. S&)—In-alargerportion{(6-4%)permafrosthas
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Figure 8. Declining water storage and baseflow. (a) Landsat observations of snow cover with loess smoothing, highlighting earlier spring
snowmelt after 2000. (b) Long-term trends in valley inundation and Wular lake indicating decreasing surface water storage over time. The
loess smoothing of water extent is weighted by cloud cover given by exp(—Acioud/Atotar)- (¢) The percent of satellite images used to
assess water extent was seasonally consistent before and after 2000. (d) Baseflow at gauge iv. (Sopore) minus baseflow at gauge iii. (Asham),
encompassing the river reach that includes Wular lake. After 2000, baseflow peaks and depletes earlier in the year, as does a transition from

gaining to losing conditions.

influenee-of snow-on-peak snow cover occurred 15.4 days earlier and the hydrograph-appears-to-bereflected-by-confidence
interval included zero. Peak streamflow occurred 13.2 days earlier on average, and the upper limit confidence interval was
equal to zero. This provides confidence that the earlier peak in snowmelt led to an earlier peak in the-hydrograph—Fhisfinding
supports Hypothesis-S;-although-observational-data-isstreamflow, confirming Hypothesis 8. We note that observational data
was missing to quantify the implicated-changes—in—effect of changes in snow storage volumes. Earlier-snow-melt-and-its

Seet:5for-further-diseussiom)—However, reanalysis data from ERAS5-Land indicates that snowmelt increased in earlier months
and decreased in later months after 2000, at all elevations in the watershed (see Fig. S13). Data from MODIS also shows an
earlier peak in snow cover after 2000 (Fig. S14).
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changes in baseflow exiting the watershed (Table 2), which is consistent with the reduction in groundwater storage in the
valley described in Hypothesis 9. We complement this result by presenting additional findings pertaining to baseflow and
groundwater—surface water interactions in the watershed. First, we compare temporal trends in streamflow below Wular lake

(gauge iv., Sopore station) and the most upstream gauge of the watershed (gauge i., Sangam station). The streamflow timeseries
at both locations exhibit-exhibited statistically significant decreasing trends over the period 1960-2013 (Fig. 9a). Baseflow
separation, however, revealstevealed important differences between both streamflow timeseries. Baseflow deereases-decreased
over time only in the downstream gauge (Fig. 9b) whereas quickflow deereases-decreased only in the upstream gauge (Fig. 9c).
Temporal changes in the baseflow index (B = Qp/Qrotar) of each of these gauges therefore eceurs-occurred in opposite
directions, with decreasing B near the outlet and increasing B in the hinterlands (Fig. 9d). This lends additional credence to
Hypothesis 9, and we further discuss potential causes and implications of these opposing trends in the baseflow index with

respect to saturated and unsaturated groundwater storage in the Discussion (Sect. 5).

Classification of surface water reveals that surface water storage declined dramatically during the study period, both in Wular

lake and the neighboring wetlands (Fig. 8b), confirming Hypothesis 10. Both of these surface reservoirs connect to the main

stem of the Upper Jhelum between gauges iii. and iv. (see Fig. 1), and likely play an important role in streamflow generation

along this reach.

There appear to be clear relationships among surface water storage, groundwater storage, and streamflow. A comparison
between surface water extent and streamflow exhibited a clear seasonal hysteresis (Fig. S11). We also computed locally.
generated baseflow as the difference in baseflow between gauges iii. and iv, a reach which contains Wular lake and the valley
wetlands. Baseflow along this reach peaks earlier and at a much lower amplitude after 2000 (Fig. 8c). It also transitions
much earlier (mid-summer) to losing conditions (i.e. negative local streamflow values), compared to pre-2000 when baseflow.
transitioned to losing conditions only at the end of autumn and beginning of winter. Taken together, these findings suggesting.
that storage plays a critical role in mediating streamflow in the Upper Jhelum.
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Figure 9. Long-term trends at Sangam station (upstream, gauge i.) and Sopore station (downstream, gauge iv.) of (a) streamflow, (b) baseflow,
(c) quickflow, and (c) the baseflow index, which is the fraction of streamflow comprised of baseflow. The statistical significance in this

analysis was associated with p < 0.1 for a nonzero trend from a linear, least-squares regression. All statistically significant trends were also

significant for p < 0.05 except for the Upstream trend in panel (a).

5 Discussion

We now synthesize the results presented above to develop a narrative of hydrological change by reconciling the various fluxes
that have either increased or decreased over time (Fig. 10, red and blue arrows). Taken together, the observed changes in
hydrological fluxes indicate additional unobserved changes in fluxes connecting surface and groundwater that might play an
important role in explaining hydrological change in the catchment. As discussed in the following paragraphs, evidence suggests

that these fluxes have decreased over time (Fig. 10, pink arrows).

— The largest-seasonal-preeipitation-ocenrsin-season with the most precipitation is spring, when the prevailing climate is

driven by westerlies, yet spring precipitation declined considerably during the study period. At the same time, vegetation
activity increased across most of the watershed within both anthropogenic (cropland, orchards) and natural (forest, shrubs
and grassland) land use classes (Fig 6a), producing an increase in evapotranspiration. The corresponding reduction in
spring streamflow was-may have been partially compensated by higher temperatures and earlier snow-melt—-Near-the-end

of-the-stady-period;-the-snow-pack-wasnearly-abways-snowmelt. Before and after 2000, snowpack storage was mostl
exhausted by the end of spring (Fig 8a).

— Springtime seepage generates high groundwater recharge throughout the valley, both from the highlands and from within

the valley (Jeelani, 2008). High groundwater levels at the end of the spring season are reflected by the peak in baseflow
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for details.

along the reach of the stream that includes Wular lake (Fig. 8d). Prior to 2000, this peak occurred near the transition
between spring and summer. After 2000, this peak occurred earlier in spring and at a much lower level of baseflow.
This suggests considerably lower groundwater storage over time, reflected in the reduced groundwater recharge fluxes

(Fig 10, Spring).

— In summer, the prevailing climate is driven by the Indian monsoon and precipitation is generally less than westerly
precipitation in the spring (Fig 5a). Consequently, hydrology within the watershed is controlled largely by water storage
(snow, lakes and groundwater) left over from spring. Prior to 2000, the seasonal recession of the baseflow hydrograph
starts high at the end of spring and continues to produce discharge throughout the summer season (Fig 8d). The river then
transitions to losing conditions in autumn and earhier-early winter before baseflow increases with winter precipitation
and snew-melt-snowmelt (Fig 8d). After 2000, s
water (Fig. $5510) and groundwater (Fig. 8d) storage are also-redueced-greatly reduced at the beginning of summer.

The receding limb of the hydrograph starts low at the beginning of summer and quickly depletes, transitioning to losing
conditions within the summer season. Indeed, the recovery of local baseflow in autumn (i.e., baseflow becoming less

negative, see Fig. 8d, brown) is driven by declining baseflow downstream rather than increasing baseflow upstream.
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Additionally, summer evapotranspiration after 2000 increased throughout much of the watershed including in natural

and anthropogenic land use classes.

— The hydrological cycle in the watershed is mostly dormant in autumn and winter. In autumn, little precipitation falls and
the hydrograph recedes into winter. Notably, lake storage depletes and the lake transitions to losing conditions in several
years, particularly before 2000 (Fig. 8d). Winter precipitation arrives mostly as snowfall, replenishing snow storage.

Winter rain and spew-melt-snowmelt serve as the early primers for the seasonal cycle to renew in spring.

To summarize, climate appears to be the primary cause of hydrological change within the Upper Jhelum. The most influential
driver is the decline of spring westerly precipitation. Other studies have associated this decrease with warming temperatures
and climate change (Zaz et al., 2019). This effect is compounded by an array of other drivers that affect watershed processes.
Notably, the loss of baseflow downstream of Wular lake suggests a decrease in groundwater storage in the valley. This decline
in groundwater is facilitated both by reduced rainfall during the spring and increasing watershed evapotranspiration. The

latter might be exacerbated-supported by an increase in the number of s

seasonsmall precipitation events that are less likely to generate runoff. This observation from the PERSIANN CDR dataset
allows us to hypothesize that the shift towards a larger number of smaller storms results in reduced overland and macropore
flow, along with more stable and persistent soil moisture and ultimately more water “lost” to vegetation uptake. In this case,
seepage would be increasingly likely to occur via slow drainage processes, rather than macropore flow activated in large storms.
Such changes have been observed in other karst catchments (Zhao et al., 2019) and are supported by the evidence that quickflow
declined and the baseflow index increased in the most upstream gauge in the Upper Jhelum (Fig. 9).

The increase in evapotranspiration appears to have oeeured-occurred throughout the catchment. Our evapotranspiration
model indicates that increasing air temperature had a small direct effect on ET a2%-via PET (17% of the total increase) and
that most of the overall increase in ET (83%) occurred due to changes in NDVI, which increased in all natural and anthro-

pogenic vegetation classes.

y—Evapotranspiration exhibited the greatest
increases in regions that transitioned to orchard cultivation, but these areas represent a small fraction of the overall water-

shed and increase in ET. Ew:

the-summer—<(see-Figs-6;7—In places where land use was unchanged, the observed increase in NDVI indicates an increase in

water availability (when ET is water limited), an increase in ener: limited), or an increase in

nutrient availability (where plant growth is limited by nutrient availability). In other words, such greening could arise due to

agricultural intensification (via increased irrigation or fertilizer application) or increasing temperature due to climate change.
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These findings are consistent with other studies. For instance, agricultural intensification has been documented in the Upper
Jhelum (Wetlands International South Asia, 2007) and modeling studies have demonstrated that warming temperatures will
roduce more favorable conditions for plant biomass growth (Rashid et al., 2015).

6 Conclusions

In this study, we develop a-bottem-tp-an empirical approach to hydrological attribution using the method of multiple hypotheses

to understand the drivers of dramatic changes in the annual streamflow of the Upper Jhelum river. We found-find that much
of the observed decrease in streamflow is associated with decreases in westerly precipitation in spring, in addition to greater
evapotranspiration. While land-use change to orchard plantations and agricultural intensification are likely contributing factors,
we attribute most of the increase in evapotranspiration to non-local anthropogenic causes, most notably increased vegetation

activity in spring, likely due to increased temperature and earlier snow-mett—snowmelt. Changes in key fluxes of the water

balance (P, ET, and AS) do not fully account for changes in streamflow (Q), and there remain considerable differences between
the change in fluxes from independent estimates and the change estimated from water balance residuals.

ing-By focusing on the cumulative understanding from
evaluating separate but complementary hypotheses, we nevertheless develop a coherent narrative of hydrological change in

the hment-by-separately—evaluatn

loss of westerly precipitation, there appears to be a reduction in groundwater storage evidenced by the considerable reduction
in baseflow in the valley. This situation contrasts with upstream changes, where declining streamflow_occurred primarily.
through reductions in quickflow, and could potentially be explained by changing precipitation patterns. These findings suggest
multiple directions to guide future research in the basin, including better characterization of (a) baseflow generation and surface

water—groundwater interactions, (b) the role of soil moisture, phenology, and rainfall intensity in mediating the water balance

on hillslopes outside the valley, and (¢) vegetation water consumption in both natural and human land uses within the watershed.

ypromising tool to
attribute hydrological change in situations where process uncertainty might be compounded by hydrologic regime shifts. While

outcomes associated with individual hypotheses might exhibit considerable uncertainty, especially in data-scarce catchments,
together the multiple hypotheses provide multiple strands of evidence to support (or refute) specific mechanisms and ultimately

attribute hydrological change.
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