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Abstract. Worldwide, the amount of water used for agricultural purposes is rising and the quantification of irrigation is 13 

becoming a crucial topic. Because of the the limited availability of in situ observations, an increasing number of studies is 14 

focusing on the synergistic use of models and satellite data to detect and quantify irrigation. The parameterization of irrigation 15 

in large scale Land Surface Models (LSM) is improving, but it is still hampered by the lack of information about dynamic crop 16 

rotations or the extent of irrigated areas, and the mostly unknown timing and amount of irrigation. On the other hand, remote 17 

sensing observations offer an opportunity to fill this gap as they are directly affected by, and hence potentially able to detect, 18 

irrigation. Therefore, combining LSMs and satellite information through data assimilation can offer the optimal way to quantify 19 

the water used for irrigation.  20 

The This work represents the first and necessary step towards building a reliable LSM data assimilation system which, in 21 

future analysis, will investigate the potential of high-resolution radar backscatter observations from Sentinel-1 to improve 22 

irrigation quantification. Specifically, the aim of this study is to optimize a land modelling system, consisting ofcouple the 23 

Noah-MP LSM, coupled running within the NASA Land Information System (LIS), with a backscatter observation operator, 24 

over irrigated land in order to simulate for simulating unbiased backscatter predictions. This is a first step towards building a 25 

reliable data assimilation system to ingest level-1 Sentinel-1 observations. over irrigated lands. In this context, we first tested 26 

how well modelled soil moistureSurface Soil Moisture (SSM) and vegetation estimates from the Noah-MP LSM running 27 

within the NASA Land Information System (LIS), with , with or without irrigation simulation, are able to capture the signal 28 

of high-resolutionaggregated 1-km Sentinel-1 backscatter observations over the Po river Valley, an important agricultural area 29 

in Northern Italy. Next, aggregated 1-km Sentinel-1 backscatter observations, together with simulated SSM and LAI, were 30 

used to calibrateoptimize a Water Cloud Model (WCM) as which will represent the observation operator using simulated soil 31 
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moisture and Leaf Area Index estimates.in future data assimilation experiments. The WCM was calibrated with and without 32 

activating an irrigation scheme in Noah-MP, and considering two different cost functions. Results demonstrate that 33 

activatingusing an irrigation scheme provides the optimala better calibration of the WCM, even if the simulated irrigation 34 

estimates are inaccurate. The Bayesian optimization is shown to result in the best unbiased calibrated system, with minimal 35 

chance of having error cross -correlations between the model and observations. Our time series analysis further confirms that 36 

Sentinel-1 is able to track the impact of human activities on the water cycle, highlighting its potential to improve irrigation, 37 

soil moisture, and vegetation estimates via future data assimilation. 38 

1 INTRODUCTION 39 

Over the last century, the global water withdrawal grew 1.7 times faster than the population (FAO, 2006). This aggravates the 40 

concern over the sustainability of water use as demand for agricultural uses continues to increase (Foley et al., 2011; FAO 41 

AQUASTAT http://www.fao.org/nr/water/aquastat/water_use/index.stm, last access 20 May 2021). The strong impact of 42 

irrigation on the global water budget is highlighted by many studies and it has been estimated that about 87% of the global fresh 43 

water withdrawals have been used for agriculture (Douglas et al., 2009). Accordingly, the quantification of irrigation on a 44 

regional to global scale has become a hot research topic.  45 

Correctly quantifying irrigation in Earth system models can serve two purposes. On the one hand, it can help improve water 46 

management (Le Page et al., 2020, Bretreger et al., 2020), on the other hand, it allows to quantitatively assess its effects on the 47 

terrestrial water, carbon and energy cycles (Haddeland et al., 2007; Breña‐Naranjo et al., 2014; Hu et al., 2016; Qian et al. 2020). 48 

Indeed, results of large-scale irrigation studies using land surface models (LSMs) have demonstrated that irrigation increases 49 

soil moisture and evapotranspiration (ET), and consequently latent heat flux with a decrease in sensible heat flux (i.e., Badger 50 

& Dirmeyer, 2015; Lawston et al., 2015; Ozdogan et al., 2010b). 51 

Despite the significant impact of irrigation on the water and energy cycles, its simulation within LSMs is not yet common 52 

practice (Girotto et al., 2017). AttemptsIn earlier studies, attempts to simulate irrigation in LSMs have in the past relied on 53 

different parameterizations of well-known irrigation systems (like sprinkler, flood, and drip systems; Ozdogan et al.., 2010b; 54 

Evans and Zaitchik, 2008) either without specifying the source of water withdrawals and by relying on additional fictitious 55 

rainfall (), making simplifying assumptions. For instance, in Ozdogan et al. (2010b) or taking irrigation water is not withdrawn 56 

from groundwater (a source (such as a river) but instead added as fictitious rainfall. In contrast, Nie et al., . (2018).) accounted 57 

for source water partitioning, albeit only partially, by considering groundwater irrigation. Irrigation is normally applied when 58 

soil moisture drops below a user-defined threshold (Ozdogan et al. 2010b), typically dependent on the soil properties obtained 59 

via soil texture maps.  60 

Moreover, LSMs equipped with irrigation schemes need to be provided with auxiliary information about crop types and whether 61 

or not the crops are irrigated. This is because different crop types are characterized by different rooting depths, which means 62 

http://www.fao.org/nr/water/aquastat/water_use/index.stm
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they require more or less water to restore root zone field capacity. This information is normally gathered from static maps derived 63 

from statistical analysis and/or remote sensing (Ozdogan et al., 2010b; Monfreda et al., 2008; Salmon et al., 2015) collected 64 

during specific historical periods which are normally different from to the desired period of analysis. It is thus clear that the 65 

modelling of irrigation is subject to many simplifying assumptions, which span from neglecting the year-to-year crop variability 66 

and the irrigation system used to the definition of irrigation application times based on water availability and crop conditions 67 

rather than actual farmer decisions.  68 

Remote sensing (RS) technologies offer the opportunity to observe directly the Earth surface and its changes, and hence are 69 

potentially able to monitor irrigated lands worldwide (Ambika et al., 2016; Gao et al., 2018; Bousbih et al., 2018; Bazzi et al., 70 

2019; Le Page et al., 2020; Dari et al., 2020). In the last decade, some authors used visible and near infrared RS observations 71 

jointly with in situ data collected from inventories to map areas equipped for irrigation (Ambika et al., 2016; Ozdogan & Gutman, 72 

2008). Kumar et al. (2015a) were the first to propose the use of coarse resolution satellite microwave (MW) sensors to detect 73 

irrigation. The authors compared different coarse-scale active and passive MW surface soil moisture (SSM) retrievals with SSM 74 

simulations from the Noah LSM (version 3.3; Ek et al., 2003) without activating an irrigation scheme over a continental US 75 

domain. Areas where the distributions of model and RS data sets deviated (based on a Kolmogorov-Smirnov test) were assumed 76 

to be irrigated. Even though some of the products showed a potential ability to detect irrigation, the authors concluded that the 77 

spatial mismatch between the satellite footprint and the irrigated fields, radio-frequency interference (RFI), vegetation, and 78 

topography could all deteriorate the accuracy of the results. Similar conclusions were found over the same area by Zaussinger 79 

et al. (2019) who compared coarse-scale satellite SSM products with soil moisture predictions from the Modern-Era 80 

Retrospective analysis for Research and Applications 2 (MERRA-2) in the absence of precipitation, and Escorihuela and 81 

Quintana-Seguí (2016) who additionally compared a downscaled version of the Soil Moisture and Salinity mission (SMOS) 82 

SSM to SURFEX LSM simulations. Brocca et al. (2018), Jalilvand et al. (2019) and Dari et al. (2020) used a conceptually 83 

different approach with the same coarse scale MW SSM products and estimated irrigation by directly inverting a simple water 84 

balance equation (Brocca et al. 2014). 85 

The Copernicus Sentinel-1 satellites (Sentinel-1A and Sentinel-1B) offer a new perspective for agricultural applications, thanks 86 

to the finer spatial resolution (up to 10-20 m) of the Synthetic Aperture Radar (SAR) backscatter (σ0) data. For instance, Gao et 87 

al. (2018) proposed an approach to map irrigated lands over the Urgell region in Catalonia (Spain), and Le Page et al. (2020) 88 

proposed a methodology to detect irrigation timing in south-west France comparing the SSM signal at the plot scale, derived 89 

using Sentinel-1 σ0 and NDVI from Sentinel-2 (El Hajj et al., 2017), with a water budget model forced by Sentinel-2 optical 90 

data for the detection of irrigation timing.  91 

Despite the high potential demonstrated by RS in detecting, mapping and quantifying irrigation, the uncertainties of the satellite 92 

retrievals, the relatively low revisit time of high resolution active MW products and the too coarse spatial resolution of passive 93 

MW products with respect to the mean size of irrigated fields represent main limitations for irrigation information retrieval 94 

(Romaguera et al., 2010, La Page et al., 2020). Data assimilation (DA) could reduce some uncertainties by optimally integrating 95 
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LSM estimates and RS observations. Indeed, the LSM estimates resolve processes at desired spatio-temporal scales, while the 96 

RS observations can track in a more realistic way human processes like irrigation and their interactions with the water and energy 97 

cycles. Contrasting LSM simulations with RS observations offers an opportunity to correct for unmodeled processes or missed 98 

events, such as irrigation (Kumar et al., 2015a; Girotto et al., 2017). More generally, DA of satellite-based observations has 99 

shown the potential to update soil moisture (De Lannoy & Reichle, 2016; Kolassa et al., 2017) and vegetation (Albergel et al., 100 

2018; Kumar et al., 2020) and important impacts have been reported over agricultural areas (Kumar et al., 2020).  101 

The assimilation of MW RS observations in LSMs often involves retrieval assimilation. However, assimilating retrievals (i.e., 102 

SSM or vegetation optical depth rather than MW brightness temperature (Tb) or σ0 measurements) can be problematic as the 103 

retrievals may behave been produced with inconsistent ancillary data that are inconsistent with those used in the LSM (De 104 

Lannoy et al. 2016). This is particularly true for passive MW retrievals while active MW retrievals generally rely on change 105 

detection methods that lack land-specific ancillary information altogether. An alternative solutionapproach, which we follow in 106 

this study, is to directly assimilate MW observations and equip the LSM with an observation operator that links land surface 107 

variables of interest (e.g., soil moisture and vegetation) with RS data. This allows us to obtain consistent parameters and to 108 

reduce the chance of cross-correlated errors between model states and corresponding geophysical satellite retrievals. The direct 109 

assimilation of MW observations has already been demonstrated successfully for the update of soil moisture by using Tb derived 110 

from the SMOS and SMAP missions (De Lannoy et al. 2016, Carrera et al., 2019, Reichle et al. 2019), as well as using radar σ0 111 

from ASCAT (Lievens et al., 2017b), and σ0 from Sentinel-1 in synergy with SMAP Tb (Lievens et al., 2017a). However, to our 112 

knowledge, none of these studies considered the joint updating of soil moisture and vegetation, and none specifically 113 

focussedfocused on the performance over irrigated areas. The σ0 from Sentinel-1 contains information on both soil moisture 114 

(Zribi et al., 2011; Liu and Shi, 2016; Li and Wang, 2018; Bauer-Marschallinger et al., 2018) and vegetation (Vreugdenhil et 115 

al., 2018; Vreugdenhil et al., 2020) and assimilating this data could allow us to update both soil moisture and vegetation in a 116 

land data assimilation system and, in doing so, correct for missed irrigation events.  117 

To that end, the LSM needs to be coupled to a backscatter forward model as an observation operator. Different SAR σ0 models 118 

have been proposed to simulate the backscattering contributions of soil and vegetation (Attema & Ulaby, 1978; Oh, 2004; Zribi 119 

et al., 2005; Bai et al., 2015; Baghdadi et al., 2017). Most commonly used, the Water Cloud Model (WCM hereafter) developed 120 

by Attema and Ulaby (1978) is a σ0 model that represents the vegetation canopy as a homogeneous cloud containing randomly 121 

distributed water droplets. In order to use the WCM as the forward operator in a σ0 data assimilation system, it first needs to be 122 

calibrated to account for biases between the LSM simulations and the satellite observations. However, calibrating a WCM to 123 

simulate σ0 over irrigated areas, is not a straightforward process and it represents a key research problem if the same σ0 signal is 124 

used for the calibration of WCM parameters and later for assimilation and state updating. In fact, if the objective is to assimilate 125 

radar σ0 to realistically inform the model about irrigation applications, the WCM parameters have to maintain a certain degree 126 

of independence from the irrigation signal contained in the observed σ0 as otherwise the assumption of uncorrelated errors 127 

between model and observations typical of classical Bayesian-based filters is violated. More specifically, if the LSM provides 128 
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unrealistic simulations as input (i.e., absence of irrigation), then the WCM calibration with observed σ0 would compensate for 129 

this bias. This would in turn lead to a biased backscatter model with undesirable calibrated parameters for the subsequent data 130 

assimilation experiments. Therefore, different strategies can be adopted, for instance calibrating the model during non-irrigated 131 

periods or over non-irrigated areas, or equipping the LSM with an irrigation module that makes the WCM less constrained by 132 

inconsistencies between simulated and observed σ0 during irrigation periods. The efficacy of these strategies has so far never 133 

been explored. 134 

The main objective of this study is to simulate radar σ0 using a LSM coupled with a WCM and to provide solutions and 135 

recommendations for the optimization of the WCM as an observation operator. This is a major stepping-stone towards the 136 

development of a reliable system for the assimilation of high-resolution Sentinel-1 σ0 observations over irrigated areas. 137 

Additionally, we aim at: 138 

1) testing the ability of a sprinkler irrigation system coupled with a LSM to simulate irrigation so as to highlight the 139 

potential and limitations of such a tool to optimize a backscatter forward operator over heavily irrigated areas; 140 

2) demonstrating that Sentinel-1 σ0 observations contain valuable information to improve both SM and vegetation 141 

predictions over irrigated land (i.e., soil moisture and vegetation consistent with human alterations in the water 142 

cycle due to intensive irrigation). 143 

The analysis is carried out over the Po river valley, one of the most important agricultural areas in Italy and also one of the more 144 

intensively irrigated areas in Europe (water withdrawal in the Po basin is estimated to be 20.5 billion m3/year, of which 16.5 145 

billion of m3/year is withdrawn for irrigation; Po River Watershed Authority, 2006). We use the Noah-MP v.3.6 LSM (Noah-146 

MP hereafter) as part of the NASA Land Information System (LIS) framework together with the WCM from Attema and Ulaby 147 

(1978) for the simulation of both σ0 vertical send and receive (VV) and vertical send and horizontal receive (VH) polarization. 148 

Level-1 Sentinel-1 σ0 observations are used to calibrate the WCM at 1-km resolution, using simulated SSM and Leaf Area Index 149 

(LAI) estimates from Noah-MP. The WCM is calibrated for a total of four calibration experiments for each polarization: 1) with 150 

or without activating an irrigation scheme within Noah-MP; and, 2) considering two different cost functions.  Specifically, we 151 

want to demonstrate that activating an -even poor- irrigation scheme is needed to obtain long-term unbiased σ0 simulations and 152 

uncorrelated errors between the WCM and Sentinel-1 and that the calibration process can be sensitive to different cost functions. 153 

The manuscript is organized as follows. Section 2 provides information on the study area, the selected datasets, and methods 154 

used for our analysis. Specifically, Sections 2.3 and 2.4 provide a detailed description of the Noah-MP LSM and the WCM. 155 

Section 2.5 describes the cost functions used for the WCM calibration while Section 2.6 is a description of the experimental set-156 

up designed for the calibration. Finally, Section 2.7 provides insights on the Noah-MP and WCM evaluations. Section 3 presents 157 

the results, with an assessment of the Noah-MP evaluation, both regional (Section 3.1) and over the test sites (Section 3.2). The 158 

WCM calibration and evaluation results are described in Sections 3.3 and 3.4, respectively. We provide discussion in Section 4 159 

while conclusions are reported in Section 5.  160 

https://journals.ametsoc.org/doi/10.1175/JCLI-D-16-0720.1#s2
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2 DATA AND METHODS 161 

2.1 Study area and in situ data 162 

The analysis was carried out over an area of 24,000 km2 located within the Po river valley, one of the most important agricultural 163 

areas in Europe (Figure 1, left-bottom corner: 44°N, 10.5°W; top-right corner: 45.5°N, 12.2°W). The Po river valley is part of 164 

the Po river basin district (~74,000 km2), a mountain-fed catchment which extends from the Alps in the West, to the Adriatic 165 

Sea in the East. The Po district is one of the eight districts mentioned in the Water Framework Directive (WFD, 2000) initiated 166 

by the European Commission and has been hit by seasonal drought events which impacted all water use sectors, in particular 167 

agriculture (Strosser et al., 2012). The water assessment and impact evaluation of human activities over the Po river valley is 168 

thus a topic of major interest, considering the significant requirements from the agricultural management sector. 169 

According to the Köppen-Geiger climate classes (Peel et al., 2007) the study area is classified as "Cfa" (temperate climate, 170 

without dry season and with hot summers). From a geographical point of view, the Po river flows from the west to the east, 171 

splitting the area of interest in northern and southern areas, respectively. North of the Po river, the agricultural plain area can be 172 

additionally subdivided into the Veneto region to the east and the Lombardy region to the west (Figure 1). Lombardy lands have 173 

a high water availability, thanks to the presence of several Alpine lakes and reservoirs (Musolino et al., 2017), as does the Veneto 174 

region. Wine cultivation plays an important role, especially in the Garda Lake surroundings (located to the north-west side of 175 

the study area). In the south, the Emilia Romagna region is an agricultural as well as urbanized-industrialized area. Compared 176 

to Lombardy and Veneto, Emilia Romagna is much poorer both in water availability and storage capacity, but its irrigation 177 

system is considered the most technologically advanced and efficient in the Po river basin (Musolino et al., 2017). Specifically, 178 

it hosts the Canale Emiliano RomagnoRomagnolo (CER, https://consorziocer.it/it/, last access 20 May 2021), one of the most 179 

important Italian hydraulic systems for agricultural water supply. The main crops in the study region include general summer 180 

and winter crops, orchards (i.e., peach, pear, kiwi), olive groves, and vineyards (https://sites.google.com/drive.arpae.it/servizio-181 

climatico-icolt/home, last access 20 May 2021). The plain area is surrounded by a forested hilly and mountainous area of the 182 

Tuscan-Emilian Appennine to the south/south-west.  183 

In situ data were collected over two test sites, located in the Emilia Romagna region:  184 

● The For an analysis at plot scale we selected the Budrio test site (Figure 1a) is), an experimental farm managed by 185 

the CER authority andwhich includes two plots of 0.39-0.49 ha. The main crops are maize for field 1 (in yellow) and 186 

tomatoes in field 2 (red colour). Daily irrigation data, in mm, were collected for the summer 2015-2016 over field 1, 187 

whereas daily irrigation water amounts were collected for the summer 2017 over field 2. Additionally, for field 2, 188 

hourly in situ soil moisture data, aggregated here at daily scale, were made available from the Department of Physics 189 

and Earth Science of the University of Ferrara. The soil moisture data were derived from an innovative Proximal 190 

Gamma-Ray (PGR SM hereafter; Filippucci et al., 2020, Strati et al., 2018) station, equipped with a 1L NaI(Tl) 191 

detector placed at 2.25 m above the ground and a commercial agro-meteorological station (MeteoSense 2.0, Netsen; 192 

Strati et al., 2018). The PGR is a nuclear non-invasive and non-contact technique, which allows to overcome the issue 193 

https://consorziocer.it/it/
https://sites.google.com/drive.arpae.it/servizio-climatico-icolt/home
https://sites.google.com/drive.arpae.it/servizio-climatico-icolt/home
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connected to in situ point measurements, probing soil moisture with a field scale footprint (~104 m2) up to a depth of 194 

30 ~ cm. The quantification of PGR soil moisture is derived from measurements of gamma signals emitted by the 195 

decay of 40K, which is extremely sensitive to different soil water contents in agricultural soils (for more information 196 

on the PGR soil moisture deriving procedure the reader can refer to Baldoncini et al., 2019). Finally, daily rainfall 197 

data were collected from the national rainfall network managed by the Department of Civil and Environmental 198 

Protection (DPC) of Italy, for the irrigated periods. 199 

● The second test site (Figure 1b) is located around the city of Faenza (hereafter Faenza test site) and has a total extent 200 

of 1051 ha, consisting of two different fields.fields which allow an analysis at the small-district spatial scale. The first 201 

one is called San Silvestro (290 ha) and it is located north of the city. The second one is called Formellino (760 ha), 202 

located east to the San Silvestro field and north-east to the city of Faenza. Fruit trees are prevalent on the fields; in 203 

particular, pear trees and kiwi dominate the area. The water used for irrigation was provided by CER, at hourly time 204 

scale and in mm, for the 2-years time period 2016-2017. Daily rainfall data were collected from the national rainfall 205 

network managed from the DPC. 206 

2.2 Sentinel-1 σ0 and reference remote sensing products 207 

The Copernicus-ESA Sentinel-1 σ0observationsσ0 observations were used in this study for the calibration of the WCM. The 208 

Sentinel-1 constellation consists of two satellites, Sentinel-1A and Sentinel-1B, launched in 2014 and 2016, respectively. Each 209 

satellite carries a Synthetic Aperture Radar (SAR) operating at C-band (5.4 GHz) in the microwave portion of the 210 

electromagnetic spectrum. The processing of the ground-range detected (GRD) Interferometric Wide Swath (IW) observations 211 

in VV- and VH-polarization was done using Google Earth Engine’s Python interface and included standard techniques: precise 212 

orbit file application, border noise removal, thermal noise removal, radiometric calibration, and range-Doppler terrain correction. 213 

Furthermore, the σ0 observations acquired at 5 × 20 m2 resolution were aggregated and projected on the 1 km Equal Area Scalable 214 

Earth version 2 (EASE-2) grid (Brodzik et al., 2012). After applying an orbit bias-correction (Lievens et al., 2019), the 215 

observations from different orbits, either from Sentinel-1A or -1B and ascending or descending tracks, were combined at the 216 

daily time-scale.  217 

Additionally, RS observations were used for the evaluation of the SSM and LAI simulated in Noah-MP LSM for the period 31 218 

March 2015- December 2019:  219 

● The NASA Soil Moisture Active Passive (SMAP; Entekhabi et al., 2010) is an orbiting observatory launched in 220 

January 2015 carrying two instruments: a SAR which suffered a failure in early July 2015, and a radiometer measuring 221 

Tb at L-band, with a native spatial resolution of 40 km, a revisit time of 2–3 days, and ascending and descending 222 

overpasses at 6:00 PM and 6:00 AM (local time), respectively. For this study, the 9-km SMAP Enhanced Level-2 223 

SSM version 4 (0-5 cm; SMAP L2 hereafter) product was used (O'Neill et al., 2020; Chan et al., 2018). The product 224 
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is derived from SMAP Level-1B (L1B) interpolated antenna temperatures using the Backus-Gilbert optimal 225 

interpolation technique. Both ascending and descending tracks were collected. 226 

● The Metop ASCAT SSM Climate Data Records (CDR) H115 and its extension H116  are provided by the European 227 

Organization for the Exploitation of Meteorological Satellites (EUMETSAT) Support to Operational Hydrology and 228 

Water Management (H SAF; http://hsaf.meteoam.it/, last access 20 May 2021). The SSM is retrieved from σ0 using 229 

a change detection algorithm (Wagner et al., 2013), and is characterized by a spatial sampling of 12.5 km and a 230 

temporal resolution of one to two observations per day, depending on the latitude.  231 

● The PROBA-V LAI is derived from the PROBA-V satellite mission (Francois et al., 2014; Dierckx et al., 2014) and 232 

provided by the Copernicus Global Land Service programme (CGLS, https://land.copernicus.eu/global/). The CGLS 233 

product at 1 km spatial resolution and 10-day (dekadal) temporal resolution is developed based on the work by Verger 234 

et al. (2014).  235 

In order to compare Noah-MP simulations and reference data at the same spatial resolution, Sentinel-1 observations (σ0-VV and 236 

-VH), as well as ASCAT SSM, SMAP L2 SSM and PROBA-V LAI were extracted over the study domain (left-bottom corner: 237 

44°N, 10.5°W; top-right corner: 45.5°N, 12.2°W) and re-gridded over the LIS grid domain (0.01°) using the nearest-neighbour 238 

approach.  239 

2.3 Land surface and irrigation modelling 240 

2.3.1 Noah-MP v.3.6 241 

The analysis was carried out using the Noah-MP (Niu et al., 2011) LSM, running within NASA's LIS 7.2 version (Kumar et al., 242 

2008). LIS is a software framework for terrestrial hydrology modelling and DA, which supports different LSMs that can be 243 

conditioned on multiple remote sensing products from active and/or passive microwave sensors. The Noah-MP LSM, which 244 

was chosen for this study, is an evolution of the baseline Noah LSM (Mahrt and Ek, 1984; Chen et al., 1996; Chen and Dudhia, 245 

2001) wherein main improvements and augmentations are: 1) the presence of four soil layers; 2) up to three snow layers; 3) one 246 

canopy layer which allows to dynamically simulate the vegetation and to compute separately the ground surface temperature; 4) 247 

a two-stream radiation transfer scheme based on the canopy layer sub-grid scheme; 5) a Ball-Berry type stomatal resistance 248 

scheme; 6) and finally, a simple groundwater model with a TOPMODEL‐based runoff scheme (Niu et al., 2005, 2007). The 249 

model was set up selecting four soil layers at depths 0–10, 10–40, 40–100 and 100–200 cm, a dynamic vegetation model with a 250 

Ball-Berry type canopy stomatal resistance model (Ball et al., 1987), and TOPMODEL-based runoff.  251 

The parameterization followed the recommended options provided in the LIS documentation 252 

(https://modelingguru.nasa.gov/docs/DOC-2634). A model time step of 15 minutes and a 6 hours output interval were selected 253 

together with a spatial resolution of 0.01°. The meteorological forcings used for running Noah-MP LSM were obtained from 254 

MERRA-2 (Gelaro et al. 2017). The MERRA-2 original spatial resolution of 0.5°x0.625° was re-mapped to 0.01° through 255 

https://www.eumetsat.int/h-saf
https://www.eumetsat.int/h-saf
http://hsaf.meteoam.it/
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bilinear interpolation. Land model data and parameters were pre-processed and adapted to the LIS longitude/latitude projection 256 

using the Land Surface Data Toolkit (LDT; Arsenault et al., 2018) in order to run Noah-MP at the chosen spatial resolution.  257 

For this study, the default LIS Land Cover (LC) map from the University of Maryland (UMD) global land cover product (Hansen 258 

et al., 2000) based on the Advanced Very High Resolution Radiometer (AVHRR) data was replaced with the 2015 global LC 259 

map, available from the CGLS at 100 m spatial resolution (Buchhorn et al., 2020; available at 260 

https://land.copernicus.eu/global/products/lc , last access 20 May 2021). The CGLS provides Dynamic Land Cover Layers at 261 

100 m spatial resolution (CGLS-LC100), obtained by combining information derived from the vegetation instrument on board 262 

the PROBA-V satellite, a database of high-quality LC reference sites, and several ancillary datasets. For a more detailed 263 

explanation of the LC maps generation process we refer to the Algorithm Theoretical Basis Document (ATBD; Buchorn et al., 264 

2020). The 23 classes of the PROBA-V LC map were reclassified to the 14 classes used in the UMD-AVHRR classification 265 

supported by LIS. Additionally, the LC map was regridded at 0.01° (Figure 2a) by identifying the most representative class over 266 

each LIS grid cell. For additional information on the reclassification process, we refer the reader to Table S1 in the 267 

Supplementary Material section. Similarly, the default FAO Soil Map (FAO Soil Map of the World, 1971) was replaced by the 268 

Harmonized Soil World Database (HWSD v1.21, 1 km; Figure 2b) and mapped to 5 soil classes over the study region. Other 269 

model pre-processed parameters inputs were: i) the Shuttle Radar Topography Mission elevation data (SRTM30, 30 m spatial 270 

resolution); 2) climatological global Greenness Vegetation Fraction (GVF) data (0.144°; Gutman and Ignatov, 1998) derived 271 

from 5 years (1985-1989) of normalized difference vegetation index (NDVI) data from the AVHRR (Miller et al., 2006); 3) a 272 

snow-free albedo and a Noah-specific maximum snow albedo product from NCEP (original resolution 1° and regridded); and 273 

finally, 4) soil, vegetation, and other general parameter tables for Noah-MP from the LIS official Data Portal 274 

(https://portal.nccs.nasa.gov/lisdata_pub/data/, last access 20 May 2021). 275 

2.3.2 Irrigation modelling 276 

The ability of Noah-MP to dynamically simulate the vegetation and the option to activate irrigation are particularly important 277 

considering an extensively irrigated area such as the Po river valley. Indeed, in a recent study by Nie et al. (2018), Noah-MP 278 

was coupled with a sprinkler irrigation scheme (Ozdogan et al., 2010b) (where irrigation is applied as supplementary rainfall), 279 

which requires three pieces of information:  280 

● the irrigation location, only occurring over potentially irrigated croplands (expanding over grassland if the intensity 281 

exceeds the gridcell’s total crop fraction). This information is extracted from a LC map associated with an additional 282 

dataset providing information on the percent of irrigated area per grid cell. In this study, the reclassified PROBA-V LC 283 

map was coupled with the information contained in the 500 m Global Rain-fed, Irrigated and Paddy Croplands data set 284 

(GRIPC; Salmon et al., 2015);  285 

● the timing of irrigation, which is determined by checking the start and end of the growing season based on a GVF 286 

threshold, separately at each grid cell. Following Ozdogan et al.(2010b), we set this threshold to 40% of the GVF;  287 

https://land.copernicus.eu/global/products/lc
https://portal.nccs.nasa.gov/lisdata_pub/data/
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● the amount of water used for irrigation. This quantity is derived from the root zone soil moisture (RZSM) availability 288 

(MA) as MA=(RZSM-SMWP)/(SMFC-SMWP) where RZSM is the current RZSM, SMWP is the wilting point, and SMFC is 289 

the field capacity. When the MA falls below a user-defined threshold, irrigation is triggered and the quantity is defined 290 

by calculating the amount of irrigation needed to raise the RZSM to the SMFC. For this study, the MA threshold was 291 

defined as the 50% of SMFC as in Ozdogan et al. (2010b). MA is calculated at each time step but the irrigation is only 292 

applied between 06:00 and 10:00 LT. Following Ozdogan et al. (2010b), this time frame is typically chosen by farmers 293 

to reduce evaporative losses. In this context, the maximum rooting depth becomes a crucial information to compute the 294 

amount of irrigation water. This information is related to an assigned crop type, cultivated over the study area, through a 295 

maximum rooting depth table. Considering the high crop variability over the Po river valley as well as the lack of high 296 

resolution dynamic crop maps for the entire study area, a generic crop type with 1 m root depth was selected for the 297 

irrigation simulations. The reference rooting depth was verified to be feasible over the study area based on the European 298 

Soil Data Centre (ESDAC, available at https://esdac.jrc.ec.europa.eu/content/european-soil-database-derived-data, last 299 

access 20 May 2021) rooting depths map (Figure S1 in the Supplementary Material). 300 

2.4 Water Cloud Model 301 

The WCM allows to simulate the top-of-vegetation σ0 as a function of SSM and vegetation, using empirical fitting parameters.  302 

σ0 is modeled as the sum of the backscatter from the vegetation (𝜎𝑣𝑒𝑔
0 , in dB) and from the bare soil (𝜎𝑠𝑜𝑖𝑙

0 , in dB), attenuated 303 

by the t2 coefficient that describes the two-way attenuation from the vegetation layer. Scattering interactions between the 304 

ground and the vegetation are not accounted for. As reported in Baghdadi et al. (2018), for a given polarization pq (i.e., VV 305 

and VH), the WCM can be written as follows: 306 

σpq
0 = σveg,pq

0 𝜎𝑝𝑞
0 = 𝜎𝑣𝑒𝑔,𝑝𝑞

0 + tpq
2 σsoil,pq

0 𝑡𝑝𝑞
2 𝜎𝑠𝑜𝑖𝑙,𝑝𝑞

0     307 

  (1) 308 

where:  309 

σveg,pq
0 𝜎𝑣𝑒𝑔,𝑝𝑞

0 = ApqV1cosθ𝐴𝑝𝑞𝑉1𝑐𝑜𝑠𝜃(1 − tpq
2 𝑡𝑝𝑞

2 )   310 

  (2) 311 

tpq
2 𝑡𝑝𝑞

2 = exp𝑒𝑥𝑝(
−2BpqV2

cosθ

−2𝐵𝑝𝑞𝑉2

𝑐𝑜𝑠𝜃
)      312 

 (3) 313 

σsoil,pq
0 = Cpq + Dpq ⋅ SSM𝜎𝑠𝑜𝑖𝑙,𝑝𝑞

0 = 𝐶𝑝𝑞 + 𝐷𝑝𝑞 ⋅ 𝑆𝑆𝑀  314 

   (4) 315 

 316 

https://esdac.jrc.ec.europa.eu/content/european-soil-database-derived-data
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Equations 2 and 3 describe the vegetation-related terms. V1 and V2 represent two bulk vegetation descriptors, the first one 317 

accounting for the direct vegetation σ0, and the second one representing the attenuation. Apq[-] and Bpq[-] are the two related 318 

fitting parameters. Common vegetation descriptors used in previous studies are the Vegetation Water Content (VWC, Paloscia 319 

et al., 2013), the NDVI (El Hajj et al., 2016; Li and Wang, 2018) and LAI (Kumar et al., 2015b; Bai and He, 2015), while θ 320 

represents the incidence angle, which is assumed to be 37° for Sentinel-1. ManyFollowing previous studies assumed V1=V2 321 

represented by the unique vegetation descriptor (see Lievens et al, 2017b,; Baghdadi et al. 2017,; Li and Wang, 2018).) we 322 

assumed V1=V2 represented by the dynamically simulated LAI vegetation descriptor. 323 

Equation 4 describes the soil-related term. Following the work by Lievens et al. (2017b), the σsoil
0 𝜎𝑠𝑜𝑖𝑙

0  can be described, in a 324 

simple linear approach, as a function of the SSM. There are several semi-empirical models (e.g., the Oh model; Oh et al., 1992) 325 

or theoretical models (e.g., the Integral Equation Model (IEM), Fung, 1994) which describe the scattering processes related to 326 

the bare soil, but their application as a forward operator coupled to an LSM has two main limitations: the first one lies in the 327 

difficulty in retrieving soil roughness values over extended reference areas required to parameterize these models; the second 328 

one is their saturation of σ0 in moist conditions which causes low variability in simulated σ0 if the LSM soil moisture 329 

simulations are biased wet (for more information  see Lievens et al., 2017b). Those limitations justify the use of a linear fitted 330 

approach. In Equation 4, the C and D parameters (here fitted in dB and dB/m3/m3, respectively, but σsoil
0 𝜎𝑠𝑜𝑖𝑙

0  is transformed 331 

back to the linear scale in Equation 1) describe the linear relation between σsoil,pq
0 𝜎𝑠𝑜𝑖𝑙,𝑝𝑞

0   and SSM. Those parameters, as 332 

well as A and B (-), need to be calibrated separately for each polarization. 333 

2.5 Calibration algorithms 334 

We considered two different objective functions to optimize the A, B, C and D parameters:  335 

● a Bayesian solution, which minimizes the Sum of Squared Errors (SSE) between σ0 observations from Sentinel-1 and 336 

WCM simulations. The SSE Bayesian calibration solution aims at identifying the optimal parameter vector 𝛂 which 337 

maximizes the probability of the resulting σ0 simulations 𝑝(𝑦̂−) = 𝑝(𝑦̂−|𝛼)𝑝(𝛼), where 𝑝(𝛼) is the prior parameter 338 

distribution and 𝑝(𝑦̂−|𝛼) is the likelihood. Starting from the assumption of an independent and identically distributed 339 

normal error model, the posterior probability can can be maximized by maximizing: 340 

𝑝(𝑦̂−|𝛼)𝑝(𝛼) = ∏ {
1

𝑠𝑖√2𝜋
𝑒𝑥𝑝 (−

(𝑦̂−𝑦̂−)𝑖
2

2𝑠𝑖
2 )}

𝑁𝑖
𝑖 ⋅ ∏ {

1

𝑠𝑗√2𝜋
𝑒𝑥𝑝 (−

(𝛼0−𝛼)𝑗
2

2𝑠𝑗
2 )}

𝑁𝛼
𝑗  (5) 341 

i.e., the combination of the likelihood and a prior parameter constraint. The latter helps in reducing problems of 342 

equifinality. In Equation (5), 𝑦̂ represents the observed σ0, 𝑦̂−is the simulated σ0, i is the timestep and si is the standard 343 

deviation of the residual differences between the observed and simulated σ0 values for Ni time steps. Nα is the number 344 

of parameters to be calibrated, α0 is the prior parameter constraint and the parameter deviation is limited by 𝑠𝑗
2, the 345 
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variance of a uniform distribution 𝑠𝑗
2 = (𝛼𝑚𝑎𝑥,𝑗 − 𝛼𝑚𝑖𝑛,𝑗)

2
/12 with determined boundaries of the parameters 346 

[αmin,αmax]. The maximum likelihood solution is found by minimizing the following cost function J: 347 

𝐽 = ∑ {𝑙𝑛(𝑠𝑖) +
(𝑦̂−𝑦̂−)𝑖

2

2𝑠𝑖
2  }

𝑁𝑖
𝑖 + ∑ {

(𝛼0−𝛼)𝑗
2

2𝑠𝑗
2  }

𝑁𝛼
𝑗 = 𝐽0 + 𝐽𝛼    (6) 348 

where si is assumed to be constant in time and represented by a target accuracy of 1 dB, leaving the SSE in the first 349 

term of J0 to minimize. The second term (Jα) constrains the optimal solution by avoiding strong deviations from initial 350 

parameter guesses.  351 

● a solution that maximizes the Kling-Gupta Efficiency (KGE; Gupta et al., 2009). Even though this objective function 352 

does not ensure Bayesian optimality, it is a widely used metric which could help to better tune the dynamic σ0 353 

behaviour: 354 

𝐾𝐺𝐸 = 1 − √(𝑟 − 1)2 + (
<𝑦̂−>

<𝑦̂>
− 1)

2

+ (
𝑠[𝑦̂−]/<𝑦̂−>

𝑠[𝑦̂]/<𝑦̂>
− 1)

2

   (107) 355 

The KGE formulation embeds three terms: 1) the first term accounting for the Pearson Correlation (Pearson-R) 356 

between the observed (𝑦̂) and simulated (𝑦̂−) σ0 time series; 2) a second term accounting for the bias, where the long-357 

term mean is represented as <.>; and finally, 3) a term accounting for the variability of the simulated and observed 358 

signal through the use of the standard deviation s[.]. KGE = 1 indicates a perfect agreement between simulations and 359 

observations. Note that KGE redistributes the weight of the bias, variance and correlation components, compared to 360 

J in Equation 6, which can help in reducing differences between simulated and observed σ0 also in terms of temporal 361 

dynamics during the calibration. On the other hand, in the KGE cost function parameters are not constrained by prior 362 

values α0. This could possibly result in overfitting and a larger prediction uncertainty.  363 

The Particle Swarm Optimization (PSO; Kennedy and Eberhart, 1995) was used to minimize J and maximize KGE. For our 364 

case study the PSO parameters were set as in De Lannoy et al. (2013).  365 

2.6 Experimental setup 366 

Building an optimal DA system able to correct for the poor parameterization of irrigation within LSMs via the ingestion of 367 

radar σ0 requires the minimization of the impact of the irrigation signal already contained in σ0 observations on the WCM 368 

parameters, while simultaneously guaranteeing long-term unbiased σ0 simulations compared to observations. Here we tested 369 

the hypothesis that this can be only achieved by activating irrigation in the LSM.An optimal DA system requires long-term 370 

unbiased σ0 simulations (with respect to the assimilated observations). The risk, over an intensively irrigated area, is that an 371 

unmodelled irrigation signal would manifest itself as a predominant bias in the σ0 simulations. The calibration would then 372 
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inadvertently correct for this supposed bias (i.e., the irrigation signal), thus preventing the DA system from propagating the 373 

missing irrigation signal from the observations into the model. Even though existing irrigation schemes are evidently 374 

unrealistic and inaccurate, we conjecture that using such a scheme when calibrating the WCM will more likely yield optimal 375 

WCM parameters than when neglecting irrigation.  376 

To that end, we considered two different experiment lines (referred to as Natural and Irrigation, respectively) that produced a 377 

total of eight different σ0 simulation runs (see Figure 3). The Natural experiment line differs from the Irrigation line by the 378 

activation of an irrigation module in Noah-MP, and both are subjected to the calibration algorithms described in Section 2.5. 379 

The Natural line was used as a diagnostic experiment against which to compare Irrigation, which, according to our initial 380 

hypothesis, should minimize the impact of the irrigation signal contained in the σ0 observations on WCM parameters. 381 

As a first step, a model spin up was performed, starting in January 1982 and ending in December 2014. Then, a study period 382 

from January 2015 to December 2019 was selected for the different model runs based on the availability of the processed 383 

Sentinel-1 σ0 and reference irrigation data (see Sections 2.1 and 2.2). Daily surface model and irrigation outputs were produced. 384 

Considering that the main source of irrigation in the Po river valley is related to surface water abstraction, the sprinkler 385 

irrigation scheme did not account for groundwater withdrawals (see Nie et al., 2018).  386 

The A, B, C, and D parameters of the WCM (see section 2.4) were fitted for each grid cell based onseparately to Sentinel-1 σ0 387 

VV and VH observations separately, during the period January 2017 - December 2019. Following previous literature (Lievens 388 

et al., 2017b; De Lannoy et al., 2014; De Lannoy et al., 2013), we performed a grid cell-based calibration to account for the 389 

spatial variability in the simulated and observed σ0 signals that stems from specific features within the observed footprints as 390 

well as from the soil and vegetation parameterization of Noah-MP.  Both the calibration using the SSE with prior constraint 391 

(Bayesian J) and the KGE were applied to the Natural and Irrigation runs providing eight different experiments named J-VV 392 

Natural, J-VH Natural, J-VV Irrigation, J-VH Irrigation, KGE-VV Natural, KGE-VH Natural, KGE-VV Irrigation and KGE-393 

VH Irrigation.   394 

Lower and upper boundaries as well as prior guess values of the WCM parameters were defined based on the work of Lievens 395 

et al. (2017b) and on a sensitivity analysis (not shown here). The selected values are displayed in Table 1. Finally, it should be 396 

noted that all the calibration experiments were realized by considering daily values of σ0 simulations and observations. 397 

Table 1: Lower boundaries (LB), upper boundaries (UB), and prior guess values of the WCM parameters for both VV and VH 398 

polarization 399 

 A-VV[-] A-VH[-] B-VV[-] B-VH[-] C-VV[dB] C-VH[dB] D-VV[dB/m3/m3] D-VH[dB/m3/m3] 

UB 0.4 0.4 0.4 0.4 -10 -10 80 80 

LB 0 0 0 0 -35 -35 15 15 

GUESS 0 0 0 0 -20 -30 40 40 
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 400 

2.7 Noah-MP LSM and WCM evaluations 401 

The validation aims at i) evaluating the performance of Noah-MP in simulating irrigation, soil moisture, and vegetation and 402 

the ability of the WCM to simulate radar σ0, and ii) unveiling the information about irrigation contained in Sentinel-1 radar σ0 403 

in order to assess its potential to improve both soil moisture and vegetation representation within Noah-MP.  404 

The evaluation was carried out on both on the regional scale (i.e., over the entire study area) and aton the two selected sites, 405 

Faenza (small-district scale) and Budrio and Faenza,(plot scale), where irrigation data were available. Considering the lack of 406 

benchmark data for irrigation evaluation (Foster et al., 2020) we decided to use in situ data for the small Budrio fields spatial 407 

scale (i.e., 0.45-049 Ha) even though model simulations are made at a much coarser resolution (i.e., ~1 km). We are aware that 408 

differences in spatial scale can increase the uncertainty of our evaluation, but 0.01° LSM spatial resolution is still a good 409 

compromise for an analysis at regional, small-district and plot scale. Additionally, limitations are partly reduced by the low 410 

chance of including non-irrigated fields within the 1 km LIS grid cells within the Po River Valley, as the latter is almost entirely 411 

irrigated (Salmon et al., 2015).  We compared Noah-MP (with and without using the irrigation module) SSM and LAI 412 

simulations with satellite SSM from ASCAT and SMAP, and LAI from PROBA-V, respectively, during the period 2015-2019. 413 

Furthermore, these land surface simulations were compared to Sentinel-1 σ0 to understand how much of the SSM and LAI 414 

signal was captured by Sentinel-1.   415 

As the irrigation timing is often driven by the stakeholders' turns to withdraw water and by water availability rather than by 416 

the conditions of the soil and crops themselves, the comparisons between simulated SSM and satellite SSM were carried out 417 

by aggregating the two variables over a bi-weekly time window. On the other hand, the LAI from Noah-MP was aggregated 418 

to ten-daily values in order to match the dekadal PROBA-V LAI values. We used the Pearson-R for SSM and LAI evaluation. 419 

For LAI, we also consideredFor SSM, we also computed the Root Mean Square Error (RMSE), calculated considering the 420 

original temporal resolution of the satellite products, while for LAI, we also tested the ratio bias, i.e., the ratio between the 421 

long-term mean of the simulations and the long-term mean of observations. ThisIn particular, this additional score for LAI 422 

was used to provide a further evaluation of the ability of the Noah-MP to simulate crop phenology during the irrigated vs non-423 

irrigated periods so as to not rely solely on the evaluation of temporal dynamics, which, due to the uncertainty in the Noah-424 

MP crop type parameterization, could be affected by time shifts in the LAI climatology. This parameterization uncertainty 425 

comes from the lack of knowledge of the spatial crop type information and is difficult to be reduced without additional 426 

information. Our assumption is that radar σ0 assimilation can also correct for this with future data assimilation.  427 

Following Vreugdenhil et al. (2018) and Vreugdenhil et al. (2020), Noah-MP LAI and PROBA-V LAI were also compared 428 

with the Sentinel-1 σ0 VH/ σ0 VV cross ratio (CR), which was demonstrated to have a high agreement with the vegetation 429 

signal. Though the σ0 VH was demonstrated to increase with the vegetation signal (Macelloni et al., 2001), the CR will be 430 
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more sensitive to vegetation changes as the ratio is less sensitive to changes in soil moisture and soil-vegetation interaction 431 

(Veloso et al., 2017; Vreugdenhil et al., 2020). 432 

To evaluate WCM simulations, we used bi-weekly values of σ0 simulations and observations considering a two-years period 433 

independent from the calibration period: 2015-2016. Statistical metrics such as grid-based temporal Pearson-R, KGE, and bias 434 

were calculated between Sentinel-1 σ0 and calibrated WCM simulations. The analysis of the parameters was restricted to the 435 

cropland area as no difference between our experiment lines exists over other land cover types (i.e., the irrigation module is 436 

active only over grid points classified as crop). 437 

3 RESULTS 438 

3.1 Noah MP regional evaluation 439 

Figure 4 shows maps of the Pearson-R between bi-weekly Noah-MP SSM Natural and Irrigation simulations and bi-weekly 440 

ASCAT and SMAP L2 SSM retrievals, respectively, for April 2015 to December 2019. The Noah-MP SSM Irrigation run 441 

provides a higher agreement with both satellite SSM data sets compared to the Natural run. Indeed, the median Pearson-R 442 

between SMAP L2 SSM and Noah-MP SSM increases from 0.68 to 0.73, for the Natural run (Figure 4a) and the Irrigation 443 

run (Figure 4b), respectively. A similar improvement can be observed considering the ASCAT reference SSM, with an 444 

improvement in the median Pearson-R of 0.08 when irrigation is activated in the model (from 0.7 to 0.78; Figure 4e). Areas 445 

characterized by higher correlation when irrigation is simulated are represented in blue in the Pearson correlation difference 446 

map of Figure 4f (obtained by subtracting the map in Figure 4d from the map in Figure 4e). Almost all cropland areas are 447 

characterized by a higher agreement between observations and simulations for the Irrigation run. Note that for the evaluation 448 

of Noah-MP against SMAP, we relaxed retrieval quality flags, which would otherwise mask out almost the entire study area. 449 

The Supplementary material (Figure S2) shows the coverage when using the recommended quality flags. Results in Figure 4 450 

were confirmed by analyzing the RMSE between satellite SSM products and Noah-MP simulations for both the Natural and 451 

Irrigation runs, after rescaling them based on their mean and standard deviation, because SSM retrievals and SSM simulations 452 

do not have the same units. Results are displayed in Figure S3 of the Supplementary material and show, for both the satellite 453 

products, a general reduction in RMSE when compared with the Irrigation run. An improvement in performances can be 454 

observed over the entire cropland area, in particular over the central triangle feature where sandy-loam soil texture is present 455 

and where, consequently, more irrigation is simulated in the model due to the higher permeability of the soil. 456 

The evaluation of the LAI simulation was limited to the regional scale analysis due to a lack of in situ vegetation data over the 457 

selected test sites. The comparison between dekadal values of Noah-MP LAI, from both model runs, and the PROBA-V LAI 458 

product was carried out over the reference period January 2015 to October 2019 using the temporal Pearson-R and the ratio 459 

bias, shown in Figure 5.  460 
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Figure 5a and 5b show that the Pearson-R for vegetation has a lower median value of 0.67 when irrigation is simulated in 461 

Noah-MP, whereas this value equals 0.72 for the Natural run. The difference between the two Pearson-R maps is shown in 462 

Figure 5c, providing evidence of the areas facing a deterioration of the performance in terms of Pearson-R related to the 463 

Irrigation run. This deterioration is particularly strong over cropland areas south to the Po river (red colour) while the northern 464 

area also shows grid cells where the performance improves (blue colour).  465 

By contrast, the ratio bias evaluation score (Figures 5d, 5e, 5f) highlights an improvement in long-term mean vegetation 466 

simulations when irrigation is included (Figure 5e). Here the optimal condition is represented by a ratio bias equal to 1 when 467 

the mean of the simulated LAI is equal to the mean of the observed LAI. In this context, Figure 5d displays ratio bias values 468 

lower than one over a large central triangle-shaped cropland area and median ratio bias value of 0.73, highlighting an 469 

underestimation of the LAI simulation related to the Natural run. Conversely, Figure 5e shows ratio bias values close to one 470 

when irrigation is simulated over an extended cropland area and a median bias value of 0.99. The improvement given by the 471 

Irrigation run is emphasized in Figure 5f where the histograms of the ratio bias distributions related to both model runs show 472 

the higher performance of the Irrigation run (red) compared to the Natural run (blue) for which the distribution is more skewed 473 

to the zero value.   474 

3.2 Noah MP site evaluation 475 

The Noah-MP SSM was evaluated at the Budrio test site field 2 (Figure 1a), using the daily reference PGR SM for the year 476 

2017. Comparisons between the SSM simulations of the Natural and Irrigation runs with in situ PGR SM are shown in Figure 477 

6a, while daily observed irrigation and rainfall data are compared with daily irrigation simulations in Figure 6b. Soil moisture 478 

data are plotted at their original temporal resolution (i.e., daily) to illustrate an issue related to the irrigation timing: SSM 479 

simulations in Figure 6a show the ability of the sprinkler irrigation scheme to simulate irrigation in the summer season, but 480 

there is an inevitable problem in reproducing the correct timing and magnitude of irrigation. Indeed, the total amount of 481 

simulated irrigation is 604 mm for the 2017 summer season, which overestimates the total amount of observed irrigation, being 482 

349.5 mm. Furthermore, the model simulations not only miss irrigation, but also suffer from erroneous precipitation input, 483 

such as on the 11th of July 2017, where the observed precipitation event in the growing season is not found in the model SSM 484 

simulations. In any case, bi-weekly Pearson-R between simulated SSM and in situ PGR SM are higher for the Irrigation run 485 

than for the Natural run (0.54 vs 0.42) suggesting the benefit in activating irrigation. 486 

For the Budrio field 1 test site (Figure 1a), two summer seasons of irrigation data were available. To assess the irrigation 487 

information contained in Sentinel-1 σ0 observations (and the potential added value for a forthcoming DA experiment) we 488 

compared bi-weekly values of Sentinel-1 σ0 VV and VH with SSM estimates from both the Natural run and Irrigation run 489 

(Figure 7a) for this site. Although the σ0 VV is generally used to retrieve SSM (Wagner et al., 2013; Gruber et al., 2013; Bauer-490 

Marschallinger et al., 2018), data at both polarizations were analyzed in order to understand the soil contribution contained in 491 

the two signals. Information related to the irrigation periods are shown in Figure 7c, where irrigation observations and irrigation 492 
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simulations from Noah-MP are compared. Figure 7a indicates that the SSM simulations are better reflected in the Sentinel-1 493 

σ0 VV than σ0 VH data, particularly when irrigation is simulated (orange line). The SSM estimates from the Natural run (light 494 

blue line) agree poorly with the Sentinel-1 data, with Pearson-R values equal to 0.1432 and -0.131 for the σ0 VV (blue dots) 495 

and σ0 VH (cyan dots), respectively. When irrigation is simulated, the σ0 VV data better follow the modelled SSM signal 496 

(Pearson-R of 0.3653) especially during the summer irrigation season when the backscatter signal remains higher and stable. 497 

On the other hand, σ0 VH seems to provide poor performances also when irrigation is simulated, with a Pearson-R value equal 498 

to -0.03. 06, confirming findings by Baghdadi et al. (2017) which highlighted how the use of VH alone to retrieve SSM is 499 

suboptimal when vegetation cover is well developed. 500 

In Figure 7b, the Sentinel-1 σ0 CR (VH/VV) is compared with Noah-MP LAI from the Natural run (light-blue line) and 501 

Irrigation run (orange line). The performance in terms of Pearson-R decreases from 0.876 to 0.5165, when the irrigation is 502 

simulated. This is due to a time shift of the Noah-MP LAI growing season in the Irrigation run. PROBA-V LAI (in green) was 503 

additionally compared with the Sentinel-1 CR (blue dots) showing a Pearson-R of 0.8884. The higher agreement between the 504 

RS products (Sentinel-1 and PROBA-V) highlights the strong relation between the σ0 CR and the vegetation signal, suggesting 505 

a potential benefit of Sentinel-1 assimilation to correct the simulated vegetation phenology. 506 

Finally, Figure 7c shows a comparison between 15-days accumulated mm of simulated irrigation (in orange) and observed 507 

irrigation (in green). The Pearson-R is equal to 0.77, indicating that the sprinkler irrigation scheme can provide acceptable 508 

irrigation estimates at this temporal resolution though absolute irrigation amounts are overestimated. 509 

3.3 WCM calibration 510 

The WCM parameters A and B (vegetation parameters), and C and D (soil parameters) were calibrated for each grid cell 511 

separately during the reference period January 2017 to December 2019 (Figure 3), using daily σ0 simulations and observations. 512 

The calibrated parameters related to the entire study area for each of the eight experiments are shown in Figure 8 where the 513 

blue left parts of the violin plots identify experiments of the Natural run, while the orange right parts of the violin plots are 514 

related to the Irrigation run.  515 

Generally, the J-calibration provides parameter distributions closer around their prior guess as compared to the KGE-516 

calibration for which the distributions are often multimodal, especially for the C and D parameters (i.e., Figure 8d, 8h). This 517 

is due to the prior parameter penalty, which is included in the Bayesian solution but not in the KGE. In general, the calibration 518 

of the two functions using the Natural run provides wider distributions between lower and upper boundaries for the A 519 

vegetation parameter with a high number of grid cells characterized by A-values higher than 0.1 (see KGE-VV Natural and J-520 

VV Natural experiments in Figures 8a and 8e respectively). Conversely, the Irrigation run provides A distributions more 521 

skewed to the lower boundary (being also the guess value in each calibration experiment), with a smaller number of grid cells 522 

characterized by high A values compared to the Natural run. In a preliminary sensitivity study (not shown), we observed that 523 

high values of the vegetation parameters A and B, as obtained for the Natural run, have the tendency to generate high peaks 524 



 

18 

18 

 

in the simulated σ0 during the growing season. Indeed, in the summer, the SSM Natural signal is low and not consistent with 525 

the Sentinel-1 σ0, which observes irrigation. In order to follow the temporal dynamics of the Sentinel-1σ0, the calibration 526 

algorithms attribute a relatively higher weight (higher A values) to the LAI than to SSM to compensate for the underestimated 527 

SSM in the Natural run. By contrast, the Irrigation run provides vegetation parameter distributions more skewed to the lower 528 

boundaries (see also Section 3.4.2). Also theThe C and D parameter distributions show more realistic values using Irrigation 529 

run input data, and feature a better sensitivity of σ0 to soil moisture dynamics using the Irrigation run input data, which is the 530 

expected behaviour considering that they describe the σ0
soil. This is true especially when using the J cost function (see parameters 531 

distributions for the J-VV Natural and for the J-VV Irrigation experiments in Figures 8g and 8h), which results in more 532 

uniformspread in the calibrated C and D distributions for the Irrigation simulations (esp.especially in VV polarization), 533 

whereas the mode of the C and D parameter distributions for the Natural experiments is more shifted to the upper and lower 534 

boundaries, respectively. 535 

TheFigure 9 shows the spatial pattern of the parameters over the study area to better understand the differences between the 536 

Natural and Irrigation calibration runs. We found a connection between the WCM parameters distribution and model 537 

parameters, in particular with the HWSD soil texture map (shown in Figure 2). For both the J-VV Natural and J-VV Irrigation 538 

experiments, the activation of the irrigation scheme reduces the dependency of the vegetation-related parameters A and B on 539 

soil texture (Figures 9a-b for the J-VV Natural and Figures 9e-f for the J-VV Irrigation experiment). This is also shown in the 540 

parameter maps of the KGE calibration experiments (Figure S5 in the Supplementary material). Additionally, the activation of 541 

the irrigation scheme, more realistically, shifts the soil texture dependency towards the soil parameters C and D (Figures 9g 542 

and 9h), highlighting another important reason for simulating irrigation.  543 

Finally, the different polarization experiments generally provided similar distributions for the vegetation A and B parameters 544 

and the D soil parameter. The largest differences between the VV and VH polarizations are identified for the C parameter 545 

distributions. This is due to the lower σ0 signal associated with the VH polarization. Indeed, Figure 8c and 8g are characterized 546 

by higher values of the C in VV polarization, as compared to the distributions for VH polarization in Figures 8k and 8o. In the 547 

latter, the C-VH distributions are generally more skewed to the lower boundary of the parameters, with median values closer 548 

to the defined guess parameter value. 549 

3.4 WCM evaluation 550 

3.4.1 Regional evaluation 551 

The regional evaluation of the calibration experiments was carried out during the period January 2015 to December 2016 for 552 

agricultural areas within the study domain (almost 15,000 km2), by comparing bi-weekly σ0 simulations with Sentinel-1 σ0 in 553 

terms of Pearson-R, KGE, and bias. The distribution of the evaluation metrics for the eight experiments is shown in Figure 554 

910. A comparison of the metrics for the Irrigation and Natural runs confirms better results when irrigation is activated, with 555 

violin plots skewed towards more positive values for both KGE and Pearson-R. When stratified by the cost function, the 556 
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Pearson-R distribution in Figure 9a10a-d indicates slightly higher performance for the KGE (Figures 9a10a and 9c10c) than 557 

for J (Figure 9b10b and 9d10d). In terms of the KGE score, simulations are naturally closer to the observations when the KGE 558 

cost function is used. On the other hand, in terms of bias, generally better performances are found when the Bayesian solution 559 

is used (Figures 9i10i-l). The latter is particularly evident for the VH polarization when comparing the KGE-VH and J-VH 560 

experiments (Figure 9k10k and 9l10l).  561 

The VH simulations exhibit a better performance in the Irrigation run than VV simulations (Figure 9c10c-d and Figure 9a10a-562 

b). Indeed, considering all the statistical scores, the VV polarization is characterized by more similar distributions between the 563 

Natural and Irrigation run for both cost functions. This suggests a higher sensitivity of the VH polarization to the change of 564 

vegetation introduced by irrigation, confirming the Sentinel-1 σ0 VH to be strongly influenced by irrigation as witnessed by 565 

the larger score improvement obtained for the calibration experiments KGE-VH Irrigation (Figure 9g10g) and J-VH Irrigation 566 

(Figure 9h10h), compared to the Natural runs experiments.  567 

In summary, i) VH polarization is more sensitive to the change in the cost function and input data (Irrigation or Natural run) 568 

than VV polarization likely due to its higher sensitivity to vegetation change (Vreugdenhil et al., 2018; Macelloni et al. 2001) 569 

which, in the area, is related to the crop development after irrigation, ii) the combination of J with activation of the irrigation 570 

scheme is able to provide the best unbiased estimates of simulated σ0 for both VV and VH (J-VV Irrigation and J-VH irrigation 571 

experiments) at the price of generally lower correlations (compared to the KGE cost function). This is, however, beneficial for 572 

DA as it minimizes the chance of potential error cross correlation between model estimates and observations. Indeed, the match 573 

of the temporal dynamic of the signals induced by the correlation term is stronger in the KGE than in J, which additionally 574 

includes a parameter constraint. The higher weight of the correlation in the KGE cost function can negatively impact the 575 

parameter calibration even when irrigation is turned on in Noah-MP because the simulated irrigation applications are in general 576 

not temporally consistent with those seen by Sentinel-1 (see Figure 6). 577 

3.4.2 In situ evaluation 578 

The WCM simulations are further analysed in detail at the Faenza test site (specifically for the San Silvestro field), because it 579 

has a larger extent than the Budrio site (see Figure 1), although the same overall conclusions were found for Budrio. Figure 580 

1011 shows simulated and observed σ0 time series for the different experiments highlighted in Figure 3, and Table 32 581 

summarizes the statistics (i.e., Pearson-R, KGE and bias) of each experiment.  582 

The agreement between simulated and observed σ0 measured by the Pearson-R and KGE in Table 32 generally gives better 583 

performances after calibration with the KGE cost function than with the J cost function, except. An example is in the higher 584 

correlations found for the KGE-VH Irrigation experiment in terms of Pearson-R (Figure 10b). For the latter, we can observe a 585 

Pearson-R of 0.33 against 0.37 foras compared to the J-VH Irrigation (Figure 10dFigures 11b and 11d respectively). On the 586 

other hand, in terms of bias the cost function J significantly outperforms the calibration with KGE in all experiments with 587 

surprisingly comparable values between Natural and Irrigation runs (Table 2).  588 
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One undesirable feature of Natural runs is the presence of high σ0 peaks during the summer, clearly detectable over the Faenza 589 

test site, especially in both VV andthe VH polarization, which are less evident in the Irrigation run (see Figure 10b11b and 590 

10d11d). A similar behaviour was found for Budrio (not shown). These peaks are likely attributed to the poor estimation of 591 

model vegetation parameter values, previously discussed in section 3.3, when the WCM attempts to compensate for bias in 592 

SSM and vegetation input, i.e., input that is not consistent with observations over irrigated areas. This is particularly true for 593 

the KGE calibration, which does not use a prior parameter constraint. In contrast, the J calibration still provides reasonable σ0 594 

simulations that are closer to the ones of the Irrigation run due to the Bayesian technique itself. 595 

Table 2: Results of the site WCM evaluation considering the test site Faenza San Silvestro for each WCM experiment  596 

 KGE-VV 

Natural 

KGE-VV 

Irrigation 

J-VV 

Natural 

J-VV 

Irrigation 

KGE-VH 

Natural 

KGE-VH 

Irrigation 

J-VH 

Natural 

J-VH 

Irrigation 

Pearson-R [-] 0.14 0.3227 0.0214 0.318 0.3933 0.3341 0.2822 0.3738 

KGE [-] 0.0512 0.3126 0.00612 0.2803 0.1320 0.3338 0.2822 0.1631 

Bias [dB] -0.5446 -0.8155 0.2607 0.1809 -0.782 -0.7138 -0.0222 -0.0702 

 597 

4 DISCUSSION 598 

4.1 Noah-MP irrigation modelling 599 

The Noah-MP LSM, used as input for the WCM calibration, was evaluated in two configurations, either with a sprinkler 600 

irrigation scheme activated or without irrigation (i.e., Irrigation run and Natural run). Although not all of the Po river valley 601 

is irrigated by sprinkler systems, it most likely still leads to more realistic LSM simulations than not considering irrigation at 602 

all. 603 

The main limitation found in the irrigation simulations was related to the irrigation timing and magnitude that was inconsistent 604 

with observations. Although this finding is based on only a single study site, it is very likely that it is a widespread issue within 605 

the study area for several reasons. In LSMs, the irrigation application is driven by the RZSM availability and consequently by 606 

the soil type and the rooting depth parametrizations. Moreover, it is also influenced by the accuracy of the meteorological 607 

forcings (especially precipitation, Reichle et al. 2017) which can determine errors in the soil moisture representation. The main 608 

reason, however, is likely that irrigation is often the result of subjective farmer decisions rather than objective rules based on 609 

the soil state and crop conditions. In theory, the irrigation timing issue could be partly solved by using temporally consistent 610 

high-resolution crop maps which should provide a more realistic information of crop phenology and rooting depth. However, 611 

in practice, this is unfeasible over many areas of the world given the absence of this information on a large scale. Also, given 612 
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that irrigation applications are mainly linked to unmodelled processes like rotation schedules for farmers to withdraw water, 613 

the correct simulation of the timing can be unsolvable when using models only. 614 

Despite the potential problems related to the unrealistic assumptions in the simulation of irrigation, our results demonstrated 615 

that even the use of simple irrigation schemes within Noah-MP can be beneficial. In the regional evaluation, SSM simulations 616 

of the Natural and Irrigation runs were compared with RS SSM from SMAP and ASCAT (Figure 4) on a bi-weekly temporal 617 

scale. For both products, we found large improvements in temporal Pearson-R when irrigation was simulated, confirmed by a 618 

decrease in the RMSE values over croplands, suggesting that the activation of irrigation modelling provides more realistic 619 

SSM estimates. Our findings further confirm the potential of coarse resolution datasets for providing irrigation-related 620 

information over intensively irrigated and relatively large agricultural areas, as was shown by Kumar et al. (2015a).  621 

While the impact of irrigation was clear in terms of SSM, the regional evaluation of the simulated LAI against the PROBA-622 

V-based LAI provided contradicting results. In this case, the Pearson-R analysis suggested a deterioration of the Noah-MP 623 

simulated LAI when irrigation was activated over the cropland area. We interpreted this correlation deterioration by the 624 

absence of specific information about the crop phenology in the model parameterization. In practice, information about the 625 

specific crop type is not available and the rooting depth is the sole parameter controlling water uptake from the soil layers. 626 

Additionally, information on sowing and harvest periods are not included in the current version of Noah-MP, while irrigated 627 

areas are defined based on a global dataset (Salmon et al., 2013) which can suffer accuracy limitations. Indeed, the absence of 628 

annual dynamic information on irrigated fields, the unknown yearly variability of the crop types and the impact of the 629 

meteorological conditions in the stakeholders decision process (i.e., sowing) make the simulation of Noah-MP prone to LAI 630 

peak shifts, as compared to observations, when irrigation is simulated. Another important aspect affecting LAI simulations is 631 

its sensitivity to root zone soil moisture, which might be more difficult to simulate than SSM during the irrigation season due 632 

to larger impacts of the soil texture and transpiration processes along with the high frequency of the wetting and drying phases 633 

caused by irrigation events. This results in a significant performance deterioration (often worse than LAI simulation not 634 

including irrigation which are mainly driven by seasonality, see Figure 7). By contrast, irrigation modeling helps in reducing 635 

the bias of the LAI simulated time series, which, in the cropland area, show a significant underestimation when irrigation is 636 

not considered. 637 

The limitations found in simulating LAI and vegetation by Noah-MP even when irrigation was simulated could potentially be 638 

overcome by assimilating Sentinel-1 σ0 data. To explore this potential, we compared the LAI from both model runs, and from 639 

PROBA-V, with the observed Sentinel-1 σ0 CR (VH/VV), which should provide information about the vegetation dynamics 640 

(Vreugdenhil et al. 2018; Vreugdenhil et al. 2020). We found that the correlation between σ0 CR and LAI from PROBA-V was 641 

much higher than that between σ0 CR and the simulated LAI by Noah-MP (see Figure 7) suggesting that Sentinel-1 σ0 DA 642 

could help in correcting poor LAI model simulations. Additionally, a higher correlation was found between the σ0 VV 643 

observations and the simulated SSM when irrigation was turned on than in the absence of irrigation, suggesting that the 644 

assimilation of σ0 VV could improve SSM where irrigation is poorly or not modeledmodelled. On the other hand, considering 645 

the low correlation between the VH signal and SSM in presence of vegetation (Baghdadi et al. 2017), and its close relation 646 
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with vegetation (Ferrazzoli et al., 1992; Macelloni et al., 2001), future data assimilation experiments will investigate the 647 

contribution of VH and CR in improving LAI predictions and irrigation quantification. 648 

Finally, by-weekly accumulated irrigation estimates in Figure 7 agree well with real irrigation applications, suggesting that the 649 

large-scale LSM irrigation scheme is helpful for intensively irrigated areas. On the other hand, the poor soil and crop 650 

parameterization along with other unknown parameters related to the irrigation management (e.g., the farmers can apply more 651 

water than actually needed) can cause large biases in these irrigation simulations. Again, ingestion of radar backscatter data 652 

could correct for unmodelled processes. More specifically, Sentinel-1 σ0 could correct: (i) for the magnitude and timing of the 653 

irrigation simulations; and (ii) for Noah-MP irrigation predictions over not irrigated regions. 654 

4.2 WCM backscatter simulation 655 

The purpose of the presented WCM observation operator calibration and evaluation was to optimize the parameters for the 656 

future assimilation of the Sentinel-1 σ0 VV and VH into Noah-MP. Such an optimization would ideally minimize the long-657 

term bias between the simulated and observed σ0 signals. This can be achieved by calibrating the observation operator with 658 

long-term observed σ0 prior to data assimilation, but in this process, it is crucial to avoid potential error cross-correlation 659 

between model observation predictions and observations. Furthermore, a good observation operator should not already 660 

compensate for missing processes in the LSM by accepting effective, but unrealistic, optimized parameters, because it would 661 

then lose its physically-based ability to accurately convert misfits between observations and simulations to LSM updates during 662 

the data assimilation. In this line, we considered 663 

One way to avoid parameters compensation for erroneous LSM input into the WCM would be to use observed time series of 664 

e.g. LAI. However, LAI products from different sensors have different biases themselves which can add bias to the σ0 665 

simulations, and more importantly, replacing simulated LAI or SSM with external datasets would undermine the possibility of 666 

updating these variables in the future assimilation system. Based on that, we performed the WCM calibration considering SSM 667 

and LAI model input from two different experiments: a Natural run and an Irrigation run, as well as two cost functions, a 668 

Bayesian solution J and a KGE solution which resulted in four calibration experiments for each polarization (i.e., eight 669 

calibration experiments in total). 670 

The calibration experiments using simulations from the Natural run as input showed a limited performance and provided 671 

presumably bad vegetation parameter estimates which resulted in unrealistic peaks in the simulated σ0 during the summer, 672 

when driven by higher modelled LAI during this period. The inclusion of the irrigation within Noah-MP was very beneficial 673 

for all the calibration experiments helping in reducing the bias and increasing the correlation with Sentinel-1 σ0 as well as 674 

removing the anomalous σ0 increase during warm periods especially for the KGE-based calibration. This corroborates our 675 

initial hypothesis that, over intensively irrigated areas, the simulation of irrigation is a mandatory task for an optimal calibration 676 

of the WCM. Irrigation modeling, even if only done approximately and perhaps with inaccurate timing, reduces obvious land 677 

surface (soil moisture, vegetation) bias and avoids that the WCM needs to compensate for this bias.  678 
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Our results show overall higher performance in terms of KGE and Pearson-R scores for the KGE-based calibration, whereas 679 

the long-term bias was better reduced for the J-based calibration, which is beneficial in anticipation of future DA. This is 680 

because in the J cost function i) a target accuracy term which takes into account also the Sentinel-1 observations error is 681 

present; and, ii) a parameter deviation penalty based on the prior parameters constraints is used, which avoid parameters to 682 

largely deviate to their prior values.  683 

In terms of polarization, we found σ0 VH simulations much more sensitive to the inclusion of the irrigation (vs non inclusion) 684 

in Noah-MP, suggesting that observed σ0 VH might also contain much more information about irrigation (via the influence of 685 

the vegetation change due to irrigation) than that contained in σ0 VV which is normally used for SSM retrieval (Vreugdenhil 686 

et al. 2020). We believe that the cause of this is related to a comparatively larger σ0 of vegetation with respect to that of the 687 

soil when the crops are well developed. This was also corroborated by the better agreement between CR and LAI from PROBA-688 

V in one of the study sites mentioned above. Despite this, further investigations are required to confirm this hypothesis and 689 

DA will certainly help to test this aspect. 690 

5 CONCLUSIONS 691 

With the specific focus on intensively irrigated land, the main objective of this work was to define the optimal calibration of 692 

the WCM as observation operator for the future ingestion of Sentinel-1 backscatter into the Noah-MP LSM via DA. In this 693 

context, we additionally aimed at: 1) unveiling strengths and limitations of irrigation simulation in LSMs from the perspective 694 

of a calibrating the WCM; 2) identifying the potential irrigation-related information contained in the Sentinel-1 σ0 observations 695 

to improve soil moisture and vegetation states as well as irrigation estimates in a calibrated DA system. 696 

To reach these objectives we coupled the Noah-MP with a sprinkler irrigation scheme within LIS and performed two different 697 

simulation experiments, one with and one without irrigation (i.e., Natural and Irrigation runs). Moreover, we coupled a WCM 698 

with Noah-MP and tested different calibration options to prepare for optimal, future, assimilation of σ0 VV and VH to update 699 

both soil moisture and vegetation states. 700 

 The main conclusions drawn from our evaluation are as follows: 701 

● Over highly irrigated areas, the simulation of irrigation in LSMs helps to provide better soil moisture and vegetation 702 

simulations which can be used with benefit as input for the WCM calibration. However, the performance of the 703 

irrigation simulations is limited by the simplistic model parameterization of this human process and the necessity to 704 

consider realistic and updated land cover information (e.g., crop types). This results in poor simulations of the 705 

irrigation timing and quantities as well as vegetation dynamics.  706 

● The Sentinel-1 σ0 observations contain useful information about SSM and vegetation over highly irrigated areas. This 707 

information can be exploited to overcome LSM deficiencies in simulating soil moisture and vegetation over highly 708 

irrigated regions, e.g., when irrigation is unmodeled, or poorly modeled because of uncertainties due to crop types, 709 
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irrigation timing, and farmer agricultural practices. In particular, there is a high chance that the assimilation of 710 

Sentinel-1 σ0 can help in correcting LAI dynamics. 711 

● The optimal assimilation of Sentinel-1 σ0 into a LSM must rely upon a well calibrated WCM as observation operator 712 

to provide unbiased σ0 simulations with a minimal chance of having error cross-correlations between model and 713 

observations, while ensuring a realistic operator controllability or realistic connection between observed signals and 714 

land surface state variables. We demonstrated that calibrating the WCM with inclusion of irrigation modeling 715 

consistently led to a better agreement with Sentinel-1 σ0. The modeling of irrigation in the LSM simulations, even if 716 

not done optimally, avoids that the WCM calibration compensates for LSM biases.  717 

● We demonstrated that the WCM calibration with a Bayesian cost function, including a prior parameter constraint, 718 

provides the optimal WCM parameters, able to generate the lowest bias in the σ0 simulations for both VV and VH. 719 

Although slightly higher correlations are obtained when using a KGE cost function, unbiased estimates are 720 

particularly beneficial for DA as this minimizes the chance of potential error cross-correlation between model 721 

estimates and observations. 722 

This study improves the understanding of the LSM limitations in simulating irrigation and highlights the information content 723 

in Sentinel-1 σ0 data.  A natural follow up of this study is the assimilation of σ0 observations within Noah-MP which should 724 

enforce our tested evidence and provide new insights for a more realistic description of the water and carbon cycles over 725 

irrigated areas. 726 
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 989 

Figure 1:1: The study area and the two test sites of (a) Budrio and (b) Formellino. Data on the topography are obtained from 990 
ETOPO1 Arc-Minute Global Relief Model (Amante & Eakins, 2009). Map data ©2015 Google. 991 
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 993 

Figure 2: Re-gridded and reclassified input data used in the LIS framework: a) the PROBA-V LC map; and b) the HWSD soil 994 
texture map. 995 
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 998 

Figure 3: Flow chart of the experimental setup used in this study to calibrate the WCM σ0 signal. A Natural and an Irrigation 999 
experimental line was performed coupling either Noah-MP Natural or Irrigation simulations with the WCM. For each experimental 1000 
line σ0 simulations are driven by the Sentinel-1 signal using two different cost functions (J and KGE) in order to provide eight 1001 
different calibration experiments. 1002 



 

37 

37 

 

 1003 

 1004 



 

38 

38 

 

Figure 4: Maps of temporal Pearson-R between bi-weekly values of SSM from Noah MP and satellite retrievals: a) Natural run and 1005 
SMAP L2; b) Irrigation run and SMAP L2; d) Natural run and ASCAT; e) Irrigation run and ASCAT. Maps of the Pearson-R 1006 
differences display the grid-based difference between: c) map b and map a; f) map e and map d. The reference period is April 2015-1007 
December 2019. 1008 
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 1010 

Figure 5: Maps of temporal Pearson-R between dekadal values of LAI from PROBA-V LAI and Noah-MP LAI: a) Natural run; b) 1011 
Irrigation run. Map of Pearson-R differences between: c) map b and map a. Map of ratio bias of LAI from PROBA-V and Noah-1012 
MP: d) Natural run; e) Irrigation run. Additional histogram distributions from: f) map d and map e. The reference period is January 1013 
2015-October 2019. 1014 
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 1016 

Figure 6: Evaluation of SSM over the Budrio field 2, with (green) in situ PGR SM data, (light blue) SSM from Noah-MP Natural 1017 
and (orange) SSM from Noah-MP Irrigation. Additional information is provided in the bottom plot: b) observed irrigation (green), 1018 
simulated irrigation (orange) and observed rainfall (magenta) in mm/day 1019 
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 1021 

Figure 7: Sentinel-1 σ0 VV and VH data for the Budrio field 1 test site compared with Noah-MP SSM, for a) Natural and Irrigation 1022 
runs. Sentinel-1 CR (VH/VV) compared with PROBA-V LAI and Noah-MP LAI for b) Natural and Irrigation runs. Also shown are: 1023 
c) observed irrigation (in green) and simulated irrigation from Noah-MP (in orange). 1024 
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 1026 

Figure 8: Split violin distributions of the calibrated parameters over the entire study area for the eight calibration experiments. For 1027 
both the Natural (blue) and Irrigation (orange) experiments, the distributions are shown for the A, B, C, and D parameters, (a, b, c, 1028 
d) using the KGE objective function for VV polarization, (e, f, g, h) J objective function for VV polarization, (i, j, k, l) KGE objective 1029 
function for VH polarization, and (m, n, o, p) J objective function for VH polarization. Note that the areas under the histograms on 1030 
both left and right sides of the violins are automatically scaled for optimizing the visualization. 1031 
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 1032 

Figure 9  1033 

Figure 9. Maps of: a) A parameter; b) B parameter; c) C parameter; d) D parameter for the J-VV Natural calibration experiment. 1034 
Maps of: e) A parameter; f) B parameter; g) C parameter; h) D parameter for the J-VV Irrigation calibration experiment. 1035 
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 1036 

Figure 10: Split violin distributions of (a, b, c, d) Pearson-R, (e, f, g, h) KGE and (i, j, k, l) bias calculated between σ0 simulations and 1037 
observations for the validation period, for all the calibration experiments and considering only the cropland areas, using simulations 1038 
from the Natural run (left, green) and the Irrigation run (right, violet). The results are shown for VV (first two columns) and VH 1039 
(right two columns), and alternating for both the calibration with a J and KGE cost function. Note that the areas under the 1040 
histograms on both left and right sides of the violins are automatically scaled for optimizing the visualization. 1041 
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 1043 

 1044 

Figure 1011: Comparisons between σ0 observations (VV polarization in blue dots and VH polarization light blue dots) and 1045 
simulations (VV polarization in red and VH polarization in green) in the Faenza San Silvestro field, after calibration with a KGE 1046 
cost function for a) the Natural run, b) Irrigation run, and after calibration with the J cost function for c) the Natural, and d) Irrigation 1047 
run. 1048 

  1049 



 

47 

47 

 

 1050 

Code and Data availability. 1051 

Data from SMAP can be downloaded at https://nsidc.org/data/SPL2SMP_E/versions/4 1052 

Data from ASCAT are available at the website http://hsaf.meteoam.it/ 1053 

The Sentinel-1 backscatter data processing was done using Google Earth Engine’s Python interface and including standard 1054 

processing techniques 1055 

Data from PROBA-V are available at https://land.copernicus.eu/global/ 1056 

MERRA-2 data are available at MDISC, managed by the NASA Goddard Earth Sciences (GES) Data and Information Services 1057 

Center (DISC, https://disc.gsfc.nasa.gov/datasets?project=MERRA-2) 1058 

LIS input and general parameters tables are provided at https://portal.nccs.nasa.gov/lisdata_pub/data/ 1059 

In situ data are available under request to the original providers. 1060 
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Supplementary Material 

Table S1: The UMD-AVHRR 14 classes (Map code) classification (on the left) was used to reclassify the 23 classes-based PROBA-V 

LC map. On the right side of the table the PROBA-V land uses are displayed, together with the map codes for each land use. 

Additionally, the number of pixels, related to each class are shown, together with the UMD-AVHRR reclassification map code. 
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Figure S1:  1-km ESDAC root depth data; available at https://esdac.jrc.ec.europa.eu/content/european-soil-database-derived-data 

 

https://esdac.jrc.ec.europa.eu/content/european-soil-database-derived-data
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Figure S2: Maps of temporal Pearson-R between biweekly values of SSM from Noah MP: a) Natural run and SMAP L2; b) Irrigation 

run and SMAP L2; d) Natural run and ASCAT; e) Irrigation run and ASCAT. Maps of the Pearson-R differences display the grid-

based difference between: c) map b and map a; f) map e and map d. The reference period is April 2015-December 2019. 

 

Figure S3. Maps of RMSE between SSM from Noah MP and satellite retrievals: a) Natural run and SMAP L2; b) Irrigation run 

and SMAP L2; c) Natural run and ASCAT; d) Irrigation run and ASCAT. 
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Figure S4: Maps of: a) A parameter, b) B parameter,  c) C parameter, and d) D parameter for the J-VV Natural calibration 

experiment; e) A parameter; f) B parameter; g) C parameter; and h) D parameter for the J-VV Irrigation calibration experiment; i) 

A parameter, j) B parameter, k) C parameter, and l) D parameter for the J-VH Natural calibration experiment; m) A parameter, n) 

B parameter, o) C parameter, and p) D parameter for the J-VH Irrigation calibration experiment 
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Figure S5: Maps of: a) A parameter, b) B parameter,  c) C parameter, and d) D parameter for the KGE-VV Natural calibration 

experiment; e) A parameter; f) B parameter; g) C parameter; and h) D parameter for the KGE-VV Irrigation calibration experiment; 

i) A parameter, j) B parameter, k) C parameter, and l) D parameter for the KGE-VH Natural calibration experiment; m) A 

parameter, n) B parameter, o) C parameter, and p) D parameter for the KGE-VH Irrigation calibration experiment. 

 

 
 


