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Abstract. Timely projections of seasonal streamflow ex-
tremes can be useful for the early implementation of an-
nual flood risk adaptation strategies. However, predicting
seasonal extremes is challenging, particularly under nonsta-
tionary conditions and if extremes are correlated in space.
The goal of this study is to implement a space–time model
for the projection of seasonal streamflow extremes that con-
siders the nonstationarity (interannual variability) and spa-
tiotemporal dependence of high flows. We develop a space–
time model to project seasonal streamflow extremes for sev-
eral lead times up to 2 months, using a Bayesian hierarchi-
cal modeling (BHM) framework. This model is based on the
assumption that streamflow extremes (3 d maxima) at a set
of gauge locations are realizations of a Gaussian elliptical
copula and generalized extreme value (GEV) margins with
nonstationary parameters. These parameters are modeled as
a linear function of suitable covariates describing the previ-
ous season selected using the deviance information criterion
(DIC). Finally, the copula is used to generate streamflow en-
sembles, which capture spatiotemporal variability and uncer-
tainty. We apply this modeling framework to predict 3 d max-
imum streamflow in spring (May–June) at seven gauges in
the Upper Colorado River basin (UCRB) with 0- to 2-month
lead time. In this basin, almost all extremes that cause se-
vere flooding occur in spring as a result of snowmelt and
precipitation. Therefore, we use regional mean snow water
equivalent and temperature from the preceding winter sea-
son as well as indices of large-scale climate teleconnections

– El Niño–Southern Oscillation, Atlantic Multidecadal Os-
cillation, and Pacific Decadal Oscillation – as potential co-
variates for 3 d spring maximum streamflow. Our model eval-
uation, which is based on the comparison of different model
versions and the energy skill score, indicates that the model
can capture the space–time variability in extreme streamflow
well and that model skill increases with decreasing lead time.
We also find that the use of climate variables slightly en-
hances skill relative to using only snow information. Me-
dian projections and their uncertainties are consistent with
observations, thanks to the representation of spatial depen-
dencies through covariates in the margins and a Gaussian
copula. This spatiotemporal modeling framework helps in
the planning of seasonal adaptation and preparedness mea-
sures as predictions of extreme spring streamflows become
available 2 months before actual flood occurrence.

1 Introduction

Floods are a concern in mountainous regions such as the
Upper Colorado River basin (UCRB), where streamflow
extremes happen in spring, due to snowmelt in combina-
tion with precipitation (McCabe et al., 2007), and are pro-
jected to increase under future climate conditions (Mussel-
man et al., 2018). To reduce the negative impacts of such
extreme events, we need tools that decision-makers can use
in the mid- and long-term planning of flood risk adaptation
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strategies. Most existing tools either use hydrological models
to provide operational daily forecasts at lead times ranging
from 1 d to a couple of weeks or statistical models consider-
ing hydroclimatic variables from the previous season to gen-
erate seasonal streamflow forecasts. Both types of tools are
useful to inform reservoir operations during the dry season
or to provide high-flow alerts at a local scale. However, they
do not usually consider spatial dependencies in high-flow oc-
currence in different catchments, which is crucial to reliably
estimate regional flood hazard (Brunner et al., 2020).

Operational streamflow forecasts are generally imple-
mented using physically based models that use forecasts of
hydrometeorological variables, such as rainfall, as their forc-
ing (Clark and Hay, 2004; Ghile and Schulze, 2010; Wija-
yarathne and Coulibaly, 2020). An alternative to such phys-
ically based models is hybrid models, which combine phys-
ically based models with statistical models to postprocess
their output and to increase forecast skill (Chen et al., 2015;
Kurian et al., 2020). Both types of models provide daily
streamflow forecasts for short lead times (no longer than 1 or
2 weeks), may neglect spatial dependencies of flows in differ-
ent catchments, and are deterministic or provide probabilistic
ensemble forecasts by considering forcing perturbations (of
precipitation and temperature), i.e., they do not usually de-
pict model parameter uncertainty.

Only a few studies have tried to implement seasonal peak
flow forecasts; e.g., Werner and Yeager (2013) generated
both long- and short- lead time forecasts during the 2011
runoff season at more than 400 locations in the Colorado
River basin using two physically based models. However,
peak flow forecasts were skillful only after 15 May, mainly
because of inaccurate weather and climate forecasts. In addi-
tion, Kwon et al. (2009) generated annual maximum stream-
flow forecasts for the Three Gorges Dam in the Yangtze River
basin in China by considering sea surface temperature (SST)
anomalies and snow cover from the previous season as co-
variates. However, these forecasts provided return level fore-
casts for single sites as they focused on reservoir operation.

Seasonal and subseasonal streamflow forecasting models
rely on the skill of hydroclimatic variables from the previous
season, such as snow cover (e.g., Kwon et al., 2009; Pagano
et al., 2009; Livneh and Badger, 2020), large-scale climate
indices (Ruiz et al., 2007; Lima and Lall, 2010; Robert-
son and Wang, 2012), or changes in land cover conditions
(Penn et al., 2020), among others, to obtain skillful forecasts.
Modeling approaches include statistical approaches based on
multiple linear regression (Ruiz et al., 2007; Pagano et al.,
2009; Penn et al., 2020), physically based models that con-
sider the uncertainty of initial conditions or inputs by per-
turbing them (Werner and Yeager, 2013; Anghileri et al.,
2016; Wood et al., 2016), and Bayesian approaches that ac-
count for parameter uncertainty (Kwon et al., 2009; Lima and
Lall, 2010; Robertson and Wang, 2012).

In the case of mountainous regions, projection models for
spring flow extremes can take advantage of the fact that snow

water equivalents (SWEs) accumulated until the beginning
of spring are a skillful predictor of spring streamflow (Koster
et al., 2010; Livneh and Badger, 2020). However, such mod-
els should also consider potential nonstationarities (interan-
nual variability) due to climate change (Musselman et al.,
2018) and the spatiotemporal dependence of the data, as the
flood risk may increase if multiple catchments are affected at
once (Thieken et al., 2015; Hochrainer-Stigler, 2020). Here,
we develop a Bayesian hierarchical model (BHM) for the
prediction of extreme spring streamflow that considers both
nonstationarity and spatiotemporal dependence and ask the
following questions:

– How does the representation of nonstationarity (inter-
annual variability) through suitable covariates improve
seasonal predictions?

– How does the explicit representation of spatial depen-
dencies improve prediction performance?

– To what extent are seasonal projections for longer lead
times still skillful?

We address these questions by applying the proposed BHM
to project a 3 d spring maximum (May–June) streamflow at
seven gauges in the Upper Colorado River basin (UCRB).
We consider 3 d maxima instead of 1 d maxima because
snowmelt-driven events in spring typically have longer du-
rations and flood volumes than events driven by convective
storms in summer.

2 Proposed framework

We propose a space–time modeling framework for the pre-
diction of seasonal streamflow extremes that has three com-
ponents, namely (i) a hierarchical model structure, (ii) non-
stationary margins, and (iii) a spatial dependence model.
Each of these model components, their estimation strategies,
and the estimation of ensembles of seasonal streamflow ex-
tremes are described below.

2.1 Hierarchical model structure

We conduct a nonstationary frequency analysis of seasonal
streamflow extremes at m gauges in a river basin – say,
q1, . . .,qm – over k years. To do this analysis, we consider
a Bayesian hierarchical model that accounts for spatial de-
pendence and nonstationarity. In the first layer of the hier-
archical model structure, also known as the data layer, we
consider that the joint distribution of streamflow at multi-
ple gauges in each year is modeled using a Gaussian ellip-
tical copula with generalized extreme value (GEV) margins
(Coles, 2001; Katz, 2013; He et al., 2015). Specifically, the
proposed model structure for m locations is as follows:

(q1(t), . . .,qm(t))∼ Cm (6;µ(t) ,σ (t) ,ξ) (1)
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qi (t)∼ GEV(µi (t) ,σi (t) ,ξi) , i = 1, . . .,m, (2)

where Cm is an m-dimensional Gaussian elliptical cop-
ula with dependence matrix 6 and GEV parameters (loca-
tion, scale, and shape) µi(t) ∈ (−∞,∞), σi(t) > 0, and ξi ∈
(−∞,∞). The second layer of the hierarchy, also known
as the latent layer, considers that the three parameters of
the GEV are nonstationary and are time varying, i.e., for
the streamflow gauge i at time t , µ(t)= [µi (t)]mi=1, σ (t)=
[σi (t)]mi=1, and ξ = [ξi]mi=1. Specifics of models (1) and (2)
are given in the next sections.

A conceptual sketch of the BHM is shown in Fig. 1, which
shows the data layer (Gaussian copula and GEV marginal
distributions) and the latent layer (time dependence of GEV
parameters).

2.2 Marginal distributions

The first two GEV parameters (location and scale) are mod-
eled as linear functions of time-dependent, large-scale cli-
mate variables and regional mean variables from the previ-
ous season, while the shape parameter is considered to be
stationary, as follows:

µi (t)= αµ0i +

n∑
j=1

αµjixj (t) , i = 1, . . .,m (3)

log(σi (t))= ασ0i +

n∑
j=1

ασjixj (t) , i = 1, . . .,m (4)

ξi = αξ0i , i = 1, . . .,m, (5)

where xj (t) is covariate j at time t , and αµji , ασji , and αξ0i
are the regression coefficients for covariate j and gauge i at
time t . log(σ ) is used to ensure positive scale parameters.
The validity of the nonstationary location and scale parame-
ters can be checked through the significance of their slope co-
efficients’ posterior probability density functions (PDFs; i.e.,
by checking whether 95 % of the sample values are greater
(lower) than 0). Covariates will be discussed in Sect. 3.2.
The shape parameter ξ is often modeled as a single value per
study area/region because of large estimation uncertainties
(Cooley et al., 2007; Renard, 2011; Apputhurai and Stephen-
son, 2013; Atyeo and Walshaw, 2012), or it is modeled spa-
tially, along with the other GEV parameters, but considers
a specific range of potential values (Cooley and Sain, 2010;
Bracken et al., 2016). Here, we model the shape parameter
for each catchment individually but consider it to be station-
ary in time.

2.3 Gaussian copula for spatial dependence

Copulas are a flexible tool for modeling multivariate random
variables since they can represent dependence independently
of the choice of marginal distributions (Genest and Favre,
2007; Bracken et al., 2018; Brunner et al., 2019), which is
a particularly appealing feature for extremal processes. This

study focuses on Gaussian copulas because of their ease of
implementation in a Bayesian and high-dimensional frame-
work.

Let q (t)=
[
qi (t)

]m
i=1 be a random vector of extreme

streamflow at m gauges and time t . The Gaussian copula
builds the joint cumulative distribution function (CDF) of
q (t) as follows:

Fcop (q (t))=86 (u(t)) , (6)

where86 (·) is the joint CDF of anm-dimensional multivari-
ate normal distribution with dependence matrix 6, u(t)=
[ui (t)]mi=1, ui (t)=8−1 (Fit [qi(t)]), with 8 being the CDF
of the standard normal distribution, and Fit (·) is the marginal
GEV or empirical CDF for streamflow gauge i at time t .

The copula dependence matrix, 6, is a symmetric posi-
tive definite matrix that captures the strength of dependence
between all gauge pairs using the Pearson correlation co-
efficient. The element cij of 6 quantifies the dependence
between gauges i and j and its values can vary between
−1 and 1, as follows:

6 =



1 c12 · · · c1(m−1) c1m

c21 1
. . .

... c2m

c31 c32
. . .

...
...

...
...

. . . 1 c(m−1)m
cm1 cm2 · · · c(m−1)m 1


. (7)

By definition, the dependency between a streamflow gauge
and itself is unity, so the diagonal elements of 6 are a se-
ries of ones. Since 6 is symmetric, only m(m− 1)/2 values
need to be fitted (values in the lower or upper triangle of 6).
The Gaussian copula only assumes a linear correlation af-
ter quantile transformation of the marginals with the inverse
normal CDF. This does not impose a linear correlation struc-
ture on the marginal distributions, meaning that nonlinear de-
pendence between variables can be captured at the data level
(Bracken et al., 2018).

There are two main approaches to estimate the unknown
parameters of the conditional copula (Hochrainer-Stigler,
2020). The first one is called inference functions for mar-
gins (IFMs). In this approach, the marginal distribution pa-
rameters are estimated in the first step and the copula pa-
rameters in the second step. One major disadvantage of this
approach is the loss of estimation efficiency as, in the first
step, the dependence between the marginal distributions is
not considered. The second approach (hereafter referred to
as the pseudo-observations fitting) estimates the copula pa-
rameters without assuming specific parametric distribution
functions of the marginals, and pseudo-observations are used
instead. The framework proposed here considers pseudo-
observations fitting to estimate the copula dependence pa-
rameters.
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Figure 1. Conceptual sketch of the Bayesian hierarchical model. Blue boxes denote the data, orange boxes the GEV distribution parameters,
gray boxes the models, and red circles the inferred quantities. Model boxes correspond to the data layer (Gaussian copula and GEV marginal
distributions) and the latent layer (time regressions of GEV parameters). θ

(
si , tj

)
=
[
µ
(
si , tj

)
, logσ

(
si , tj

)
,ξ
(
si , tj

)]
.

2.4 Estimation strategy

The inference of the model parameters is done in a Bayesian
framework, which can account for parameter uncertainties.
The posterior distributions of the model parameters, θ =[
µ, logσ ,ξ

]
and 6, given the data (3 d spring maximum

(May–June) streamflow at each gauge and covariates) and
considering a record length of k days by Bayes’ rule, are as
follows:

p(θ ,6|q,x,u)

∝

[
k∏
t=1

(
m∏
i=1
pq (qi (t)|θi,x (t))

)
pu (u(t)|6)

]
pθ (θ)p6 (6) , (8)

where pq (qi(t)|θi,x (t)) represents the PDF of the GEV for
location i and time t , pu (u(t)|6)=MVN(u(t)|0,6) is the
Gaussian copula PDF for time t , u(t)= [ui (t)]mi=1, ui (t)=
8−1 (Fit [qi(t)]),8 is the CDF of the standard normal distri-
bution, Fit (·) is the empirical CDF (pseudo-observations) for
location i at time t , and p6 ( 6) and pθ (θ) represent the pri-
ors of the GEV regression coefficients and Gaussian copula
dependence matrix, respectively. pθ (θ) is defined as follows:

pθ (θ)= pµ (µ)pσ (logσ )pξ (ξ) (9)

pµ (µ)=

n∏
j=0

MVN
(
αµj

∣∣0,6αµj )p6αµj (6αµj ) (10)

pσ (logσ )=
n∏
j=0

MVN
(
ασj

∣∣0,6ασj )p6ασj (6ασj ) (11)

pξ (ξ)=MVN
(
αξ0

∣∣0,6αξ0)p6αξ0 (6αξ0) , (12)

where MVN
(
αµj

∣∣0,6αµj ), MVN
(
ασj

∣∣0,6ασj ), and

MVN
(
αξ0

∣∣0,6αξ0) represent probability densities of mul-
tivariate normal distributions with mean 0 and covariance
matrices 6αµj , 6ασj , and 6αξ0 correspond to the priors of
the GEV regression coefficients αµj , ασj , and αξ0 , respec-

tively. p6αµj

(
6αµj

)
, p6ασj

(
6ασj

)
, and p6αξ0

(
6αξ0

)
are

the priors of 6αµj , 6ασj , and 6αξ0 , which, based on Gelman
and Hill (2006), are assumed to follow an inverse Wishart
distribution to ensure a positive definite covariance matrix as
follows:

6αµj ∼ Inv wishart
(
ν,AjI

)
(13)

6ασj ∼ Inv wishart
(
ν,BjI

)
(14)

6αξ0 ∼ Inv wishart (ν,C0I ) . (15)

ν corresponds to the degrees of freedom (m+ 1), I is an
(m+ 2)× (m+ 2) identity matrix, and Aj , BJ , and C0 are
scalars properly set for 6αµj , 6ασj , and 6αξ0 , respectively.
The regression coefficients are modeled jointly to capture
their spatial correlations. Finally, p6 (6) represents the prior
of the Gaussian copula dependence matrix and is also as-
sumed to follow an inverse Wishart distribution to ensure a
positive definite covariance matrix as follows:

6 ∼ Inv wishart (ν,Cu) , (16)

where Cu corresponds to the covariance matrix of the uni-
form quantiles obtained from the pseudo-observations.

2.5 Estimation of ensembles of seasonal streamflow
projections

The predictive posterior distribution of the spring maximum
streamflow (ensembles) for the m streamflow gauges can
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be estimated using the posterior distributions (M samples)
of GEV regression coefficients, αµj , ασj , and αξ0 , and the
Gaussian copula dependence matrix, 6, which have been es-
timated using the estimation strategies presented in the pre-
vious section. To estimate the spring maximum streamflow
ensemble members, for each posterior sample of all model
parameters (αµj , ασj , αξ0 , and 6), the procedure is as fol-
lows:

1. If the posterior PDFs of the slope coefficients of the
GEV parameters were found to be significant, compute
the GEV parameters (µi (t), log(σi (t))) for each year
and gauge using αµi and ασi , and covariates, x (t), us-
ing Eqs. (3)–(4).

2. Then, simulate the marginal cumulative distributions,
Fit , for the m streamflow gauges from a Gaussian cop-
ula with a dependence matrix, 6.

3. Thereafter, compute the spring maximum streamflow
for each streamflow gauge i at time t , using the follow-
ing expression:

qi (t)= µi (t)+
σi (t)

ξi

[
(− log(Fit ))−ξi − 1

]
,

i = 1, . . .,m, (17)

where σi (t)= exp(log(σi (t)).

4. As a final step, repeat steps 2–3 for each gauge and year
of the record.

This procedure has to be repeated M times.

3 Application of framework to the Upper Colorado
River basin

We demonstrate the utility of the framework proposed in the
previous section by applying it to project 3 d spring max-
imum (May–June) streamflow at seven gauges in the Up-
per Colorado River basin (UCRB) with 0- to 2-month lead
time (Fig. 2). The UCRB is located in west-central Col-
orado, USA, and has an area of approximately 25 700 km2.
Its headwaters originate at the Continental Divide in the
Rocky Mountain National Park. Further downstream, UCRB
flows in a westerly direction through forested mountains and
irrigated valleys before it leaves Colorado in Mesa County
downstream of the city of Grand Junction (Colorado’s De-
cision Support Systems, 2007). The basin has a snowmelt-
dominated flow regime, i.e., most of the precipitation is ac-
cumulated during winter in the form of snow. Over 85 %
of the basin’s streamflow and flood peaks occur in spring
due to snowmelt. Therefore, using snow information of the
basin might provide skillful projections of spring maximum
streamflow several months in advance.

Figure 2. Streamflow gauges in the Upper Colorado River basin
(UCRB) considered in this study. Light blue squares correspond to
the snow gauges (18) and purple triangles to the meteorological sta-
tions (3) considered in this study.

3.1 Streamflow data

Daily spring, May through June, streamflow data were ob-
tained from the U.S. Geological Survey (USGS) using the R
package dataRetrieval (De Cicco et al., 2018). We selected
streamflow gauges located inside the UCRB with no more
than 10 % or 3 consecutive years of missing data from 1965
to 2018. This procedure resulted in the selection of seven
streamflow gauges (Fig. 2 and Table 1). The seven gauges
have drainage areas between 14.5 and 432.5 km2, elevations
between 2105 and 3179 m. a.s.l. (above sea level), and mean
streamflow and mean seasonal (May–June) streamflow range
from 1 to 28.3 m3 s−1 and from 0.3 to 8.3 m3 s−1, respec-
tively. The seven catchments are not nested; instead, they are
individual subcatchments of the larger UCRB. We computed
3 d spring maximum streamflow for each year at each stream-
flow gauge. For a gauge with missing annual values, these
values were substituted with the gauge’s median value.

Figure 3 shows the spatial dependence of 3 d spring max-
imum streamflow for the seven gauges, which was assessed
using Kendall’s rank correlation for each pair of stations. The
dependence of 3 d spring maximum streamflows between
gauges is generally positive, as indicated by Kendall’s rank
correlation values higher than 0.4 (significant at 95 % con-
fidence level) for all station pairs. These significant spatial
correlations require the inclusion of a copula in the BHM to
capture the spatial dependence of the data.

3.2 Covariates

It has been shown in previous studies that the snow water
equivalent (SWE) accumulated until the beginning of spring
is the most skillful predictor of spring–summer seasonal
streamflow across mountainous regions, such as the western
USA (Koster et al., 2010; Pagano, 2010; Wood et al., 2016;

https://doi.org/10.5194/hess-25-1-2021 Hydrol. Earth Syst. Sci., 25, 1–18, 2021
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Table 1. Basic data corresponding to the streamflow gauges in the Upper Colorado River basin (UCRB) considered in this study.

USGS Drainage Mean Mean seasonal
Code gauge River area Elevation streamflow streamflow

number (km2) (m. a.s.l.) (m3 s−1) (m3 s−1)

UCRB1 9 034 900 Bobtail Creek 14.5 3179 1.0 0.3
UCRB2 9 047 700 Keystone Gulch 23.7 2850 0.5 0.2
UCRB3 9 065 500 Gore Creek 37.6 2621 3.1 0.8
UCRB4 9 066 000 Black Gore Creek 32.4 2789 2.0 0.5
UCRB5 9 066 200 Booth Creek 16.0 2537 1.3 0.3
UCRB6 9 066 300 Middle Creek 15.4 2499 0.7 0.2
UCRB7 9 081 600 Crystal River 432.5 2105 28.3 8.3

Figure 3. Pairs plot (lower triangular matrix) and Kendall’s rank
correlation coefficients (upper triangular matrix) of spring 3 d maxi-
mum streamflow between the seven stations in the UCRB. Kendall’s
rank correlation is significant (p values< 0.1), and positive associ-
ation patterns are visible for all pairs.

Livneh and Badger, 2020). Other potentially useful predic-
tors might include sea surface temperature anomalies or at-
mospheric teleconnection patterns. For the Colorado River,
strong links between annual flow and large-scale climate
drivers have been documented, e.g., with the Atlantic Mul-
tidecadal Oscillation (AMO; McCabe and Dettinger, 1999;
Enfield et al., 2001; Hidalgo, 2004; Tootle et al., 2005; Mc-
Cabe et al., 2007; Timilsena et al., 2009; Nowak et al., 2012),
the Pacific Decadal Oscillation (PDO; Hidalgo, 2004; Too-
tle et al., 2005; Timilsena et al., 2009), and the El Niño–
Southern Oscillation (ENSO; Redmond and Koch, 1991;
Kahya and Dracup, 1994; Rajagopalan et al., 2000; Thom-
son et al., 2003; Timilsena et al., 2009). However, the rela-

Figure 4. Schemes of nonstationary models considered for three
different lead times. The dark turquoise box denotes the model for a
0-month lead time (projections are released on 1 May), the turquoise
box the model for a 1-month lead time (projections are released on
1 April), and the light turquoise box the model for a 2-month lead
time (projections are released on 1 March). The same color scheme
will be considered for the Sect. 4.

tionship of these indices with annual or seasonal extremes
has not been explored in-depth, and earlier studies shown
modest relationships, e.g., between southwestern USA sea-
sonal or annual maximum streamflow and ENSO and PDO
(Sankarasubramanian and Lall, 2003; Werner et al., 2004).

We test the usefulness of both snow-related and climatic
drivers within the BHM framework by using SWE and dif-
ferent climatic indices as potential covariates of the marginal
GEV distributions. Specifically, we tested the following co-
variates for modeling the temporal nonstationarity of the
GEV parameters (see Eqs. 3–4) for the period 1965–2018,
including the average ENSO, PDO, and AMO climate in-
dices, the spatial average of accumulated snow water equiva-
lent (SASWE) from November to February, March, or April,
depending on the lead time (0-, 1-, or 2-month lead time), and
the spatial average April mean temperature (SAAMT). As
indicated earlier, we focus on projecting 3 d extreme spring
streamflow at lead times of 0-, 1- and 2-months, correspond-
ing to forecast issuance on 1 May, 1 April, and 1 March,
respectively (Fig. 4). The covariates use all information prior
to forecast issuance. We did not consider spatial average pre-
cipitation as covariate since it can not be well predicted ahead
of more than 2 weeks (Werner and Yeager, 2013).

The potential covariates – monthly ENSO, PDO, and
AMO climate indices, monthly accumulated SWE from

Hydrol. Earth Syst. Sci., 25, 1–18, 2021 https://doi.org/10.5194/hess-25-1-2021
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November to April, and daily mean temperature for April –
were computed using the following data sources:

1. ENSO, PDO, and AMO climate indices are from
the National Oceanic and Atmospheric Administra-
tion (NOAA; https://psl.noaa.gov/data/climateindices/
list/, last access: 16 June 2021).

2. SWE is from the Natural Resources Conservation Ser-
vice (NRCS) Snow Course Data (https://wcc.sc.egov.
usda.gov/reportGenerator/, last access: 16 June 2021).

3. April’s daily mean temperature is from the Global His-
torical Climatology Network (GHCN; Menne et al.,
2012).

For SWE and daily mean temperature, we only considered
snow gauges (18) and meteorological stations (3) located in-
side the UCRB with full records for the period of interest
(1965-2018; see Fig. 2). We then computed the SASWE and
SAAMT covariates as the mean across all snow gauges and
meteorological stations for each year, respectively. We con-
sidered the same SWE (SASWE) and April mean tempera-
ture (SAAMT) covariates for all the gauges because these re-
gional variables do not rely on one single station, which may
not necessarily stay in operation, and they can capture the
spring maximum streamflow signal for all the station gauges.
For example, suppose that, in the future, a particular snow
gauge is out of operation. In that case, one can keep using the
average of the operative snow gauges and still derive the co-
variate. Figure 5 displays the time series of normalized spring
maximum streamflow with the SASWE (SAAMT) covariate
and the best local SWE (AMT) covariate, respectively, for
the station UCRB1. The two regional covariates can capture
the interannual variability in the spring maximum streamflow
without an important reduction in the correlation compared
to local covariates. The suitability of the regional covariates
is also verified for the other catchments and lead times.

We assessed the strength of the relationship between the
covariates and spring maximum streamflow by computing
the Spearman’s rank correlation coefficient, which is shown
in Fig. 6 for a 0-month lead time (covariates were calcu-
lated from November to April). SASWE (Fig. 6a) exhibits
a significant and strong positive correlation with a spring
maximum streamflow at all the gauges, which was expected
and also supports the choice of SASWE as a covariate for
all the station gauges. At the same time, SAAMT (Fig. 6b)
shows a significant negative correlation with the spring max-
imum streamflow. This finding was also expected, since a
higher mean April temperature would lead to early melt and,
therefore, less snow availability for melt later in spring. The
ENSO, PDO, and AMO climate indices (Fig. 6c–e) show
a weaker correlation with the spring maximum streamflow
than SASWE and SAAMT at almost all the gauges. Similar
correlations were found for other lead times (Figs. S1 and
S2 in the Supplement). For each lead time, we obtained the

Figure 5. Time series of normalized 3 d spring maximum stream-
flow, best covariate, and the spatial average covariate of (a) accu-
mulated snow water equivalent until 30 April (SWE) and (b) mean
April temperature (AMT) for UCRB1. At the bottom of each panel,
the correlation of 3 d maximum streamflow with the regional and
the best local (i.e., highest correlation) covariate are displayed.

best nonstationary GEV model as the combination of predic-
tors that resulted in a minimum deviance information crite-
rion (DIC; Spiegelhalter et al., 2002). The DIC corresponds
to a hierarchical modeling generalization of the Akaike in-
formation criterion (AIC; Akaike, 2011) and facilitates the
Bayesian model selection. The DIC is computed for a suite
of candidate models with various combinations of covariates,
and the model with the minimum DIC is selected for predict-
ing spring maximum streamflow in the UCRB.

3.3 Suitability of the GEV distribution and Gaussian
copula

We checked the suitability of the GEV distribution as a
marginal distribution and of the Gaussian copula as a spatial
dependence model using their maximum likelihood estimates
for 3 d spring maximum streamflow.

To check the validity of the GEV distribution as a
marginal distribution, we fitted a stationary GEV distribu-
tion at each gauge using maximum likelihood. Then, we ran
two goodness-of-fit tests, i.e., the Cramér–von Mises and
Anderson–Darling tests (D’Agostino and Stephens, 1986).
The p values for the two tests were higher than 0.3 for most
of the gauges, except for UCRB1 (0.11), which implies that,
at the 95 % confidence level, there is insufficient evidence to
reject the null hypothesis that the data come from a GEV dis-
tribution.Q–Q plots of the stationary GEV distribution fitted
to 3 d spring maximum streamflow for the seven streamflow
gauges of UCRB can be found in Fig. S3.
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Figure 6. Spearman’s rank correlation coefficient between 3 d spring maximum streamflow and potential covariates for a 0-month lead
time. (a) The spatial average of November–April snow water equivalent (SASWE) over the UCRB. (b) The spatial average of April mean
temperature (SAAMT) over the UCRB. (c) Mean November–April ENSO. (d) Mean November–April PDO. (e) Mean November–April
AMO. Big circles indicate that Spearman’s rank correlation is significant (p value< 0.1).

For testing the suitability of the Gaussian copula, we ran
three multivariate normality tests using marginal transforma-
tions based on pseudo-observations from the tests of Royston
(1982), Mardia (1970), and Henze and Zirkler (1990). The p
values obtained for the three tests were 0.27, 0.45, and 0.6,
respectively, which did not reject the null hypothesis that the
transformed data follow a multivariate normal distribution.
As an illustration of the goodness fit of the Gaussian cop-
ula, Fig. 7 shows the pairwise dependence structure between
gauges UCRB2 and UCRB4 for different copula families (for
more details about the other types of copulas, the reader is
referred to Hochrainer-Stigler, 2020, or Genest and Favre,
2007). The black points in each panel (Fig. 7b–g) correspond
to the observed CDF values. The simulated contour lines rep-
resent simulated contour lines for different dependence struc-
tures, including independence (no copula; Fig. 7b), Gaussian
(Fig. 7c), Student t (Fig. 7d), Joe (Fig. 7e), Gumbel (Fig. 7f),
and Vine copulas (Fig. 7g). Only Gaussian, Student t , and
Vine copulas can capture the dependence structure of the
data. This visual inspection confirms that the Gaussian cop-
ula is suitable for replicating the dependence structure of the
observed data.

3.4 Model structure for the UCRB

The specific structure of the BHM for the UCRB incorpo-
rates the covariates described in Sect. 3.2. We modeled the

location parameter of the GEV at each gauge in a nonstation-
ary way, but the scale parameter of the GEV is kept stationary
for all gauges. An initial run of the BHM with a nonstation-
ary scale parameter showed that the regression coefficients
(ασj = 0 for j > 0 in Eq. 4) were not significant (posterior
PDFs contain zero in the 95 % confidence interval). The pri-
ors of the covariance matrix of αµj , ασ0 , and αξ0 used are as
follows:

6αµ0
∼ Inv wishart (8,A0I ) (18)

6αµj ∼ Inv wishart
(
8,AjI

)
, j ≥ 1 (19)

6ασ0
∼ Inv wishart (8,B0I ) (20)

6αξ0 ∼ Inv wishart (8,C0I ) . (21)

We considered noninformative priors for the covariance
matrix of the GEV regression coefficients by setting A0 =

100, Aj = 10, B0 = 1, and C0 = 1. Since we fitted differ-
ent types of BHMs, 6αj is only considered for nonstationary
models. For the dependence matrix of the Gaussian copula,
we used an informative prior as follows:

6 ∼ Inv wishart(8,Cu) , (22)

where Cu corresponds to the covariance matrix of the uni-
form quantiles obtained from the pseudo-observations of
spring maximum streamflow.
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Figure 7. Pairwise dependence structure between UCRB2 and UCRB4 (a) streamflow simulated (b) without a copula and with a (c) Gaussian
copula, (d) Student t copula, (e) Joe copula, (f) Gumbel copula, and (g) Vine copula. Observations and simulated contour lines are shown as
black points and blue lines, respectively.

3.5 Implementation and model fitting

The model was implemented in R (R Core, 2017), using
the program JAGS (Just Another Gibbs Sampler; Plummer,
2003) and the R package rjags (Plummer, 2019), which pro-
vides an interface from R to the JAGS library for Bayesian
data analysis. Posterior distributions of the GEV regression
coefficients and Gaussian copula matrix were estimated us-
ing Gibbs sampling (Gelman and Hill, 2006; Robert and
Casella, 2011), based on the priors assigned in the previous
section. The predictive posterior distributions of spring max-
imum streamflow (ensembles) for all years were estimated
according to Sect. 2.5. We ran three parallel chains with dif-
ferent initial values, and each simulation was performed for
2 000 000 iterations, with a burn-in size value of 1 000 000
to ensure convergence. To reduce the sample dependence
(autocorrelation), the thinning factor was set to 500, which
yields 6000 samples (2000 samples from each chain). The
scale reduction factor R̂ (Gelman and Rubin, 1992) was used
to check for model convergence, i.e., R̂ values less than the
critical value of 1.1 suggest the adequate convergence of the
model. In all of our runs, the R̂ values were less than 1.1
in 6000 samples, indicating convergence. Consequently, the

posterior distributions of the GEV regression coefficients, the
Gaussian copula matrix, and the predictive posterior distribu-
tions of spring maximum streamflow consisted of 6000 en-
sembles.

3.6 Model cross-validation and verification metrics

To test the out-of-sample predictability of the model, we
performed a leave-1-year-out cross-validation by dropping
1 year from the record (1965–2018) and fitting the BHM
using the remaining years, which are also known as the cali-
bration years. The fitted model is applied to provide estimates
for the 1 validation year. This cross-validation procedure was
repeated 54 times.

As the goal of this study is to provide seasonal streamflow
extremes projections for risk-based flood adaptation, we also
implemented this leave-1-year-out cross-validation just for
high-flow years in which all the station gauges exceeded their
60th percentile.

We computed the energy skill score (ESS) as our verifi-
cation metric, since we are interested in capturing the spa-
tiotemporal dependence of the data. The energy score (ES)
assesses the probabilistic forecasts of a multivariate quan-
tity, as follows (Gneiting and Raftery, 2007; Gneiting et al.,
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2008):

ES=
1
M

M∑
j=1

∣∣∣∣qj − qo
∣∣∣∣− 1

2M2

M∑
i=1

M∑
j=1

∣∣∣∣qi − qj ∣∣∣∣, (23)

where M = 3000 is the size of the ensemble forecast, qj is
the 7× 1 vector of the j th ensemble forecast at year t , qo
is the 7×1 vector of observed streamflow at year t , and || · ||
denotes the Euclidean norm. This performance metric is a di-
rect generalization of the continuous ranked probability score
(CRPS; Gneiting and Raftery, 2007; Gneiting et al., 2008),
which reduces the energy score in dimension d = 1. Based
on ES, the energy skill score (ESS) is defined as follows:

ESS= 1−
ESprojection

ESreference
, (24)

where ESprojection is the mean ES of the projection model an-
alyzed, and ESreference is the mean ES of the reference pro-
jection. The ESS ranges from−∞ to 1. ESS< 0 indicate that
the reference projection has higher skill than the projection
model, ESS= 0 implies equal skill, and ESS> 0 means that
the projection model has a higher skill, with ESS= 1 rep-
resenting a perfect score. For this study, we considered the
climatology (sampling from the observations) as the refer-
ence projection and benchmark. ESS was computed for both
the calibration and validation models.

4 Results

4.1 Selection of the best model for each lead time

For each lead time, different candidate BHMs were cali-
brated for the period 1965–2018, and the best BHM was
selected based on the lowest DIC value. Table 2 shows the
DIC values for different candidate BHMs for a 0-month lead
time and the best model for the other two lead times (last
two rows). In the case of a 0-month lead time, the best model
corresponds to the first row of Table 2. For a 0-month lead
time, the predictive skill resides in SWE and air temperature,
as this hydroclimatic information relates well to the stream-
flow extremes in May–June (see Fig. 6). However, for longer
lead times of 1 and 2 months, the large-scale climate indices
add predictive value. All the models fitted consider a Gaus-
sian copula to model spatial dependence. Detailed tables with
different models fitted for 1- and 2-month lead times can be
found in Tables S1 and S2.

4.2 Ability of the BHM to capture spatiotemporal
dependence

To assess the ability of the BHM in capturing the spa-
tiotemporal dependence through nonstationary covariates
and a Gaussian copula, we compared the best model for
the 0-month lead time selected in the previous section (i.e.,

Table 2. DIC values for different candidate BHMs for a 0-month
lead time and the best model for the other two lead times. For each
model, the same covariates for the location parameter are consid-
ered at all gauges. Candidate BHMs are sorted from the lowest to
the highest DIC value for a 0-month lead time. Scale and shape pa-
rameters are considered stationary. All candidate BHMs consider a
Gaussian copula to model spatial dependence.

Lead time Model Covariates DIC

0 month Nonstationary SASWE, SAAMT 1021.5
Nonstationary SASWE, AMO, SAAMT 1030.9
Nonstationary SASWE, ENSO, SAAMT 1032.7
Nonstationary SASWE, PDO, SAAMT 1032.7
Nonstationary SASWE 1034.5
Nonstationary SASWE, ENSO, AMO 1045.3
Nonstationary SASWE, PDO, AMO 1047.6
Nonstationary SASWE, ENSO, PDO 1049.7
Nonstationary SASWE, ENSO 1077.8

R Stationary – 1132.8
Nonstationary SASWE, AMO 1151.4
Nonstationary SASWE, PDO 1173

1 month Nonstationary SASWE, PDO 1065.2

2 months Nonstationary SASWE, ENSO 1075.6

SASWE and SAAMT as covariates with a Gaussian copula)
against three models that do not consider a Gaussian copula
(i.e., stationary, nonstationary with SASWE as covariate, and
nonstationary with SASWE and SAAMT as covariates).

Figure 8 shows the energy skill score (ESS) distribution
from the calibration (1965–2018) for the four BHMs for a
0-month lead time. Higher values of the ESS indicate better
performance. The stationary model (light gray box) performs
poorly in capturing the spatiotemporal dependence compared
to the benchmark (i.e., values below 0). This model also
shows a lower variability in the skill score than the other
Bayesian hierarchical models, which is expected because the
stationary model produces the same projection for each year.
When a nonstationary model with SASWE as a covariate
is considered (gray box), then the skill is substantially im-
proved compared to the benchmark and the stationary model
(i.e., most of the values above 0). This improvement is con-
sistent with Fig. 6 and previous studies stating that SWE until
the beginning of the spring season is the most skillful pre-
dictor of spring–summer seasonal streamflow in mountain-
ous regions (Koster et al., 2010; Livneh and Badger, 2020).
When SAAMT is added as a covariate (dark gray box),
then there is a significant improvement in ESS compared
to the model with only SASWE. The best model with cop-
ula (dark turquoise box) substantially increases model skill.
Model skill increases were tested with a 95 % confidence in-
terval, using a nonparametric test for the median (Gibbons
and Chakraborti, 1992).

To further highlight the ability of the Gaussian copula
to capture the spatiotemporal dependence, we computed the
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Figure 8. Energy skill score (ESS) distribution for four different
BHM versions for a 0-month lead time for the calibration period
(1965–2018). Higher values of the ESS indicate better model per-
formance. The whiskers show the 95 % credible intervals, boxes
show the interquartile range, and horizontal lines inside the boxes
show the median. Outliers are not displayed. The light gray box de-
notes a stationary model, the gray box a nonstationary model with
SASWE as a covariate, the dark gray box a nonstationary model
with SASWE and SAAMT as covariates, and the dark turquoise
model adds a Gaussian copula to model spatial dependence.

spatial joint threshold non-exceedance probabilities for the
seven stations and compared them to non-exceedance prob-
abilities derived from three models without the copula, i.e.,
spatially independent models for each streamflow gauge. In
Fig. 9, we display the distribution of the probability that
all streamflow gauges do not exceed their kth percentile
for the observations and the four models shown in Fig. 8
for a 0-month lead time and the calibration period. The
model with nonstationary covariates and a Gaussian copula
(dark turquoise box plots) can almost reproduce the shape of
the observed distribution in terms of the interquartile range
(boxes), which is an indication that this model can capture
the spatiotemporal dependence of the data well. Figure 9
also shows that, even without considering a copula, a non-
stationary model with skillful covariates can partially cap-
ture the spatiotemporal dependence (see the difference in
the distribution shape for the stationary and nonstationary
models without copula in Fig. 9). The ability of the nonsta-
tionary model to partially capture the spatiotemporal depen-
dence suggests that, with the increasing skill of the covari-
ates, the added value of the copula becomes smaller. Similar
performance was observed for the nonstationary model, with
SASWE as a covariate plus a Gaussian copula, and for a non-
stationary model, with a less skillful covariate (ENSO) plus
a Gaussian copula (not shown here).

In order to assess the spatial performance of the BHM,
Fig. 10 shows the time series of the spatial average projec-
tion of the maximum specific streamflow in spring over all

seven gauges of the UCRB from the calibration (1965–2018)
for the best model for a 0-month lead time without a Gaus-
sian copula and with a Gaussian copula, respectively. Our
results show that, by adding a Gaussian copula to the BHM
(Fig. 10b), observations can be better captured by the ensem-
ble’s median, and the ensembles represent a higher variabil-
ity, which allows for the capturing of some observations that
are not captured without the copula (Fig. 10a). For the re-
mainder of this paper, we use the term “average projection of
spring maximum specific streamflow” to refer to spatial aver-
age projection of spring maximum specific streamflow over
all seven gauges of the UCRB.

4.3 Model performance at different lead times

To define the extent to which seasonal streamflow extremes
projections for longer lead times can be skillful, we assess
the performance of the BHM at different lead times for the
calibration and the leave-1-year-out cross-validation, includ-
ing cross-validation focusing on extremes (60th percentile).
The covariates considered for each lead time were presented
in Sect. 4.1.

Figure 11 displays the energy skill score (ESS) distribution
for different lead times from the calibration, leave-1-year-
out cross-validation, and leave-1-year-out cross-validation
on extremes. ESS decreases as the lead time increases,
indicating a decrease in model skill with increasing lead
time (Fig. 11a). However, the three lead times capture the
multivariate dependence better than the calibration bench-
mark (ESS values above 0). For the leave-1-year-out cross-
validation (Fig. 11b), there is a substantial decrease in perfor-
mance compared to the calibration, except for the 0-month
lead time (dark turquoise box plot). However, model perfor-
mance for the 1-month lead time is better than the benchmark
(ESS quartiles above 0), and the model for a 2-months lead
time shows lower performance than the benchmark only for
the third quartile (above 0). Finally, for the leave-1-year-out
validation for extremes (Fig. 11c), all lead times show higher
skill than the benchmark (ESS quartiles above 0), highlight-
ing the potential usefulness of the model for flood risk as-
sessments.

To assess at-site performance, we computed the contin-
uous rank probability skill score (CRPSS; Hersbach, 2000;
Gneiting and Raftery, 2007) at each gauge (see Fig. S4).
As for the ESS, the CRPSS ranges from −∞ to 1, and its
values have the same meaning (see Sect. 3.6). We obtained
similar results compared to ESS (Fig. 11), with the excep-
tion of a few gauges for leave-1-year-out cross-validation and
leave-1-year-out cross-validation for extremes, where the
performance was poorer than the benchmark for the cross-
validation.

Figure 12 shows the time series of the average projected
spring maximum specific streamflow ensembles and the dis-
tributions of the Pearson correlation coefficient from the
leave-1-year-out cross-validation for the three lead times and
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Figure 9. Distribution of the probability that all gauges do not exceed their kth percentile for four different versions of the BHM for a
0-month lead time for the calibration period (1965–2018). The whiskers show the 95 % credible intervals, boxes show the interquartile range,
and horizontal lines inside the boxes show the median. Outliers are not displayed. The observations are shown as blue circles, and the same
color scheme as in Fig. 8 is considered for the four versions of the BHM.

Figure 10. Time series of average projected spring maximum spe-
cific streamflow over all seven gauges of the UCRB (mmd−1) from
the calibration (1965–2018) for the best model for a 0-month lead
time (a) without a Gaussian copula and (b) with a Gaussian cop-
ula. Blue and red points indicate observations captured (or not) by
the ensemble’s variability, respectively. Whiskers indicate the 95 %
credible intervals, boxes show the interquartile range, and horizon-
tal lines inside the boxes show the median. Outliers are not dis-
played. The ensemble refers to the set of projections produced for
each year.

Figure 11. Energy skill score (ESS) distribution for different lead
times from the (a) calibration, (b) leave-1-year-out cross-validation,
and (c) leave-1-year-out cross-validation for extremes (60th per-
centile). Dark turquoise box plots denote a 0-month lead time,
turquoise box plots a 1-month lead time, and light turquoise box
plots a 2-month lead time. Higher values of the ESS indicate better
model performance. Whiskers indicate the 95 % credible intervals,
boxes the show interquartile range, and the horizontal lines inside
the boxes show the median. Outliers are not displayed. All the mod-
els consider a Gaussian copula.

the benchmark. Simulations relying on models with a cop-
ula show a similar variability and can capture observed val-
ues inside their ensemble’s variability for all three lead times
(Fig. 12a–b). The benchmark (Fig. 12d) cannot capture the
observations since it converges to a stationary model, i.e.,
it gives the same projection for all years. There is a slight
performance reduction for models with 1- and 2-month lead
times compared to the 0-month lead time (Fig. 12e). The
medians of the Pearson correlation coefficient for the three
lead times vary between 0.37 and 0.5, while the median for
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Figure 12. Time series of average projected spring maximum spe-
cific streamflow (millimeters per day; hereafter mm d−1), from the
leave-1-year-out cross-validation for a (a) 0-month lead time, (b) 1-
month lead time, (c) 2-month lead time, (d) the benchmark, and
(e) the distributions of the Pearson correlation coefficient between
the observed and the ensembles of the average projection spring
maximum specific streamflow over all seven gauges for the different
models. Blue and red points in panels (a)–(d) indicate when obser-
vations are captured (or not) by the ensemble’s variability, respec-
tively. Whiskers show the 95 % credible intervals, boxes the show
interquartile range, and horizontal lines inside the boxes show the
median. Outliers are not displayed. All lead time models consider a
Gaussian copula.

the benchmark is close to −1. In addition, model perfor-
mance for the calibration (see Fig. S5) is similar to the one
of the cross-validation. This result indicates only small per-
formance reductions for the projections and implies that the
framework proposed could be useful for the early implemen-
tation of flood risk adaptation strategies each year.

5 Discussion

Compared to operational forecast models that consider short
lead times and seasonal streamflow forecast models that are
useful for reservoir operation with a focus on water avail-
ability during the dry season, the BHM proposed here has
the following benefits:

– It allows for the consideration of potential climate
change effects by modeling the margins in a nonstation-
ary setting using suitable covariates.

– It allows one to capture the spatiotemporal dependence
by including a Gaussian copula. Consequently, the spa-
tial BHM captures observations that are not captured
by the average projection of spring maximum specific
streamflow of a BHM without a copula.

– It provides average projections of spring maximum spe-
cific streamflow for up to 2 months in advance by rely-
ing on the predictive skill of snow accumulated during
the winter season.

The following question comes to mind: how can the
proposed modeling framework be used to deliver inter-
pretable seasonal average projections? It might be difficult
for decision-makers to make decisions based on the average
spring maximum specific streamflow over all seven gauges
of the UCRB (see Fig. 12). To overcome this difficulty, we
propose the provision of interpretable average projections
of spring maximum specific streamflow by providing the
first three quartiles of the ensembles along with some past
streamflow values as a reference. Providing reference val-
ues can help one to make decisions about risk adaptation
up to 2 months in advance. Reference values can be, e.g.,
the observed median specific streamflow for an average year
without flood occurrence, the maximum observed specific
streamflow on the record, or the lowest observed specific
streamflow (threshold) that can cause flood occurrence. To
find the threshold flow that can cause flood occurrence, we
computed the ratio between the average maximum and av-
erage spring mean specific streamflow over all seven gauges
of the UCRB. Then, we picked the average spring maximum
specific streamflow value of the year with the highest ratio
value, which corresponds to the threshold streamflow. The
reason for this is that when the basin is drier (high ratio be-
tween peak runoff and total seasonal runoff), even if the peak
streamflow is not so high, a flood can occur. Based on the
lowest observed specific streamflow (threshold of qthresh) that
can trigger flood occurrence, we define a potential flooding
alarm system. This system defines different flooding alarm
levels by comparing the threshold against the first three quar-
tiles (exceedance probability of q25th, q50th, and q75th) of the
average projections of spring maximum specific streamflow
for the year analyzed. This potential flooding alarm system
is shown in Fig. 13a. Thus, for each lead time, the flooding
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alarm is activated with a low risk of flooding if q25th > qthresh,
a moderate risk of flooding if q50th > qthresh, or a high risk of
flooding if q25th > qthresh. In all other cases, the alarm is not
activated.

To illustrate this system, Fig. 13b–c show examples of
when the potential flooding alarm is successfully activated or
not activated. Figure 13b presents the average projections of
spring maximum specific streamflow of the UCRB for 2011
at three lead times (0–2 months), which were obtained from
the leave-1-year-out cross-validation, along with the three
reference values mentioned above, and the observed value for
2011. It can be seen that, based on the average projections,
the flooding alarm is activated with a low risk of flooding
by 1 March (2-month lead time), a moderate risk of flooding
by 1 April (1-month lead time), and a high risk of flooding
by 1 May (0-month lead time). Thus, the flooding alarm is
successfully activated before spring since the observed value
for 2011 exceeded the threshold streamflow, and actually,
flood impacts were documented in 2011 (Werner and Yeager,
2013). In addition, Fig. 13c shows the average projection of
the spring maximum specific streamflow of the UCRB for
2018 when the flooding alarm is successfully not activated
because the three quartiles for each lead time and the ob-
served streamflow for 2018 are below the threshold stream-
flow.

The nonstationary and spatial BHM framework proposed
here was applied to the UCRB using 3 d maxima. However,
the framework is flexible and can be applied to other types
of maxima, such as 1 d maxima, be implemented in other re-
gions, be applied to other types of extremes such as droughts,
or be used under future climate conditions. In order to apply
the framework in another variable or region, the choice of
covariates has to be reconsidered and potentially adjusted.
In the application presented here, we only modeled the loca-
tion parameter as nonstationary. If the framework is applied
to another basin, this modeling choice has to be reconsid-
ered. It is advisable, as a first step, to do an initial run of the
model for defining which parameters should be considered
nonstationary. If one wishes to apply the framework to pre-
dict another type of extreme such as low flows, one needs to
reconsider distribution choice and to identify suitable covari-
ates. In addition, the framework is not limited to projections;
it can also be adapted for simulation purposes by consider-
ing real-time covariates. In addition, it can be easily adjusted
such that it represents future climate conditions if future pro-
jections of the covariates are available. However, the predic-
tive skill of the model fitted and applied to the UCRB may
change under future climate conditions. The relative impor-
tance of snowmelt and precipitation in causing flood events
may change in the future, with precipitation becoming rel-
atively more important. Consequently, the model’s predic-
tive skill, which heavily relies on SWE as a covariate, might
slightly decrease in future. However, in the case of headwater
basins in mountainous regions, such as the one considered in
this study, snowmelt will remain the dominant flood genera-

tion process in the future, as shown by climate change projec-
tions in the region (Safeeq et al., 2016). Under changing con-
ditions, one may want to reconsider the covariate choice and
test additional potentially skillful covariates such as specific
ocean and atmosphere features that are expected to have a
stronger relationship with the basin streamflow and extremes
(e.g., Grantz et al., 2005; Regonda et al., 2006; Bracken et al.,
2010). Although this framework can be applied to a more ex-
tensive stream gauges network, we do not recommend that
since clusters of different streamflow behavior will develop
as the size of the region of interest increases. In that case,
it is more efficient to fit a model for each cluster than to fit
a model for the entire region, which will be more computa-
tionally expensive. Fitting a model for each cluster allows for
using different covariates for each cluster, which may help to
provide more skillful estimates than the non-cluster case.

6 Summary and conclusions

In this study, we presented a Bayesian hierarchical model
(BHM) to project seasonal streamflow extremes for several
catchments in a river basin for several lead times. The stream-
flow extremes at a number of gauges in a basin are modeled
using a Gaussian elliptical copula and generalized extreme
value (GEV) margins with nonstationary parameters. These
parameters are modeled as a linear function of suitable co-
variates from the previous season.

We applied this framework to project 3 d spring maximum
(May–June) streamflow at seven gauges in the Upper Col-
orado River basin (UCRB) network, at 0-, 1-, and 2-month
lead times. As potential covariates, we used indices of large-
scale climate teleconnections, i.e., ENSO, AMO, and PDO,
regional mean snow water equivalent, and temperature from
the preceding winter season.

From the analysis of different models for a 0-month lead
time, we conclude the following:

– The spatial average snow water equivalent (SASWE)
accumulated during fall and spring is the most skillful
predictor of spring season maximum streamflow across
the UCRB.

– The increase in BHM performance is low when adding
other climatic indices such as PDO.

– Including a copula in the BHM enables us to capture
the spatiotemporal dependence of streamflow extremes,
which is not fully possible with independent marginal
models.

The comparative analysis for three different lead times re-
vealed that increasing the lead time from 0 to 2 months only
weakly decreases model skill. This finding implies that the
framework proposed could be useful for the early imple-
mentation of flood risk adaptation and preparedness strate-
gies. We propose an alternative to guide decision-making by
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Figure 13. (a) Schematic of the potential flooding alarm system proposed. The flooding alarm is activated if q25th > qthresh (low risk
of flooding), q50th > qthresh (moderate risk of flooding), or q75th > qthresh (high risk of flooding). Otherwise, the alarm is not activated.
(b) Average projections of spring maximum specific streamflow of UCRB for 2011 when flooding is successfully activated, and (c) average
projections of spring maximum specific streamflow of UCRB for 2018 when flooding is successfully not activated. Average projections at
0-, 1-, and 2-month lead times correspond to dark turquoise, turquoise, and light turquoise, respectively. The blue point corresponds to the
observed specific streamflow for 2018, horizontal lines correspond to the observed highest specific streamflow (qmax; dark blue), observed
flooding threshold specific streamflow (qthresh; blue), and observed average specific streamflow (qave; light blue). For each lead time, the
whiskers show the first and third quartile (q25th and q75th), and the points show the median or second quartile (q50th).

providing the average projections of spring maximum spe-
cific streamflow as the first three quartiles of the ensembles
of the average projection of the spring maximum specific
streamflow along with past observed specific streamflow val-
ues as reference. Such a communication strategy could help
decision-makers to implement adaptation strategies that ad-
dress the spatial dimension of flooding.

Data availability. The dataset used in this study, which
consists of the time series of potential covariates and
3 d spring maximum streamflow for the seven sta-
tion gauges, can be downloaded from HydroShare
https://doi.org/10.4211/hs.d8c1b413951843cf9be968e9d2a4aa79
(Ossandon, 2021).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/hess-25-1-2021-supplement.
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