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Abstract. Worldwide, the amount of water used for agricultural purposes is rising and the quantification of irrigation is 

becoming a crucial topic. Because of the the limited availability of in situ observations, an increasing number of studies is 

focusing on the synergistic use of models and satellite data to detect and quantify irrigation. The parameterization of irrigation 15 

in large scale Land Surface Models (LSM) is improving, but it is still hampered by the lack of information about dynamic crop 

rotations or the extent of irrigated areas, and the mostly unknown timing and amount of irrigation. On the other hand, remote 

sensing observations offer an opportunity to fill this gap as they are directly affected by, and hence potentially able to detect, 

irrigation. Therefore, combining LSMs and satellite information through data assimilation can offer the optimal way to quantify 

the water used for irrigation.  20 

The aim of this study is to optimize a land modelling system, consisting of the Noah-MP LSM, coupled with a backscatter 

observation operator, over irrigated land in order to simulate backscatter predictions. This is a first step towards building a 

reliable data assimilation system to ingest level-1 Sentinel-1 observations. In this context, we tested how well modelled soil 

moisture and vegetation estimates from the Noah-MP LSM running within the NASA Land Information System (LIS), with 

or without irrigation simulation, are able to capture the signal of high-resolution Sentinel-1 backscatter observations over the 25 

Po river Valley, an important agricultural area in Northern Italy. Next, aggregated 1-km Sentinel-1 backscatter observations 

were used to calibrate a Water Cloud Model (WCM) as observation operator using simulated soil moisture and Leaf Area 

Index estimates. The WCM was calibrated with and without activating an irrigation scheme in Noah-MP and considering two 

different cost functions. Results demonstrate that activating an irrigation scheme provides the optimal calibration of the WCM, 

even if the irrigation estimates are inaccurate. The Bayesian optimization is shown to result in the best unbiased calibrated 30 

system, with minimal chance of having error cross correlations between the model and observations. Our time series analysis 

further confirms that Sentinel-1 is able to track the impact of human activities on the water cycle, highlighting its potential to 

improve irrigation, soil moisture and vegetation estimates via future data assimilation. 

https://doi.org/10.5194/hess-2021-273
Preprint. Discussion started: 14 June 2021
c© Author(s) 2021. CC BY 4.0 License.



2 
 

1 INTRODUCTION 

Over the last century, the global water withdrawal grew 1.7 times faster than the population (FAO, 2006). This aggravates the 35 

concern over the sustainability of water use as demand for agricultural uses continues to increase (Foley et al., 2011; FAO 

AQUASTAT http://www.fao.org/nr/water/aquastat/water_use/index.stm, last access 20 May 2021). The strong impact of 

irrigation on the global water budget is highlighted by many studies and it has been estimated that about 87% of the global fresh 

water withdrawals have been used for agriculture (Douglas et al., 2009). Accordingly, the quantification of irrigation on a 

regional to global scale has become a hot research topic.  40 

Correctly quantifying irrigation in Earth system models can serve two purposes. On the one hand, it can help improve water 

management (Le Page et al., 2020, Bretreger et al., 2020), on the other hand, it allows to quantitatively assess its effects on the 

terrestrial water, carbon and energy cycles (Haddeland et al., 2007; Breña‐Naranjo et al., 2014; Hu et al., 2016; Qian et al. 2020). 

Indeed, results of large-scale irrigation studies using land surface models (LSMs) have demonstrated that irrigation increases 

soil moisture and evapotranspiration (ET), and consequently latent heat flux with a decrease in sensible heat flux (i.e., Badger 45 

& Dirmeyer, 2015; Lawston et al., 2015; Ozdogan et al., 2010b). 

Despite the significant impact of irrigation on the water and energy cycles, its simulation within LSMs is not yet common 

practice (Girotto et al., 2017). Attempts to simulate irrigation in LSMs have in the past relied on different parameterizations of 

well-known irrigation systems (like sprinkler, flood, and drip systems; Ozdogan et al. 2010b; Evans and Zaitchik, 2008) either 

without specifying the source of water withdrawals and by relying on additional fictitious rainfall (Ozdogan et al. 2010b) or 50 

taking irrigation water from groundwater (Nie et al., 2018). Irrigation is normally applied when soil moisture drops below a 

user-defined threshold (Ozdogan et al. 2010b), typically dependent on the soil properties obtained via soil texture maps.  

Moreover, LSMs equipped with irrigation schemes need to be provided with auxiliary information about crop types and whether 

or not the crops are irrigated. This is because different crop types are characterized by different rooting depths, which means 

they require more or less water to restore root zone field capacity. This information is normally gathered from static maps derived 55 

from statistical analysis and/or remote sensing (Ozdogan et al., 2010b; Monfreda et al., 2008; Salmon et al., 2015) collected 

during specific historical periods which are normally different from to the desired period of analysis. It is thus clear that the 

modelling of irrigation is subject to many simplifying assumptions, which span from neglecting the year-to-year crop variability 

and the irrigation system used to the definition of irrigation application times based on water availability and crop conditions 

rather than actual farmer decisions.  60 

Remote sensing (RS) technologies offer the opportunity to observe directly the Earth surface and its changes, and hence are 

potentially able to monitor irrigated lands worldwide (Ambika et al., 2016; Gao et al., 2018; Bousbih et al., 2018; Bazzi et al., 

2019; Le Page et al., 2020; Dari et al., 2020). In the last decade, some authors used visible and near infrared RS observations 

jointly with in situ data collected from inventories to map areas equipped for irrigation (Ambika et al., 2016; Ozdogan & Gutman, 

2008). Kumar et al. (2015a) were the first to propose the use of coarse resolution satellite microwave (MW) sensors to detect 65 

irrigation. The authors compared different coarse-scale active and passive MW surface soil moisture (SSM) retrievals with SSM 
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simulations from the Noah LSM (version 3.3; Ek et al., 2003) without activating an irrigation scheme over a continental US 

domain. Areas where the distributions of model and RS data sets deviated (based on a Kolmogorov-Smirnov test) were assumed 

to be irrigated. Even though some of the products showed a potential ability to detect irrigation, the authors concluded that the 

spatial mismatch between the satellite footprint and the irrigated fields, radio-frequency interference (RFI), vegetation, and 70 

topography could all deteriorate the accuracy of the results. Similar conclusions were found over the same area by Zaussinger 

et al. (2019) who compared coarse-scale satellite SSM products with soil moisture predictions from the Modern-Era 

Retrospective analysis for Research and Applications 2 (MERRA-2) in the absence of precipitation, and Escorihuela and 

Quintana-Seguí (2016) who additionally compared a downscaled version of the Soil Moisture and Salinity mission (SMOS) 

SSM to SURFEX LSM simulations. Brocca et al. (2018), Jalilvand et al. (2019) and Dari et al. (2020) used a conceptually 75 

different approach with the same coarse scale MW SSM products and estimated irrigation by directly inverting a simple water 

balance equation (Brocca et al. 2014). 

The Copernicus Sentinel-1 satellites (Sentinel-1A and Sentinel-1B) offer a new perspective for agricultural applications, thanks 

to the finer spatial resolution (up to 10-20 m) of the Synthetic Aperture Radar (SAR) backscatter (σ0) data. For instance, Gao et 

al. (2018) proposed an approach to map irrigated lands over the Urgell region in Catalonia (Spain), and Le Page et al. (2020) 80 

proposed a methodology to detect irrigation timing in south-west France comparing the SSM signal at the plot scale, derived 

using Sentinel-1 σ0 and NDVI from Sentinel-2 (El Hajj et al., 2017), with a water budget model forced by Sentinel-2 optical 

data for the detection of irrigation timing.  

Despite the high potential demonstrated by RS in detecting, mapping and quantifying irrigation, the uncertainties of the satellite 

retrievals, the relatively low revisit time of high resolution active MW products and the too coarse spatial resolution of passive 85 

MW products with respect to the mean size of irrigated fields represent main limitations for irrigation information retrieval 

(Romaguera et al., 2010, La Page et al., 2020). Data assimilation (DA) could reduce some uncertainties by optimally integrating 

LSM estimates and RS observations. Indeed, the LSM estimates resolve processes at desired spatio-temporal scales, while the 

RS observations can track in a more realistic way human processes like irrigation and their interactions with the water and energy 

cycles. Contrasting LSM simulations with RS observations offers an opportunity to correct for unmodeled processes or missed 90 

events, such as irrigation (Kumar et al., 2015a; Girotto et al., 2017). More generally, DA of satellite-based observations has 

shown the potential to update soil moisture (De Lannoy & Reichle, 2016; Kolassa et al., 2017) and vegetation (Albergel et al., 

2018; Kumar et al., 2020) and important impacts have been reported over agricultural areas (Kumar et al., 2020).  

The assimilation of MW RS observations in LSMs often involves retrieval assimilation. However, assimilating retrievals (i.e., 

SSM or vegetation optical depth rather than MW brightness temperature (Tb) or σ0 measurements) can be problematic as the 95 

retrievals may be produced with inconsistent ancillary data (De Lannoy et al. 2016). An alternative solution is to directly 

assimilate MW observations and equip the LSM with an observation operator that links land surface variables of interest (e.g., 

soil moisture and vegetation) with RS data. The direct assimilation of MW observations has already been demonstrated 

successfully for the update of soil moisture by using Tb derived from the SMOS and SMAP missions (De Lannoy et al. 2016, 

Carrera et al., 2019, Reichle et al. 2019), as well as using radar σ0 from ASCAT (Lievens et al., 2017b), and σ0 from Sentinel-1 100 
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in synergy with SMAP Tb (Lievens et al., 2017a). However, to our knowledge, none of these studies considered the joint 

updating of soil moisture and vegetation, and none specifically focussed on the performance over irrigated areas. The σ0 from 

Sentinel-1 contains information on both soil moisture (Zribi et al., 2011; Liu and Shi, 2016; Li and Wang, 2018; Bauer-

Marschallinger et al., 2018) and vegetation (Vreugdenhil et al., 2018; Vreugdenhil et al., 2020) and assimilating this data could 

allow us to update both soil moisture and vegetation in a land data assimilation system and, in doing so, correct for missed 105 

irrigation events.  

To that end, the LSM needs to be coupled to a backscatter forward model as an observation operator. Different SAR σ0 models 

have been proposed to simulate the backscattering contributions of soil and vegetation (Attema & Ulaby, 1978; Oh, 2004; Zribi 

et al., 2005; Bai et al., 2015; Baghdadi et al., 2017). Most commonly used, the Water Cloud Model (WCM hereafter) developed 

by Attema and Ulaby (1978) is a σ0 model that represents the vegetation canopy as a homogeneous cloud containing randomly 110 

distributed water droplets. In order to use the WCM as the forward operator in a σ0 data assimilation system, it first needs to be 

calibrated to account for biases between the LSM simulations and the satellite observations. However, calibrating a WCM to 

simulate σ0 over irrigated areas, is not a straightforward process and it represents a key research problem if the same σ0 signal is 

used for the calibration of WCM parameters and later for assimilation and state updating. In fact, if the objective is to assimilate 

radar σ0 to realistically inform the model about irrigation applications, the WCM parameters have to maintain a certain degree 115 

of independence from the irrigation signal contained in the observed σ0 as otherwise the assumption of uncorrelated errors 

between model and observations typical of classical Bayesian-based filters is violated. More specifically, if the LSM provides 

unrealistic simulations as input (i.e., absence of irrigation), then the WCM calibration with observed σ0 would compensate for 

this bias. This would in turn lead to a biased backscatter model with undesirable calibrated parameters for the subsequent data 

assimilation experiments. Therefore, different strategies can be adopted, for instance calibrating the model during non-irrigated 120 

periods or over non-irrigated areas, or equipping the LSM with an irrigation module that makes the WCM less constrained by 

inconsistencies between simulated and observed σ0 during irrigation periods. The efficacy of these strategies has so far never 

been explored. 

The main objective of this study is to simulate radar σ0 using a LSM coupled with a WCM and to provide solutions and 

recommendations for the optimization of the WCM as an observation operator. This is a major stepping-stone towards the 125 

development of a reliable system for the assimilation of high-resolution Sentinel-1 σ0 observations over irrigated areas. 

Additionally, we aim at: 

1) testing the ability of a sprinkler irrigation system coupled with a LSM to simulate irrigation so as to highlight the 

potential and limitations of such a tool to optimize a backscatter forward operator over heavily irrigated areas; 

2) demonstrating that Sentinel-1 σ0 observations contain valuable information to improve both SM and vegetation 130 

predictions over irrigated land (i.e., soil moisture and vegetation consistent with human alterations in the water 

cycle due to intensive irrigation). 

The analysis is carried out over the Po river valley, one of the most important agricultural areas in Italy and also one of the more 

intensively irrigated areas in Europe (water withdrawal in the Po basin is estimated to be 20.5 billion m3/year, of which 16.5 
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billion of m3/year is withdrawn for irrigation; Po River Watershed Authority, 2006). We use the Noah-MP v.3.6 LSM (Noah-135 

MP hereafter) as part of the NASA Land Information System (LIS) framework together with the WCM from Attema and Ulaby 

(1978) for the simulation of both σ0 vertical send and receive (VV) and vertical send and horizontal receive (VH) polarization. 

Level-1 Sentinel-1 σ0 observations are used to calibrate the WCM at 1-km resolution, using simulated SSM and Leaf Area Index 

(LAI) estimates from Noah-MP. The WCM is calibrated for a total of four calibration experiments for each polarization: 1) with 

or without activating an irrigation scheme within Noah-MP; and, 2) considering two different cost functions.  Specifically, we 140 

want to demonstrate that activating an -even poor- irrigation scheme is needed to obtain long-term unbiased σ0 simulations and 

uncorrelated errors between the WCM and Sentinel-1 and that the calibration process can be sensitive to different cost functions. 

The manuscript is organized as follows. Section 2 provides information on the study area, the selected datasets, and methods 

used for our analysis. Specifically, Sections 2.3 and 2.4 provide a detailed description of the Noah-MP LSM and the WCM. 

Section 2.5 describes the cost functions used for the WCM calibration while Section 2.6 is a description of the experimental set-145 

up designed for the calibration. Finally, Section 2.7 provides insights on the Noah-MP and WCM evaluations. Section 3 presents 

the results, with an assessment of the Noah-MP evaluation, both regional (Section 3.1) and over the test sites (Section 3.2). The 

WCM calibration and evaluation results are described in Sections 3.3 and 3.4, respectively. We provide discussion in Section 4 

while conclusions are reported in Section 5.  

2 DATA AND METHODS 150 

2.1 Study area and in situ data 

The analysis was carried out over an area of 24,000 km2 located within the Po river valley, one of the most important agricultural 

areas in Europe (Figure 1, left-bottom corner: 44°N, 10.5°W; top-right corner: 45.5°N, 12.2°W). The Po river valley is part of 

the Po river basin district (~74,000 km2), a mountain-fed catchment which extends from the Alps in the West, to the Adriatic 

Sea in the East. The Po district is one of the eight districts mentioned in the Water Framework Directive (WFD, 2000) initiated 155 

by the European Commission and has been hit by seasonal drought events which impacted all water use sectors, in particular 

agriculture (Strosser et al., 2012). The water assessment and impact evaluation of human activities over the Po river valley is 

thus a topic of major interest, considering the significant requirements from the agricultural management sector. 

According to the Köppen-Geiger climate classes (Peel et al., 2007) the study area is classified as "Cfa" (temperate climate, 

without dry season and with hot summers). From a geographical point of view, the Po river flows from the west to the east, 160 

splitting the area of interest in northern and southern areas, respectively. North of the Po river, the agricultural plain area can be 

additionally subdivided into the Veneto region to the east and the Lombardy region to the west (Figure 1). Lombardy lands have 

a high water availability, thanks to the presence of several Alpine lakes and reservoirs (Musolino et al., 2017), as does the Veneto 

region. Wine cultivation plays an important role, especially in the Garda Lake surroundings (located to the north-west side of 

the study area). In the south, the Emilia Romagna region is an agricultural as well as urbanized-industrialized area. Compared 165 

to Lombardy and Veneto, Emilia Romagna is much poorer both in water availability and storage capacity, but its irrigation 
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system is considered the most technologically advanced and efficient in the Po river basin (Musolino et al., 2017). Specifically, 

it hosts the Canale Emiliano Romagno (CER, https://consorziocer.it/it/, last access 20 May 2021), one of the most important 

Italian hydraulic systems for agricultural water supply. The main crops in the study region include general summer and winter 

crops, orchards (i.e., peach, pear, kiwi), olive groves, and vineyards (https://sites.google.com/drive.arpae.it/servizio-climatico-170 

icolt/home, last access 20 May 2021). The plain area is surrounded by a forested hilly and mountainous area of the Tuscan-

Emilian Appennine to the south/south-west.  

In situ data were collected over two test sites, located in the Emilia Romagna region:  

● The Budrio test site (Figure 1a) is an experimental farm managed by the CER authority and includes two plots of 

0.39-0.49 ha. The main crops are maize for field 1 (in yellow) and tomatoes in field 2 (red colour). Daily irrigation 175 

data, in mm, were collected for the summer 2015-2016 over field 1, whereas daily irrigation water amounts were 

collected for the summer 2017 over field 2. Additionally, for field 2, hourly in situ soil moisture data, aggregated here 

at daily scale, were made available from the Department of Physics and Earth Science of the University of Ferrara. 

The soil moisture data were derived from an innovative Proximal Gamma-Ray (PGR SM hereafter; Filippucci et al., 

2020, Strati et al., 2018) station, equipped with a 1L NaI(Tl) detector placed at 2.25 m above the ground and a 180 

commercial agro-meteorological station (MeteoSense 2.0, Netsen; Strati et al., 2018). The PGR is a nuclear non-

invasive and non-contact technique, which allows to overcome the issue connected to in situ point measurements, 

probing soil moisture with a field scale footprint (~104 m2) up to a depth of 30 ~ cm. The quantification of PGR soil 

moisture is derived from measurements of gamma signals emitted by the decay of 40K, which is extremely sensitive 

to different soil water contents in agricultural soils (for more information on the PGR soil moisture deriving procedure 185 

the reader can refer to Baldoncini et al., 2019). Finally, daily rainfall data were collected from the national rainfall 

network managed by the Department of Civil and Environmental Protection (DPC) of Italy, for the irrigated periods. 

● The second test site (Figure 1b) is located around the city of Faenza (hereafter Faenza test site) and has a total extent 

of 1051 ha, consisting of two different fields. The first one is called San Silvestro (290 ha) and it is located north of 

the city. The second one is called Formellino (760 ha), located east to the San Silvestro field and north-east to the city 190 

of Faenza. Fruit trees are prevalent on the fields; in particular, pear trees and kiwi dominate the area. The water used 

for irrigation was provided by CER, at hourly time scale and in mm, for the 2-years time period 2016-2017. Daily 

rainfall data were collected from the national rainfall network managed from the DPC. 

2.2 Sentinel-1 σ0 and reference remote sensing products 

The Copernicus-ESA Sentinel-1 σ0observations were used in this study for the calibration of the WCM. The Sentinel-1 195 

constellation consists of two satellites, Sentinel-1A and Sentinel-1B, launched in 2014 and 2016, respectively. Each satellite 

carries a Synthetic Aperture Radar (SAR) operating at C-band (5.4 GHz) in the microwave portion of the electromagnetic 

spectrum. The processing of the ground-range detected (GRD) Interferometric Wide Swath (IW) observations in VV- and VH-

polarization was done using Google Earth Engine’s Python interface and included standard techniques: precise orbit file 
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application, border noise removal, thermal noise removal, radiometric calibration, and range-Doppler terrain correction. 200 

Furthermore, the σ0 observations acquired at 5 × 20 m2 resolution were aggregated and projected on the 1 km Equal Area Scalable 

Earth version 2 (EASE-2) grid (Brodzik et al., 2012). After applying an orbit bias-correction (Lievens et al., 2019), the 

observations from different orbits, either from Sentinel-1A or -1B and ascending or descending tracks, were combined at the 

daily time-scale.  

Additionally, RS observations were used for the evaluation of the SSM and LAI simulated in Noah-MP LSM for the period 31 205 

March 2015- December 2019:  

● The NASA Soil Moisture Active Passive (SMAP; Entekhabi et al., 2010) is an orbiting observatory launched in 

January 2015 carrying two instruments: a SAR which suffered a failure in early July 2015, and a radiometer measuring 

Tb at L-band, with a native spatial resolution of 40 km, a revisit time of 2–3 days, and ascending and descending 

overpasses at 6:00 PM and 6:00 AM (local time), respectively. For this study, the 9-km SMAP Enhanced Level-2 210 

SSM version 4 (0-5 cm; SMAP L2 hereafter) product was used (O'Neill et al., 2020; Chan et al., 2018). The product 

is derived from SMAP Level-1B (L1B) interpolated antenna temperatures using the Backus-Gilbert optimal 

interpolation technique. Both ascending and descending tracks were collected. 

● The Metop ASCAT SSM Climate Data Records (CDR) H115 and its extension H116  are provided by the European 

Organization for the Exploitation of Meteorological Satellites (EUMETSAT) Support to Operational Hydrology and 215 

Water Management (H SAF; http://hsaf.meteoam.it/, last access 20 May 2021). The SSM is retrieved from σ0 using 

a change detection algorithm (Wagner et al., 2013), and is characterized by a spatial sampling of 12.5 km and a 

temporal resolution of one to two observations per day, depending on the latitude.  

● The PROBA-V LAI is derived from the PROBA-V satellite mission (Francois et al., 2014; Dierckx et al., 2014) and 

provided by the Copernicus Global Land Service programme (CGLS, https://land.copernicus.eu/global/). The CGLS 220 

product at 1 km spatial resolution and 10-day (dekadal) temporal resolution is developed based on the work by Verger 

et al. (2014).  

In order to compare Noah-MP simulations and reference data at the same spatial resolution, Sentinel-1 observations (σ0-VV and 

-VH), as well as ASCAT SSM, SMAP L2 SSM and PROBA-V LAI were extracted over the study domain (left-bottom corner: 

44°N, 10.5°W; top-right corner: 45.5°N, 12.2°W) and re-gridded over the LIS grid domain (0.01°) using the nearest-neighbour 225 

approach.  

2.3 Land surface and irrigation modelling 

2.3.1 Noah-MP v.3.6 

The analysis was carried out using the Noah-MP (Niu et al., 2011) LSM, running within NASA's LIS 7.2 version (Kumar et al., 

2008). LIS is a software framework for terrestrial hydrology modelling and DA, which supports different LSMs that can be 230 

conditioned on multiple remote sensing products from active and/or passive microwave sensors. The Noah-MP LSM, which 
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was chosen for this study, is an evolution of the baseline Noah LSM (Mahrt and Ek, 1984; Chen et al., 1996; Chen and Dudhia, 

2001) wherein main improvements and augmentations are: 1) the presence of four soil layers; 2) up to three snow layers; 3) one 

canopy layer which allows to dynamically simulate the vegetation and to compute separately the ground surface temperature; 4) 

a two-stream radiation transfer scheme based on the canopy layer sub-grid scheme; 5) a Ball-Berry type stomatal resistance 235 

scheme; 6) and finally, a simple groundwater model with a TOPMODEL‐based runoff scheme (Niu et al., 2005, 2007). The 

model was set up selecting four soil layers at depths 0–10, 10–40, 40–100 and 100–200 cm, a dynamic vegetation model with a 

Ball-Berry type canopy stomatal resistance model (Ball et al., 1987), and TOPMODEL-based runoff.  

The parameterization followed the recommended options provided in the LIS documentation 

(https://modelingguru.nasa.gov/docs/DOC-2634). A model time step of 15 minutes and a 6 hours output interval were selected 240 

together with a spatial resolution of 0.01°. The meteorological forcings used for running Noah-MP LSM were obtained from 

MERRA-2 (Gelaro et al. 2017). The MERRA-2 original spatial resolution of 0.5°x0.625° was re-mapped to 0.01° through 

bilinear interpolation. Land model data and parameters were pre-processed and adapted to the LIS longitude/latitude projection 

using the Land Surface Data Toolkit (LDT; Arsenault et al., 2018) in order to run Noah-MP at the chosen spatial resolution.  

For this study, the default LIS Land Cover (LC) map from the University of Maryland (UMD) global land cover product (Hansen 245 

et al., 2000) based on the Advanced Very High Resolution Radiometer (AVHRR) data was replaced with the 2015 global LC 

map, available from the CGLS at 100 m spatial resolution (Buchhorn et al., 2020; available at 

https://land.copernicus.eu/global/products/lc , last access 20 May 2021). The CGLS provides Dynamic Land Cover Layers at 

100 m spatial resolution (CGLS-LC100), obtained by combining information derived from the vegetation instrument on board 

the PROBA-V satellite, a database of high-quality LC reference sites, and several ancillary datasets. For a more detailed 250 

explanation of the LC maps generation process we refer to the Algorithm Theoretical Basis Document (ATBD; Buchorn et al., 

2020). The 23 classes of the PROBA-V LC map were reclassified to the 14 classes used in the UMD-AVHRR classification 

supported by LIS. Additionally, the LC map was regridded at 0.01° (Figure 2a) by identifying the most representative class over 

each LIS grid cell. For additional information on the reclassification process, we refer the reader to Table S1 in the 

Supplementary Material section. Similarly, the default FAO Soil Map (FAO Soil Map of the World, 1971) was replaced by the 255 

Harmonized Soil World Database (HWSD v1.21, 1 km; Figure 2b) and mapped to 5 soil classes over the study region. Other 

model pre-processed parameters inputs were: i) the Shuttle Radar Topography Mission elevation data (SRTM30, 30 m spatial 

resolution); 2) climatological global Greenness Vegetation Fraction (GVF) data (0.144°; Gutman and Ignatov, 1998) derived 

from 5 years (1985-1989) of normalized difference vegetation index (NDVI) data from the AVHRR (Miller et al., 2006); 3) a 

snow-free albedo and a Noah-specific maximum snow albedo product from NCEP (original resolution 1° and regridded); and 260 

finally, 4) soil, vegetation, and other general parameter tables for Noah-MP from the LIS official Data Portal 

(https://portal.nccs.nasa.gov/lisdata_pub/data/, last access 20 May 2021). 
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2.3.2 Irrigation modelling 

The ability of Noah-MP to dynamically simulate the vegetation and the option to activate irrigation are particularly important 

considering an extensively irrigated area such as the Po river valley. Indeed, in a recent study by Nie et al. (2018), Noah-MP 265 

was coupled with a sprinkler irrigation scheme (Ozdogan et al., 2010b) (where irrigation is applied as supplementary rainfall), 

which requires three pieces of information:  

● the irrigation location, only occurring over potentially irrigated croplands (expanding over grassland if the intensity 

exceeds the gridcell’s total crop fraction). This information is extracted from a LC map associated with an additional 

dataset providing information on the percent of irrigated area per grid cell. In this study, the reclassified PROBA-V LC 270 

map was coupled with the information contained in the 500 m Global Rain-fed, Irrigated and Paddy Croplands data set 

(GRIPC; Salmon et al., 2015);  

● the timing of irrigation, which is determined by checking the start and end of the growing season based on a GVF 

threshold, separately at each grid cell. Following Ozdogan et al.(2010b), we set this threshold to 40% of the GVF;  

● the amount of water used for irrigation. This quantity is derived from the root zone soil moisture (RZSM) availability 275 

(MA) as MA=(RZSM-SMWP)/(SMFC-SMWP) where RZSM is the current RZSM, SMWP is the wilting point, and SMFC is 

the field capacity. When the MA falls below a user-defined threshold, irrigation is triggered and the quantity is defined 

by calculating the amount of irrigation needed to raise the RZSM to the SMFC. For this study, the MA threshold was 

defined as the 50% of SMFC as in Ozdogan et al. (2010b). MA is calculated at each time step but the irrigation is only 

applied between 06:00 and 10:00 LT. Following Ozdogan et al. (2010b), this time frame is typically chosen by farmers 280 

to reduce evaporative losses. In this context, the maximum rooting depth becomes a crucial information to compute the 

amount of irrigation water. This information is related to an assigned crop type, cultivated over the study area, through a 

maximum rooting depth table. Considering the high crop variability over the Po river valley as well as the lack of high 

resolution dynamic crop maps for the entire study area, a generic crop type with 1 m root depth was selected for the 

irrigation simulations. The reference rooting depth was verified to be feasible over the study area based on the European 285 

Soil Data Centre (ESDAC, available at https://esdac.jrc.ec.europa.eu/content/european-soil-database-derived-data, last 

access 20 May 2021) rooting depths map (Figure S1 in the Supplementary Material). 

2.4 Water Cloud Model 

The WCM allows to simulate the top-of-vegetation σ0 as a function of SSM and vegetation, using empirical fitting parameters.  

σ0 is modeled as the sum of the backscatter from the vegetation (𝜎𝜎𝑣𝑣𝑣𝑣𝑣𝑣0 , in dB) and from the bare soil (𝜎𝜎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
0 , in dB), attenuated 290 

by the t2 coefficient that describes the two-way attenuation from the vegetation layer. Scattering interactions between the 

ground and the vegetation are not accounted for. As reported in Baghdadi et al. (2018), for a given polarization pq (i.e., VV 

and VH), the WCM can be written as follows: 
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σpq0 = σveg,pq
0 + tpq2 σsoil,pq0       (1) 

where:  295 

σveg,pq
0 = ApqV1cosθ(1 − tpq2 )     (2) 

tpq2 = exp(−2BpqV2
cosθ

)       (3) 

σsoil,pq0 = Cpq + Dpq ⋅ SSM     (4) 

 
Equations 2 and 3 describe the vegetation-related terms. V1 and V2 represent two bulk vegetation descriptors, the first one 300 

accounting for the direct vegetation σ0, and the second one representing the attenuation. Apq[-] and Bpq[-] are the two related 

fitting parameters. Common vegetation descriptors used in previous studies are the Vegetation Water Content (VWC, Paloscia 

et al., 2013), the NDVI (El Hajj et al., 2016; Li and Wang, 2018) and LAI (Kumar et al., 2015b; Bai and He, 2015), while θ 

represents the incidence angle, which is assumed to be 37° for Sentinel-1. Many studies assumed V1=V2 represented by the 

unique vegetation descriptor (see Lievens et al, 2017b, Baghdadi et al. 2017, Li and Wang, 2018). 305 

Equation 4 describes the soil-related term. Following the work by Lievens et al. (2017b), the σsoil
0  can be described, in a simple 

linear approach, as a function of the SSM. There are several semi-empirical models (e.g., the Oh model; Oh et al., 1992) or 

theoretical models (e.g., the Integral Equation Model (IEM), Fung, 1994) which describe the scattering processes related to 

the bare soil, but their application as a forward operator coupled to an LSM has two main limitations: the first one lies in the 

difficulty in retrieving soil roughness values over extended reference areas required to parameterize these models; the second 310 

one is their saturation of σ0 in moist conditions which causes low variability in simulated σ0 if the LSM soil moisture 

simulations are biased wet (for more information  see Lievens et al., 2017b). Those limitations justify the use of a linear fitted 

approach. In Equation 4, the C and D parameters (here fitted in dB and dB/m3/m3, respectively, but σsoil
0  is transformed back 

to the linear scale in Equation 1) describe the linear relation between σsoil,pq
0   and SSM. Those parameters, as well as A and 

B (-), need to be calibrated separately for each polarization. 315 

2.5 Calibration algorithms 

We considered two different objective functions to optimize the A, B, C and D parameters:  

● a Bayesian solution, which minimizes the Sum of Squared Errors (SSE) between σ0 observations from Sentinel-1 and 

WCM simulations. The SSE Bayesian calibration solution aims at identifying the optimal parameter vector 𝛂𝛂 which 

maximizes the probability of the resulting σ0 simulations 𝑝𝑝(𝑦𝑦�−) = 𝑝𝑝(𝑦𝑦�−|𝛼𝛼)𝑝𝑝(𝛼𝛼), where 𝑝𝑝(𝛼𝛼) is the prior parameter 320 

distribution and 𝑝𝑝(𝑦𝑦�−|𝛼𝛼) is the likelihood. Starting from the assumption of an independent and identically distributed 
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normal error model, the posterior probability can can be maximized by maximizing: 

𝑝𝑝(𝑦𝑦�−|𝛼𝛼)𝑝𝑝(𝛼𝛼) = ∏ � 1
𝑠𝑠𝑖𝑖√2𝜋𝜋

𝑒𝑒𝑥𝑥𝑝𝑝 �− (𝑦𝑦�−𝑦𝑦�−)𝑖𝑖
2

2𝑠𝑠𝑖𝑖
2 ��𝑁𝑁𝑖𝑖

𝑖𝑖 ⋅ ∏ � 1
𝑠𝑠𝑗𝑗√2𝜋𝜋

𝑒𝑒𝑒𝑒𝑒𝑒 �−
(𝛼𝛼0−𝛼𝛼)𝑗𝑗

2

2𝑠𝑠𝑗𝑗
2 ��𝑁𝑁𝛼𝛼

𝑗𝑗  (5) 

i.e., the combination of the likelihood and a prior parameter constraint. The latter helps in reducing problems of 

equifinality. In Equation (5), 𝑦𝑦� represents the observed σ0, 𝑦𝑦�−is the simulated σ0, i is the timestep and si is the standard 325 

deviation of the residual differences between the observed and simulated σ0 values for Ni time steps. Nα is the number 

of parameters to be calibrated, α0 is the prior parameter constraint and the parameter deviation is limited by 𝑠𝑠𝑗𝑗2, the 

variance of a uniform distribution 𝑠𝑠𝑗𝑗2 = �𝛼𝛼𝑚𝑚𝑚𝑚𝑚𝑚,𝑗𝑗 − 𝛼𝛼𝑚𝑚𝑚𝑚𝑚𝑚,𝑗𝑗�
2/12  with determined boundaries of the parameters 

[αmin,αmax]. The maximum likelihood solution is found by minimizing the following cost function J: 

𝐽𝐽 = ∑ �𝑙𝑙𝑙𝑙(𝑠𝑠𝑖𝑖) + (𝑦𝑦�−𝑦𝑦�−)𝑖𝑖
2

2𝑠𝑠𝑖𝑖
2  �𝑁𝑁𝑖𝑖

𝑖𝑖 + ∑ �
(𝛼𝛼0−𝛼𝛼)𝑗𝑗

2

2𝑠𝑠𝑗𝑗
2  �𝑁𝑁𝛼𝛼

𝑗𝑗 = 𝐽𝐽0 + 𝐽𝐽𝛼𝛼    (6) 330 

where si is assumed to be constant in time and represented by a target accuracy of 1 dB, leaving the SSE in the first 

term of J0 to minimize. The second term (Jα) constrains the optimal solution by avoiding strong deviations from initial 

parameter guesses.  

● a solution that maximizes the Kling-Gupta Efficiency (KGE; Gupta et al., 2009). Even though this objective function 

does not ensure Bayesian optimality, it is a widely used metric which could help to better tune the dynamic σ0 335 

behaviour: 

𝐾𝐾𝐾𝐾𝐾𝐾 = 1 − �(𝑟𝑟 − 1)2 + �<𝑦𝑦�
−>

<𝑦𝑦�>
− 1�

2
+ �𝑠𝑠[𝑦𝑦�−]/<𝑦𝑦�−>

𝑠𝑠[𝑦𝑦�]/<𝑦𝑦�>
− 1�

2
   (10) 

The KGE formulation embeds three terms: 1) the first term accounting for the Pearson Correlation (Pearson-R) 

between the observed (𝑦𝑦�) and simulated (𝑦𝑦�−) σ0 time series; 2) a second term accounting for the bias, where the long-

term mean is represented as <.>; and finally, 3) a term accounting for the variability of the simulated and observed 340 

signal through the use of the standard deviation s[.]. KGE = 1 indicates a perfect agreement between simulations and 

observations. Note that KGE redistributes the weight of the bias, variance and correlation components, compared to 

J in Equation 6, which can help in reducing differences between simulated and observed σ0 also in terms of temporal 

dynamics during the calibration. On the other hand, in the KGE cost function parameters are not constrained by prior 

values α0. This could possibly result in overfitting and a larger prediction uncertainty.  345 

The Particle Swarm Optimization (PSO; Kennedy and Eberhart, 1995) was used to minimize J and maximize KGE. For our 

case study the PSO parameters were set as in De Lannoy et al. (2013).  
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2.6 Experimental setup 

Building an optimal DA system able to correct for the poor parameterization of irrigation within LSMs via the ingestion of 

radar σ0 requires the minimization of the impact of the irrigation signal already contained in σ0 observations on the WCM 350 

parameters, while simultaneously guaranteeing long-term unbiased σ0 simulations compared to observations. Here we tested 

the hypothesis that this can be only achieved by activating irrigation in the LSM.  

To that end, we considered two different experiment lines (referred to as Natural and Irrigation, respectively) that produced a 

total of eight different σ0 simulation runs (see Figure 3). The Natural experiment line differs from the Irrigation line by the 

activation of an irrigation module in Noah-MP, and both are subjected to the calibration algorithms described in Section 2.5. 355 

The Natural line was used as a diagnostic experiment against which to compare Irrigation, which, according to our initial 

hypothesis, should minimize the impact of the irrigation signal contained in the σ0 observations on WCM parameters. 

As a first step, a model spin up was performed, starting in January 1982 and ending in December 2014. Then, a study period 

from January 2015 to December 2019 was selected for the different model runs based on the availability of the processed 

Sentinel-1 σ0 and reference irrigation data (see Sections 2.1 and 2.2). Daily surface model and irrigation outputs were produced. 360 

Considering that the main source of irrigation in the Po river valley is related to surface water abstraction, the sprinkler 

irrigation scheme did not account for groundwater withdrawals (see Nie et al., 2018).  

The A, B, C, and D parameters of the WCM (see section 2.4) were fitted for each grid cell based on Sentinel-1 σ0 VV and VH 

observations separately, during the period January 2017 - December 2019. Both the calibration using the SSE with prior 

constraint (Bayesian J) and the KGE were applied to the Natural and Irrigation runs providing eight different experiments 365 

named J-VV Natural, J-VH Natural, J-VV Irrigation, J-VH Irrigation, KGE-VV Natural, KGE-VH Natural, KGE-VV Irrigation 

and KGE-VH Irrigation.   
Lower and upper boundaries as well as prior guess values of the WCM parameters were defined based on the work of Lievens 

et al. (2017b) and on a sensitivity analysis (not shown here). The selected values are displayed in Table 1. Finally, it should be 

noted that all the calibration experiments were realized by considering daily values of σ0 simulations and observations. 370 

Table 1: Lower boundaries (LB), upper boundaries (UB), and prior guess values of the WCM parameters for both VV and VH 
polarization 

 A-VV[-] A-VH[-] B-VV[-] B-VH[-] C-VV[dB] C-VH[dB] D-VV[dB/m3/m3] D-VH[dB/m3/m3] 

UB 0.4 0.4 0.4 0.4 -10 -10 80 80 

LB 0 0 0 0 -35 -35 15 15 

GUESS 0 0 0 0 -20 -30 40 40 
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2.7 Noah-MP LSM and WCM evaluations 

The validation aims at i) evaluating the performance of Noah-MP in simulating irrigation, soil moisture, and vegetation and 375 

the ability of the WCM to simulate radar σ0, and ii) unveiling the information about irrigation contained in Sentinel-1 radar σ0 

in order to assess its potential to improve both soil moisture and vegetation representation within Noah-MP.  

The evaluation was carried out both on the regional scale (i.e., over the entire study area) and at two selected sites, Budrio and 

Faenza, where irrigation data were available. We compared Noah-MP (with and without using the irrigation module) SSM and 

LAI simulations with satellite SSM from ASCAT and SMAP, and LAI from PROBA-V, respectively, during the period 2015-380 

2019. Furthermore, these land surface simulations were compared to Sentinel-1 σ0 to understand how much of the SSM and 

LAI signal was captured by Sentinel-1.   

As the irrigation timing is often driven by the stakeholders' turns to withdraw water and by water availability rather than by 

the conditions of the soil and crops themselves, the comparisons between simulated SSM and satellite SSM were carried out 

by aggregating the two variables over a bi-weekly time window. On the other hand, the LAI from Noah-MP was aggregated 385 

to ten-daily values in order to match the dekadal PROBA-V LAI values. We used the Pearson-R for SSM and LAI evaluation. 

For LAI, we also considered the ratio bias, i.e., the ratio between the long-term mean of the simulations and the long-term 

mean of observations. This additional score was used to provide a further evaluation of the ability of the Noah-MP to simulate 

crop phenology during the irrigated vs non-irrigated periods so as to not rely solely on the evaluation of temporal dynamics, 

which, due to the uncertainty in the Noah-MP crop type parameterization, could be affected by time shifts in the LAI 390 

climatology. This parameterization uncertainty comes from the lack of knowledge of the spatial crop type information and is 

difficult to be reduced without additional information. Our assumption is that radar σ0 assimilation can also correct for this 

with future data assimilation.  

Following Vreugdenhil et al. (2018) and Vreugdenhil et al. (2020), Noah-MP LAI and PROBA-V LAI were also compared 

with the Sentinel-1 σ0 VH/ σ0 VV cross ratio (CR), which was demonstrated to have a high agreement with the vegetation 395 

signal. Though the σ0 VH was demonstrated to increase with the vegetation signal (Macelloni et al., 2001), the CR will be 

more sensitive to vegetation changes as the ratio is less sensitive to changes in soil moisture and soil-vegetation interaction 

(Veloso et al., 2017; Vreugdenhil et al., 2020). 

To evaluate WCM simulations, we used bi-weekly values of σ0 simulations and observations considering a two-years period 

independent from the calibration period: 2015-2016. Statistical metrics such as grid-based temporal Pearson-R, KGE, and bias 400 

were calculated between Sentinel-1 σ0 and calibrated WCM simulations. The analysis of the parameters was restricted to the 

cropland area as no difference between our experiment lines exists over other land cover types (i.e., the irrigation module is 

active only over grid points classified as crop). 
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3 RESULTS 

3.1 Noah MP regional evaluation 405 

Figure 4 shows maps of the Pearson-R between bi-weekly Noah-MP SSM Natural and Irrigation simulations and bi-weekly 

ASCAT and SMAP L2 SSM retrievals, respectively, for April 2015 to December 2019. The Noah-MP SSM Irrigation run 

provides a higher agreement with both satellite SSM data sets compared to the Natural run. Indeed, the median Pearson-R 

between SMAP L2 SSM and Noah-MP SSM increases from 0.68 to 0.73, for the Natural run (Figure 4a) and the Irrigation 

run (Figure 4b), respectively. A similar improvement can be observed considering the ASCAT reference SSM, with an 410 

improvement in the median Pearson-R of 0.08 when irrigation is activated in the model (from 0.7 to 0.78; Figure 4e). Areas 

characterized by higher correlation when irrigation is simulated are represented in blue in the Pearson correlation difference 

map of Figure 4f (obtained by subtracting the map in Figure 4d from the map in Figure 4e). Almost all cropland areas are 

characterized by a higher agreement between observations and simulations for the Irrigation run. Note that for the evaluation 

of Noah-MP against SMAP, we relaxed retrieval quality flags, which would otherwise mask out almost the entire study area. 415 

The Supplementary material (Figure S2) shows the coverage when using the recommended quality flags. 

The evaluation of the LAI simulation was limited to the regional scale analysis due to a lack of in situ vegetation data over the 

selected test sites. The comparison between dekadal values of Noah-MP LAI, from both model runs, and the PROBA-V LAI 

product was carried out over the reference period January 2015 to October 2019 using the temporal Pearson-R and the ratio 

bias, shown in Figure 5.  420 

Figure 5a and 5b show that the Pearson-R for vegetation has a lower median value of 0.67 when irrigation is simulated in 

Noah-MP, whereas this value equals 0.72 for the Natural run. The difference between the two Pearson-R maps is shown in 

Figure 5c, providing evidence of the areas facing a deterioration of the performance in terms of Pearson-R related to the 

Irrigation run. This deterioration is particularly strong over cropland areas south to the Po river (red colour) while the northern 

area also shows grid cells where the performance improves (blue colour).  425 

By contrast, the ratio bias evaluation score (Figures 5d, 5e, 5f) highlights an improvement in long-term mean vegetation 

simulations when irrigation is included (Figure 5e). Here the optimal condition is represented by a ratio bias equal to 1 when 

the mean of the simulated LAI is equal to the mean of the observed LAI. In this context, Figure 5d displays ratio bias values 

lower than one over a large central triangle-shaped cropland area and median ratio bias value of 0.73, highlighting an 

underestimation of the LAI simulation related to the Natural run. Conversely, Figure 5e shows ratio bias values close to one 430 

when irrigation is simulated over an extended cropland area and a median bias value of 0.99. The improvement given by the 

Irrigation run is emphasized in Figure 5f where the histograms of the ratio bias distributions related to both model runs show 

the higher performance of the Irrigation run (red) compared to the Natural run (blue) for which the distribution is more skewed 

to the zero value.   
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3.2 Noah MP site evaluation 435 

The Noah-MP SSM was evaluated at the Budrio test site field 2 (Figure 1a), using the daily reference PGR SM for the year 

2017. Comparisons between the SSM simulations of the Natural and Irrigation runs with in situ PGR SM are shown in Figure 

6a, while daily observed irrigation and rainfall data are compared with daily irrigation simulations in Figure 6b. Soil moisture 

data are plotted at their original temporal resolution (i.e., daily) to illustrate an issue related to the irrigation timing: SSM 

simulations in Figure 6a show the ability of the sprinkler irrigation scheme to simulate irrigation in the summer season, but 440 

there is an inevitable problem in reproducing the correct timing and magnitude of irrigation. Indeed, the total amount of 

simulated irrigation is 604 mm for the 2017 summer season, which overestimates the total amount of observed irrigation, being 

349.5 mm. Furthermore, the model simulations not only miss irrigation, but also suffer from erroneous precipitation input, 

such as on the 11th of July 2017, where the observed precipitation event in the growing season is not found in the model SSM 

simulations. In any case, bi-weekly Pearson-R between simulated SSM and in situ PGR SM are higher for the Irrigation run 445 

than for the Natural run (0.54 vs 0.42) suggesting the benefit in activating irrigation. 

For the Budrio field 1 test site (Figure 1a), two summer seasons of irrigation data were available. To assess the irrigation 

information contained in Sentinel-1 σ0 observations (and the potential added value for a forthcoming DA experiment) we 

compared bi-weekly values of Sentinel-1 σ0 VV and VH with SSM estimates from both the Natural run and Irrigation run 

(Figure 7a) for this site. Information related to the irrigation periods are shown in Figure 7c, where irrigation observations and 450 

irrigation simulations from Noah-MP are compared. Figure 7a indicates that the SSM simulations are better reflected in the 

Sentinel-1 σ0 VV than σ0 VH data, particularly when irrigation is simulated (orange line). The SSM estimates from the Natural 

run (light blue line) agree poorly with the Sentinel-1 data, with Pearson-R values equal to 0.14 and -0.13 for the σ0 VV (blue 

dots) and σ0 VH (cyan dots), respectively. When irrigation is simulated, the σ0 VV data better follow the modelled SSM signal 

(Pearson-R of 0.36) especially during the summer irrigation season when the backscatter signal remains higher and stable. On 455 

the other hand, σ0 VH seems to provide poor performances also when irrigation is simulated with a Pearson-R value equal to -

0.03.  

In Figure 7b, the Sentinel-1 σ0 CR (VH/VV) is compared with Noah-MP LAI from the Natural run (light-blue line) and 

Irrigation run (orange line). The performance in terms of Pearson-R decreases from 0.8 to 0.51, when the irrigation is 

simulated. This is due to a time shift of the Noah-MP LAI growing season in the Irrigation run. PROBA-V LAI (in green) was 460 

additionally compared with the Sentinel-1 CR (blue dots) showing a Pearson-R of 0.88. The higher agreement between the RS 

products (Sentinel-1 and PROBA-V) highlights the strong relation between the σ0 CR and the vegetation signal, suggesting a 

potential benefit of Sentinel-1 assimilation to correct the simulated vegetation phenology. 

Finally, Figure 7c shows a comparison between 15-days accumulated mm of simulated irrigation (in orange) and observed 

irrigation (in green). The Pearson-R is equal to 0.77, indicating that the sprinkler irrigation scheme can provide acceptable 465 

irrigation estimates at this temporal resolution though absolute irrigation amounts are overestimated. 
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3.3 WCM calibration 

The WCM parameters A and B (vegetation parameters), and C and D (soil parameters) were calibrated for each grid cell 

separately during the reference period January 2017 to December 2019 (Figure 3), using daily σ0 simulations and observations. 

The calibrated parameters related to the entire study area for each of the eight experiments are shown in Figure 8 where the 470 

blue left parts of the violin plots identify experiments of the Natural run, while the orange right parts of the violin plots are 

related to the Irrigation run.  

Generally, the J-calibration provides parameter distributions closer around their prior guess as compared to the KGE-

calibration for which the distributions are often multimodal, especially for the C and D parameters (i.e., Figure 8d, 8h). This 

is due to the prior parameter penalty, which is included in the Bayesian solution but not in the KGE. In general, the calibration 475 

of the two functions using the Natural run provides wider distributions between lower and upper boundaries for the A 

vegetation parameter with a high number of grid cells characterized by A-values higher than 0.1 (see KGE-VV Natural and J-

VV Natural experiments in Figures 8a and 8e respectively). Conversely, the Irrigation run provides A distributions more 

skewed to the lower boundary (being also the guess value in each calibration experiment), with a smaller number of grid cells 

characterized by high A values compared to the Natural run. In a preliminary sensitivity study (not shown), we observed that 480 

high values of the vegetation parameters A and B, as obtained for the Natural run, have the tendency to generate high peaks 

in the simulated σ0 during the growing season. Indeed, in the summer, the SSM Natural signal is low and not consistent with 

the Sentinel-1 σ0, which observes irrigation. In order to follow the temporal dynamics of the Sentinel-1σ0, the calibration 

algorithms attribute a relatively higher weight (higher A values) to the LAI than to SSM to compensate for the underestimated 

SSM in the Natural run. By contrast, the Irrigation run provides vegetation parameter distributions more skewed to the lower 485 

boundaries (see also Section 3.4.2). Also the C and D parameter distributions show more realistic values using Irrigation run 

input data, and feature a better sensitivity of σ0 to soil moisture dynamics. This is true especially when using the J cost function 

(see parameters distributions for the J-VV Natural and for the J-VV Irrigation experiments in Figures 8g and 8h), which results 

in more uniform calibrated C and D distributions for the Irrigation simulations (esp. in VV polarization), whereas the mode 

of the C and D parameter distributions for the Natural experiments is more shifted to the upper and lower boundaries, 490 

respectively. 

The different polarization experiments generally provided similar distributions for the vegetation A and B parameters and the 

D soil parameter. The largest differences between the VV and VH polarizations are identified for the C parameter distributions. 

This is due to the lower σ0 signal associated with the VH polarization. Indeed, Figure 8c and 8g are characterized by higher 

values of the C in VV polarization, as compared to the distributions for VH polarization in Figures 8k and 8o. In the latter, the 495 

C-VH distributions are generally more skewed to the lower boundary of the parameters, with median values closer to the 

defined guess parameter value. 
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3.4 WCM evaluation 

3.4.1 Regional evaluation 

The regional evaluation of the calibration experiments was carried out during the period January 2015 to December 2016 for 500 

agricultural areas within the study domain (almost 15,000 km2), by comparing bi-weekly σ0 simulations with Sentinel-1 σ0 in 

terms of Pearson-R, KGE, and bias. The distribution of the evaluation metrics for the eight experiments is shown in Figure 9. 

A comparison of the metrics for the Irrigation and Natural runs confirms better results when irrigation is activated, with violin 

plots skewed towards more positive values for both KGE and Pearson-R. When stratified by the cost function, the Pearson-R 

distribution in Figure 9a-d indicates slightly higher performance for the KGE (Figures 9a and 9c) than for J (Figure 9b and 505 

9d). In terms of the KGE score, simulations are naturally closer to the observations when the KGE cost function is used. On 

the other hand, in terms of bias, generally better performances are found when the Bayesian solution is used (Figures 9i-l). The 

latter is particularly evident for the VH polarization when comparing the KGE-VH and J-VH experiments (Figure 9k and 9l).  

The VH simulations exhibit a better performance in the Irrigation run than VV simulations (Figure 9c-d and Figure 9a-b). 

Indeed, considering all the statistical scores, the VV polarization is characterized by more similar distributions between the 510 

Natural and Irrigation run for both cost functions. This suggests a higher sensitivity of the VH polarization to the change of 

vegetation introduced by irrigation, confirming the Sentinel-1 σ0 VH to be strongly influenced by irrigation as witnessed by 

the larger score improvement obtained for the calibration experiments KGE-VH Irrigation (Figure 9g) and J-VH Irrigation 

(Figure 9h), compared to the Natural runs experiments.  

In summary, i) VH polarization is more sensitive to the change in the cost function and input data (Irrigation or Natural run) 515 

than VV polarization likely due to its higher sensitivity to vegetation change (Vreugdenhil et al., 2018; Macelloni et al. 2001) 

which, in the area, is related to the crop development after irrigation, ii) the combination of J with activation of the irrigation 

scheme is able to provide the best unbiased estimates of simulated σ0 for both VV and VH (J-VV Irrigation and J-VH irrigation 

experiments) at the price of generally lower correlations (compared to the KGE cost function). This is, however, beneficial for 

DA as it minimizes the chance of potential error cross correlation between model estimates and observations. Indeed, the match 520 

of the temporal dynamic of the signals induced by the correlation term is stronger in the KGE than in J, which additionally 

includes a parameter constraint. The higher weight of the correlation in the KGE cost function can negatively impact the 

parameter calibration even when irrigation is turned on in Noah-MP because the simulated irrigation applications are in general 

not temporally consistent with those seen by Sentinel-1 (see Figure 6). 

3.4.2 In situ evaluation 525 

The WCM simulations are further analysed in detail at the Faenza test site (specifically for the San Silvestro field), because it 

has a larger extent than the Budrio site (see Figure 1), although the same overall conclusions were found for Budrio. Figure 10 

shows simulated and observed σ0 time series for the different experiments highlighted in Figure 3, and Table 3 summarizes the 

statistics (i.e., Pearson-R, KGE and bias) of each experiment.  
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The agreement between simulated and observed σ0 measured by the Pearson-R and KGE in Table 3 generally gives better 530 

performances after calibration with the KGE cost function than with the J cost function, except for the KGE-VH Irrigation 

experiment in terms of Pearson-R (Figure 10b). For the latter, we can observe a Pearson-R of 0.33 against 0.37 for J-VH 

Irrigation (Figure 10d). On the other hand, in terms of bias the cost function J significantly outperforms the calibration with 

KGE in all experiments with surprisingly comparable values between Natural and Irrigation runs (Table 2).  

One undesirable feature of Natural runs is the presence of high σ0 peaks during the summer, clearly detectable over the Faenza 535 

test site in both VV and VH polarization which are less evident in the Irrigation run (see Figure 10b and 10d). A similar 

behaviour was found for Budrio (not shown). These peaks are likely attributed to the poor estimation of model vegetation 

parameter values, previously discussed in section 3.3, when the WCM attempts to compensate for bias in SSM and vegetation 

input, i.e., input that is not consistent with observations over irrigated areas. This is particularly true for the KGE calibration, 

which does not use a prior parameter constraint. In contrast, the J calibration still provides reasonable σ0 simulations that are 540 

closer to the ones of the Irrigation run due to the Bayesian technique itself. 
Table 2: Results of the site WCM evaluation considering the test site Faenza San Silvestro for each WCM experiment  

 KGE-VV 

Natural 

KGE-VV 

Irrigation 

J-VV 

Natural 

J-VV 

Irrigation 

KGE-VH 

Natural 

KGE-VH 

Irrigation 

J-VH 

Natural 

J-VH 

Irrigation 

Pearson-R [-] 0.14 0.32 0.02 0.3 0.39 0.33 0.28 0.37 

KGE [-] 0.05 0.31 0.006 0.28 0.13 0.33 0.28 0.16 

Bias [dB] -0.54 0.81 0.26 0.18 -0.7 -0.71 0.02 0.07 

 

4 DISCUSSION 

4.1 Noah-MP irrigation modelling 545 

The Noah-MP LSM, used as input for the WCM calibration, was evaluated in two configurations, either with a sprinkler 

irrigation scheme activated or without irrigation (i.e., Irrigation run and Natural run). Although not all of the Po river valley 

is irrigated by sprinkler systems, it most likely still leads to more realistic LSM simulations than not considering irrigation at 

all. 

The main limitation found in the irrigation simulations was related to the irrigation timing and magnitude that was inconsistent 550 

with observations. Although this finding is based on only a single study site, it is very likely that it is a widespread issue within 

the study area for several reasons. In LSMs, the irrigation application is driven by the RZSM availability and consequently by 

the soil type and the rooting depth parametrizations. Moreover, it is also influenced by the accuracy of the meteorological 
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forcings (especially precipitation, Reichle et al. 2017) which can determine errors in the soil moisture representation. The main 

reason, however, is likely that irrigation is often the result of subjective farmer decisions rather than objective rules based on 555 

the soil state and crop conditions. In theory, the irrigation timing issue could be partly solved by using temporally consistent 

high-resolution crop maps which should provide a more realistic information of crop phenology and rooting depth. However, 

in practice, this is unfeasible over many areas of the world given the absence of this information on a large scale. Also, given 

that irrigation applications are mainly linked to unmodelled processes like rotation schedules for farmers to withdraw water, 

the correct simulation of the timing can be unsolvable when using models only. 560 

Despite the potential problems related to the unrealistic assumptions in the simulation of irrigation, our results demonstrated 

that even the use of simple irrigation schemes within Noah-MP can be beneficial. In the regional evaluation, SSM simulations 

of the Natural and Irrigation runs were compared with RS SSM from SMAP and ASCAT (Figure 4) on a bi-weekly temporal 

scale. For both products, we found large improvements in temporal Pearson-R when irrigation was simulated, suggesting that 

the activation of irrigation modelling provides more realistic SSM estimates. Our findings further confirm the potential of 565 

coarse resolution datasets for providing irrigation-related information over intensively irrigated and relatively large agricultural 

areas, as was shown by Kumar et al. (2015a).  

While the impact of irrigation was clear in terms of SSM, the regional evaluation of the simulated LAI against the PROBA-

V-based LAI provided contradicting results. In this case, the Pearson-R analysis suggested a deterioration of the Noah-MP 

simulated LAI when irrigation was activated over the cropland area. We interpreted this correlation deterioration by the 570 

absence of specific information about the crop phenology in the model parameterization. In practice, information about the 

specific crop type is not available and the rooting depth is the sole parameter controlling water uptake from the soil layers. 

Additionally, information on sowing and harvest periods are not included in the current version of Noah-MP, while irrigated 

areas are defined based on a global dataset (Salmon et al., 2013) which can suffer accuracy limitations. Indeed, the absence of 

annual dynamic information on irrigated fields, the unknown yearly variability of the crop types and the impact of the 575 

meteorological conditions in the stakeholders decision process (i.e., sowing) make the simulation of Noah-MP prone to LAI 

peak shifts, as compared to observations, when irrigation is simulated. This results in a significant performance deterioration 

(often worse than LAI simulation not including irrigation which are mainly driven by seasonality, see Figure 7). By contrast, 

irrigation modeling helps in reducing the bias of the LAI simulated time series, which, in the cropland area, show a significant 

underestimation when irrigation is not considered. 580 

The limitations found in simulating LAI and vegetation by Noah-MP even when irrigation was simulated could potentially be 

overcome by assimilating Sentinel-1 σ0 data. To explore this potential, we compared the LAI from both model runs, and from 

PROBA-V, with the observed Sentinel-1 σ0 CR (VH/VV), which should provide information about the vegetation dynamics 

(Vreugdenhil et al. 2018; Vreugdenhil et al. 2020). We found that the correlation between σ0 CR and LAI from PROBA-V was 

much higher than that between σ0 CR and the simulated LAI by Noah-MP (see Figure 7) suggesting that Sentinel-1 σ0 DA 585 

could help in correcting poor LAI model simulations. Additionally, a higher correlation was found between the σ0 VV 
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observations and the simulated SSM when irrigation was turned on than in the absence of irrigation, suggesting that the 

assimilation of σ0 VV could improve SSM where irrigation is poorly or not modeled. 

Finally, by-weekly accumulated irrigation estimates in Figure 7 agree well with real irrigation applications, suggesting that the 

large-scale LSM irrigation scheme is helpful for intensively irrigated areas. On the other hand, the poor soil and crop 590 

parameterization along with other unknown parameters related to the irrigation management (e.g., the farmers can apply more 

water than actually needed) can cause large biases in these irrigation simulations. Again, ingestion of radar backscatter data 

could correct for unmodelled processes. More specifically, Sentinel-1 σ0 could correct: (i) for the magnitude and timing of the 

irrigation simulations; and (ii) for Noah-MP irrigation predictions over not irrigated regions. 

4.2 WCM backscatter simulation 595 

The purpose of the presented WCM observation operator calibration and evaluation was to optimize the parameters for the 

future assimilation of the Sentinel-1 σ0 VV and VH into Noah-MP. Such an optimization would ideally minimize the long-

term bias between the simulated and observed σ0 signals. This can be achieved by calibrating the observation operator with 

long-term observed σ0 prior to data assimilation, but in this process, it is crucial to avoid potential error cross-correlation 

between model observation predictions and observations. Furthermore, a good observation operator should not already 600 

compensate for missing processes in the LSM by accepting effective, but unrealistic, optimized parameters, because it would 

then lose its physically-based ability to accurately convert misfits between observations and simulations to LSM updates during 

the data assimilation. In this line, we considered two different experiments: a Natural run and an Irrigation run, as well as two 

cost functions, a Bayesian solution J and a KGE solution which resulted in four calibration experiments for each polarization 

(eight calibration experiments). 605 

The calibration experiments using simulations from the Natural run as input showed a limited performance and provided 

presumably bad vegetation parameter estimates which resulted in unrealistic peaks in the simulated σ0 during the summer, 

when driven by higher modelled LAI during this period. The inclusion of the irrigation within Noah-MP was very beneficial 

for all the calibration experiments helping in reducing the bias and increasing the correlation with Sentinel-1 σ0 as well as 

removing the anomalous σ0 increase during warm periods especially for the KGE-based calibration. This corroborates our 610 

initial hypothesis that, over intensively irrigated areas, the simulation of irrigation is a mandatory task for an optimal calibration 

of the WCM. Irrigation modeling, even if only done approximately and perhaps with inaccurate timing, reduces obvious land 

surface (soil moisture, vegetation) bias and avoids that the WCM needs to compensate for this bias.  

Our results show overall higher performance in terms of KGE and Pearson-R scores for the KGE-based calibration, whereas 

the long-term bias was better reduced for the J-based calibration, which is beneficial in anticipation of future DA. This is 615 

because in the J cost function i) a target accuracy term which takes into account also the Sentinel-1 observations error is 

present; and, ii) a parameter deviation penalty based on the prior parameters constraints is used, which avoid parameters to 

largely deviate to their prior values.  
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In terms of polarization, we found σ0 VH simulations much more sensitive to the inclusion of the irrigation (vs non inclusion) 

in Noah-MP, suggesting that observed σ0 VH might also contain much more information about irrigation (via the influence of 620 

the vegetation change due to irrigation) than that contained in σ0 VV which is normally used for SSM retrieval (Vreugdenhil 

et al. 2020). We believe that the cause of this is related to a comparatively larger σ0 of vegetation with respect to that of the 

soil when the crops are well developed. This was also corroborated by the better agreement between CR and LAI from PROBA-

V in one of the study sites mentioned above. Despite this, further investigations are required to confirm this hypothesis and 

DA will certainly help to test this aspect. 625 

5 CONCLUSIONS 

With the specific focus on intensively irrigated land, the main objective of this work was to define the optimal calibration of 

the WCM as observation operator for the future ingestion of Sentinel-1 backscatter into the Noah-MP LSM via DA. In this 

context, we additionally aimed at: 1) unveiling strengths and limitations of irrigation simulation in LSMs from the perspective 

of a calibrating the WCM; 2) identifying the potential irrigation-related information contained in the Sentinel-1 σ0 observations 630 

to improve soil moisture and vegetation states as well as irrigation estimates in a calibrated DA system. 

To reach these objectives we coupled the Noah-MP with a sprinkler irrigation scheme within LIS and performed two different 

simulation experiments, one with and one without irrigation (i.e., Natural and Irrigation runs). Moreover, we coupled a WCM 

with Noah-MP and tested different calibration options to prepare for optimal, future, assimilation of σ0 VV and VH to update 

both soil moisture and vegetation states. 635 

 The main conclusions drawn from our evaluation are as follows: 

● Over highly irrigated areas, the simulation of irrigation in LSMs helps to provide better soil moisture and vegetation 

simulations which can be used with benefit as input for the WCM calibration. However, the performance of the 

irrigation simulations is limited by the simplistic model parameterization of this human process and the necessity to 

consider realistic and updated land cover information (e.g., crop types). This results in poor simulations of the 640 

irrigation timing and quantities as well as vegetation dynamics.  

● The Sentinel-1 σ0 observations contain useful information about SSM and vegetation over highly irrigated areas. This 

information can be exploited to overcome LSM deficiencies in simulating soil moisture and vegetation over highly 

irrigated regions, e.g., when irrigation is unmodeled, or poorly modeled because of uncertainties due to crop types, 

irrigation timing, and farmer agricultural practices. In particular, there is a high chance that the assimilation of 645 

Sentinel-1 σ0 can help in correcting LAI dynamics. 

● The optimal assimilation of Sentinel-1 σ0 into a LSM must rely upon a well calibrated WCM as observation operator 

to provide unbiased σ0 simulations with a minimal chance of having error cross-correlations between model and 

observations, while ensuring a realistic operator controllability or realistic connection between observed signals and 

land surface state variables. We demonstrated that calibrating the WCM with inclusion of irrigation modeling 650 
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consistently led to a better agreement with Sentinel-1 σ0. The modeling of irrigation in the LSM simulations, even if 

not done optimally, avoids that the WCM calibration compensates for LSM biases.  

● We demonstrated that the WCM calibration with a Bayesian cost function, including a prior parameter constraint, 

provides the optimal WCM parameters, able to generate the lowest bias in the σ0 simulations for both VV and VH. 

Although slightly higher correlations are obtained when using a KGE cost function, unbiased estimates are 655 

particularly beneficial for DA as this minimizes the chance of potential error cross-correlation between model 

estimates and observations. 

This study improves the understanding of the LSM limitations in simulating irrigation and highlights the information content 

in Sentinel-1 σ0 data.  A natural follow up of this study is the assimilation of σ0 observations within Noah-MP which should 

enforce our tested evidence and provide new insights for a more realistic description of the water and carbon cycles over 660 

irrigated areas. 
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Figure 1: The study area and the two test sites of (a) Budrio and (b) Formellino. Data on the topography are obtained from ETOPO1 
Arc-Minute Global Relief Model (Amante & Eakins, 2009). Map data ©2015 Google. 

 920 
Figure 2: Re-gridded and reclassified input data used in the LIS framework: a) the PROBA-V LC map; and b) the HWSD soil 
texture map. 
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Figure 3: Flow chart of the experimental setup used in this study to calibrate the WCM σ0 signal. A Natural and an Irrigation 925 
experimental line was performed coupling either Noah-MP Natural or Irrigation simulations with the WCM. For each experimental 
line σ0 simulations are driven by the Sentinel-1 signal using two different cost functions (J and KGE) in order to provide eight 
different calibration experiments. 

https://doi.org/10.5194/hess-2021-273
Preprint. Discussion started: 14 June 2021
c© Author(s) 2021. CC BY 4.0 License.



33 
 

 
Figure 4: Maps of temporal Pearson-R between bi-weekly values of SSM from Noah MP and satellite retrievals: a) Natural run and 930 
SMAP L2; b) Irrigation run and SMAP L2; d) Natural run and ASCAT; e) Irrigation run and ASCAT. Maps of the Pearson-R 
differences display the grid-based difference between: c) map b and map a; f) map e and map d. The reference period is April 2015-
December 2019. 
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Figure 5: Maps of temporal Pearson-R between dekadal values of LAI from PROBA-V LAI and Noah-MP LAI: a) Natural run; b) 935 
Irrigation run. Map of Pearson-R differences between: c) map b and map a. Map of ratio bias of LAI from PROBA-V and Noah-
MP: d) Natural run; e) Irrigation run. Additional histogram distributions from: f) map d and map e. The reference period is January 
2015-October 2019. 

 
Figure 6: Evaluation of SSM over the Budrio field 2, with (green) in situ PGR SM data, (light blue) SSM from Noah-MP Natural 940 
and (orange) SSM from Noah-MP Irrigation. Additional information is provided in the bottom plot: b) observed irrigation (green), 
simulated irrigation (orange) and observed rainfall (magenta) in mm/day 
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Figure 7: Sentinel-1 σ0 VV and VH data for the Budrio field 1 test site compared with Noah-MP SSM, for a) Natural and Irrigation 
runs. Sentinel-1 CR (VH/VV) compared with PROBA-V LAI and Noah-MP LAI for b) Natural and Irrigation runs. Also shown are: 945 
c) observed irrigation (in green) and simulated irrigation from Noah-MP (in orange). 

https://doi.org/10.5194/hess-2021-273
Preprint. Discussion started: 14 June 2021
c© Author(s) 2021. CC BY 4.0 License.



36 
 

 
Figure 8: Split violin distributions of the calibrated parameters over the entire study area for the eight calibration experiments. For 
both the Natural (blue) and Irrigation (orange) experiments, the distributions are shown for the A, B, C, and D parameters, (a, b, c, 
d) using the KGE objective function for VV polarization, (e, f, g, h) J objective function for VV polarization, (i, j, k, l) KGE objective 950 
function for VH polarization, and (m, n, o, p) J objective function for VH polarization. Note that the areas under the histograms on 
both left and right sides of the violins are automatically scaled for optimizing the visualization. 
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Figure 9: Split violin distributions of (a, b, c, d) Pearson-R, (e, f, g, h) KGE and (i, j, k, l) bias calculated between σ0 simulations and 
observations for the validation period, for all the calibration experiments and considering only the cropland areas, using simulations 955 
from the Natural run (left, green) and the Irrigation run (right, violet). The results are shown for VV (first two columns) and VH 
(right two columns), and alternating for both the calibration with a J and KGE cost function. Note that the areas under the 
histograms on both left and right sides of the violins are automatically scaled for optimizing the visualization. 
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 960 
Figure 10: Comparisons between σ0 observations (VV polarization in blue dots and VH polarization light blue dots) and simulations 
(VV polarization in red and VH polarization in green) in the Faenza San Silvestro field, after calibration with a KGE cost function 
for a) the Natural run, b) Irrigation run, and after calibration with the J cost function for c) the Natural, and d) Irrigation run. 
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Code and Data availability. 

Data from SMAP can be downloaded at https://nsidc.org/data/SPL2SMP_E/versions/4 

Data from ASCAT are available at the website http://hsaf.meteoam.it/ 

The Sentinel-1 backscatter data processing was done using Google Earth Engine’s Python interface and including standard 

processing techniques 970 

Data from PROBA-V are available at https://land.copernicus.eu/global/ 

MERRA-2 data are available at MDISC, managed by the NASA Goddard Earth Sciences (GES) Data and Information Services 

Center (DISC, https://disc.gsfc.nasa.gov/datasets?project=MERRA-2) 

LIS input and general parameters tables are provided at https://portal.nccs.nasa.gov/lisdata_pub/data/ 

In situ data are available under request to the original providers. 975 
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