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Abstract. In Ethiopia more than 80 % of big freshwater lakes are located in the Rift Valley Lake Basin (RVLB), serving over 

15 million people a multipurpose water supply. The basin covers an area of 53,035 km2, and most of the catchments recharging 

these lakes are ungauged and their water balance is not well quantified, hence limiting the development of appropriate water 10 

resource management strategies. Prediction for ungauged basins (PUB) has demonstrated its effectiveness in hydro-climatic 

data-rich regions. However, these approaches are not well evaluated in climatic data-limited conditions and the consequent 

uncertainty is not adequately quantified. In this study we use the Hydrologiska Byråns Vattenbalansavdelning (HBV) model to 

simulate streamflow at a regional scale using global precipitation and potential evapotranspiration products as forcings. We 

develop and apply a Monte-Carlo scheme to estimate model parameters and quantify uncertainty at 16 catchments in the basin 15 

where gauging stations are available. Out of these 16, we use the 14 most reliable catchments to derive the best regional 

regression model. We use three different strategies to extract possible parameter sets for regionalization by correlating the best 

calibration parameters, the best validation parameters, and parameters that give the most stable predictions with catchment 

properties that are available throughout the basin. A weighting scheme in the regional regression accounts for parameter 

uncertainty in the calibration. A spatial cross-validation is applied multiple times to test the quality of the regionalization and 20 

to estimate the regionalization uncertainty. Our results show that, other than the commonly used best-calibrated parameters, 

the best parameter sets of the validation period provide the most robust estimates of regionalized parameters. We then apply 

the regionalized parameter sets to the remaining 35 ungauged catchments in the RVLB to provide regional water balance 

estimations, including quantifications of regionalization uncertainty. The uncertainties of elasticities from the regionalization 

in the ungauged catchments are higher than those obtained from the simulations in the gauged catchments. With these results, 25 

our study provides a new procedure to use global precipitation and evapotranspiration products to predict and evaluate 

streamflow simulation for hydro-climatically data-scarce regions considering uncertainty. This procedure enhances the 

confidence to understand the water balance of under-represented regions like ours and supports the planning and development 

of water resources. 

Keywords: Parameter Estimation, Uncertainties, Ungauged Catchment, Weighted Regression, Water Balance 30 

1 Introduction 

Global freshwater is particularly stressed by the rapidly increasing human population and by all the negative consequences of 

environmental change. Hydrological quantification of freshwater resources is crucial to manage and mitigate these impacts, 

and consequently promote the benefits gained from the resources. As such, there is a growing need for accurate monitoring and 

simulation of water balance components to support and maximize water resource management practices. In Ethiopia most of 35 
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the freshwater lakes are bounded in the Great East African Rift Valley system, which was formed by volcanic depressions and 

cracks in the Pliocene age (Woldegabriel et al., 1990). The region is known for its scarce and limited hydro-climatic data, which 

has limited the regional understanding of water balance processes. In many developing regions in the world, hydro-climatic 

stations are not sufficiently established due to a limited amount of economic and technological development (Stokstad, 1999). 

In the Ethiopian Rift Valley Lake Basin (RVLB), even the data in the few available gauging networks are of poor quality, 40 

contain gaps, and are subjected to human disturbances. Consequently, the region has remained one of the least studied regions 

in Ethiopia. Due to the data scarcity issue, there lacks hydrological simulations using available rainfall-runoff models in poorly 

managed catchments across the world. New approaches utilizing global datasets and quantifying uncertainties will be helpful 

for those data scarce regions. 

The Prediction for ungauged basins (PUB) initiative aims in particular at developing strategies for increased understanding and 45 

reduced uncertainty in data-sparse regions (Blöschl et al., 2011; Sivapalan et al., 2003). Studies have started to focus on 

ungauged catchment predictions (Sivapalan et al., 2003; Wagener et al., 2004). Two general approaches have been used for 

predictions in ungauged basins; the first one estimates model parameters from the calibrated model parameters based on 

selected objective functions (Wagener and Wheater, 2006); the second is a model-independent approach, which uses 

streamflow signatures to establish constraints that can describe the physical and climatic characteristics of watersheds (Wagener 50 

and Montanari, 2011). The latter has been shown to reduce uncertainties that can emerge from the model structural error 

(Bárdossy, 2007; Kapangaziwiri et al., 2012; Singh et al., 2013; Yadav et al., 2007; Zhang et al., 2008). Gauged watersheds 

with sufficient climatic data are used to develop regional relationships between the streamflow signatures and the catchment 

properties of watersheds. This approach has shown skill in predicting the expected streamflow in ungauged catchments 

especially when going along with quantification of uncertainties emerging from observed streamflow data (Westerberg et al., 55 

2016). But recent work also showed that the information content of streamflow signatures is limited (Addor et al., 2018). So 

far, however, most of these approaches have only been applied in data-rich regions of the world. The credibility and validity 

of such strategies have yet to be well tested in poorly recorded climatic data conditions. 

Rainfall-runoff models are used to represent the typical physical and climatic properties of a catchment. The physical 

representation of the available rainfall-runoff models may range from parsimonious-spatially lumped to complex physical-60 

spatially distributed models. The common problem with most rainfall-runoff models is that they require some sort of parameter 

estimation to provide robust predictions. Most model parameters are not directly measurable or linkable to the physical 

properties of the given catchment because of model simplifications or disagreements between model scale and observation 

scale (incommensurability) (Beven, 2006, 2018). However, an inherent correlation between the model parameters and 

catchment properties can often be assumed (Merz and Blöschl, 2004; Seibert, 1999; Wagener et al., 2004). Model parameters 65 

represent the characteristics of the complex catchment system, which are difficult to measure at a small scale. The accurate 

representation of catchment properties by the model parameters should be evaluated, to some degree, by the selected objective 

function that measures the fit between observed discharge and simulated discharge. However, most of the catchments are 

ungauged and their parameter estimations will be subject to uncertainties. Despite the aforementioned limitations in data-scarce 

regions, there are some studies that have developed strategies to derive model parameters at the global scale using various 70 

regionalization approaches (Döll et al., 2003; Nijssen et al., 2001; Widén-Nilsson et al., 2007). Yet, the obtained simulations 

often show a lack of precision due to errors emerging from global input data quality and regionalization uncertainty. 

Uncertainties would be particularly propagated due to the regionalization method itself and the human interference in the 
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catchments (Widén-Nilsson et al., 2007). Another approach estimates regionalized parameter sets at a global scale by using 

data from catchments mainly distributed in the temperate regions (Beck et al., 2016); their realization and validity in the tropics 75 

remain under question since their regionalization procedure does not include many catchments from this climatic region. 

In this study, we test the applicability of high-resolution global climate data for deriving a regional model and demonstrate a 

novel spatial cross-validation procedure to quantify regionalization uncertainties for the region in the RVLB with scarce 

precipitation data. Other than the typical approach of using the best-calibrated parameters of the gauged catchments (e.g. 

Wagener and Wheater, 2006), we extend the idea of using multiple similar parameter sets for regionalization (e.g., Livneh and 80 

Lettenmaier, 2013) by using three different parameter sets. Using a spatial split-sample test, we evaluate the best-calibrated 

parameter, the best parameter set in the validation period, and the most stable parameter set considering their performance in 

calibration and validation period for their adequateness for regionalization. We implement this approach to a relatively low 

number of 16 gauged catchments with reliable streamflow data to estimate the water balances of 35 ungauged catchments in 

the RVLB. Repeating the spatial split-sample test multiple times, we quantify the uncertainty that goes along when 85 

regionalizing parameter sets from a low number of catchments. That way, our study provides useful directions for regional 

modeling and uncertainty quantification in under-represented and a data-sparse region like ours, where assessments of the 

impacts of climate variability and climate changes are most urgently needed. 

2 The study region 

The RVLB is located in the southern part of the Main Ethiopian Rift (MER), which supplies water for a population of more 90 

than 15 million, where subsistence agriculture is the main livelihood (Fig. 1). The RVLB is 84 km wide and adjacent to it there 

are large, discontinuous Miocene-aged normal faults (Abebe, 2005; Pizzi et al., 2006; Wolfenden et al., 2004). Within the MER 

there are a series of right-stepping, quaternary rift basins, which have faulted magmatic segments, extending about 20 km wide 

and 60 km long, that are embryonic oceanic spreading centers. The central part of RVLB is formed by a Pliocene-aged faulted 

caldera, caused by fractured volcano (Woldegabriel et al., 1990) around the Tikur Wuha catchment. Existing faults and 95 

repeatedly formed ground cracks on the floor of the caldera have increased the permeability of the rocks. Within the basin, 

several small-to-medium-sized catchments drain to eight freshwater lakes. For most of these catchments, there is a lack of 

hydro-climatic data; what data is available contain gaps and are subject to human interventions. Over the past decades, the 

RVLB has experienced major droughts and extreme flood events resulting from the variable nature of precipitation, making 

prediction difficult (Segele and Lamb, 2005). This has resulted in an uncertain analysis of high and low flows, factors that are 100 

important for quantifying the hydrological water balance components in this region. 
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Figure 1: The study basin showing 16 gauged catchments for the regional model development and 33 ungauged catchments 

that are draining to the respective lakes through the river networks. 

3 Methods and Data 105 

We show the concept of the regionalization procedure in Fig. 2. We apply global parameter sets and climatic forcings for 

parameter estimation of gauged catchments using a hydrological model. We derive parameter sets that perform best during 

calibration and validation respectively, and ones that are stable between calibration and validation (stable parameter sets). Using 

the best parameter sets from calibration, we conduct a correlation analysis with the physical and climatic properties of 

catchments, which forms the basis for our regression. By applying the best parameters from calibration, validation, and stable 110 

sets, we derive regression models to estimate parameters for the ungauged catchments. In addition, we quantify the 

regionalization uncertainty through the spatial cross-validation procedure that applies the Leave-One-Out method. We then 

evaluate parameters derived from the regression by comparing discharge observations and simulations of the gauged 

catchments during their validation periods. This procedure enables the selection of the best regional models derived from the 

parameters estimated from calibration, validation, and stable sets. 115 
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Figure 2: Schematic diagram showing the entire procedure applied in this study. 

3.1 Data and catchment properties 

In our regionalization procedure we use precipitation products of Multi-Source Weighted-Ensemble Precipitation (MSWEP) 

version 2 and evapotranspiration from the Global Land Evaporation Amsterdam Model (GLEAM V3) respectively (Table 1). 120 

MSWEP products have recently developed precipitation datasets at a finer scale (0.1o), which are constructed using different 

sets of precipitation data from gauges, monthly satellite data, and re-analysis data on the global scale. We collect the daily 

streamflow data for the period from 1995 to 2007 from the Ministry of Water Irrigation and Energy of Ethiopia (MOWIE) for 

16 catchments in the RVLB, whose size ranges from 144.2 to 4,528.2 km2. The 16 catchments provide a sufficient length of 

data (>10 years) for the simulation periods. Of these, four catchments are nested within another catchment because they 125 

adequately satisfy the catchment selection criteria. 

Table 1: Variables showing the climatic and physiographic data and their resolutions and periods. 

Variable Spatial 

resolution 
Time 

period 
Temporal 

resolution 
Source Reference 

Precipitation 0.1o 1995–2007 Daily MSWEP V2 Beck et al. (2019) 

Potential 

evapotranspiration 
0.25 o 1995–2007 Daily GLEAM v3 Martens et al. (2017) 

HBV-parameters 0.5 o - - www.gloh2o.org Beck et al. (2016) 

Elevation 30 m - - SRMT V2.1 https://earthexplorer.usgs.gov 

Wetness index (P/PE) Point scale 1995–2007 Daily MSWEP V2 & 

GLEAM v3 
Beck et al. (2019); Martens 

et al. (2017) 
Streamflow - 1995–2007 Daily MOWIE - 

 
Catchment properties are common descriptors of the hydrological process and are frequently applied to estimate model 

parameters in ungauged catchments. However, there is no general rule to select suitable properties. The available option should 130 

be a selection of as many catchment descriptors as possible, while reducing correlated catchment properties so as to exclude 
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redundant information and obtain independent variables. In this regard, the main criteria to select catchment properties is that 

they are model-independent and can be used for model predictions to be hydrologically realistic in both gauged and ungauged 

catchments (Wagener and Montanari, 2011). For reliable regionalization, a sufficient number of catchment properties should 

be selected. Their selection, in turn, depends on data availability, hydrologic relevance, and the suitability of the properties. 135 

With these considerations, we derived nine catchment properties from the physical and/or climatic information in both gauged 

and ungauged catchments from the RVLB (Table 2 and Table S2). We extract physical catchment properties from the Digital 

Elevation Model (DEM), and climatic properties from the global data sets that usually affect the catchment hydrology in any 

setup. Other physical properties where local information is not available, such as permeability and porosity, were extracted 

from the global datasets prepared by Huscroft et al. (2018). 140 
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3.2 Hydrological model 

We use the lumped HBV hydrologic model (Bergström, 1992; Seibert and Vis, 2012), which has been applied in a wide range 

of climatic and physiographic conditions (Te Linde et al., 2008; Zhang and Lindström, 2007). The HBV model has been tested 145 

in various parts of the world and frequently applied in several regionalization studies due to the simplicity and flexibility of its 

model structure (Bárdossy, 2007; Hundecha and Bárdossy, 2004; Jin et al., 2009; Masih et al., 2010; Merz and Blöschl, 2004; 

Parajka et al., 2007; Seibert, 1999). 

In this study we apply the HBV model modified by Zhang and Lindström, (2007) and Beck et al. (2016). We run the model at 

a daily time scale using daily inputs of precipitation and potential evapotranspiration. Due to the absence of snow processes in 150 

the RVLB, the model we use consists of routines of soil moisture accounting, runoff response, and a channel routing procedure, 

which are controlled by nine model parameters (Table 3). Three parameters, β, FC, and LP, control the soil moisture dynamics. 

β controls the contribution (dQ) to the runoff response routing and the increase (dP-dQ) in soil moisture storage (Ssm) and FC 

is the maximum soil moisture storage in the model as shown by Eq. (1). LP is the value of the soil moisture above which 

evapotranspiration (Ea) reaches its potential level (Ep). 155 

𝑑𝑄

𝑑𝑃
= (

𝑆𝑠𝑚

𝐹𝐶
)𝛽                                                                         (1) 

Where P and Q are precipitation and runoff [mm d-1]. 

The runoff response function transforms excess water from the soil. This routine consists of upper and lower reservoirs that 

distribute the generated runoff over time. The lower reservoir is a simple linear reservoir representing a contribution to 

baseflow. It also includes the effects of direct precipitation and evaporation over open water bodies in the basin. The lower 160 

reservoir storage, SLZ [mm], is filled by percolation from the upper reservoir (PMAX), and the outflow from this lower reservoir 

(Q2) is controlled by the recession coefficient K2 [d-1]. However, the upper reservoir storage SUZ [mm] is drained by two 

recession coefficients, K0 [d-1] and K1 [d-1], draining the quick flow Q0 [mm d-1] and slow flow component Q1 [mm d-1] separated 

by a threshold VUZL [mm] Eq. (2–4). 

𝑄0 = 𝐾0(𝑆𝑈𝑍 − 𝑉𝑈𝑍𝐿)              (2) 165 

𝑄1 = 𝐾1(𝑆𝑈𝑍)              (3) 

𝑄2 = 𝐾2(𝑆𝐿𝑍)              (4) 

If the yield dQ [mm d-1] from the soil moisture routine exceeds the capacity, the upper reservoir will start to fill. This reservoir 

models the response at flood periods. Parameters calibrated from the runoff response function are PMAX, K0, K1, K2, and VUZL. 

Finally, runoff is computed independently for each sub-basin by adding the contributions from the upper and the lower 170 

reservoir. To account for the damping of the flood pulse in the river before reaching the basin outlet, a simple routing 

transformation is made. This filter has a triangular distribution of weights with the base length and is expressed by the parameter 

MMAXBAS [d]. A detailed description of the model is shown by Bergström (1992) and Seibert and Vis (2012). The ranges of the 

nine model parameters are derived from prior knowledge, provided through a global set of HBV model parameters (Beck et 

al., 2016). 175 
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Table 3: HBV parameter ranges for the RVLB and their descriptions, derived from Beck et al. (2016). 

Parameter Description Global range 

(min to max) 

β [-] Shape coefficient of recharge function 1–6 

FC [mm] Maximum water storage in unsaturated-zone store 50–700 

K0 [d-1] Additional recession coefficient of upper groundwater store 0.05–0.99 

K1 [d-1] Recession coefficient of upper groundwater store 0.01–0.8 

K2 [d-1] Recession coefficient of lower groundwater store 0.001–0.15 

LP [-] Soil moisture value above which actual evaporation reaches 

potential evaporation 

0.3–1 

MMAXBAS [d] Length of equilateral triangular weighting function 1–3 

PMAX [mm d-1] Maximum percolation to lower zone 0–6 

VUZL [mm] Threshold parameter for extra outflow from upper zone 0–100 

3.3 Parameter estimation in the gauged catchments 

We use a uniform random sampling strategy to produce simulated streamflow ensembles with the HBV model. To obtain 

reasonable parameter sets, we generated 20,000 combinations of the 9 HBV parameters from a uniform random Monte-Carlo 

sampling procedure. We use a split sample test (Klemeš, 1986) by splitting the simulation period into the calibration period 180 

(1995–2002) and the validation period (2003–2007), and calculate the Nash Sutcliffe Efficiency (NSE) (Nash and Sutcliffe, 

1970) for both periods: 

𝑁𝑆𝐸 = 1 −
∑  (Qobs−Qsim)2𝑛

𝑖=1

∑  (Qobs−�̅�0𝑏𝑠 )
2𝑛

𝑖=1

                                    (5) 

Where Qobs and Qsim are monthly averages of observed and simulated discharges [m³ month-1], respectively, while �̅�𝑜𝑏𝑠 is the 

mean observed discharge over the calibration or validation periods. Using monthly averages, we focus on the seasonal, long-185 

term behavior instead of daily, short-term fluctuations. In order to remove unrealistic parameter combinations, we only kept 

parameter sets that produced NSE ≥ 0.5 in the calibration period. Consequently, different catchments can result in a different 

number of behavioral parameter sets. A pre-analysis using NSE on a daily time scale showed that the model performs well for 

all but two catchments (#06 and #12), where the fast flow processes and the occurrence of wetlands respectively resulted in 

poor simulations. Thus, these catchments are omitted in the following analysis. Comparing the mean and variability of model 190 

performance for the remaining catchments during calibration and validation allows to assess the predictive performance and 

uncertainty of the selected parameter sets. To prepare for regionalization, we extract (1) the variability of each model parameter 

in the reduced parameter sample (expressed by their coefficient of variation, CV), and (2) the best parameter set (largest NSE) 

of the calibration, NSECAL, and the validation period, NSEVAL, for each of the catchments. In addition, we identify the most 

stable parameter set for each catchment, i.e., the parameter set that shows the smallest difference of NSE values between 195 

calibration and validation periods, NSEDIFF: 

𝑁𝑆𝐸𝐷𝐼𝐹𝐹 = 𝑚𝑖𝑛|𝑁𝑆𝐸𝐶𝐴𝐿 − 𝑁𝑆𝐸𝑉𝐴𝐿|           (6) 

3.4 Parameter estimation in the ungauged catchments 

To estimate model parameters for the 35 ungauged catchments, we develop a parameter regionalization procedure using 

weighted linear regressions (Eq. 7-9), also known as weighted least squares, and the non-linear regressions (Eq. 10). This 200 
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allows us to link the catchment properties (Table 2) and the estimated model parameters of the gauged catchments (Sect 3.3). 

Compared to the ordinary least squares, the weighted linear regression introduces a weight matrix to account for the unequal 

variances of observations (Tasker, 1980; Wagener and Wheater, 2006). This brings advantages in the regionalization since the 

identifiability of a model parameter can vary significantly between catchments. To get a robust regression model, we can then 

put more weights on catchments with identifiable parameters. The weighted linear regression is described as follows: 205 

𝒀 = 𝑿𝛽 + 𝜀             (7) 

𝑾 = [

𝑤1   0   ⋯    0
 0    𝑤2  ⋯    0
  ⋮      ⋮     ⋱    0

    0     0   ⋯  𝑤𝑛

]            (8) 

�̂� =
𝑎𝑟𝑔𝑚𝑖𝑛

𝛽
∑ 𝜀𝑖

2𝑛
𝑖=1 = (𝑿𝑇𝑾𝑿)−1𝑿𝑇𝑾𝒀            (9) 

where Y and X are, respectively, the response variable (estimated model parameters in our study) and the independent variable 

(catchment properties in our study). 𝜀 is the error vector and W is a diagonal matrix containing weights. 𝛽 represents the 210 

regression coefficients vector and is estimated by �̂�, which minimizes the weighted sum of errors. The coefficient of variation 

(CV) of behavioral parameter sets of a catchment represents the variability of a parameter. The smaller the CV, the less variable 

and more identifiable the parameter. Therefore, we use the reciprocal CV of the parameter of interest as weights for each 

catchment. We perform the correlation analysis between model parameters and catchment properties to select independent 

variables. We apply the linear correlation, Spearman’s rank correlation (Spearman, 1904), and the correlation on the log-215 

transformed scale. We select those properties with strong correlations to parameters according to the correlation coefficients. 

We also apply the non-linear regression between model parameters and catchment properties (Wagener and Wheater, 2006). 

𝑌 = 𝛽1 ∗ 𝑋𝑖
𝛽2            (10) 

where 𝛽1 and 𝛽2 are the regression coefficients. From the weighted linear regression and the non-linear regression, we choose 

the catchment properties with the strongest correlation with the model parameter as the independent variable. 220 

3.5 Evaluation and uncertainty estimation of the regionalization procedure 

We use the Leave-One-Out method (Breiman and Spector, 1990) for parameter estimation and for evaluating the prediction 

skill of the regressions. Leave-One-Out is a simple cross-validation procedure: each regression model is created by taking all 

the catchments except one, the evaluation catchment. This method is more stable and resilient to errors emerging during 

parameter sampling, and provides a comprehensive evaluation of prediction skills (Hastie et al., 2005). It has been applied for 225 

regionalization studies involving the prediction of discharge signatures using different regression techniques (Zhang et al., 

2018). Thus, for 14 catchments we have 14 different regression models and 14 different evaluation catchments. For each of the 

14 iterations, the method produces one regionalized model parameter set for the left-out catchment using the regression model 

derived from the remaining 13 catchments and parameter sets. Since we do not know which parameter sets provide the most 

stable regionalization method, we repeat this procedure three times using the best parameter sets of (1) the calibration period, 230 

(2) the validation period, and (3) the most stable parameter sets between calibration and validation period. We thus evaluate 

the quality of the regionalization procedure three times. In order to choose the best of them for the following analyses, we 

evaluate the simulations of the left-out catchments for the validation phase (2003–2007). In order to quantify the uncertainty 
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of the regionalization procedure, we apply all 14 regionalized models that were created for the Leave-One-Out evaluation to 

the ungauged catchments. Hence, an ensemble of 14 predicted streamflow time series is produced for each ungauged catchment 235 

to reflect the regionalization uncertainty. 

3.6 Estimation of regional resilience of streamflow to precipitation variability 

In addition to the simulations at the 14 gauged catchments (and their respective uncertainty), our regionalization procedure 

produces simulations, and uncertainty estimates, of the 35 ungauged catchments, altogether covering a majority of the RVLB 

area (60.81 %). We use this regional simulation tool to estimate the region’s streamflow resilience to precipitation variability, 240 

which we quantify through streamflow elasticity (Sankarasubramanian et al., 2001). The elasticity of streamflow quantifies the 

sensitivity of a catchment’s streamflow response to the precipitation changes at the annual scale. Resilient catchments show 

low streamflow variability in response to precipitation changes. Elasticity is defined as the ratio between change in annual 

aggregated discharge (Q) and change in annual aggregated precipitation (P): 

𝜀𝑃 = 𝑚𝑒𝑑𝑖𝑎𝑛(
𝑑𝑄𝑃

𝑑𝑃𝑄
)              (11) 245 

We calculate elasticity values for each year using the entire ensemble of simulated discharge time series at all gauged and 

ungauged catchments. From this we extract the median, wettest, and driest year elasticities for each catchment, including their 

uncertainty expressed by the respective CV resulting from all parameter sets with NSE ≥ 0.5 for the gauged catchments and 

from the 14 parameter sets obtained through the Leave-One-Out procedure for the ungauged catchments. The wettest year 

elasticity is calculated for the transition from the normal year to the wettest year, and the driest year elasticity is calculated for 250 

the transition from the normal year to the driest year. Using the median, wettest, and driest year elasticities, we can learn how 

resilient a hydrological system is against extreme climatic conditions such that we can evaluate the corresponding security for 

water supply. For instance, if a catchment has a large streamflow elasticity, there will be a large system change in response to 

a big change in precipitation (e.g., the driest year); such a system is not resilient as there would be a huge change in the water 

available, thus affecting the security of the water supply. 255 

4 Results 

4.1 Estimated parameters in the gauged catchments 

Using the 0.5 NSE threshold, we obtain a wide range of behavioral parameter sets in all gauged catchments. Figure 3a shows 

the daily values of NSE for the calibration and validation periods, as well as their uncertainty, using behavioral parameter sets. 

For monthly calibrations, model performance results in NSE 0.58 to 0.84, except for catchments #06 and #12, which performed 260 

poorly and were considered ungauged for the following analysis. The change of NSE values from the calibration to the 

validation periods were reduced for catchment #08 and #10 (Fig. 3b). Catchments #01, #03, and #04 show a small decrease in 

the monthly NSE values from the calibration to the validation period (Fig. 3b). In most cases, the monthly model calibration 

and validation show a uniform distribution of NSE values, indicating the stability of model parameters. NSE values for the 

stable parameter set shows the maximum value (0.79) for catchments #15 and #16, demonstrating good predictive skills in 265 

these catchments. Catchment #07, #08, #10, and #13 show a lower parameter stability. The calculated standard deviation of the 

https://doi.org/10.5194/hess-2021-271
Preprint. Discussion started: 13 July 2021
c© Author(s) 2021. CC BY 4.0 License.



12 
 

daily NSE values shows the ranges of uncertainty provided from the simulation for the selected parameter ranges (Table S3). 

In this regard, catchments #08, #13, and #15 result in the lowest simulation uncertainty during calibration. 

 

Figure 3: (a) The ranges of daily NSE values derived from the confined parameter sets during calibration and the corresponding 270 

NSE ranges during the validation period; and (b) the monthly aggregated NSE derived from best parameter sets from 

calibration, validation, and stable parameter sets for each catchment, excluding poorly performing catchments #06 and #12. 

Figure 4 shows the variability of the confined model parameters obtained by the calibration, which is later applied to derive the 

weights of the regional regression model. The confined ranges of model parameters (K0, MMAXBAS, and VUZL) result in a relatively 

uniform distribution in its median values for all catchments, except for catchments #05, #08, #13, and #15. The parameters in 275 

these catchments remained insensitive. These catchments show a narrow range of predictions for all parameters except MMAXBAS. 

Parameters β, FC, and K1 have shown variable responses in all catchments than the remaining parameters. 
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Figure 4: Confined ranges of model parameters derived during model calibration for each catchment, excluding the poorly 

performing catchments #06 and #12. 280 

4.2 Performance of the regionalization procedure 

We evaluate the transferability of model parameters derived from weighted regression using the Leave-One-Out method for 

each of the 14 gauged catchments. Figure 5a shows the scatter of monthly NSE values during the validation period obtained 

from the regionalized parameter sets and best parameters estimated from calibration, validation, and the most stable parameter 

sets. We find that regional parameter sets developed from the best validation parameters show the best performance in 285 

predicting discharge in the left-out catchments (NSE REGval in Fig. 5b). Our results show 11 out of 14 catchments exceed a 

0.25 NSE value and 7 out of 14 catchments exceed a 0.5 NSE value for the regression model derived from the validated 

parameters (Fig. 5a yellowish scatters). Furthermore, the median NSE value of the 14 catchments for the regression model 

derived from the best-validated parameters (NSE REGval) is 0.56, compared to 0.48 for the best calibration ones (NSE REGcal) 

and 0.53 for the most stable parameter sets (NSE REGstable) (Fig. 5b and Table S4). 290 
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Figure 5: (a) The scatter plot of NSE for parameter estimates (from calibration, validation, and stable parameters set) compared 

to the NSE of parameters from the regression; and the NSE for best performing catchment (blue) and most poorly performing 

catchment (red) from validation. (b) The corresponding ranges of NSE obtained from the best parameter estimation (from 

calibration, validation, and stable sets) and ranges of NSE for parameter sets derived from the regression model (REGcal, 295 

REGval, and REGstable). 

Figure 6 shows the relationships between the best model parameter set obtained from the validation and the regression for the 

14 catchments. The weighted regression shows acceptable performance in reproducing most of the parameters. For instance, 

the weighted regression reproduces well the parameters β, FC, K0, and K2, whereas the parameters located far from the 1-1 line 

are considered less reproducible by regression models. We notice that the weighted regression procedure does not always 300 

produce model parameters in their predefined range (Table 3). For example, the regressed FC of catchment #15 is below the 

minimum threshold of 50. In such cases, the outlier model parameter is assigned to its minimum values. Similarly for model 

parameters K0, K1, and PMAX, some of the catchments result out of their range, and are therefore set to their minimum or 

maximum values. Among the remaining parameters, most of them show acceptable correlations. However, some of them, such 

as FC, K1, and PMAX, are poorly reflected through the regional regression in a few catchments. For instance, FC in catchment  305 

#15 is poorly modeled, or this catchment is poorly identifiable by the parameter FC. The other model parameter is K1, where 

the regression model poorly represents three catchments (#07, #10, and #13). These three catchments have parameter values 

below the minimum range of 0 for K1. This shows that catchments #07, #10, and #13 are not identifiable by the parameter K1. 

Furthermore, catchment #08 is most poorly identified by the regionalized model parameter PMAX. However, the weighted 

regression procedure sufficiently represents the remaining catchments. We also show the best performing (#09) and most poorly 310 

performing (#08) catchments labeled by blue and red colors, respectively. Catchment #09 primarily shows a stable prediction 

for all parameter-sampling procedures during calibration, validation, and stable relationships. Identifiable parameters in this 

catchment are also reproduced well from the regression model. Catchment #09 (blue scatter) is highly identifiable during 

parameter estimation, and the resulting parameters from the regression model are highly reproduced. Whereas catchment #08 

(red scatter), shows poor parameter estimation results and poorly reproduced by the regression model. 315 
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Figure 6: Scatter plots between best parameters estimated from validation and parameters derived from the regression model. 

The blue circle (catchment #9) represents the highly identifiable (best performing) catchment and its corresponding parameters 

from regression. The red circle (catchment #8) represents the (most poorly identified) catchment during parameter estimation 

and its corresponding regression parameters. 320 

The reliability of our approach is further evaluated by comparing the observed discharge with the uncertainty interval of the 

regionalized model while running the model for the validation period (Fig. 7). Observed discharge for the best performing 

catchment (#09) is bounded in the prediction interval through the low flow and high flow periods. Furthermore, it corresponds 

highly with the mean of the 14 regionalized simulations (Fig. 7a). Whereas the observed discharge for the most poorly 

performing catchment (#08) is not well captured by the prediction interval nor by the mean of the 14 regionalized simulations 325 

(Fig. 7b). 
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Figure 7: Prediction interval derived from the 14 regression models using best parameter sets from validation and uncertainty 

interval; (a) for best performing catchment (#09) and mean of the 14 simulations (blue color), and (b) uncertainty interval for 

most poorly performing catchment (#08) and mean of the 14 simulations (red color). 330 

4.3 Estimation of regional resilience of streamflow to precipitation variability 

With the acceptable performance of the regional regression model, we apply the model for the ungauged catchments over the 

entire RVLB region. Figure 8 shows the median, wettest, and driest year elasticities computed from both gauged (all parameter 

combinations with NSE ≥ 0.5) and ungauged catchments (all 14 regionalized parameter sets from the Leave-One-Out 

evaluation). Median elasticity values are fairly distributed in the basin. However, the highest elasticity is shown in the southwest 335 

(Fig. 8a). For the wettest year, the highest elasticity results from the catchments in the south and the northeast that show less 

resilience for extreme precipitation (Fig. 8b). Relatively low elasticities result from the driest year, except for few catchments 

in the south. This variation is because catchments in the south, except for some outliers, are mainly dry and receive a 

comparatively low amount of precipitation. 

With the CV, we show the uncertainty of the 14 ensembles derived from the regression. We see that the median values, as well 340 

as the wettest and driest year elasticities, show low uncertainty in the gauged catchments, indicated by low CVs (Fig. 8d–f), 

compared to the ungauged regions. Whereas the highest CV values are shown for the median, wettest, and driest years for the 

ungauged catchments in the southern region. However, most of the catchments in the central and northern parts show less 

variability, which shows low uncertainties for these catchments. The highest and lowest precipitation will eventually result in 

different values of elasticities. In areas like RVLB, the highest yearly and seasonal precipitation amounts could be interrupted 345 

by the seasonal or yearly dry spells (Segele and Lamb, 2005). The response to runoff is low in the driest year as shown by low 

elasticity values in most of the ungauged catchments (Fig. 8c). Comparatively, the driest year CV in the southern part shows 

relatively lower values than the wettest year. 

https://doi.org/10.5194/hess-2021-271
Preprint. Discussion started: 13 July 2021
c© Author(s) 2021. CC BY 4.0 License.



17 
 

 

Figure 8: (a-c) Elasticity calculated for the median, wettest, and driest years for both gauged and ungauged catchments, and 350 

(d–f) their corresponding simulation uncertainty expressed by the coefficient of variation CV. 

5 Discussion 

5.1 Reliability of the regionalization approach 

Our study demonstrates the applicability of a process-based hydrological model at a regional scale despite data scarcity. We 

show the reliability of our entire approach through a three-step parameter estimation and model evaluation procedure, which 355 

enables us to identify the most reliable setting in the regional model development procedure. Overall, the stability of parameters 

for the calibration and validation periods remained acceptable. We quantify uncertainty by parameters sampled from the Monte 

Carlo random sampling procedure. We applied the split sampling test to select the best parameter from the calibration and 

validation periods. Furthermore, we calculated the most stable parameter sets from the calibration and validation periods, which 

has also been done in previous studies aiming at stable predictions (Hartmann et al., 2016). The stability of model parameters 360 

indicates a relatively uniform system response from both calibration and validation. With an average decrease of 0.40 % from 

calibration to validation, our findings are similar to studies showing the decline during the validation period performance 

relative to the calibration period in the Conceptual Rainfall Runoff (CRR) model (Bastola et al., 2011; Coron et al., 2012). 

We estimated parameters for the ungauged regions through the weighted regression procedure. Like previous studies using a 

similar approach (Wagener and Wheater, 2006), the weighting procedure increases the representation of identifiable parameters 365 
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from the catchment in the regression model. More weight (reciprocal of CV) is assigned for the more identifiable parameters 

in a given catchment. Consequently, a three-regression model is derived from the best parameter sets obtained from calibration, 

validation, and stable parameter sets, enabling us to choose the optimum regional model. These procedures increase the 

reliability of our approach for model development. We also quantify uncertainty through the spatial cross-validation of 

parameters. In this approach every catchment is considered as an evaluation catchment, while prediction is made using the 370 

remaining catchments. Therefore, 14 catchments produced a 14-regression model in the Leave-One-Out method that quantifies 

prediction uncertainty in the ungauged catchments. The spatial cross-validations also show better performance in the 

regionalization studies that use discharge signatures (Zhang et al., 2018). This method is more stable and more resilient to 

errors that emerge from parameter sampling, and it provides a comprehensive evaluation of prediction skills for the few 

numbers of catchments used (Hastie et al., 2005). The spatial cross-validation approach also has a uniformly low bias and root 375 

mean squared error (RMSE) (Breiman and Spector, 1990). Therefore, we combine three steps of uncertainty quantification 

from 1) the parameter sampling, 2) the best parameter set identification, and 3) the spatial cross-validation in the data-scarce 

regions. 

A scatter plot of monthly NSE between parameters estimated and parameters regionalized shows the evaluation and reliability 

check. Figure 5a indicates that regression parameters from the validation outperform the parameters obtained from calibration 380 

and stable sets in most of the catchments applied for cross-validation. Furthermore, it shows most of the scatter points are above 

a 0.5 limit, indicating a better reproduction of parameters. In this regard, parameters in 50 % of the catchments result in NSE 

≥ 0.5 and in 79 % of the catchments, NSE > 0, for the regression model derived from the validated parameters (Fig. 5a). The 

median value of NSE for the 14 catchments is 0.56; this is a sufficient performance in regionalization despite the few catchment 

numbers applied (Fig. 5b). Figure 6 shows that more identifiable parameters for the gauged catchments (Fig. 4) are also 385 

reproduced well from the regression model. Catchment #09 (blue scatter) is highly identifiable during parameter estimation 

and the resulting parameters from the regression model are highly reproduced. Whereas catchment #08 (red scatter) shows poor 

parameter estimation results and is poorly reproduced by the regression model. Studies also show the selection of more 

identifiable catchment as a donor for parameter regionalization depends on the score during parameter calibration and validation 

(Beck et al., 2016). 390 

In general, our evaluation indicates that despite ignoring parameter interactions (Bárdossy, 2007; Brunner et al., 2018), our 

regionalization procedure produces useful predictions of the model parameters in the ungauged catchments. Plotting the 

simulated (monthly) time series of the best and the most poorly performing regional catchments (Fig. 7), we show that the 

uncertainty estimates derived from the Leave-One-Out procedure capture well the simulation uncertainty for the best 

performing catchment #09 (blue color). On the other hand, the prediction interval of catchment #08 shows less agreement with 395 

observed discharge, particularly for low flow and high flow, but with the estimated ranges of uncertainty much closer to the 

observations. Previous regionalization studies have already shown that some outlier catchments cannot be captured if they 

behave very differently from the general trend (Seibert, 1999), as it is most probably the case for catchment #08. However, 

since most regionalized catchments with NSE ≥ 0.5, we have reason to believe that the parameters of most ungauged catchments 

in the RVLB can be approximated acceptably. 400 

5.2 Parameter sensitivity and spatial variability 

We find different sensitivities of model parameters among our gauged catchments (Fig. 4). Since the hydrogeology of the 
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region is very heterogeneous, parameters controlling the underground water flow show high variabilities across the catchments. 

Volume controlling parameters (β, FC, and LP) are found to be highly identifiable in most of the catchments. Consistent with 

previous studies, catchments #09 and #11 show these three parameters to be the most sensitive (Goshime et al., 2020). 405 

Catchments #01, #03, #09, and #11 are highly identifiable during parameter estimation. However, parameter insensitivity in 

some catchments may be due to interactions with other parameters. Abebe et al. (2010) show the interaction between parameter 

K2 and the percolation rate (PMAX), where the increment of K2 beyond the optimum rate of percolation may not show any 

sensitivity. In addition, the insensitivity of model parameters is related to the poor identifiability of model parameters in the 

catchments. For instance, parameters such as K0, MMAXBAS, PMAX, and VUZL, show high variations from the uniform ranges of 410 

parameter values for the poorly identifiable catchments (#05, #07, #08, and #10) (Fig. 4). 

The most identifiable parameters in a catchment result in the highest sensitivity towards any parameter value. However, 

parameter insensitivity is due to variations in the values of catchment properties. This is illustrated by parameter MMAXBAS, 

which is a transformation function or a delay in the runoff formation process, and it is well identified in catchments #13 and 

#15. The shortest delay in the runoff formation process occurs due to the relatively high drainage density in these catchments 415 

(Table 2), suggesting the sensitivity of this parameter towards the lower value. Studies also show a correlation between the 

volume of runoff and drainage density (Di Lazzaro et al., 2015; Tague and Grant, 2004). Parameter PMAX is well identified in 

catchments #03 and #13. The higher percolation amount directly corresponds with the highest porosity measured in these 

catchments (Table 2), suggesting the sensitivity of this parameter towards the higher value in the parameter range. Furthermore, 

parameter VUZL is well identified in catchment #05, which has a relatively higher amount of precipitation and lower values of 420 

porosity, promoting the formation of quick flow. Generally, this causes lower values of parameter VUZL to be more sensitive to 

allow quick runoff formation in the catchment. 

The interactions among model parameters may not be the only reason for insensitivity as it varies in different catchments and 

their properties. For instance, sloppy catchments in a small drainage area (#08 and #10) facilitate the conversion of precipitation 

into runoff, resulting in less soil moisture in the upper and lower reservoirs in the HBV model. In such cases, adjustments to 425 

parameters (K1, and K2) controlling the water flow might not affect the outflow conditions. This is also shown by the negative 

correlation of slope with these parameters (Table S1). Furthermore, insensitivity of parameters in the upper reservoir can be 

affected by low precipitation amounts. In low precipitation conditions (such as in catchments #09, #11, and #15) the resulting 

soil moisture from the soil profile and the upper reservoir will be much less, resulting in less runoff. The adjustment of runoff 

controlling parameters (K0 and VUZL) might not have any influence (remain insensitive) on the resulting runoff. Parameter K0 430 

only functions when the cumulative precipitation exceeds the threshold of VUZL value; therefore, higher values of K0 result in 

wet catchments (#10) with a higher amount of precipitation. Our study shows the insensitivity of model parameters to be related 

to catchment properties. 

5.3 Estimation of regional resilience of streamflow to precipitation variability 

We calculate elasticity values for the median, wettest, and driest years and their respective CV (Fig. 8). In the regions with 435 

higher elasticities (Fig. 8a–c), both gauged and ungauged catchments respond faster to any change in precipitation by promoting 

fast surface flow. However, for low elasticity values, the streamflow responds slowly to precipitation change. 
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The CV indicates the uncertainty of our prediction for the gauged and ungauged catchments (Fig. 8d–f). Most of the catchments 

located in the southern part of the basin show a higher CV value in combination with low resilience of streamflow to 

precipitation variability. Prediction variability is higher in the southern part compared to the north and there is also a few 440 

number of gauged catchments. So the higher uncertainty in the south may be attributable to the mixed effects of higher 

precipitation variability and the remoteness of the gauged catchments used to establish the regional regress. 

The variability in areas of gauged and ungauged catchments used for parameter estimation and prediction, respectively, reduces 

with the strength of correlation between calibrated parameters and catchment properties (Table S1). Other studies also show 

that runoff from smaller catchments can have a stronger relationship with local climate and catchment properties than larger 445 

catchments (Bárdossy, 2007; Kokkonen et al., 2003; Merz and Blöschl, 2004). In addition, the wettest year shows higher 

uncertainty compared to the driest year. However, most of the ungauged catchments that are located in the central and northern 

parts show lower uncertainty, more or less similar to the gauged catchments. This is because these ungauged catchments are 

much closer to the gauged catchments and are hence better represented by the regression model than the remote ungauged 

catchments. Moreover, most of the streamflow in the north remains more resilient to precipitation change as it shows lower 450 

elasticity values, which indicate a higher resilience to streamflow in the dry years (Fig. 8c). Furthermore, CV for the driest year 

shows a relatively low uncertainty in the north for both gauged and ungauged catchments. 

The application of our approach to the RVLB shows that the predicted elasticities are characterized by a wide range of 

uncertainty for the ungauged catchments in the southern part. The reasons for such variation in uncertainty could be the fact 

that the ungauged catchments in the southern part are mainly dry and receive a comparatively low amount of rainfall (Table 455 

S2). This is different from the wetter, northern part, where most of the gauged catchments are located. This accords with studies 

showing a decreasing regionalization performance from smaller and more arid catchments (Parajka et al., 2013). Previous work 

has also shown that spatial variability of precipitation can interact with catchment properties to alter hydrological processes 

(Zhao et al., 2013). Thus, higher precipitation variability in the gauged and ungauged catchments introduces more uncertainty 

to parameter regionalization. Such variability in prediction also results from the relative location of an ungauged catchment to 460 

the gauged one where the regional model is developed (Patil and Stieglitz, 2012). 

This approach shows variability in the resilience of gauged and ungauged regions, which emerges from parameter uncertainty 

and climate variability. Over the RVLB, lakes are particularly stressed by growing water demand, climate variability, and 

drought (Seyoum et al., 2015). The reliability of open water resources in low-resilient catchments remains uncertain. Coupled 

with the significant reduction of lake sizes and water levels (Ayenew and Becht, 2008), this will negatively affect water resource 465 

availability and ecosystem stability in the future. 

5.4 Transferability of the approach to other catchments and models 

We provide a methodology that accounts for uncertainty throughout all steps of the regionalization approach. It translates data 

limitations into remaining uncertainties that we find in the regional simulations (expressed, for instance, by the CV values of 

the elasticities). The approach is independent of the model and the number of parameters, but we expect that a more complex 470 

model (with more parameters) would struggle more through data limitations and would produce larger uncertainties when 

applied regionally. 

In our study the identifiability of the model parameters varies across the 14 catchments. This could be from the variation in the 
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catchment properties used for the regionalization. Van Esse et al. (2013) show the performance of conceptual hydrological 

models to vary depending on the size and soil moisture content of a catchment. In our approach this variation is accounted for 475 

through regionalization uncertainties and spatial cross-validation. Thereby, one can have different levels of parameter 

identifiability in the transferability of a model parameter from one model component to another. Nevertheless, model parameter 

transferability does not always result in success. The difference in model parameters could derive from the complex relationship 

between different model components within the model structures. The stability and resilience of model parameters from the 

regionalization procedure would minimize the error and bias in parameter transfer within the model component (Breiman and 480 

Spector, 1990). However, success in the parameter transfers will be influenced by the dominant catchment properties that are 

identified regionally (Singh et al., 2014). 

Our approach demonstrates a resilient parameter regionalization through spatial cross-validation that enables the transfer of 

parameters across regions and within the model components in the different model structures. Other studies suggest the 

applicability of spatiotemporal transfer of model parameters for climate change related studies (Patil and Stieglitz, 2015). 485 

6 Conclusion 

In this study we demonstrate the use of global data products for the regionalization of model parameters using a small sample 

of gauged catchments despite data scarcity. We apply multiple options for parameter estimation and model evaluation 

procedures. We combine three steps of uncertainty quantification from the parameter sampling, best parameter sets 

identification, and spatial cross-validation. We demonstrate the validity and reliability of this approach at 14 test catchments 490 

with varying catchment properties. The parameter estimates from the spatial cross-validation using the best validation 

parameters has outperformed the parameter estimates from best-calibrated and stable parameter sets. We incorporate 

uncertainties from the spatial cross-validation that can provide a robust way of uncertainty quantification by generating 14 

estimates of plausible streamflow ensembles and simulation uncertainties. This approach shows variability in the resilience of 

gauged and ungauged regions, which emerges from parameter uncertainty and climate variability. We show the uncertainties 495 

of elasticities in the gauged catchments obtained from simulation to be less than that of the uncertainties of elasticities in the 

ungauged catchments obtained from regionalization. The study further enables the quantification of the wettest and driest year 

elasticities and their uncertainties throughout the catchments, which provides a basis for the integrated water resource 

management in the region. Linking our approach with more observations of catchment properties on a larger scale can provide 

a good basis for large-scale water resource management. This approach can be extended to simulate and quantify the resilience 500 

of gauged and ungauged regions under climate change by quantifying the additional uncertainties emerging from climate 

projections. 

Overall, our approach provides directions for uncertainty reduction, combining global input data with local discharge 

measurements, that result in a refinement of estimated model parameters for both gauged and ungauged catchments. Small-

scale studies that use simple models (few parameter numbers) show the transferability of the model parameters to ungauged 505 

basins in data-rich conditions (Wagener and Wheater, 2006). In extension to this, our approach provides the possibility of 

identifying parameters of ungauged basins in data-scarce regions, including a thorough evaluation and uncertainty 

quantification procedure. As this approach is model-independent and the input data used are available globally, it can be applied 

to any other data-scarce region where predictions of regional water availability are required. 
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7 Data availability 510 

The climatic forcing data are publicly available and can be obtained via the link http://www.gloh2o.org/mswep for MSWEP 

and from https://www.gleam.eu for GLEAM. The streamflow data can be acquired on request from the corresponding 

author for research purposes. 
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