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Abstract. Worldwide, the amount of water used for agricultural purposes is rising and the quantification of irrigation is 13 

becoming a crucial topic. Because of the limited availability of in situ observations, an increasing number of studies is focusing 14 

on the synergistic use of models and satellite data to detect and quantify irrigation. The parameterization of irrigation in large 15 

scale Land Surface Models (LSM) is improving, but it is still hampered by the lack of information about dynamic crop rotations 16 

or the extent of irrigated areas, and the mostly unknown timing and amount of irrigation. On the other hand, remote sensing 17 

observations offer an opportunity to fill this gap as they are directly affected by, and hence potentially able to detect, irrigation. 18 

Therefore, combining LSMs and satellite information through data assimilation can offer the optimal way to quantify the water 19 

used for irrigation.  20 

This work represents the first and necessary step towards building a reliable LSM data assimilation system which, in future 21 

analysis, will investigate the potential of high-resolution radar backscatter observations from Sentinel-1 to improve irrigation 22 

quantification. Specifically, the aim of this study is to couple the Noah-MP LSM running within the NASA Land Information 23 

System (LIS), with a backscatter observation operator for simulating unbiased backscatter predictions over irrigated lands. In 24 

this context, we first tested how well modelled Surface Soil Moisture (SSM) and vegetation estimates, with or without 25 

irrigation simulation, are able to capture the signal of aggregated 1-km Sentinel-1 backscatter observations over the Po river 26 

Valley, an important agricultural area in Northern Italy. Next, Sentinel-1 backscatter observations, together with simulated 27 

SSM and LAI, were used to optimize a Water Cloud Model (WCM) which will represent the observation operator in future 28 

data assimilation experiments. The WCM was calibrated with and without an irrigation scheme in Noah-MP, and considering 29 

two different cost functions. Results demonstrate that using an irrigation scheme provides a better calibration of the WCM, 30 

even if the simulated irrigation estimates are inaccurate. The Bayesian optimization is shown to result in the best unbiased 31 
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calibrated system, with minimal chance of having error cross-correlations between the model and observations. Our time series 32 

analysis further confirms that Sentinel-1 is able to track the impact of human activities on the water cycle, highlighting its 33 

potential to improve irrigation, soil moisture, and vegetation estimates via future data assimilation. 34 

1 INTRODUCTION 35 

Over the last century, the global water withdrawal grew 1.7 times faster than the population (FAO, 2006). This aggravates the 36 

concern over the sustainability of water use as demand for agricultural uses continues to increase (Foley et al., 2011; FAO 37 

AQUASTAT http://www.fao.org/nr/water/aquastat/water_use/index.stm, last access 20 May 2021). The strong impact of 38 

irrigation on the global water budget is highlighted by many studies and it has been estimated that about 87% of the global fresh 39 

water withdrawals have been used for agriculture (Douglas et al., 2009). Accordingly, the quantification of irrigation on a 40 

regional to global scale has become a hot research topic.  41 

Correctly quantifying irrigation in Earth system models can serve two purposes. On the one hand, it can help improve water 42 

management (Le Page et al., 2020, Bretreger et al., 2020), on the other hand, it allows to quantitatively assess its effects on the 43 

terrestrial water, carbon and energy cycles (Haddeland et al., 2007; Breña‐Naranjo et al., 2014; Hu et al., 2016; Qian et al. 2020). 44 

Indeed, results of large-scale irrigation studies using land surface models (LSMs) have demonstrated that irrigation increases 45 

soil moisture and evapotranspiration (ET), and consequently latent heat flux with a decrease in sensible heat flux (i.e., Badger 46 

& Dirmeyer, 2015; Lawston et al., 2015; Ozdogan et al., 2010b). 47 

Despite the significant impact of irrigation on the water and energy cycles, its simulation within LSMs is not yet common 48 

practice (Girotto et al., 2017). In earlier studies, attempts to simulate irrigation in LSMs have relied on different 49 

parameterizations of well-known irrigation systems (like sprinkler, flood, and drip systems; Ozdogan et al., 2010b; Evans and 50 

Zaitchik, 2008), making simplifying assumptions. For instance, in Ozdogan et al. (2010b) irrigation water is not withdrawn from 51 

a source (such as a river) but instead added as fictitious rainfall. In contrast, Nie et al. (2018) accounted for source water 52 

partitioning, albeit only partially, by considering groundwater irrigation. Irrigation is normally applied when soil moisture drops 53 

below a user-defined threshold (Ozdogan et al. 2010b), typically dependent on the soil properties obtained via soil texture maps.  54 

Moreover, LSMs equipped with irrigation schemes need to be provided with auxiliary information about crop types and whether 55 

or not the crops are irrigated. This is because different crop types are characterized by different rooting depths, which means 56 

they require more or less water to restore root zone field capacity. This information is normally gathered from static maps derived 57 

from statistical analysis and/or remote sensing (Ozdogan et al., 2010b; Monfreda et al., 2008; Salmon et al., 2015) collected 58 

during specific historical periods which are normally different to the desired period of analysis. It is thus clear that the modelling 59 

of irrigation is subject to many simplifying assumptions, which span from neglecting the year-to-year crop variability and the 60 

irrigation system used to the definition of irrigation application times based on water availability and crop conditions rather than 61 

actual farmer decisions.  62 

http://www.fao.org/nr/water/aquastat/water_use/index.stm
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Remote sensing (RS) technologies offer the opportunity to observe directly the Earth surface and its changes, and hence are 63 

potentially able to monitor irrigated lands worldwide (Ambika et al., 2016; Gao et al., 2018; Bousbih et al., 2018; Bazzi et al., 64 

2019; Le Page et al., 2020; Dari et al., 2020). In the last decade, some authors used visible and near infrared RS observations 65 

jointly with in situ data collected from inventories to map areas equipped for irrigation (Ambika et al., 2016; Ozdogan & Gutman, 66 

2008). Kumar et al. (2015a) were the first to propose the use of coarse resolution satellite microwave (MW) sensors to detect 67 

irrigation. The authors compared different coarse-scale active and passive MW surface soil moisture (SSM) retrievals with SSM 68 

simulations from the Noah LSM (version 3.3; Ek et al., 2003) without activating an irrigation scheme over a continental US 69 

domain. Areas where the distributions of model and RS data sets deviated (based on a Kolmogorov-Smirnov test) were assumed 70 

to be irrigated. Even though some of the products showed a potential ability to detect irrigation, the authors concluded that the 71 

spatial mismatch between the satellite footprint and the irrigated fields, radio-frequency interference (RFI), vegetation, and 72 

topography could all deteriorate the accuracy of the results. Similar conclusions were found over the same area by Zaussinger 73 

et al. (2019) who compared coarse-scale satellite SSM products with soil moisture predictions from the Modern-Era 74 

Retrospective analysis for Research and Applications 2 (MERRA-2) in the absence of precipitation, and Escorihuela and 75 

Quintana-Seguí (2016) who additionally compared a downscaled version of the Soil Moisture and Salinity mission (SMOS) 76 

SSM to SURFEX LSM simulations. Brocca et al. (2018), Jalilvand et al. (2019) and Dari et al. (2020) used a conceptually 77 

different approach with the same coarse scale MW SSM products and estimated irrigation by directly inverting a simple water 78 

balance equation (Brocca et al. 2014). 79 

The Copernicus Sentinel-1 satellites (Sentinel-1A and Sentinel-1B) offer a new perspective for agricultural applications, thanks 80 

to the finer spatial resolution (up to 10-20 m) of the Synthetic Aperture Radar (SAR) backscatter (σ0) data. For instance, Gao et 81 

al. (2018) proposed an approach to map irrigated lands over the Urgell region in Catalonia (Spain), and Le Page et al. (2020) 82 

proposed a methodology to detect irrigation timing in south-west France comparing the SSM signal at the plot scale, derived 83 

using Sentinel-1 σ0 and NDVI from Sentinel-2 (El Hajj et al., 2017), with a water budget model forced by Sentinel-2 optical 84 

data for the detection of irrigation timing.  85 

Despite the high potential demonstrated by RS in detecting, mapping and quantifying irrigation, the uncertainties of the satellite 86 

retrievals, the relatively low revisit time of high resolution active MW products and the too coarse spatial resolution of passive 87 

MW products with respect to the mean size of irrigated fields represent main limitations for irrigation information retrieval 88 

(Romaguera et al., 2010, La Page et al., 2020). Data assimilation (DA) could reduce some uncertainties by optimally integrating 89 

LSM estimates and RS observations. Indeed, the LSM estimates resolve processes at desired spatio-temporal scales, while the 90 

RS observations can track in a more realistic way human processes like irrigation and their interactions with the water and energy 91 

cycles. Contrasting LSM simulations with RS observations offers an opportunity to correct for unmodeled processes or missed 92 

events, such as irrigation (Kumar et al., 2015a; Girotto et al., 2017). More generally, DA of satellite-based observations has 93 

shown the potential to update soil moisture (De Lannoy & Reichle, 2016; Kolassa et al., 2017) and vegetation (Albergel et al., 94 

2018; Kumar et al., 2020) and important impacts have been reported over agricultural areas (Kumar et al., 2020).  95 
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The assimilation of MW RS observations in LSMs often involves retrieval assimilation. However, assimilating retrievals (i.e., 96 

SSM or vegetation optical depth rather than MW brightness temperature or σ0 measurements) can be problematic as the retrievals 97 

may have been produced with ancillary data that are inconsistent with those used in the LSM (De Lannoy et al. 2016). This is 98 

particularly true for passive MW retrievals while active MW retrievals generally rely on change detection methods that lack 99 

land-specific ancillary information altogether. An alternative approach, which we follow in this study, is to directly assimilate 100 

MW observations and equip the LSM with an observation operator that links land surface variables of interest (e.g., soil moisture 101 

and vegetation) with RS data. This allows us to obtain consistent parameters and to reduce the chance of cross-correlated errors 102 

between model states and corresponding geophysical satellite retrievals. The direct assimilation of MW observations has already 103 

been demonstrated successfully for the update of soil moisture by using Tb derived from the SMOS and SMAP missions (De 104 

Lannoy et al. 2016, Carrera et al., 2019, Reichle et al. 2019), as well as using radar σ0 from ASCAT (Lievens et al., 2017b), and 105 

σ0 from Sentinel-1 in synergy with SMAP Tb (Lievens et al., 2017a). However, to our knowledge, none of these studies 106 

considered the joint updating of soil moisture and vegetation, and none specifically focused on the performance over irrigated 107 

areas. The σ0 from Sentinel-1 contains information on both soil moisture (Zribi et al., 2011; Liu and Shi, 2016; Li and Wang, 108 

2018; Bauer-Marschallinger et al., 2018) and vegetation (Vreugdenhil et al., 2018; Vreugdenhil et al., 2020) and assimilating 109 

this data could allow us to update both soil moisture and vegetation in a land data assimilation system and, in doing so, correct 110 

for missed irrigation events.  111 

To that end, the LSM needs to be coupled to a backscatter forward model as an observation operator. Different SAR σ0 models 112 

have been proposed to simulate the backscattering contributions of soil and vegetation (Attema & Ulaby, 1978; Oh, 2004; Zribi 113 

et al., 2005; Bai et al., 2015; Baghdadi et al., 2017). Most commonly used, the Water Cloud Model (WCM hereafter) developed 114 

by Attema and Ulaby (1978) is a σ0 model that represents the vegetation canopy as a homogeneous cloud containing randomly 115 

distributed water droplets. In order to use the WCM as the forward operator in a σ0 data assimilation system, it first needs to be 116 

calibrated to account for biases between the LSM simulations and the satellite observations. However, calibrating a WCM to 117 

simulate σ0 over irrigated areas, is not a straightforward process and it represents a key research problem if the same σ0 signal is 118 

used for the calibration of WCM parameters and later for assimilation and state updating. In fact, if the objective is to assimilate 119 

radar σ0 to realistically inform the model about irrigation applications, the WCM parameters have to maintain a certain degree 120 

of independence from the irrigation signal contained in the observed σ0 as otherwise the assumption of uncorrelated errors 121 

between model and observations typical of classical Bayesian-based filters is violated. More specifically, if the LSM provides 122 

unrealistic simulations as input (i.e., absence of irrigation), then the WCM calibration with observed σ0 would compensate for 123 

this bias. This would in turn lead to a biased backscatter model with undesirable calibrated parameters for the subsequent data 124 

assimilation experiments. Therefore, different strategies can be adopted, for instance calibrating the model during non-irrigated 125 

periods or over non-irrigated areas, or equipping the LSM with an irrigation module that makes the WCM less constrained by 126 

inconsistencies between simulated and observed σ0 during irrigation periods. The efficacy of these strategies has so far never 127 

been explored. 128 
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The main objective of this study is to simulate radar σ0 using a LSM coupled with a WCM and to provide solutions and 129 

recommendations for the optimization of the WCM as an observation operator. This is a major stepping-stone towards the 130 

development of a reliable system for the assimilation of high-resolution Sentinel-1 σ0 observations over irrigated areas. 131 

Additionally, we aim at: 132 

1) testing the ability of a sprinkler irrigation system coupled with a LSM to simulate irrigation so as to highlight the 133 

potential and limitations of such a tool to optimize a backscatter forward operator over heavily irrigated areas; 134 

2) demonstrating that Sentinel-1 σ0 observations contain valuable information to improve both SM and vegetation 135 

predictions over irrigated land (i.e., soil moisture and vegetation consistent with human alterations in the water 136 

cycle due to intensive irrigation). 137 

The analysis is carried out over the Po river valley, one of the most important agricultural areas in Italy and also one of the more 138 

intensively irrigated areas in Europe (water withdrawal in the Po basin is estimated to be 20.5 billion m3/year, of which 16.5 139 

billion of m3/year is withdrawn for irrigation; Po River Watershed Authority, 2006). We use the Noah-MP v.3.6 LSM (Noah-140 

MP hereafter) as part of the NASA Land Information System (LIS) framework together with the WCM from Attema and Ulaby 141 

(1978) for the simulation of both σ0 vertical send and receive (VV) and vertical send and horizontal receive (VH) polarization. 142 

Level-1 Sentinel-1 σ0 observations are used to calibrate the WCM at 1-km resolution, using simulated SSM and Leaf Area Index 143 

(LAI) estimates from Noah-MP. The WCM is calibrated for a total of four calibration experiments for each polarization: 1) with 144 

or without activating an irrigation scheme within Noah-MP; and, 2) considering two different cost functions.  Specifically, we 145 

want to demonstrate that activating an -even poor- irrigation scheme is needed to obtain long-term unbiased σ0 simulations and 146 

uncorrelated errors between the WCM and Sentinel-1 and that the calibration process can be sensitive to different cost functions. 147 

The manuscript is organized as follows. Section 2 provides information on the study area, the selected datasets, and methods 148 

used for our analysis. Specifically, Sections 2.3 and 2.4 provide a detailed description of the Noah-MP LSM and the WCM. 149 

Section 2.5 describes the cost functions used for the WCM calibration while Section 2.6 is a description of the experimental set-150 

up designed for the calibration. Finally, Section 2.7 provides insights on the Noah-MP and WCM evaluations. Section 3 presents 151 

the results, with an assessment of the Noah-MP evaluation, both regional (Section 3.1) and over the test sites (Section 3.2). The 152 

WCM calibration and evaluation results are described in Sections 3.3 and 3.4, respectively. We provide discussion in Section 4 153 

while conclusions are reported in Section 5.  154 

2 DATA AND METHODS 155 

2.1 Study area and in situ data 156 

The analysis was carried out over an area of 24,000 km2 located within the Po river valley, one of the most important agricultural 157 

areas in Europe (Figure 1, left-bottom corner: 44°N, 10.5°W; top-right corner: 45.5°N, 12.2°W). The Po river valley is part of 158 

the Po river basin district (~74,000 km2), a mountain-fed catchment which extends from the Alps in the West, to the Adriatic 159 

Sea in the East. The Po district is one of the eight districts mentioned in the Water Framework Directive (WFD, 2000) initiated 160 

https://journals.ametsoc.org/doi/10.1175/JCLI-D-16-0720.1#s2
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by the European Commission and has been hit by seasonal drought events which impacted all water use sectors, in particular 161 

agriculture (Strosser et al., 2012). The water assessment and impact evaluation of human activities over the Po river valley is 162 

thus a topic of major interest, considering the significant requirements from the agricultural management sector. 163 

According to the Köppen-Geiger climate classes (Peel et al., 2007) the study area is classified as "Cfa" (temperate climate, 164 

without dry season and with hot summers). From a geographical point of view, the Po river flows from the west to the east, 165 

splitting the area of interest in northern and southern areas, respectively. North of the Po river, the agricultural plain area can be 166 

additionally subdivided into the Veneto region to the east and the Lombardy region to the west (Figure 1). Lombardy lands have 167 

a high water availability, thanks to the presence of several Alpine lakes and reservoirs (Musolino et al., 2017), as does the Veneto 168 

region. Wine cultivation plays an important role, especially in the Garda Lake surroundings (located to the north-west side of 169 

the study area). In the south, the Emilia Romagna region is an agricultural as well as urbanized-industrialized area. Compared 170 

to Lombardy and Veneto, Emilia Romagna is much poorer both in water availability and storage capacity, but its irrigation 171 

system is considered the most technologically advanced and efficient in the Po river basin (Musolino et al., 2017). Specifically, 172 

it hosts the Canale Emiliano Romagnolo (CER, https://consorziocer.it/it/, last access 20 May 2021), one of the most important 173 

Italian hydraulic systems for agricultural water supply. The main crops in the study region include general summer and winter 174 

crops, orchards (i.e., peach, pear, kiwi), olive groves, and vineyards (https://sites.google.com/drive.arpae.it/servizio-climatico-175 

icolt/home, last access 20 May 2021). The plain area is surrounded by a forested hilly and mountainous area of the Tuscan-176 

Emilian Appennine to the south/south-west.  177 

In situ data were collected over two test sites, located in the Emilia Romagna region:  178 

● For an analysis at plot scale we selected the Budrio test site (Figure 1a), an experimental farm managed by the CER 179 

authority which includes two plots of 0.39-0.49 ha. The main crops are maize for field 1 (in yellow) and tomatoes in 180 

field 2 (red colour). Daily irrigation data, in mm, were collected for the summer 2015-2016 over field 1, whereas 181 

daily irrigation water amounts were collected for the summer 2017 over field 2. Additionally, for field 2, hourly in 182 

situ soil moisture data, aggregated here at daily scale, were made available from the Department of Physics and Earth 183 

Science of the University of Ferrara. The soil moisture data were derived from an innovative Proximal Gamma-Ray 184 

(PGR SM hereafter; Filippucci et al., 2020, Strati et al., 2018) station, equipped with a 1L NaI(Tl) detector placed at 185 

2.25 m above the ground and a commercial agro-meteorological station (MeteoSense 2.0, Netsen; Strati et al., 2018). 186 

The PGR is a nuclear non-invasive and non-contact technique, which allows to overcome the issue connected to in 187 

situ point measurements, probing soil moisture with a field scale footprint (~104 m2) up to a depth of 30 ~ cm. The 188 

quantification of PGR soil moisture is derived from measurements of gamma signals emitted by the decay of 40K, 189 

which is extremely sensitive to different soil water contents in agricultural soils (for more information on the PGR 190 

soil moisture deriving procedure the reader can refer to Baldoncini et al., 2019). Finally, daily rainfall data were 191 

collected from the national rainfall network managed by the Department of Civil and Environmental Protection (DPC) 192 

of Italy, for the irrigated periods. 193 

https://consorziocer.it/it/
https://sites.google.com/drive.arpae.it/servizio-climatico-icolt/home
https://sites.google.com/drive.arpae.it/servizio-climatico-icolt/home
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● The second test site (Figure 1b) is located around the city of Faenza (hereafter Faenza test site) and has a total extent 194 

of 1051 ha, consisting of two fields which allow an analysis at the small-district spatial scale. The first one is called 195 

San Silvestro (290 ha) and it is located north of the city. The second one is called Formellino (760 ha), located east 196 

to the San Silvestro field and north-east to the city of Faenza. Fruit trees are prevalent on the fields; in particular, pear 197 

trees and kiwi dominate the area. The water used for irrigation was provided by CER, at hourly time scale and in mm, 198 

for the 2-years time period 2016-2017. Daily rainfall data were collected from the national rainfall network managed 199 

from the DPC. 200 

2.2 Sentinel-1 σ0 and reference remote sensing products 201 

The Copernicus-ESA Sentinel-1 σ0 observations were used in this study for the calibration of the WCM. The Sentinel-1 202 

constellation consists of two satellites, Sentinel-1A and Sentinel-1B, launched in 2014 and 2016, respectively. Each satellite 203 

carries a Synthetic Aperture Radar (SAR) operating at C-band (5.4 GHz) in the microwave portion of the electromagnetic 204 

spectrum. The processing of the ground-range detected (GRD) Interferometric Wide Swath (IW) observations in VV- and VH-205 

polarization was done using Google Earth Engine’s Python interface and included standard techniques: precise orbit file 206 

application, border noise removal, thermal noise removal, radiometric calibration, and range-Doppler terrain correction. 207 

Furthermore, the σ0 observations acquired at 5 × 20 m2 resolution were aggregated and projected on the 1 km Equal Area Scalable 208 

Earth version 2 (EASE-2) grid (Brodzik et al., 2012). After applying an orbit bias-correction (Lievens et al., 2019), the 209 

observations from different orbits, either from Sentinel-1A or -1B and ascending or descending tracks, were combined at the 210 

daily time-scale.  211 

Additionally, RS observations were used for the evaluation of the SSM and LAI simulated in Noah-MP LSM for the period 31 212 

March 2015- December 2019:  213 

● The NASA Soil Moisture Active Passive (SMAP; Entekhabi et al., 2010) is an orbiting observatory launched in 214 

January 2015 carrying two instruments: a SAR which suffered a failure in early July 2015, and a radiometer measuring 215 

Tb at L-band, with a native spatial resolution of 40 km, a revisit time of 2–3 days, and ascending and descending 216 

overpasses at 6:00 PM and 6:00 AM (local time), respectively. For this study, the 9-km SMAP Enhanced Level-2 217 

SSM version 4 (0-5 cm; SMAP L2 hereafter) product was used (O'Neill et al., 2020; Chan et al., 2018). The product 218 

is derived from SMAP Level-1B (L1B) interpolated antenna temperatures using the Backus-Gilbert optimal 219 

interpolation technique. Both ascending and descending tracks were collected. 220 

● The Metop ASCAT SSM Climate Data Records (CDR) H115 and its extension H116  are provided by the European 221 

Organization for the Exploitation of Meteorological Satellites (EUMETSAT) Support to Operational Hydrology and 222 

Water Management (H SAF; http://hsaf.meteoam.it/, last access 20 May 2021). The SSM is retrieved from σ0 using 223 

a change detection algorithm (Wagner et al., 2013), and is characterized by a spatial sampling of 12.5 km and a 224 

temporal resolution of one to two observations per day, depending on the latitude.  225 

https://www.eumetsat.int/h-saf
https://www.eumetsat.int/h-saf
http://hsaf.meteoam.it/
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● The PROBA-V LAI is derived from the PROBA-V satellite mission (Francois et al., 2014; Dierckx et al., 2014) and 226 

provided by the Copernicus Global Land Service programme (CGLS, https://land.copernicus.eu/global/). The CGLS 227 

product at 1 km spatial resolution and 10-day (dekadal) temporal resolution is developed based on the work by Verger 228 

et al. (2014).  229 

In order to compare Noah-MP simulations and reference data at the same spatial resolution, Sentinel-1 observations (σ0-VV and 230 

-VH), as well as ASCAT SSM, SMAP L2 SSM and PROBA-V LAI were extracted over the study domain (left-bottom corner: 231 

44°N, 10.5°W; top-right corner: 45.5°N, 12.2°W) and re-gridded over the LIS grid domain (0.01°) using the nearest-neighbour 232 

approach.  233 

2.3 Land surface and irrigation modelling 234 

2.3.1 Noah-MP v.3.6 235 

The analysis was carried out using the Noah-MP (Niu et al., 2011) LSM, running within NASA's LIS 7.2 version (Kumar et al., 236 

2008). LIS is a software framework for terrestrial hydrology modelling and DA, which supports different LSMs that can be 237 

conditioned on multiple remote sensing products from active and/or passive microwave sensors. The Noah-MP LSM, which 238 

was chosen for this study, is an evolution of the baseline Noah LSM (Mahrt and Ek, 1984; Chen et al., 1996; Chen and Dudhia, 239 

2001) wherein main improvements and augmentations are: 1) the presence of four soil layers; 2) up to three snow layers; 3) one 240 

canopy layer which allows to dynamically simulate the vegetation and to compute separately the ground surface temperature; 4) 241 

a two-stream radiation transfer scheme based on the canopy layer sub-grid scheme; 5) a Ball-Berry type stomatal resistance 242 

scheme; 6) and finally, a simple groundwater model with a TOPMODEL‐based runoff scheme (Niu et al., 2005, 2007). The 243 

model was set up selecting four soil layers at depths 0–10, 10–40, 40–100 and 100–200 cm, a dynamic vegetation model with a 244 

Ball-Berry type canopy stomatal resistance model (Ball et al., 1987), and TOPMODEL-based runoff.  245 

The parameterization followed the recommended options provided in the LIS documentation 246 

(https://modelingguru.nasa.gov/docs/DOC-2634). A model time step of 15 minutes and a 6 hours output interval were selected 247 

together with a spatial resolution of 0.01°. The meteorological forcings used for running Noah-MP LSM were obtained from 248 

MERRA-2 (Gelaro et al. 2017). The MERRA-2 original spatial resolution of 0.5°x0.625° was re-mapped to 0.01° through 249 

bilinear interpolation. Land model data and parameters were pre-processed and adapted to the LIS longitude/latitude projection 250 

using the Land Surface Data Toolkit (LDT; Arsenault et al., 2018) in order to run Noah-MP at the chosen spatial resolution.  251 

For this study, the default LIS Land Cover (LC) map from the University of Maryland (UMD) global land cover product (Hansen 252 

et al., 2000) based on the Advanced Very High Resolution Radiometer (AVHRR) data was replaced with the 2015 global LC 253 

map, available from the CGLS at 100 m spatial resolution (Buchhorn et al., 2020; available at 254 

https://land.copernicus.eu/global/products/lc , last access 20 May 2021). The CGLS provides Dynamic Land Cover Layers at 255 

100 m spatial resolution (CGLS-LC100), obtained by combining information derived from the vegetation instrument on board 256 

the PROBA-V satellite, a database of high-quality LC reference sites, and several ancillary datasets. For a more detailed 257 

https://land.copernicus.eu/global/products/lc
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explanation of the LC maps generation process we refer to the Algorithm Theoretical Basis Document (ATBD; Buchorn et al., 258 

2020). The 23 classes of the PROBA-V LC map were reclassified to the 14 classes used in the UMD-AVHRR classification 259 

supported by LIS. Additionally, the LC map was regridded at 0.01° (Figure 2a) by identifying the most representative class over 260 

each LIS grid cell. For additional information on the reclassification process, we refer the reader to Table S1 in the 261 

Supplementary Material section. Similarly, the default FAO Soil Map (FAO Soil Map of the World, 1971) was replaced by the 262 

Harmonized Soil World Database (HWSD v1.21, 1 km; Figure 2b) and mapped to 5 soil classes over the study region. Other 263 

model pre-processed parameters inputs were: i) the Shuttle Radar Topography Mission elevation data (SRTM30, 30 m spatial 264 

resolution); 2) climatological global Greenness Vegetation Fraction (GVF) data (0.144°; Gutman and Ignatov, 1998) derived 265 

from 5 years (1985-1989) of normalized difference vegetation index (NDVI) data from the AVHRR (Miller et al., 2006); 3) a 266 

snow-free albedo and a Noah-specific maximum snow albedo product from NCEP (original resolution 1° and regridded); and 267 

finally, 4) soil, vegetation, and other general parameter tables for Noah-MP from the LIS official Data Portal 268 

(https://portal.nccs.nasa.gov/lisdata_pub/data/, last access 20 May 2021). 269 

2.3.2 Irrigation modelling 270 

The ability of Noah-MP to dynamically simulate the vegetation and the option to activate irrigation are particularly important 271 

considering an extensively irrigated area such as the Po river valley. Indeed, in a recent study by Nie et al. (2018), Noah-MP 272 

was coupled with a sprinkler irrigation scheme (Ozdogan et al., 2010b) (where irrigation is applied as supplementary rainfall), 273 

which requires three pieces of information:  274 

● the irrigation location, only occurring over potentially irrigated croplands (expanding over grassland if the intensity 275 

exceeds the gridcell’s total crop fraction). This information is extracted from a LC map associated with an additional 276 

dataset providing information on the percent of irrigated area per grid cell. In this study, the reclassified PROBA-V LC 277 

map was coupled with the information contained in the 500 m Global Rain-fed, Irrigated and Paddy Croplands data set 278 

(GRIPC; Salmon et al., 2015);  279 

● the timing of irrigation, which is determined by checking the start and end of the growing season based on a GVF 280 

threshold, separately at each grid cell. Following Ozdogan et al.(2010b), we set this threshold to 40% of the GVF;  281 

● the amount of water used for irrigation. This quantity is derived from the root zone soil moisture (RZSM) availability 282 

(MA) as MA=(RZSM-SMWP)/(SMFC-SMWP) where RZSM is the current RZSM, SMWP is the wilting point, and SMFC is 283 

the field capacity. When the MA falls below a user-defined threshold, irrigation is triggered and the quantity is defined 284 

by calculating the amount of irrigation needed to raise the RZSM to the SMFC. For this study, the MA threshold was 285 

defined as the 50% of SMFC as in Ozdogan et al. (2010b). MA is calculated at each time step but the irrigation is only 286 

applied between 06:00 and 10:00 LT. Following Ozdogan et al. (2010b), this time frame is typically chosen by farmers 287 

to reduce evaporative losses. In this context, the maximum rooting depth becomes a crucial information to compute the 288 

amount of irrigation water. This information is related to an assigned crop type, cultivated over the study area, through a 289 

maximum rooting depth table. Considering the high crop variability over the Po river valley as well as the lack of high 290 

https://portal.nccs.nasa.gov/lisdata_pub/data/
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resolution dynamic crop maps for the entire study area, a generic crop type with 1 m root depth was selected for the 291 

irrigation simulations. The reference rooting depth was verified to be feasible over the study area based on the European 292 

Soil Data Centre (ESDAC, available at https://esdac.jrc.ec.europa.eu/content/european-soil-database-derived-data, last 293 

access 20 May 2021) rooting depths map (Figure S1 in the Supplementary Material). 294 

2.4 Water Cloud Model 295 

The WCM allows to simulate the top-of-vegetation σ0 as a function of SSM and vegetation, using empirical fitting parameters.  296 

σ0 is modeled as the sum of the backscatter from the vegetation (𝜎𝑣𝑒𝑔
0 , in dB) and from the bare soil (𝜎𝑠𝑜𝑖𝑙

0 , in dB), attenuated 297 

by the t2 coefficient that describes the two-way attenuation from the vegetation layer. Scattering interactions between the 298 

ground and the vegetation are not accounted for. As reported in Baghdadi et al. (2018), for a given polarization pq (i.e., VV 299 

and VH), the WCM can be written as follows: 300 

𝜎𝑝𝑞
0 = 𝜎𝑣𝑒𝑔,𝑝𝑞

0 + 𝑡𝑝𝑞
2 𝜎𝑠𝑜𝑖𝑙,𝑝𝑞

0       (1) 301 

where:  302 

𝜎𝑣𝑒𝑔,𝑝𝑞
0 = 𝐴𝑝𝑞𝑉1𝑐𝑜𝑠𝜃(1 − 𝑡𝑝𝑞

2 )     (2) 303 

𝑡𝑝𝑞
2 = 𝑒𝑥𝑝(

−2𝐵𝑝𝑞𝑉2

𝑐𝑜𝑠𝜃
)       (3) 304 

𝜎𝑠𝑜𝑖𝑙,𝑝𝑞
0 = 𝐶𝑝𝑞 + 𝐷𝑝𝑞 ⋅ 𝑆𝑆𝑀     (4) 305 

 306 

Equations 2 and 3 describe the vegetation-related terms. V1 and V2 represent two bulk vegetation descriptors, the first one 307 

accounting for the direct vegetation σ0, and the second one representing the attenuation. Apq[-] and Bpq[-] are the two related 308 

fitting parameters. Common vegetation descriptors used in previous studies are the Vegetation Water Content (VWC, Paloscia 309 

et al., 2013), the NDVI (El Hajj et al., 2016; Li and Wang, 2018) and LAI (Kumar et al., 2015b; Bai and He, 2015), while θ 310 

represents the incidence angle, which is assumed to be 37° for Sentinel-1. Following previous studies (see Lievens et al, 2017b; 311 

Baghdadi et al. 2017; Li and Wang, 2018) we assumed V1=V2 represented by the dynamically simulated LAI vegetation 312 

descriptor. 313 

Equation 4 describes the soil-related term. Following the work by Lievens et al. (2017b), the 𝜎𝑠𝑜𝑖𝑙
0  can be described, in a simple 314 

linear approach, as a function of the SSM. There are several semi-empirical models (e.g., the Oh model; Oh et al., 1992) or 315 

theoretical models (e.g., the Integral Equation Model (IEM), Fung, 1994) which describe the scattering processes related to 316 

the bare soil, but their application as a forward operator coupled to a LSM has two main limitations: the first one lies in the 317 

difficulty in retrieving soil roughness values over extended reference areas required to parameterize these models; the second 318 

one is their saturation of σ0 in moist conditions which causes low variability in simulated σ0 if the LSM soil moisture 319 

https://esdac.jrc.ec.europa.eu/content/european-soil-database-derived-data
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simulations are biased wet (for more information see Lievens et al., 2017b). Those limitations justify the use of a linear fitted 320 

approach. In Equation 4, the C and D parameters (here fitted in dB and dB/m3/m3, respectively, but 𝜎𝑠𝑜𝑖𝑙
0  is transformed back 321 

to the linear scale in Equation 1) describe the linear relation between 𝜎𝑠𝑜𝑖𝑙,𝑝𝑞
0   and SSM. Those parameters, as well as A and 322 

B (-), need to be calibrated separately for each polarization. 323 

2.5 Calibration algorithms 324 

We considered two different objective functions to optimize the A, B, C and D parameters:  325 

● a Bayesian solution, which minimizes the Sum of Squared Errors (SSE) between σ0 observations from Sentinel-1 and 326 

WCM simulations. The SSE Bayesian calibration solution aims at identifying the optimal parameter vector 𝛂 which 327 

maximizes the probability of the resulting σ0 simulations 𝑝(�̂�−) = 𝑝(�̂�−|𝛼)𝑝(𝛼), where 𝑝(𝛼) is the prior parameter 328 

distribution and 𝑝(�̂�−|𝛼) is the likelihood. Starting from the assumption of an independent and identically distributed 329 

normal error model, the posterior probability can be maximized by maximizing: 330 

𝑝(�̂�−|𝛼)𝑝(𝛼) = ∏ {
1

𝑠𝑖√2𝜋
𝑒𝑥𝑝 (−

(�̂�−�̂�−)𝑖
2

2𝑠𝑖
2 )}

𝑁𝑖
𝑖 ⋅ ∏ {

1

𝑠𝑗√2𝜋
𝑒𝑥𝑝 (−

(𝛼0−𝛼)𝑗
2

2𝑠𝑗
2 )}

𝑁𝛼
𝑗  (5) 331 

i.e., the combination of the likelihood and a prior parameter constraint. The latter helps in reducing problems of 332 

equifinality. In Equation (5), �̂� represents the observed σ0, �̂�−is the simulated σ0, i is the timestep and si is the standard 333 

deviation of the residual differences between the observed and simulated σ0 values for Ni time steps. Nα is the number 334 

of parameters to be calibrated, α0 is the prior parameter constraint and the parameter deviation is limited by 𝑠𝑗
2, the 335 

variance of a uniform distribution 𝑠𝑗
2 = (𝛼𝑚𝑎𝑥,𝑗 − 𝛼𝑚𝑖𝑛,𝑗)

2
/12 with determined boundaries of the parameters 336 

[αmin,αmax]. The maximum likelihood solution is found by minimizing the following cost function J: 337 

𝐽 = ∑ {𝑙𝑛(𝑠𝑖) +
(�̂�−�̂�−)𝑖

2

2𝑠𝑖
2  }

𝑁𝑖
𝑖 + ∑ {

(𝛼0−𝛼)𝑗
2

2𝑠𝑗
2  }

𝑁𝛼
𝑗 = 𝐽0 + 𝐽𝛼    (6) 338 

where si is assumed to be constant in time and represented by a target accuracy of 1 dB, leaving the SSE in the first 339 

term of J0 to minimize. The second term (Jα) constrains the optimal solution by avoiding strong deviations from initial 340 

parameter guesses.  341 

● a solution that maximizes the Kling-Gupta Efficiency (KGE; Gupta et al., 2009). Even though this objective function 342 

does not ensure Bayesian optimality, it is a widely used metric which could help to better tune the dynamic σ0 343 

behaviour: 344 
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𝐾𝐺𝐸 = 1 − √(𝑟 − 1)2 + (
<�̂�−>

<�̂�>
− 1)

2

+ (
𝑠[�̂�−]/<�̂�−>

𝑠[�̂�]/<�̂�>
− 1)

2

   (7) 345 

The KGE formulation embeds three terms: 1) the first term accounting for the Pearson Correlation (Pearson-R) 346 

between the observed (�̂�) and simulated (�̂�−) σ0 time series; 2) a second term accounting for the bias, where the long-347 

term mean is represented as <.>; and finally, 3) a term accounting for the variability of the simulated and observed 348 

signal through the use of the standard deviation s[.]. KGE = 1 indicates a perfect agreement between simulations and 349 

observations. Note that KGE redistributes the weight of the bias, variance and correlation components, compared to 350 

J in Equation 6, which can help in reducing differences between simulated and observed σ0 also in terms of temporal 351 

dynamics during the calibration. On the other hand, in the KGE cost function parameters are not constrained by prior 352 

values α0. This could possibly result in overfitting and a larger prediction uncertainty.  353 

The Particle Swarm Optimization (PSO; Kennedy and Eberhart, 1995) was used to minimize J and maximize KGE. For our 354 

case study the PSO parameters were set as in De Lannoy et al. (2013).  355 

2.6 Experimental setup 356 

An optimal DA system requires long-term unbiased σ0 simulations (with respect to the assimilated observations). The risk, 357 

over an intensively irrigated area, is that an unmodelled irrigation signal would manifest itself as a predominant bias in the σ0 358 

simulations. The calibration would then inadvertently correct for this supposed bias (i.e., the irrigation signal), thus preventing 359 

the DA system from propagating the missing irrigation signal from the observations into the model. Even though existing 360 

irrigation schemes are evidently unrealistic and inaccurate, we conjecture that using such a scheme when calibrating the WCM 361 

will more likely yield optimal WCM parameters than when neglecting irrigation.  362 

To that end, we considered two different experiment lines (referred to as Natural and Irrigation, respectively) that produced a 363 

total of eight different σ0 simulation runs (see Figure 3). The Natural experiment line differs from the Irrigation line by the 364 

activation of an irrigation module in Noah-MP, and both are subjected to the calibration algorithms described in Section 2.5. 365 

The Natural line was used as a diagnostic experiment against which to compare Irrigation, which, according to our initial 366 

hypothesis, should minimize the impact of the irrigation signal contained in the σ0 observations on WCM parameters. 367 

As a first step, a model spin up was performed, starting in January 1982 and ending in December 2014. Then, a study period 368 

from January 2015 to December 2019 was selected for the different model runs based on the availability of the processed 369 

Sentinel-1 σ0 and reference irrigation data (see Sections 2.1 and 2.2). Daily surface model and irrigation outputs were produced. 370 

Considering that the main source of irrigation in the Po river valley is related to surface water abstraction, the sprinkler 371 

irrigation scheme did not account for groundwater withdrawals (see Nie et al., 2018).  372 

The A, B, C, and D parameters of the WCM (see section 2.4) were fitted separately to Sentinel-1 σ0 VV and VH observations, 373 

during the period January 2017 - December 2019. Following previous literature (Lievens et al., 2017b; De Lannoy et al., 2014; 374 

De Lannoy et al., 2013), we performed a grid cell-based calibration to account for the spatial variability in the simulated and 375 
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observed σ0 signals that stems from specific features within the observed footprints as well as from the soil and vegetation 376 

parameterization of Noah-MP.  Both the calibration using the SSE with prior constraint (Bayesian J) and the KGE were applied 377 

to the Natural and Irrigation runs providing eight different experiments named J-VV Natural, J-VH Natural, J-VV Irrigation, 378 

J-VH Irrigation, KGE-VV Natural, KGE-VH Natural, KGE-VV Irrigation and KGE-VH Irrigation.   379 

Lower and upper boundaries as well as prior guess values of the WCM parameters were defined based on the work of Lievens 380 

et al. (2017b) and on a sensitivity analysis (not shown here). The selected values are displayed in Table 1. Finally, it should be 381 

noted that all the calibration experiments were realized by considering daily values of σ0 simulations and observations. 382 

Table 1: Lower boundaries (LB), upper boundaries (UB), and prior guess values of the WCM parameters for both VV and VH 383 

polarization 384 

 A-VV[-] A-VH[-] B-VV[-] B-VH[-] C-VV[dB] C-VH[dB] D-VV[dB/m3/m3] D-VH[dB/m3/m3] 

UB 0.4 0.4 0.4 0.4 -10 -10 80 80 

LB 0 0 0 0 -35 -35 15 15 

GUESS 0 0 0 0 -20 -30 40 40 

 385 

2.7 Noah-MP LSM and WCM evaluations 386 

The validation aims at i) evaluating the performance of Noah-MP in simulating irrigation, soil moisture, and vegetation and 387 

the ability of the WCM to simulate radar σ0, and ii) unveiling the information about irrigation contained in Sentinel-1 radar σ0 388 

in order to assess its potential to improve both soil moisture and vegetation representation within Noah-MP.  389 

The evaluation was carried out on both the regional scale (i.e., over the entire study area) and on the two selected sites, Faenza 390 

(small-district scale) and Budrio (plot scale), where irrigation data were available. Considering the lack of benchmark data for 391 

irrigation evaluation (Foster et al., 2020) we decided to use in situ data for the small Budrio fields spatial scale (i.e., 0.45-049 392 

Ha) even though model simulations are made at a much coarser resolution (i.e., ~1 km). We are aware that differences in 393 

spatial scale can increase the uncertainty of our evaluation, but 0.01° LSM spatial resolution is still a good compromise for an 394 

analysis at regional, small-district and plot scale. Additionally, limitations are partly reduced by the low chance of including 395 

non-irrigated fields within the 1 km LIS grid cells within the Po River Valley, as the latter is almost entirely irrigated (Salmon 396 

et al., 2015).  We compared Noah-MP (with and without using the irrigation module) SSM and LAI simulations with satellite 397 

SSM from ASCAT and SMAP, and LAI from PROBA-V, respectively, during the period 2015-2019. Furthermore, these land 398 

surface simulations were compared to Sentinel-1 σ0 to understand how much of the SSM and LAI signal was captured by 399 

Sentinel-1.   400 
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As the irrigation timing is often driven by the stakeholders' turns to withdraw water and by water availability rather than by 401 

the conditions of the soil and crops themselves, the comparisons between simulated SSM and satellite SSM were carried out 402 

by aggregating the two variables over a bi-weekly time window. On the other hand, the LAI from Noah-MP was aggregated 403 

to ten-daily values in order to match the dekadal PROBA-V LAI values. We used the Pearson-R for SSM and LAI evaluation. 404 

For SSM, we also computed the Root Mean Square Error (RMSE), calculated considering the original temporal resolution of 405 

the satellite products, while for LAI, we also tested the ratio bias, i.e., the ratio between the long-term mean of the simulations 406 

and the long-term mean of observations. In particular, this additional score for LAI was used to provide a further evaluation 407 

of the ability of the Noah-MP to simulate crop phenology during the irrigated vs non-irrigated periods so as to not rely solely 408 

on the evaluation of temporal dynamics, which, due to the uncertainty in the Noah-MP crop type parameterization, could be 409 

affected by time shifts in the LAI climatology. This parameterization uncertainty comes from the lack of knowledge of the 410 

spatial crop type information and is difficult to be reduced without additional information. Our assumption is that radar σ0 411 

assimilation can also correct for this with future data assimilation.  412 

Following Vreugdenhil et al. (2018) and Vreugdenhil et al. (2020), Noah-MP LAI and PROBA-V LAI were also compared 413 

with the Sentinel-1 σ0 VH/ σ0 VV cross ratio (CR), which was demonstrated to have a high agreement with the vegetation 414 

signal. Though the σ0 VH was demonstrated to increase with the vegetation signal (Macelloni et al., 2001), the CR will be 415 

more sensitive to vegetation changes as the ratio is less sensitive to changes in soil moisture and soil-vegetation interaction 416 

(Veloso et al., 2017; Vreugdenhil et al., 2020). 417 

To evaluate WCM simulations, we used bi-weekly values of σ0 simulations and observations considering a two-years period 418 

independent from the calibration period: 2015-2016. Statistical metrics such as grid-based temporal Pearson-R, KGE, and bias 419 

were calculated between Sentinel-1 σ0 and calibrated WCM simulations. The analysis of the parameters was restricted to the 420 

cropland area as no difference between our experiment lines exists over other land cover types (i.e., the irrigation module is 421 

active only over grid points classified as crop). 422 

3 RESULTS 423 

3.1 Noah MP regional evaluation 424 

Figure 4 shows maps of the Pearson-R between bi-weekly Noah-MP SSM Natural and Irrigation simulations and bi-weekly 425 

ASCAT and SMAP L2 SSM retrievals, respectively, for April 2015 to December 2019. The Noah-MP SSM Irrigation run 426 

provides a higher agreement with both satellite SSM data sets compared to the Natural run. Indeed, the median Pearson-R 427 

between SMAP L2 SSM and Noah-MP SSM increases from 0.68 to 0.73, for the Natural run (Figure 4a) and the Irrigation 428 

run (Figure 4b), respectively. A similar improvement can be observed considering the ASCAT reference SSM, with an 429 

improvement in the median Pearson-R of 0.08 when irrigation is activated in the model (from 0.7 to 0.78; Figure 4e). Areas 430 

characterized by higher correlation when irrigation is simulated are represented in blue in the Pearson correlation difference 431 

map of Figure 4f (obtained by subtracting the map in Figure 4d from the map in Figure 4e). Almost all cropland areas are 432 
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characterized by a higher agreement between observations and simulations for the Irrigation run. Note that for the evaluation 433 

of Noah-MP against SMAP, we relaxed retrieval quality flags, which would otherwise mask out almost the entire study area. 434 

The Supplementary material (Figure S2) shows the coverage when using the recommended quality flags. Results in Figure 4 435 

were confirmed by analyzing the RMSE between satellite SSM products and Noah-MP simulations for both the Natural and 436 

Irrigation runs, after rescaling them based on their mean and standard deviation, because SSM retrievals and SSM simulations 437 

do not have the same units. Results are displayed in Figure S3 of the Supplementary material and show, for both the satellite 438 

products, a general reduction in RMSE when compared with the Irrigation run. An improvement in performances can be 439 

observed over the entire cropland area, in particular over the central triangle feature where sandy-loam soil texture is present 440 

and where, consequently, more irrigation is simulated in the model due to the higher permeability of the soil. 441 

The evaluation of the LAI simulation was limited to the regional scale analysis due to a lack of in situ vegetation data over the 442 

selected test sites. The comparison between dekadal values of Noah-MP LAI, from both model runs, and the PROBA-V LAI 443 

product was carried out over the reference period January 2015 to October 2019 using the temporal Pearson-R and the ratio 444 

bias, shown in Figure 5.  445 

Figure 5a and 5b show that the Pearson-R for vegetation has a lower median value of 0.67 when irrigation is simulated in 446 

Noah-MP, whereas this value equals 0.72 for the Natural run. The difference between the two Pearson-R maps is shown in 447 

Figure 5c, providing evidence of the areas facing a deterioration of the performance in terms of Pearson-R related to the 448 

Irrigation run. This deterioration is particularly strong over cropland areas south to the Po river (red colour) while the northern 449 

area also shows grid cells where the performance improves (blue colour).  450 

By contrast, the ratio bias evaluation score (Figures 5d, 5e, 5f) highlights an improvement in long-term mean vegetation 451 

simulations when irrigation is included (Figure 5e). Here the optimal condition is represented by a ratio bias equal to 1 when 452 

the mean of the simulated LAI is equal to the mean of the observed LAI. In this context, Figure 5d displays ratio bias values 453 

lower than one over a large central triangle-shaped cropland area and median ratio bias value of 0.73, highlighting an 454 

underestimation of the LAI simulation related to the Natural run. Conversely, Figure 5e shows ratio bias values close to one 455 

when irrigation is simulated over an extended cropland area and a median bias value of 0.99. The improvement given by the 456 

Irrigation run is emphasized in Figure 5f where the histograms of the ratio bias distributions related to both model runs show 457 

the higher performance of the Irrigation run (red) compared to the Natural run (blue) for which the distribution is more skewed 458 

to the zero value.   459 

3.2 Noah MP site evaluation 460 

The Noah-MP SSM was evaluated at the Budrio test site field 2 (Figure 1a), using the daily reference PGR SM for the year 461 

2017. Comparisons between the SSM simulations of the Natural and Irrigation runs with in situ PGR SM are shown in Figure 462 

6a, while daily observed irrigation and rainfall data are compared with daily irrigation simulations in Figure 6b. Soil moisture 463 

data are plotted at their original temporal resolution (i.e., daily) to illustrate an issue related to the irrigation timing: SSM 464 

simulations in Figure 6a show the ability of the sprinkler irrigation scheme to simulate irrigation in the summer season, but 465 
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there is an inevitable problem in reproducing the correct timing and magnitude of irrigation. Indeed, the total amount of 466 

simulated irrigation is 604 mm for the 2017 summer season, which overestimates the total amount of observed irrigation, being 467 

349.5 mm. Furthermore, the model simulations not only miss irrigation, but also suffer from erroneous precipitation input, 468 

such as on the 11th of July 2017, where the observed precipitation event in the growing season is not found in the model SSM 469 

simulations. In any case, bi-weekly Pearson-R between simulated SSM and in situ PGR SM are higher for the Irrigation run 470 

than for the Natural run (0.54 vs 0.42) suggesting the benefit in activating irrigation. 471 

For the Budrio field 1 test site (Figure 1a), two summer seasons of irrigation data were available. To assess the irrigation 472 

information contained in Sentinel-1 σ0 observations (and the potential added value for a forthcoming DA experiment) we 473 

compared bi-weekly values of Sentinel-1 σ0 VV and VH with SSM estimates from both the Natural run and Irrigation run 474 

(Figure 7a) for this site. Although the σ0 VV is generally used to retrieve SSM (Wagner et al., 2013; Gruber et al., 2013; Bauer-475 

Marschallinger et al., 2018), data at both polarizations were analyzed in order to understand the soil contribution contained in 476 

the two signals. Information related to the irrigation periods are shown in Figure 7c, where irrigation observations and irrigation 477 

simulations from Noah-MP are compared. Figure 7a indicates that the SSM simulations are better reflected in the Sentinel-1 478 

σ0 VV than σ0 VH data, particularly when irrigation is simulated (orange line). The SSM estimates from the Natural run (light 479 

blue line) agree poorly with the Sentinel-1 data, with Pearson-R values equal to 0.32 and -0.1 for the σ0 VV (blue dots) and σ0 480 

VH (cyan dots), respectively. When irrigation is simulated, the σ0 VV data better follow the modelled SSM signal (Pearson-R 481 

of 0.53) especially during the summer irrigation season when the backscatter signal remains higher and stable. On the other 482 

hand, σ0 VH seems to provide poor performances also when irrigation is simulated, with a Pearson-R value equal to 0.06, 483 

confirming findings by Baghdadi et al. (2017) which highlighted how the use of VH alone to retrieve SSM is suboptimal when 484 

vegetation cover is well developed. 485 

In Figure 7b, the Sentinel-1 σ0 CR (VH/VV) is compared with Noah-MP LAI from the Natural run (light-blue line) and 486 

Irrigation run (orange line). The performance in terms of Pearson-R decreases from 0.76 to 0.65, when the irrigation is 487 

simulated. This is due to a time shift of the Noah-MP LAI growing season in the Irrigation run. PROBA-V LAI (in green) was 488 

additionally compared with the Sentinel-1 CR (blue dots) showing a Pearson-R of 0.84. The higher agreement between the RS 489 

products (Sentinel-1 and PROBA-V) highlights the strong relation between the σ0 CR and the vegetation signal, suggesting a 490 

potential benefit of Sentinel-1 assimilation to correct the simulated vegetation phenology. 491 

Finally, Figure 7c shows a comparison between 15-days accumulated mm of simulated irrigation (in orange) and observed 492 

irrigation (in green). The Pearson-R is equal to 0.77, indicating that the sprinkler irrigation scheme can provide acceptable 493 

irrigation estimates at this temporal resolution though absolute irrigation amounts are overestimated. 494 

3.3 WCM calibration 495 

The WCM parameters A and B (vegetation parameters), and C and D (soil parameters) were calibrated for each grid cell 496 

separately during the reference period January 2017 to December 2019 (Figure 3), using daily σ0 simulations and observations. 497 

The calibrated parameters related to the entire study area for each of the eight experiments are shown in Figure 8 where the 498 
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blue left parts of the violin plots identify experiments of the Natural run, while the orange right parts of the violin plots are 499 

related to the Irrigation run.  500 

Generally, the J-calibration provides parameter distributions closer around their prior guess as compared to the KGE-501 

calibration for which the distributions are often multimodal, especially for the C and D parameters (i.e., Figure 8d, 8h). This 502 

is due to the prior parameter penalty, which is included in the Bayesian solution but not in the KGE. In general, the calibration 503 

of the two functions using the Natural run provides wider distributions between lower and upper boundaries for the A 504 

vegetation parameter with a high number of grid cells characterized by A-values higher than 0.1 (see KGE-VV Natural and J-505 

VV Natural experiments in Figures 8a and 8e respectively). Conversely, the Irrigation run provides A distributions more 506 

skewed to the lower boundary (being also the guess value in each calibration experiment), with a smaller number of grid cells 507 

characterized by high A values compared to the Natural run. In a preliminary sensitivity study (not shown), we observed that 508 

high values of the vegetation parameters A and B, as obtained for the Natural run, have the tendency to generate high peaks 509 

in the simulated σ0 during the growing season. Indeed, in the summer, the SSM Natural signal is low and not consistent with 510 

the Sentinel-1 σ0, which observes irrigation. In order to follow the temporal dynamics of the Sentinel-1σ0, the calibration 511 

algorithms attribute a relatively higher weight (higher A values) to the LAI than to SSM to compensate for the underestimated 512 

SSM in the Natural run. By contrast, the Irrigation run provides vegetation parameter distributions more skewed to the lower 513 

boundaries (see also Section 3.4.2). The C and D parameter distributions feature a better sensitivity to soil moisture dynamics 514 

using the Irrigation run input data, which is the expected behaviour considering that they describe the σ0
soil. This is true 515 

especially when using the J cost function (see parameters distributions for the J-VV Natural and for the J-VV Irrigation 516 

experiments in Figures 8g and 8h), which results in more spread in the calibrated C and D distributions for the Irrigation 517 

simulations (especially in VV polarization), whereas the mode of the C and D parameter distributions for the Natural 518 

experiments is more shifted to the upper and lower boundaries, respectively. 519 

Figure 9 shows the spatial pattern of the parameters over the study area to better understand the differences between the Natural 520 

and Irrigation calibration runs. We found a connection between the WCM parameters distribution and model parameters, in 521 

particular with the HWSD soil texture map (shown in Figure 2). For both the J-VV Natural and J-VV Irrigation experiments, 522 

the activation of the irrigation scheme reduces the dependency of the vegetation-related parameters A and B on soil texture 523 

(Figures 9a-b for the J-VV Natural and Figures 9e-f for the J-VV Irrigation experiment). This is also shown in the parameter 524 

maps of the KGE calibration experiments (Figure S5 in the Supplementary material). Additionally, the activation of the 525 

irrigation scheme, more realistically, shifts the soil texture dependency towards the soil parameters C and D (Figures 9g and 526 

9h), highlighting another important reason for simulating irrigation.  527 

Finally, the different polarization experiments generally provided similar distributions for the vegetation A and B parameters 528 

and the D soil parameter. The largest differences between the VV and VH polarizations are identified for the C parameter 529 

distributions. This is due to the lower σ0 signal associated with the VH polarization. Indeed, Figure 8c and 8g are characterized 530 

by higher values of the C in VV polarization, as compared to the distributions for VH polarization in Figures 8k and 8o. In the 531 
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latter, the C-VH distributions are generally more skewed to the lower boundary of the parameters, with median values closer 532 

to the defined guess parameter value. 533 

3.4 WCM evaluation 534 

3.4.1 Regional evaluation 535 

The regional evaluation of the calibration experiments was carried out during the period January 2015 to December 2016 for 536 

agricultural areas within the study domain (almost 15,000 km2), by comparing bi-weekly σ0 simulations with Sentinel-1 σ0 in 537 

terms of Pearson-R, KGE, and bias. The distribution of the evaluation metrics for the eight experiments is shown in Figure 10. 538 

A comparison of the metrics for the Irrigation and Natural runs confirms better results when irrigation is activated, with violin 539 

plots skewed towards more positive values for both KGE and Pearson-R. When stratified by the cost function, the Pearson-R 540 

distribution in Figure 10a-d indicates slightly higher performance for the KGE (Figures 10a and 10c) than for J (Figure 10b 541 

and 10d). In terms of the KGE score, simulations are naturally closer to the observations when the KGE cost function is used. 542 

On the other hand, in terms of bias, generally better performances are found when the Bayesian solution is used (Figures 10i-543 

l). The latter is particularly evident for the VH polarization when comparing the KGE-VH and J-VH experiments (Figure 10k 544 

and 10l).  545 

The VH simulations exhibit a better performance in the Irrigation run than VV simulations (Figure 10c-d and Figure 10a-b). 546 

Indeed, considering all the statistical scores, the VV polarization is characterized by more similar distributions between the 547 

Natural and Irrigation run for both cost functions. This suggests a higher sensitivity of the VH polarization to the change of 548 

vegetation introduced by irrigation, confirming the Sentinel-1 σ0 VH to be strongly influenced by irrigation as witnessed by 549 

the larger score improvement obtained for the calibration experiments KGE-VH Irrigation (Figure 10g) and J-VH Irrigation 550 

(Figure 10h), compared to the Natural runs experiments.  551 

In summary, i) VH polarization is more sensitive to the change in the cost function and input data (Irrigation or Natural run) 552 

than VV polarization likely due to its higher sensitivity to vegetation change (Vreugdenhil et al., 2018; Macelloni et al. 2001) 553 

which, in the area, is related to the crop development after irrigation, ii) the combination of J with activation of the irrigation 554 

scheme is able to provide the best unbiased estimates of simulated σ0 for both VV and VH (J-VV Irrigation and J-VH irrigation 555 

experiments) at the price of generally lower correlations (compared to the KGE cost function). This is, however, beneficial for 556 

DA as it minimizes the chance of potential error cross correlation between model estimates and observations. Indeed, the match 557 

of the temporal dynamic of the signals induced by the correlation term is stronger in the KGE than in J, which additionally 558 

includes a parameter constraint. The higher weight of the correlation in the KGE cost function can negatively impact the 559 

parameter calibration even when irrigation is turned on in Noah-MP because the simulated irrigation applications are in general 560 

not temporally consistent with those seen by Sentinel-1 (see Figure 6). 561 
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3.4.2 In situ evaluation 562 

The WCM simulations are further analysed in detail at the Faenza test site (specifically for the San Silvestro field), because it 563 

has a larger extent than the Budrio site (see Figure 1), although the same overall conclusions were found for Budrio. Figure 11 564 

shows simulated and observed σ0 time series for the different experiments highlighted in Figure 3, and Table 2 summarizes the 565 

statistics (i.e., Pearson-R, KGE and bias) of each experiment.  566 

The agreement between simulated and observed σ0 measured by the Pearson-R and KGE in Table 2 generally gives better 567 

performances after calibration with the KGE cost function than with the J cost function. An example is in the higher correlations 568 

found for the KGE-VH Irrigation experiment as compared to the J-VH Irrigation (Figures 11b and 11d respectively). On the 569 

other hand, in terms of bias the cost function J significantly outperforms the calibration with KGE in all experiments with 570 

surprisingly comparable values between Natural and Irrigation runs (Table 2).  571 

One undesirable feature of Natural runs is the presence of high σ0 peaks during the summer, clearly detectable over the Faenza 572 

test site, especially in the VH polarization, which are less evident in the Irrigation run (see Figure 11b and 11d). A similar 573 

behaviour was found for Budrio (not shown). These peaks are likely attributed to the poor estimation of model vegetation 574 

parameter values, previously discussed in section 3.3, when the WCM attempts to compensate for bias in SSM and vegetation 575 

input, i.e., input that is not consistent with observations over irrigated areas. This is particularly true for the KGE calibration, 576 

which does not use a prior parameter constraint. In contrast, the J calibration still provides reasonable σ0 simulations that are 577 

closer to the ones of the Irrigation run due to the Bayesian technique itself. 578 

Table 2: Results of the site WCM evaluation considering the test site Faenza San Silvestro for each WCM experiment  579 

 KGE-VV 

Natural 

KGE-VV 

Irrigation 

J-VV 

Natural 

J-VV 

Irrigation 

KGE-VH 

Natural 

KGE-VH 

Irrigation 

J-VH 

Natural 

J-VH 

Irrigation 

Pearson-R [-] 0.14 0.27 0.14 0.18 0.33 0.41 0.22 0.38 

KGE [-] 0.12 0.26 0.12 0.03 0.20 0.38 0.22 0.31 

Bias [dB] -0.46 -0.55 0.07 0.09 -0.82 0.38 -0.22 -0.02 

 580 

4 DISCUSSION 581 

4.1 Noah-MP irrigation modelling 582 

The Noah-MP LSM, used as input for the WCM calibration, was evaluated in two configurations, either with a sprinkler 583 

irrigation scheme activated or without irrigation (i.e., Irrigation run and Natural run). Although not all of the Po river valley 584 
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is irrigated by sprinkler systems, it most likely still leads to more realistic LSM simulations than not considering irrigation at 585 

all. 586 

The main limitation found in the irrigation simulations was related to the irrigation timing and magnitude that was inconsistent 587 

with observations. Although this finding is based on only a single study site, it is very likely that it is a widespread issue within 588 

the study area for several reasons. In LSMs, the irrigation application is driven by the RZSM availability and consequently by 589 

the soil type and the rooting depth parametrizations. Moreover, it is also influenced by the accuracy of the meteorological 590 

forcings (especially precipitation, Reichle et al. 2017) which can determine errors in the soil moisture representation. The main 591 

reason, however, is likely that irrigation is often the result of subjective farmer decisions rather than objective rules based on 592 

the soil state and crop conditions. In theory, the irrigation timing issue could be partly solved by using temporally consistent 593 

high-resolution crop maps which should provide a more realistic information of crop phenology and rooting depth. However, 594 

in practice, this is unfeasible over many areas of the world given the absence of this information on a large scale. Also, given 595 

that irrigation applications are mainly linked to unmodelled processes like rotation schedules for farmers to withdraw water, 596 

the correct simulation of the timing can be unsolvable when using models only. 597 

Despite the potential problems related to the unrealistic assumptions in the simulation of irrigation, our results demonstrated 598 

that even the use of simple irrigation schemes within Noah-MP can be beneficial. In the regional evaluation, SSM simulations 599 

of the Natural and Irrigation runs were compared with RS SSM from SMAP and ASCAT (Figure 4) on a bi-weekly temporal 600 

scale. For both products, we found large improvements in temporal Pearson-R when irrigation was simulated, confirmed by a 601 

decrease in the RMSE values over croplands, suggesting that the activation of irrigation modelling provides more realistic 602 

SSM estimates. Our findings further confirm the potential of coarse resolution datasets for providing irrigation-related 603 

information over intensively irrigated and relatively large agricultural areas, as was shown by Kumar et al. (2015a).  604 

While the impact of irrigation was clear in terms of SSM, the regional evaluation of the simulated LAI against the PROBA-605 

V-based LAI provided contradicting results. In this case, the Pearson-R analysis suggested a deterioration of the Noah-MP 606 

simulated LAI when irrigation was activated over the cropland area. We interpreted this correlation deterioration by the 607 

absence of specific information about the crop phenology in the model parameterization. In practice, information about the 608 

specific crop type is not available and the rooting depth is the sole parameter controlling water uptake from the soil layers. 609 

Additionally, information on sowing and harvest periods are not included in the current version of Noah-MP, while irrigated 610 

areas are defined based on a global dataset (Salmon et al., 2013) which can suffer accuracy limitations. Indeed, the absence of 611 

annual dynamic information on irrigated fields, the unknown yearly variability of the crop types and the impact of the 612 

meteorological conditions in the stakeholders decision process (i.e., sowing) make the simulation of Noah-MP prone to LAI 613 

peak shifts, as compared to observations, when irrigation is simulated. Another important aspect affecting LAI simulations is 614 

its sensitivity to root zone soil moisture, which might be more difficult to simulate than SSM during the irrigation season due 615 

to larger impacts of the soil texture and transpiration processes along with the high frequency of the wetting and drying phases 616 

caused by irrigation events. This results in a significant performance deterioration (often worse than LAI simulation not 617 

including irrigation which are mainly driven by seasonality, see Figure 7). By contrast, irrigation modeling helps in reducing 618 
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the bias of the LAI simulated time series, which, in the cropland area, show a significant underestimation when irrigation is 619 

not considered. 620 

The limitations found in simulating LAI and vegetation by Noah-MP even when irrigation was simulated could potentially be 621 

overcome by assimilating Sentinel-1 σ0 data. To explore this potential, we compared the LAI from both model runs, and from 622 

PROBA-V, with the observed Sentinel-1 σ0 CR (VH/VV), which should provide information about the vegetation dynamics 623 

(Vreugdenhil et al. 2018; Vreugdenhil et al. 2020). We found that the correlation between σ0 CR and LAI from PROBA-V was 624 

much higher than that between σ0 CR and the simulated LAI by Noah-MP (see Figure 7) suggesting that Sentinel-1 σ0 DA 625 

could help in correcting poor LAI model simulations. Additionally, a higher correlation was found between the σ0 VV 626 

observations and the simulated SSM when irrigation was turned on than in the absence of irrigation, suggesting that the 627 

assimilation of σ0 VV could improve SSM where irrigation is poorly or not modelled. On the other hand, considering the low 628 

correlation between the VH signal and SSM in presence of vegetation (Baghdadi et al. 2017), and its close relation with 629 

vegetation (Ferrazzoli et al., 1992; Macelloni et al., 2001), future data assimilation experiments will investigate the contribution 630 

of VH and CR in improving LAI predictions and irrigation quantification. 631 

Finally, by-weekly accumulated irrigation estimates in Figure 7 agree well with real irrigation applications, suggesting that the 632 

large-scale LSM irrigation scheme is helpful for intensively irrigated areas. On the other hand, the poor soil and crop 633 

parameterization along with other unknown parameters related to the irrigation management (e.g., the farmers can apply more 634 

water than actually needed) can cause large biases in these irrigation simulations. Again, ingestion of radar backscatter data 635 

could correct for unmodelled processes. More specifically, Sentinel-1 σ0 could correct: (i) for the magnitude and timing of the 636 

irrigation simulations; and (ii) for Noah-MP irrigation predictions over not irrigated regions. 637 

4.2 WCM backscatter simulation 638 

The purpose of the presented WCM observation operator calibration and evaluation was to optimize the parameters for the 639 

future assimilation of the Sentinel-1 σ0 VV and VH into Noah-MP. Such an optimization would ideally minimize the long-640 

term bias between the simulated and observed σ0 signals. This can be achieved by calibrating the observation operator with 641 

long-term observed σ0 prior to data assimilation, but in this process, it is crucial to avoid potential error cross-correlation 642 

between model observation predictions and observations. Furthermore, a good observation operator should not already 643 

compensate for missing processes in the LSM by accepting effective, but unrealistic, optimized parameters, because it would 644 

then lose its physically-based ability to accurately convert misfits between observations and simulations to LSM updates during 645 

the data assimilation.  646 

One way to avoid parameters compensation for erroneous LSM input into the WCM would be to use observed time series of 647 

e.g. LAI. However, LAI products from different sensors have different biases themselves which can add bias to the σ0 648 

simulations, and more importantly, replacing simulated LAI or SSM with external datasets would undermine the possibility of 649 

updating these variables in the future assimilation system. Based on that, we performed the WCM calibration considering SSM 650 

and LAI model input from two different experiments: a Natural run and an Irrigation run, as well as two cost functions, a 651 
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Bayesian solution J and a KGE solution which resulted in four calibration experiments for each polarization (i.e., eight 652 

calibration experiments in total). 653 

The calibration experiments using simulations from the Natural run as input showed a limited performance and provided 654 

presumably bad vegetation parameter estimates which resulted in unrealistic peaks in the simulated σ0 during the summer, 655 

when driven by higher modelled LAI during this period. The inclusion of the irrigation within Noah-MP was very beneficial 656 

for all the calibration experiments helping in reducing the bias and increasing the correlation with Sentinel-1 σ0 as well as 657 

removing the anomalous σ0 increase during warm periods especially for the KGE-based calibration. This corroborates our 658 

initial hypothesis that, over intensively irrigated areas, the simulation of irrigation is a mandatory task for an optimal calibration 659 

of the WCM. Irrigation modeling, even if only done approximately and perhaps with inaccurate timing, reduces obvious land 660 

surface (soil moisture, vegetation) bias and avoids that the WCM needs to compensate for this bias. 661 

Our results show overall higher performance in terms of KGE and Pearson-R scores for the KGE-based calibration, whereas 662 

the long-term bias was better reduced for the J-based calibration, which is beneficial in anticipation of future DA. This is 663 

because in the J cost function i) a target accuracy term which takes into account also the Sentinel-1 observations error is 664 

present; and, ii) a parameter deviation penalty based on the prior parameters constraints is used, which avoid parameters to 665 

largely deviate to their prior values.  666 

In terms of polarization, we found σ0 VH simulations much more sensitive to the inclusion of the irrigation (vs non inclusion) 667 

in Noah-MP, suggesting that observed σ0 VH might also contain much more information about irrigation (via the influence of 668 

the vegetation change due to irrigation) than that contained in σ0 VV which is normally used for SSM retrieval (Vreugdenhil 669 

et al. 2020). We believe that the cause of this is related to a comparatively larger σ0 of vegetation with respect to that of the 670 

soil when the crops are well developed. This was also corroborated by the better agreement between CR and LAI from PROBA-671 

V in one of the study sites mentioned above. Despite this, further investigations are required to confirm this hypothesis and 672 

DA will certainly help to test this aspect. 673 

5 CONCLUSIONS 674 

With the specific focus on intensively irrigated land, the main objective of this work was to define the optimal calibration of 675 

the WCM as observation operator for the future ingestion of Sentinel-1 backscatter into the Noah-MP LSM via DA. In this 676 

context, we additionally aimed at: 1) unveiling strengths and limitations of irrigation simulation in LSMs from the perspective 677 

of a calibrating the WCM; 2) identifying the potential irrigation-related information contained in the Sentinel-1 σ0 observations 678 

to improve soil moisture and vegetation states as well as irrigation estimates in a calibrated DA system. 679 

To reach these objectives we coupled the Noah-MP with a sprinkler irrigation scheme within LIS and performed two different 680 

simulation experiments, one with and one without irrigation (i.e., Natural and Irrigation runs). Moreover, we coupled a WCM 681 

with Noah-MP and tested different calibration options to prepare for optimal, future, assimilation of σ0 VV and VH to update 682 

both soil moisture and vegetation states. 683 
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 The main conclusions drawn from our evaluation are as follows: 684 

● Over highly irrigated areas, the simulation of irrigation in LSMs helps to provide better soil moisture and vegetation 685 

simulations which can be used with benefit as input for the WCM calibration. However, the performance of the 686 

irrigation simulations is limited by the simplistic model parameterization of this human process and the necessity to 687 

consider realistic and updated land cover information (e.g., crop types). This results in poor simulations of the 688 

irrigation timing and quantities as well as vegetation dynamics.  689 

● The Sentinel-1 σ0 observations contain useful information about SSM and vegetation over highly irrigated areas. This 690 

information can be exploited to overcome LSM deficiencies in simulating soil moisture and vegetation over highly 691 

irrigated regions, e.g., when irrigation is unmodeled, or poorly modeled because of uncertainties due to crop types, 692 

irrigation timing, and farmer agricultural practices. In particular, there is a high chance that the assimilation of 693 

Sentinel-1 σ0 can help in correcting LAI dynamics. 694 

● The optimal assimilation of Sentinel-1 σ0 into a LSM must rely upon a well calibrated WCM as observation operator 695 

to provide unbiased σ0 simulations with a minimal chance of having error cross-correlations between model and 696 

observations, while ensuring a realistic operator controllability or realistic connection between observed signals and 697 

land surface state variables. We demonstrated that calibrating the WCM with inclusion of irrigation modeling 698 

consistently led to a better agreement with Sentinel-1 σ0. The modeling of irrigation in the LSM simulations, even if 699 

not done optimally, avoids that the WCM calibration compensates for LSM biases.  700 

● We demonstrated that the WCM calibration with a Bayesian cost function, including a prior parameter constraint, 701 

provides the optimal WCM parameters, able to generate the lowest bias in the σ0 simulations for both VV and VH. 702 

Although slightly higher correlations are obtained when using a KGE cost function, unbiased estimates are 703 

particularly beneficial for DA as this minimizes the chance of potential error cross-correlation between model 704 

estimates and observations. 705 

This study improves the understanding of the LSM limitations in simulating irrigation and highlights the information content 706 

in Sentinel-1 σ0 data.  A natural follow up of this study is the assimilation of σ0 observations within Noah-MP which should 707 

enforce our tested evidence and provide new insights for a more realistic description of the water and carbon cycles over 708 

irrigated areas. 709 
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Figure 1: The study area and the two test sites of (a) Budrio and (b) Formellino. Data on the topography are obtained from ETOPO1 970 
Arc-Minute Global Relief Model (Amante & Eakins, 2009). Map data ©2015 Google. 971 
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 972 

Figure 2: Re-gridded and reclassified input data used in the LIS framework: a) the PROBA-V LC map; and b) the HWSD soil 973 
texture map. 974 

 975 

 976 

Figure 3: Flow chart of the experimental setup used in this study to calibrate the WCM σ0 signal. A Natural and an Irrigation 977 
experimental line was performed coupling either Noah-MP Natural or Irrigation simulations with the WCM. For each experimental 978 
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line σ0 simulations are driven by the Sentinel-1 signal using two different cost functions (J and KGE) in order to provide eight 979 
different calibration experiments. 980 

 981 

Figure 4: Maps of temporal Pearson-R between bi-weekly values of SSM from Noah-MP and satellite retrievals: a) Natural run and 982 
SMAP L2; b) Irrigation run and SMAP L2; d) Natural run and ASCAT; e) Irrigation run and ASCAT. Maps of the Pearson-R 983 
differences display the grid-based difference between: c) map b and map a; f) map e and map d. The reference period is April 2015-984 
December 2019. 985 
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 986 

Figure 5: Maps of temporal Pearson-R between dekadal LAI values from PROBA-V LAI and Noah-MP LAI: a) Natural run; b) 987 
Irrigation run. Map of Pearson-R differences between: c) map b and map a. Map of ratio bias of LAI from PROBA-V and Noah-988 
MP: d) Natural run; e) Irrigation run. Additional histogram distributions from: f) map d and map e. The reference period is January 989 
2015-October 2019. 990 

 991 

Figure 6: Evaluation of SSM over the Budrio field 2, with (green) in situ PGR SM data, (light blue) SSM from Noah-MP Natural 992 
and (orange) SSM from Noah-MP Irrigation. Additional information is provided in the bottom plot: b) observed irrigation (green), 993 
simulated irrigation (orange) and observed rainfall (magenta) in mm/day 994 
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 995 

Figure 7: Sentinel-1 σ0 VV and VH data for the Budrio field 1 test site compared with Noah-MP SSM, for a) Natural and Irrigation 996 
runs. Sentinel-1 CR (VH/VV) compared with PROBA-V LAI and Noah-MP LAI for b) Natural and Irrigation runs. Also shown are: 997 
c) observed irrigation (in green) and simulated irrigation from Noah-MP (in orange). 998 
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 999 

Figure 8: Split violin distributions of the calibrated parameters over the entire study area for the eight calibration experiments. For 1000 
both the Natural (blue) and Irrigation (orange) experiments, the distributions are shown for the A, B, C, and D parameters, (a, b, c, 1001 
d) using the KGE objective function for VV polarization, (e, f, g, h) J objective function for VV polarization, (i, j, k, l) KGE objective 1002 
function for VH polarization, and (m, n, o, p) J objective function for VH polarization. Note that the areas under the histograms on 1003 
both left and right sides of the violins are automatically scaled for optimizing the visualization. 1004 

 1005 
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Figure 9. Maps of: a) A parameter; b) B parameter; c) C parameter; d) D parameter for the J-VV Natural calibration experiment. 1006 
Maps of: e) A parameter; f) B parameter; g) C parameter; h) D parameter for the J-VV Irrigation calibration experiment. 1007 

 1008 

Figure 10: Split violin distributions of (a, b, c, d) Pearson-R, (e, f, g, h) KGE and (i, j, k, l) bias calculated between σ0 simulations 1009 
and observations for the validation period, for all the calibration experiments and considering only the cropland areas, using 1010 
simulations from the Natural run (left, green) and the Irrigation run (right, violet). The results are shown for VV (first two columns) 1011 
and VH (right two columns), and alternating for both the calibration with a J and KGE cost function. Note that the areas under the 1012 
histograms on both left and right sides of the violins are automatically scaled for optimizing the visualization. 1013 

 1014 
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 1015 

Figure 11: Comparisons between σ0 observations (VV polarization in blue dots and VH polarization light blue dots) and simulations 1016 
(VV polarization in red and VH polarization in green) in the Faenza San Silvestro field, after calibration with a KGE cost function 1017 
for a) the Natural run, b) Irrigation run, and after calibration with the J cost function for c) the Natural, and d) Irrigation run. 1018 

  1019 
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 1020 

Code and Data availability. 1021 

Data from SMAP can be downloaded at https://nsidc.org/data/SPL2SMP_E/versions/4 1022 

Data from ASCAT are available at the website http://hsaf.meteoam.it/ 1023 

The Sentinel-1 backscatter data processing was done using Google Earth Engine’s Python interface and including standard 1024 

processing techniques 1025 

Data from PROBA-V are available at https://land.copernicus.eu/global/ 1026 

MERRA-2 data are available at MDISC, managed by the NASA Goddard Earth Sciences (GES) Data and Information Services 1027 

Center (DISC, https://disc.gsfc.nasa.gov/datasets?project=MERRA-2) 1028 

LIS input and general parameters tables are provided at https://portal.nccs.nasa.gov/lisdata_pub/data/ 1029 

In situ data are available under request to the original providers. 1030 
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