
Editor: Evaluation  

Dear Authors, 

Thank you for your detailed responses to the two reviews of your paper. As you can see, the reviews are both 

generally quite positive, but both reviewers have requested further discussion and clarification of the approach 

and methods. Please implement the suggested changes thoroughly and the manuscript will be further reviewed 

by myself and the referees. 

I look forward to reading your revised manuscript. 

Sincerely, 

Louise Slater 

Reply: 

We would like to thank the Associate Editor and all the Reviewers for the good feedbacks and valuable comments. 

We have now carefully updated our manuscript based on the comments below. As an additional note, during the 

revision process we found a bug in the script we used for extracting Sentinel-1 data, which resulted in a slight 

displacement (~1 km) of the Sentinel-1 dataset grid compared to the LIS Noah-MP grid. We reproduced the 

calibration experiments and updated Figures 7, 8, 9 (now 10) and 10 (now 11), the ones affected by our correction. 

We apologize for this mistake. Note that given the low variability of the Noah-MP SSM and LAI simulations at 

the 1 km scale no substantial differences were introduced. 

Please note: 

✔     All modifications are shown in red color both in the text and in this document. 

 

I. Reviewer#1 Evaluation and comments 

General Comment: 

Modeling irrigation in earth system models is facing different sources of uncertainties and utilizing satellite 

products via data assimilation could be an effective way to constrain and improve irrigation simulation and its 

effects on the terrestrial water, carbon, and energy cycles. This study evaluates the irrigation simulation in Noah-

MP, identifies the potential of Sentinel-1 observations in containing irrigation signals and discusses the potential 

of assimilating this observation into Noah-MP in improving irrigation simulation. I found the study interesting 

and valuable as the exploration of high-resolution remote sensing products in improving model representation of 

agricultural activities could be valuable in improving modeling of hydrological and carbon cycles under human 

regulation and in providing info for water management in the future. However, I do think there are some sections 

need to be improved and clarified, and further discussion is needed regarding revealing the benefits of assimilating 

the observations into the model. Please see my specific comments below: 

Reply. We thank the reviewer for articulating the relevance of the study and for the valuable comments. 

We will improve the manuscript based on the specific comments below.   

General Comment: 

(1) I found the abstract a bit misleading as the study is only exploring the potential of Sentinel-1 sigma-0 

observations in containing irrigation signals and providing evaluations in preparation for data assimilation 



instead of a data assimilation paper. For instance, it is difficult to connect WCM calibration with optimizing 

Noah-MP by reading only the abstract. I would suggest the authors to reorganize the second paragraph of 

the abstract to avoid vague statement of the scientific goal and the content of the study. 

  

Reply. We thank the reviewer for this valuable comment. This work indeed does not address the data 

assimilation of Sentinel-1 itself (which will be the subject of further research), but the preparation for 

an optimal data assimilation system which requires calibration of the observation operator (i.e., the 

WCM in our case). In this context, optimizing the land modelling system means optimizing a coupled 

system that includes the Noah-MP LSM and the WCM (used to simulate backscatter predictions). We 

do agree that the second paragraph needs reorganization and we have changed it as follows (lines 21-38 

of the track-changes version of the manuscript) 

This work represents the first and necessary step towards building a reliable LSM data assimilation system 

which, in future analysis, will investigate the potential of high-resolution radar backscatter observations 

from Sentinel-1 to improve irrigation quantification. Specifically, the aim of this study is to couple the 

Noah-MP LSM running within the NASA Land Information System (LIS), with a backscatter observation 

operator for simulating unbiased backscatter predictions over irrigated lands. In this context, we first tested 

how well modelled Surface Soil Moisture (SSM) and vegetation estimates, with or without irrigation 

simulation, are able to capture the signal of aggregated 1-km Sentinel-1 backscatter observations over the 

Po river Valley, an important agricultural area in Northern Italy. Next, Sentinel-1 backscatter observations, 

together with simulated SSM and LAI, were used to optimize a Water Cloud Model (WCM) which will 

represent the observation operator in future data assimilation experiments. The WCM was calibrated with 

and without an irrigation scheme in Noah-MP, and considering two different cost functions. Results 

demonstrate that using an irrigation scheme provides a better calibration of the WCM, even if the simulated 

irrigation estimates are inaccurate. The Bayesian optimization is shown to result in the best unbiased 

calibrated system, with minimal chance of having error cross-correlations between the model and 

observations. Our time series analysis further confirms that Sentinel-1 is able to track the impact of human 

activities on the water cycle, highlighting its potential to improve irrigation, soil moisture, and vegetation 

estimates via future data assimilation.   

(2)L 49-51: I didn’t get the logistics using “either…or…”. Are the authors trying to say one of the 

shortcomings of irrigation parameterization in existing studies is not specifying the source water (Ozdogan 

et al. 2010b, Evans and Zaitchik, 2008), and even if source water partitioning is considered in Nie et. al. 

(2018), it only includes groundwater irrigation, instead of dividing the source into different parts? Please 

clarify and rephrase. 

  

Reply. Thanks for this comment. The meaning of this sentence is exactly the one highlighted by the 

reviewer. In the LIS public source code it is possible to simulate irrigation without specifying the source 

of water or, as in Nie et al. (2018), to extract water from a simplified modelled groundwater such as in 

Noah-MP. In our specific case, this second option is not optimal considering that in the Po river valley 

the majority of irrigation water comes from surface water (i.e., the Po river). We have edited the text as 

follows at lines 53-58 (track-changes version of the manuscript):  

In earlier studies, attempts to simulate irrigation in LSMs have relied on different parameterizations of 

well-known irrigation systems (like sprinkler, flood, and drip systems; Ozdogan et al., 2010b; Evans and 

Zaitchik, 2008), making simplifying assumptions. For instance, in Ozdogan et al. (2010b) irrigation water 

is not withdrawn from a source (such as a river) but instead added as fictitious rainfall. In contrast, Nie et 

al. (2018) accounted for source water partitioning, albeit only partially, by considering groundwater 

irrigation. 

 (3) Why assuming a spatially distributed parameter sets (A, B, C, D) instead of a uniform distribution? I 

wonder whether the authors analyze the spatial pattern of the parameter distribution and is there any 

obvious patterns or stratifications of the parameters relating to soil types, climate types, or anything else? 



Showing this would help audience understand better the meaning of those parameters and relate that to 

why Natural and Irrigation runs lead to different calibration performance. 

Reply. Thank you for this comment. Note that the final objective of the WCM calibration is to reduce 

the long-term bias between Sentinel-1 and the simulated backscatter signal grid cell by grid cell, for 

future data assimilation experiments. Following previous works (Lievens et al. 2017; De Lannoy et al. 

2013; De Lannoy et al., 2014) we implemented a grid-based calibration instead of using a uniform 

distribution in order to take into account the spatial differences between observed and modelled 

backscatter caused by the model parameterization of soil and vegetation, and specific features in the 

observed footprint. This aspect has been clarified in the revised manuscript at lines 387-391 (track-

changes version): 

The A, B, C, and D parameters of the WCM (see section 2.4) were fitted separately to Sentinel-1 σ0 VV 

and VH observations, during the period January 2017 - December 2019. Following previous literature 

(Lievens et al., 2017b; De Lannoy et al., 2014; De Lannoy et al., 2013), we performed a grid cell-based 

calibration to account for the spatial variability in the simulated and observed σ0 signals that stems from 

specific features within the observed footprints as well as from the soil and vegetation parameterization of 

Noah-MP.  

We also analyzed the spatial pattern of the parameters and found a certain connection with land uses 

and soil texture as shown in Figure 2 of the manuscript. An example of parameter maps is reported in 

Figure R1 for the J-VV Natural and J-VV Irrigation experiments. Generally, the activation of the 

irrigation scheme seems to reduce the dependency of the vegetation parameters to the soil texture (see, 

for instance, the low A-values within the triangle structure at the eastern side of the study area in the 

Natural experiment --Figure R1 a --, which do not appear in the Irrigation experiment --Figure R1 e). 

On the other hand, the C and D parameters, which refer to the bare soil backscatter, seem to be more 

dependent on the soil texture in the Irrigation experiment (Figures R1g and R1h). Here, the big central 

triangle structure is highlighted as compared to the Natural experiment (lower C values and higher D 

values). In this area, the sandy-loamy soil allows more irrigation water than the less permeable silty-

loam texture of the eastern triangle structure. 

 

Figure R1. Maps of: a) A parameter; b) B parameter; c) C parameter; d) D parameter for the J-VV Natural calibration 

experiment. Maps of: e) A parameter; f) B parameter; g) C parameter; h) D parameter for the J-VV Irrigation 

calibration experiment. 

We agree that showing maps of parameters can result in a better understanding of the different 

calibration experiments and we have added figure R1 in the main text (while all the maps of calibrated 

parameters -Figures S4 and S5- were added in the Supplementary material). Additionally, a specific 

paragraph to discuss this aspect has been reported at lines 536-544 of Section 3.3 (track-changes version 

of the manuscript):  

Figure 9 shows the spatial pattern of the parameters over the study area to better understand the differences 

between the Natural and Irrigation calibration runs. We found a connection between the WCM parameters 

distribution and model parameters, in particular with the HWSD soil texture map (shown in Figure 2). For 



both the J-VV Natural and J-VV Irrigation experiments, the activation of the irrigation scheme reduces the 

dependency of the vegetation-related parameters A and B on soil texture (Figures 9a-b for the J-VV Natural 

and Figures 9e-f for the J-VV Irrigation experiment). This is also shown in the parameter maps of the KGE 

calibration experiments (Figure S5 in the Supplementary material). Additionally, the activation of the 

irrigation scheme, more realistically, shifts the soil texture dependency towards the soil parameters C and 

D (Figures 9g and 9h), highlighting another important reason for simulating irrigation.   

 (4) Irrigation affects SSM and LAI, leading to different parameter distribution in WCM calibration 

process. However, there are mixed results when evaluating against observed SSM and LAI products. For 

instance, Irrigation run provides improved estimation of LAI magnitude, while degradation in LAI 

temporal variability. I wonder whether the authors can calibrate the WCM model using the observed SSM 

and LAI product, and compare the difference in parameter distribution. How does that look like and what 

could be the uncertainties in retrieving these parameters purely depending on Noah-MP or depending on 

observations? In other words, could the authors elaborate the discussion on the uncertainty of the 

calibrated parameters and for example quantify how capturing the LAI magnitude vs. LAI temporal 

variation would contribute to the calibration of WCM? 

Reply. Thanks for pointing this out. The optimal calibration of WCM is indeed a challenging task and 

can be implemented by following different strategies depending on the final target. In this particular 

case, our goal is to build an observation operator tuned on model inputs to support future data 

assimilation experiments. Therefore, model-based SSM and LAI should be used in principle. On the 

other hand, while using observed 1km-SSM is practically unfeasible (as these data are normally not 

available at this resolution but from backscatter, e.g., from S1) the use of PROBA-V-based LAI can be 

a valuable alternative to model-based LAI. This would indeed allow us to overcome the problem of the 

mismatch of the temporal dynamic between the true and modelled vegetation caused by the model 

parameterization of irrigation. However, a preliminary assessment shows very different LAI time series 

from different satellite sensors, which are also missing a lot of data due to cloud cover. Imposing the use 

of an observed LAI product can therefore also introduce additional bias in the backscatter model 

simulations, undermining the optimality of the data assimilation experiments. We have added some text 

to discuss this aspect in the revised version of the manuscript at lines 664-670 (track-changes version of 

the manuscript):  

One way to avoid parameters compensation for erroneous LSM input into the WCM would be to use 

observed time series of e.g. LAI. However, LAI products from different sensors have different biases 

themselves which can add bias to the σ0 simulations, and more importantly, replacing simulated LAI or 

SSM with external datasets would undermine the possibility of updating these variables in the future 

assimilation system. Based on that, we performed the WCM calibration considering SSM and LAI model 

input from two different experiments: a Natural run and an Irrigation run, as well as two cost functions, a 

Bayesian solution J and a KGE solution which resulted in four calibration experiments for each polarization 

(i.e., eight calibration experiments in total). 

(5) L349-352: I didn’t quite understand the rationale of “minimizing the impact of the irrigation signal 

already contained in sigma-0 observations”. Why activating irrigation can minimize this impact? And if 

the impact is minimized, how you can utilize the irrigation related info in data assimilation if detectable in 

sigma-0 observations? Please clarify. 

Reply. Thanks for this comment. As discussed in the introduction at lines 125-131 (track-changes 

version), if the WCM inputs (SSM and LAI from Noah-MP) miss crucial processes such as irrigation, 

then the WCM calibration (tuned on Sentinel-1, which theoretically contains the irrigation signal) will 

compensate for this bias providing correlated errors between the WCM and observations in the future 

data assimilation experiments. Activating the irrigation scheme reduces this risk, as SSM and LAI 

inputs from Noah-MP contain the irrigation signal and the calibration system will not be “forced” to 

correct for unmodelled processes. We rephrased the sentence and added additional specifications in the 

revised version of the manuscript at lines 370-376 (track-changes version): 

 



An optimal DA system requires long-term unbiased σ0 simulations (with respect to the assimilated 

observations). The risk, over an intensively irrigated area, is that an unmodelled irrigation signal would 

manifest itself as a predominant bias in the σ0 simulations. The calibration would then inadvertently correct 

for this supposed bias (i.e., the irrigation signal), thus preventing the DA system from propagating the 

missing irrigation signal from the observations into the model. Even though existing irrigation schemes are 

evidently unrealistic and inaccurate, we conjecture that using such a scheme when calibrating the WCM 

will more likely yield optimal WCM parameters than when neglecting irrigation.   

(6) The simulation is performed at 0.01 deg while part of the evaluation is conducted at field level, the area 

of which is much smaller than the model space. Could the authors discuss the uncertainties that might be 

associated with this evaluation due to the scale mismatch? 

Reply. Thanks for this comment. We think that the reviewer has highlighted a crucial point, especially 

when modelling human activities such as irrigation. One of the most critical aspects of irrigation 

validation is given by the lack of irrigation benchmark data (Foster et al., 2020). In this specific case, we 

decided to not exclude the Budrio test site notwithstanding the scale difference between the size of test 

site and the model grid size. The second aspect is that we realized evaluations at different scales: 1) 

regional (the entire study area); 2) small-district (Faenza test site); and 3) plot scale (Budrio fields). 

Indeed, while the Budrio test site is composed by plots of about 0.4 hectares, the analysis over the Faenza 

test site (see Figure 10) refers to an area of 270 ha which is comparable with the model estimates. 

Furthermore, it has to be noted that we have selected an intensively irrigated area. Maps such as the 

Global Rainfed Irrigation Paddy Areas (GRIPC; Salmon et al., 2015) confirm that the Po river valley is 

almost entirely irrigated, thus reducing the risk to find non-irrigated fields within the 1-km LIS grid. 

We are aware that additional limitations in our approach could be related to crop/field specific timing 

and magnitude of irrigation but at the moment, large-scale high resolution input (i.e., dynamic crop 

maps) are not available for LSM simulations and we think that 0.01° spatial resolution is a good 

compromise between analysis on a regional, small-district and plot scale. We have specified the 

difference between Budrio fields and the Faenza test site spatial scale analysis in the study area 

description at lines 185-186 and 200-201 (see section 2.1): 

● For an analysis at plot scale we selected the Budrio test site (Figure 1a), an experimental farm managed 

by the CER authority which includes two plots of 0.39-0.49 ha. 

● The second test site (Figure 1b) is located around the city of Faenza (hereafter Faenza test site) and has 

a total extent of 1051 ha, consisting of two fields which allow an analysis at the small-district spatial 

scale.  

Additionally, the following specification was added at lines 405-412 (track-changes version): 

The evaluation was carried out on both the regional scale (i.e., over the entire study area) and on the two 

selected sites, Faenza (small-district scale) and Budrio (plot scale), where irrigation data were available. 

Considering the lack of benchmark data for irrigation evaluation (Foster et al., 2020) we decided to use in 

situ data for the small Budrio fields spatial scale (i.e., 0.45-049 Ha) even though model simulations are 

made at a much coarser resolution (i.e., ~1 km). We are aware that differences in spatial scale can increase 

the uncertainty of our evaluation, but 0.01° LSM spatial resolution is still a good compromise for an 

analysis at regional, small-district and plot scale. Additionally, limitations are partly reduced by the low 

chance of including non-irrigated fields within the 1 km LIS grid cells within the Po River Valley, as the 

latter is almost entirely irrigated (Salmon et al., 2015).    

(7) Figure 7 (a): could the authors elaborate a bit why simulated soil moisture can be directly compared to 

the VV and VH data, and what might be the difference between the VV and VH data regarding the detection 

of soil moisture? What might be the reason for negative correlation between simulated SSM and VH for 

both Natural and Irrigation runs? 

Reply. Thanks for highlighting this aspect. VV polarization of radar backscatter is more strictly linked  

to SSM information than VH signal though both of them include information on soil properties (see 

Gruber et al., 2013; Wagner et al., 2013; Bauer-Marschallinger et al., 2018). For instance, Baghdadi et 

al. (2017) found that the soil’s contribution to total backscattering coefficient is lower in VH than in VV 



because VH is more sensitive to vegetation cover and that the use of VH alone to retrieve soil moisture 

is suboptimal when vegetation cover is well developed. In this context, the cross-polarization backscatter 

(i.e., HV and VH signals) was found to be well related to vegetation in previous studies (i.e., Ferrazzoli 

et al., 1992; Macelloni et al., 2001). Based on that, we compared soil moisture directly with VV (and to 

VH to understand the soil contribution to it) and CR with LAI.  This also provides insights about the 

potential of VV and VH to update soil moisture and vegetation. To better address this aspect we added 

the following text at lines 490-492 (section 3.2): 

Although the σ0 VV is generally used to retrieve SSM (Wagner et al., 2013; Gruber et al., 2013; Bauer-

Marschallinger et al., 2018), data at both polarizations were analyzed in order to understand the soil 

contribution contained in the two signals. 

Additional text was also added at lines 498-500 (section 3.2): 

On the other hand, σ0 VH seems to provide poor performances also when irrigation is simulated, with a 

Pearson-R value equal to 0.06, confirming findings by Baghdadi et al. (2017) which highlighted how the 

use of VH alone to retrieve SSM is suboptimal when vegetation cover is well developed. 

(8) L462-463: It is encouraging to see that the CR has a strong relation to the vegetation signal and could 

be potentially used to correct the simulated vegetation phenology. However, I was confused how exactly 

this calibration framework could be introduced to Noah-MP DA? Are you suggesting approximating CR 

to LAI and directly assimilating CR into the model? Or if you are using calibrated parameter to assimilate 

into Noah-MP, how does the CR information is going to be ingested? I would suggest the authors to clarify 

and provide more in detail how the current study is connected to assimilating sigma-0 observations into 

Noah-MP as I found it is unclear throughout the text. 

Reply. Thank you for this comment. Firstly, we plan to couple the WCM with Noah-MP in LIS. The 

WCM is our observation operator, which means that the parameters obtained from the calibration will 

be used to simulate observation predictions (σ0-VV and σ0-VH) in LIS using the WCM. Considering 

that the update of a state variable in a data assimilation system depends on its covariance with the 

backscatter observations, we plan to implement different experiments (i.e., assimilate VV to update 

SSM, VH to update LAI, or both VV and VH to update SSM and LAI simultaneously for instance). 

Another option, indeed, could be to directly assimilate the CR to update LAI. This is a future step which 

will be discussed in the following work focusing on ingestion of Sentinel-1 backscatter to improve 

irrigation quantification. We have introduced the following clarification in the Discussion section 4.1 at 

lines 645-648: 

On the other hand, considering the low correlation between the VH signal and SSM in presence of 

vegetation (Baghdadi et al. 2017), and its close relation with vegetation (Ferrazzoli et al., 1992; Macelloni 

et al., 2001), future data assimilation experiments will investigate the contribution of VH and CR in 

improving LAI predictions and irrigation quantification. 

(9) L486-491: Why a more uniform distributed C and D is more realistic? If so, why the calibrated 

parameters are designed to be spatially distributed? 

Reply. Thanks for this comment. We agree with the reviewer that this aspect needs more clarification. 

We meant that the Natural experiment provided parameter values more squeezed towards the 

lower/upper defined boundaries. This means that the parameters are not well constrained and optimized 

while the Irrigation experiment shows a higher spread in the parameters. In this context, as suggested 

by the reviewer we have also added a spatial analysis of the results (the Reviewer can refer to the reply 

to comment 3), showing that the C and D parameters are more influenced by the soil moisture dynamics 

in the Irrigation experiments. We have removed the term “uniform” at lines 529-535 of section 3.3: 

The C and D parameter distributions feature a better sensitivity to soil moisture dynamics using the 

Irrigation run input data, which is the expected behaviour considering that they describe the σ0
soil. This is 

true especially when using the J cost function (see parameters distributions for the J-VV Natural and for 

the J-VV Irrigation experiments in Figures 8g and 8h), which results in more spread in the calibrated C 

and D distributions for the Irrigation simulations (especially in VV polarization), whereas the mode of the 



C and D parameter distributions for the Natural experiments is more shifted to the upper and lower 

boundaries, respectively.  

(10) What is the benefit of assimilating sigma-0 observations instead of directly assimilating LAI or SSM 

products? I think the authors should discuss and highlight the benefit of assimilating sigma-0 observations 

in both introduction section and results section. 

 

Reply. Thanks for this comment. We partly discussed this methodological choice in the introduction 

section. As reported in De Lannoy et al. (2016), a critical aspect in directly assimilating SSM retrievals 

is that potentially inconsistent ancillary data are used in the assimilation system and in the retrieval 

algorithm that generates SSM observations. Furthermore, active MW retrievals typically use change 

detection methods (Wagner et al., 2013; Bauer-Marshallinger et al., 2018a) which lack land-specific 

information. This means that the 'error management' within the data assimilation system is theoretically 

more transparent when assimilating backscatter observations. Using microwave observations allows us 

to have consistent parameters between the LSM and the radiative transfer model (in our case the WCM) 

and to avoid cross-correlated errors between model states and corresponding geophysical satellite 

retrievals. Furthermore, top-class SM retrieval algorithms for S1 are still under development (for 

instance, the 1 km Sentinel-1 SSM available at the Copernicus Global Land Service website Bauer-

Marshallinger et al. (2018) does not include yet a correction for vegetation), so relying upon backscatter 

observations might be advantageous. 

We added the following text in the introduction section at lines 102-109: 

The assimilation of MW RS observations in LSMs often involves retrieval assimilation. However, 

assimilating retrievals (i.e., SSM or vegetation optical depth rather than MW brightness temperature or σ0 

measurements) can be problematic as the retrievals may have been produced with ancillary data that are 

inconsistent with those used in the LSM (De Lannoy et al., 2016). This is particularly true for passive MW 

retrievals while active MW retrievals generally rely on change detection methods that lack land-specific 

ancillary information altogether. An alternative approach, which we follow in this study, is to directly 

assimilate MW observations and equip the LSM with an observation operator that links land surface 

variables of interest (e.g., soil moisture and vegetation) with RS data. This allows us to obtain consistent 

parameters and to reduce the chance of cross-correlated errors between model states and corresponding 

geophysical satellite retrievals. 

Technical corrections:  

L57: remove “to” after “from”. 

Reply. Thanks for this comment. We have corrected the text. 

L102: “focussed” -> “focused”. 

Reply. Thanks for this comment. We have corrected the text at line 114. 

L195: Add a space between and “observations” 

Reply. Thanks for this comment. We have corrected the text. 

L528 & L530: “Table 3” should be “Table 2”? 

Reply. Thanks for this comment. We have corrected the text at line 581. 

 

 

 

 



 

II. Reviewer#2 Evaluation and comments 

General Comment: 

Irrigation is the largest human intervention in the water cycle, yet it is poorly represented in the land 

surface (LSM) and hydrological models. One way to account for irrigation is by assimilating the 

observations that contain the irrigation signal, such as radar backscatter (σ0) or satellite soil moisture 

retrieval. One important step prior to the assimilation is removing biases between the model and the 

observation through calibration. In this study, the Noah MP model is coupled with a backscatter 

observation model (WCM), and Sentinel-1 σ0 observations were used to calibrate the model. Furthermore, 

the impact of activating the irrigation schemes within the Noah MP model, using different backscatter 

polarization (VV or VH) and cost functions in model calibration, is investigated. I found the study 

interesting; however, as a calibration study, I expected that the results be more focused on the calibration 

rather than evaluating the performance of the LSM. I also have some concerns regarding the mixed results 

obtained regarding the activation of the irrigation module. Please see my comments for detail: 

Reply. We would like to thank the reviewer for this general comment and for the interest in the 

manuscript. We will implement the following specific comments more in depth.  

Specific comments: 

(1) L175: The size of the Budrio test sites is much smaller than the model resolution (almost 1/200 of 

the model spatial resolution). I do not think it is a good choice for validation purposes. 

Reply. Thanks for this comment. We agree that this is a crucial point, especially when modelling human 

activities such as irrigation. One of the most critical aspects of irrigation validation is given by the lack 

of irrigation benchmark data (Foster et al. 2020). In this specific case, we decided to not exclude the 

Budrio test site considering the reliability of the data over the fields. The second aspect is that we realized 

evaluations at different scales: 1) regional (the entire study area); 2) small-district (Faenza test site); 

and 3) plot scale (Budrio fields). Indeed, while the Budrio test site is composed by plots of about 0.4 

hectares, the analysis over the Faenza test site (see Figure 10) refers to an area of 270 ha which is 

comparable with the model estimates. Furthermore, it has to be noted that we have selected an 

intensively irrigated area. Maps such as the Global Rainfed Irrigation Paddy Areas (GRIPC; Salmon 

et al., 2015) confirm that the Po river valley is almost entirely irrigated, thus reducing the risk to find 

non-irrigated fields within the 1-km LIS grid. We are aware that additional limitations in our approach 

could be related to crop/field specific timing and magnitude of irrigation but at the moment, large-scale 

high-resolution input (i.e., dynamic crop maps) are not available for LSM simulations and we think that 

0.01° spatial resolution is a good compromise between analysis on a regional, small-district and plot 

scale. We have specified the difference between Budrio fields and the Faenza test site spatial scale 

analysis in the study area description at lines 185-186 and 200-201 (see section 2.1): 

● For an analysis at plot scale we selected the Budrio test site (Figure 1a), an experimental farm managed 

by the CER authority which includes two plots of 0.39-0.49 ha. 

● The second test site (Figure 1b) is located around the city of Faenza (hereafter Faenza test site) and has 

a total extent of 1051 ha, consisting of two fields which allow an analysis at the small-district spatial 

scale.  

Additionally, the following specification was added at lines 405-412 (track-changes version): 

The evaluation was carried out on both the regional scale (i.e., over the entire study area) and on the two 

selected sites, Faenza (small-district scale) and Budrio (plot scale), where irrigation data were available. 

Considering the lack of benchmark data for irrigation evaluation (Foster et al., 2020) we decided to use in 

situ data for the small Budrio fields spatial scale (i.e., 0.45-049 Ha) even though model simulations are 

made at a much coarser resolution (i.e., ~1 km). We are aware that differences in spatial scale can increase 

the uncertainty of our evaluation, but 0.01° LSM spatial resolution is still a good compromise for an 



analysis at regional, small-district and plot scale. Additionally, limitations are partly reduced by the low 

chance of including non-irrigated fields within the 1 km LIS grid cells within the Po River Valley, as the 

latter is almost entirely irrigated (Salmon et al., 2015).    

(1) L300-305: It is not indicated which vegetation indicator (VWC, NDVI, or LAI) is finally chosen 

to represent V1 and V2 in equation 2 and 3. Moreover, it is not clear whether it is assumed that V1=V2 

and a unique descriptor is used for both of them or not? According to the rest of the paper, I suppose that 

LAI is the chosen vegetation indicator, but I think this should be explicitly mentioned here. 

Reply. Thanks for this comment. We agree with the reviewer. This point is not explicitly mentioned. We 

have added the following explanation in the text at lines 321-323 of Section 2.4: 

Following previous studies (see Lievens et al, 2017b; Baghdadi et al. 2017; Li and Wang, 2018) we 

assumed V1=V2 represented by the dynamically simulated LAI vegetation descriptor.  

(2) Section 2.4: As mentioned in L95, assimilating the SSM or VWC retrieval instead of MW 

brightness temperature or σ0 can be problematic due to inconsistent ancillary data used in their 

production, and σ0 is a better choice for assimilation. However, as is explained in section 2.4, assimilation 

of σ0 requires the NOAH MP model to be coupled with a WCM model to simulate σ0. In turn, the WCM 

model has many empirical parameters and simplifying assumptions such as not accounting for scattering 

interactions between ground and vegetation and assuming a linear relation between soil σ0 and the SSM 

that can increase the uncertainty of the estimated σ0. Given this, can the authors clarify why assimilating 

σ0 is a better choice relative to the assimilation of SSM and VWC? 

Reply. Thanks for this comment. We partly discussed this methodological choice in the introduction 

section. As reported in De Lannoy et al. (2016), a critical aspect in directly assimilating SSM (or VWC) 

retrievals is that potentially inconsistent ancillary data are used in the assimilation system and in the 

retrieval algorithm that generates SSM observations. Furthermore, active MW retrievals typically use 

change detection methods (Wagner et al., 2013; Bauer-Marshallinger et al., 2018a) which lack land-

specific information. This means that the 'error management' within the data assimilation system is 

theoretically more transparent when assimilating backscatter observations. Using microwave 

observations allows us to have consistent parameters between the LSM and the radiative transfer model 

(in our case the WCM) and to avoid cross-correlated errors between model states and corresponding 

geophysical satellite retrievals. Furthermore, top-class SM retrieval algorithms for S1 are still under 

development (for instance, the 1 km Sentinel-1 SSM available at the Copernicus Global Land Service 

website Bauer-Marshallinger et al. (2018) does not include yet a correction for vegetation), so relying 

upon backscatter observations might be advantageous. 

We added the following text in the introduction section at lines 102-109: 

The assimilation of MW RS observations in LSMs often involves retrieval assimilation. However, 

assimilating retrievals (i.e., SSM or vegetation optical depth rather than MW brightness temperature or σ0 

measurements) can be problematic as the retrievals may have been produced with ancillary data that are 

inconsistent with those used in the LSM (De Lannoy et al. 2016). This is particularly true for passive MW 

retrievals while active MW retrievals generally rely on change detection methods that lack land-specific 

ancillary information altogether. An alternative approach, which we follow in this study, is to directly 

assimilate MW observations and equip the LSM with an observation operator that links land surface 

variables of interest (e.g., soil moisture and vegetation) with RS data. This allows us to obtain consistent 

parameters and to reduce the chance of cross-correlated errors between model states and corresponding 

geophysical satellite retrievals. 

 

(3) L356: Another interesting comparison would be comparing the performance of a third calibration 

approach which is, deactivating the irrigation scheme and calibrating the model only during the non-

irrigated season, with the current approach (activating the irrigation scheme and calibrating for the entire 

period) during the non-irrigated season. This would also be an interesting comparison for the future study 



in which σ0  will be assimilated to see whether calibrating during the irrigation season with the activated 

irrigation module is beneficial for the ultimate goal of irrigation quantification or not. 

Reply. Thanks for this comment. We tested the additional calibration option of removing the irrigated 

periods (i.e., summer) when the irrigation scheme is deactivated. We noticed a saturation of the 

vegetation parameters (especially the A parameter) through the upper boundary over the cropland 

areas resulting in awkward simulations during the summer, affected by very high peaks in the 

backscatter signal (especially affecting the backscatter VV polarization). This can be explained by the 

higher contribution to the signal by the SSM (which is higher during the winter) and the relatively lower 

LAI. This prompts the vegetation parameters to be pushed towards their upper boundaries. An example 

of parameters maps for the KGE-VV Natural experiment, removing the irrigation period, is shown in 

Figure R2 below. Figure R2e below compares the Sentinel-1 and the WCM signals over a pixel in the 

cropland area where A reaches a value of 0.4 [-] (upper boundary). The blue time series, representing 

the WCM signal, clearly shows the anomalous peaks during the summer period. 

 

Figure R2. Maps of: a) A parameter; b) B parameter; c) C parameter; d) D parameter for the KGE-VV Natural 

calibration experiment, realized removing summer irrigation period. e) Time series of simulated and observed 

(Sentinel-1) backscatter for an example grid cell. 

(4) L405-416: I am not convinced that the improvement in the simulation of SSM by Noah MP is due 

to the activation of the irrigation module for two reasons: 

● In most of the previous studies, it is shown that coarse-scale MW products are not able to detect 

irrigation signals at the plot scale (e.g., Brocca et al., 2019, Zaussinger et al., 2018, Dari et al., 2020) unless 

there is intensive flood irrigation over a large area such as California central valley in which fields are 

flooded, and the water level is sustained throughout the irrigation season (Lawston et al., 2017). 

Moreover, to have a fair comparison, other metrics such as RMSE or bias should also be reported 

alongside the Pearson correlation (R). 

● The deterioration in LAI simulation when irrigation is activated makes more sense to me as the 

spatial resolution of the Proba-V LAI product is 1km, and the possibility of detecting the irrigation signal 

is higher relative to the coarse-scale SSM products. 

Please comment on this. 

Reply. Thanks for this comment. The work by Zaussinger et al. (2018) and Dari et al. (2020) refer to 

different study areas (CONUS in the first case and Spain for the second study). On the other hand, in 

the work by Brocca et al. (2019) the Authors selected only two neighbouring pixels (25 × 25 km²) located 

in the Po river valley, a much smaller area as compared to the one analyzed in this study. The Po river 

Valley is one of the largest and most intensively irrigated areas in Europe so it is very likely that the 

contribution of the irrigation in the coarse-scale SSM is visible especially at biweekly temporal scale 

(i.e., the majority of the land within the satellite footprint is irrigated). We have calculated the RMSE 



as an additional metric for the SSM evaluation rescaling the satellite products based on the long-term 

mean and standard deviation of the modelled data. Results are shown in Figure R3 below confirming 

that the activation of the Irrigation scheme provides an improvement in performances also in terms of 

RMSE for both the satellite products. For instance, figure R3c shows a median RMSE=0.039 when 

comparing ASCAT and Noah-MP SSM Natural runs, while Figure R3d, which compares the ASCAT 

and Noah-MP SSM Irrigation runs, displays an improvement in performance with a decrease in the 

median value of RMSE to 0.034 m3/m3. An additional confirmation that the improvement can be 

attributed to the Irrigation scheme is given by the large enhancement observed over the entire Po river 

valley cropland area, but particularly over the central triangle feature which is classified as sandy-loam 

in the soil-texture input data. We introduced this additional analysis at Section 2.7 (lines 420-422 of the 

track-changes version of this manuscript): 

For SSM, we also computed the Root Mean Square Error (RMSE), calculated considering the original 

temporal resolution of the satellite products, while for LAI, we also tested the ratio bias, i.e., the ratio 

between the long-term mean of the simulations and the long-term mean of observations. 

An additional discussion about this aspect has been added at lines 450-456 at the Results section 3.1: 

Results in Figure 4 were confirmed by analyzing the RMSE between satellite SSM products and Noah-MP 

simulations for both the Natural and Irrigation runs, after rescaling them based on their mean and standard 

deviation, because SSM retrievals and SSM simulations do not have the same units. Results are displayed 

in Figure S3 of the Supplementary material and show, for both the satellite products, a general reduction 

in RMSE when compared with the Irrigation run. An improvement in performances can be observed over 

the entire cropland area, in particular over the central triangle feature where sandy-loam soil texture is 

present and where, consequently, more irrigation is simulated in the model due to the higher permeability 

of the soil.  

And in the discussion section 4.1 at lines 618-620 the following specifications have been added: 

For both products, we found large improvements in temporal Pearson-R when irrigation was simulated, 

confirmed by a decrease in the RMSE values over croplands, suggesting that the activation of irrigation 

modelling provides more realistic SSM estimates. 

 

Figure R3. Maps of RMSE between SSM from Noah MP and satellite retrievals: a) Natural run and SMAP L2; b) 

Irrigation run and SMAP L2; c) Natural run and ASCAT; d) Irrigation run and ASCAT.  

For the second point, we agree with the Reviewer. The higher spatial resolution of the Proba-V results 

in finer spatial details such as crop state due to plot-specific agricultural practices, the unknown yearly 

variability of the crop types or the impact of the meteorological conditions in the stakeholders decision 



process, as we already explained at lines 622-637. Those features are scarcely reproducible in the model 

when irrigation is activated (for the simplified parameterization of the irrigation process). Furthermore, 

temporal dynamics in LAI are clearly more sensitive to root zone soil moisture which might be more 

difficult to simulate than SSM during the irrigation season due to very likely larger impact of the soil 

texture and transpiration processes along with the high frequency of the wetting and drying caused by 

irrigation events. We have added to the already mentioned discussion the following text at lines 631-634 

(track-changes version): 

Another important aspect affecting LAI simulations is its sensitivity to root zone soil moisture, which might 

be more difficult to simulate than SSM during the irrigation season due to larger impacts of the soil texture 

and transpiration processes along with the high frequency of the wetting and drying phases caused by 

irrigation events. 

(5) L435-446: I think the part of this significant difference between simulated and observed 

irrigation and missing the irrigation events is related to the spatial mismatch between the model and the 

test site, as it is mentioned in the first comment. Please comment on this. 

Reply. Thanks for this comment. The reviewer can refer to the reply to comment (1)  
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