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Abstract. Timely projections of seasonal streamflow extremes can be useful for the early implementation of annual flood risk

adaptation strategies. However, predicting seasonal extremes is challenging particularly under nonstationary conditions and

if extremes are correlated in space. The goal of this study is to implement a space-time model for the projection of seasonal

streamflow extremes that considers the nonstationarity (inter-annual variability) and spatio-temporal dependence of high flows.

We develop a space-time model to project seasonal streamflow extremes for several lead times up to 2 months using a Bayesian5

Hierarchical modeling (BHM) framework. This model is based on the assumption that streamflow extremes (3-day maxima)

at a set of gauge locations are realizations of a Gaussian elliptical copula and generalized extreme value (GEV) margins with

nonstationary parameters. These parameters are modeled as a linear function of suitable covariates describing the previous

season selected using the deviance information criterion (DIC). Finally, the copula is used to generate streamflow ensembles,

which capture spatio-temporal variability and uncertainty. We apply this modeling framework to predict 3-day maximum10

streamflow in spring (May-June) at seven gauges in the Upper Colorado River Basin (UCRB) with 0 to 2 months lead time. In

this basin, almost all extremes that cause severe flooding occur in spring as a result of snowmelt and precipitation. Therefore,

we use regional mean snow water equivalent and temperature from the preceding winter season as well as indices of large-scale

climate teleconnections – ENSO, AMO, and PDO – as potential covariates for 3-day spring maximum streamflow. Our model

evaluation, which is based on the comparison of different model versions and the energy skill score, indicates that the model can15

capture the space-time variability of extreme streamflow well and that model skill increases with decreasing lead time. We also

find that the use of climate variables slightly enhances skill relative to using only snow information. Median projections and

their uncertainties are consistent with observations thanks to the representation of spatial dependencies through covariates in the

margins and a Gaussian copula. This spatio-temporal modeling framework helps to plan seasonal adaptation and preparedness

measures as predictions of extreme spring streamflows become available 2 months before actual flood occurrence.20
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1 Introduction

Floods are a concern in mountain regions such as the Upper Colorado River Basin (UCRB), where streamflow extremes

happen in spring due to snowmelt in combination with precipitation (McCabe et al., 2007), and are projected to increase under

future climate conditions (Musselman et al., 2018). To reduce the negative impacts of such extreme events, we need tools that

decision-makers can use in the mid - and long-term planning of flood risk adaptation strategies. Most existing tools either use25

hydrological models to provide operational daily forecasts at lead times ranging from 1 day to a couple of weeks or statistical

models considering hydro-climatic variables from the previous season to generate seasonal streamflow forecasts. Both types

of tools are useful to inform reservoir operations during the dry season or to provide high flow alerts at a local scale. However,

they don’t usually consider spatial dependencies in high flow occurrence in different catchments which is crucial to reliably

estimate regional flood hazard (Brunner et al., 2020).30

Operational streamflow forecasts are generally implemented using physically-based models that use forecasts of hydro-

meteorological variables such as rainfall as their forcing (Clark and Hay, 2004; Ghile and Schulze, 2010; Wijayarathne and

Coulibaly, 2020). An alternative to such physically based models are hybrid models which combine physically-based models

with statistical models to post-process their output and to increase forecast skill (Chen et al., 2015; Kurian et al., 2020). Both

types of models provide daily streamflow forecasts for short lead times (no longer than one or two weeks), may neglect spatial35

dependencies of flows in different catchments, and are deterministic or provide probabilistic ensemble forecasts by considering

forcing perturbations (of precipitation and temperature), i.e. they don’t usually depict model parameter uncertainty.

Only a few studies have tried to implement seasonal peak flow forecasts, e.g., Werner and Yeager (2013) generated both

long- and short- leadtime forecasts during the 2011 runoff season at more than 400 locations in the Colorado River basin using

two physically-based models. However, peak flow forecasts were skillful only after May 15th mainly because of inaccurate40

weather and climate forecasts. In addition, Kwon et al. (2009) generated annual maximum streamflow forecasts for the Three

Gorges Dam in the Yangtze River basin in China considering sea surface temperature (SST) anomalies and snow cover from

the previous season as covariates. However, these forecasts provided return level forecasts for single sites as they focused on

reservoir operation.

Seasonal and sub-seasonal streamflow forecasting models rely on the skill of hydro-climatic variables from the previous45

season, such as snow cover (e.g., Kwon et al., 2009; Pagano et al., 2009; Livneh and Badger, 2020), large scale climate

indices (Ruiz et al., 2007; Lima and Lall, 2010; Robertson and Wang, 2012), or changes in land cover conditions (Penn et al.,

2020) among others to obtain skillful forecasts. Modeling approaches include statistical approaches based on multiple linear

regression (Ruiz et al., 2007; Pagano et al., 2009; Penn et al., 2020); physically-based models that consider the uncertainty

of initial conditions or inputs by perturbing them (Werner and Yeager, 2013; Anghileri et al., 2016; Wood et al., 2016); and50

Bayesian approaches that account for parameter uncertainty (Kwon et al., 2009; Lima and Lall, 2010; Robertson and Wang,

2012).

In the case of mountain regions, projection models for spring flow extremes can take advantage of the fact that snow water

equivalents (SWE) accumulated until the beginning of spring are a skillful predictor of spring streamflow (Koster et al., 2010;
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Livneh and Badger, 2020). However, such models should also consider potential nonstationarities (inter-annual-variability)55

due to climate change (Musselman et al., 2018) and the spatio-temporal dependence of the data as flood risk may increase

if multiple catchments are affected at once (Thieken et al., 2015; Hochrainer-Stigler, 2020). Here, we develop a Bayesian

Hierarchical Model (BHM) for the prediction of extreme spring streamflow that considers both nonstationarity and spatio-

temporal dependence and ask:

– How does the representation of nonstationarity (inter-annual-variability) through suitable covariates improve seasonal60

predictions?

– How does the explicit representation of spatial dependencies improve prediction performance?

– To what extent are seasonal projections for longer lead times still skillful?

We address these questions by applying the proposed BHM to project 3-day spring maximum (May-June) streamflow at seven

gauges in the Upper Colorado River Basin (UCRB). We consider 3-day maxima instead of 1-day maxima because snowmelt-65

driven events in spring typically have longer durations and flood volumes than events driven by convective storms in summer.

2 Proposed framework

We propose a space-time modeling framework for the prediction of seasonal streamflow extremes that has three components:

(i) a hierarchical model structure, (ii) nonstationary margins, and (iii) a spatial dependence model. Each of these model com-

ponents, their estimation strategies, and the estimation of ensembles of seasonal streamflow extremes are described below.70

2.1 Hierarchical model structure

We conduct a nonstationary frequency analysis of seasonal streamflow extremes at m gauges in a river basin - say, q1, . . . , qm

- over k years. To do this analysis, we consider a Bayesian hierarchical model that accounts for spatial dependence and

nonstationarity. In the first layer of the hierarchical model structure, also known as the data layer, we consider that the joint

distribution of streamflow at multiple gauges in each year is modeled using a Gaussian elliptical copula with generalized75

extreme value (GEV) margins (Coles, 2001; Katz, 2013; He et al., 2015). Specifically, the proposed model structure for m

locations is

(q1(t), . . . , qm(t))∼ Cm (Σ;µ(t) ,σ (t) ,ξ) (1)

qi (t)∼GEV (µi (t) ,σi (t) , ξi) , i= 1, . . . ,m (2)

where Cm is an m-dimensional Gaussian elliptical copula with dependence matrix Σ and GEV parameters (location, scale,80

and shape) µi(t) ∈ (−∞,∞), σi(t)> 0 and ξi ∈ (−∞,∞). The second layer of the hierarchy, also known as the latent layer,
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Figure 1. Conceptual sketch of the Bayesian Hierarchical Model. Blue boxes denote the data, orange boxes the GEV distribution parameters,

grey boxes the models, and red circles the inferred quantities. Model boxes correspond to the data layer (Gaussian copula and GEV marginal

distributions) and the latent layer (time regressions of GEV parameters). θ (si, tj) = [µ(si, tj) , logσ (si, tj) ,ξ (si, tj)].

considers that the three parameters of the GEV are nonstationary and are time-varying, i.e., for the streamflow gauge i at time

t, µ(t) = [µi (t)]
m
i=1, σ (t) = [σi (t)]

m
i=1, ξ = [ξi]

m
i=1. Specifics of models (1) and (2) are given in the next sections.

A conceptual sketch of the BHM is shown in Fig. 1 which shows the data layer (Gaussian copula and GEV marginal

distributions) and the latent layer (time dependence of GEV parameters).85

2.2 Marginal distributions

The first two GEV parameters (location and scale) are modeled as linear functions of time-dependent large-scale climate

variables and regional mean variables from the previous season while the shape parameter is considered to be stationary:

µi (t) = αµ0i +

n∑
j=1

αµjixj (t), i= 1, . . . ,m (3)

log(σi (t)) = ασ0i +

n∑
j=1

ασjixj (t), i= 1, . . . ,m (4)90

ξi = αξ0i , i= 1, . . . ,m (5)

where xj (t) is covariate j at time t, αµji , ασji , and αξ0i are the regression coefficients for covariate j and gauge i at time

t. log(σ) is used to ensure positive scale parameters. The validity of the nonstationary location and scale parameters can be

checked through the significance of their slope coefficients’ posterior PDFs (i.e., by checking whether 95% of the sample
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values are greater (lower) than 0). Covariates will be discussed in section 3.2. The shape parameter ξ is often modeled as a95

single value per study area/region because of large estimation uncertainties (Cooley et al., 2007; Renard, 2011; Apputhurai and

Stephenson, 2013; Atyeo and Walshaw, 2012) or modelled spatially along with the other GEV parameters but considering a

specific range of potential values (Cooley and Sain, 2010; Bracken et al., 2016). Here, we model the shape parameter for each

catchment individually but consider it to be stationary in time.

2.3 Gaussian copula for spatial dependence100

Copulas are a flexible tool for modeling multivariate random variables since they can represent dependence independently of

the choice of marginal distributions (Genest and Favre, 2007; Bracken et al., 2018; Brunner et al., 2019), which is a particularly

appealing feature for extremal processes. This study focuses on Gaussian copulas because of their ease of implementation in a

Bayesian and high-dimensional framework.

Let q (t) = [qi (t)]
m
i=1 be a random vector of extreme streamflow at m gauges and time t. The Gaussian copula builds the105

joint cumulative distribution function (CDF) of q (t) as

Fcop (q (t)) = ΦΣ (u(t)) (6)

where ΦΣ (·) is the joint CDF of an m-dimensional multivariate normal distribution with dependence matrix Σ, u(t) =

[ui (t)]
m
i=1, ui (t) = Φ−1 (Fit [qi(t)]) with Φ being the CDF of the standard normal distribution, and Fit(·) the marginal GEV

or empirical CDF for streamflow gauge i at time t.110

The copula dependence matrix, Σ, is a symmetric positive definite matrix that captures the strength of dependence between

all gauge pairs using the Pearson correlation coefficient. The element cij of Σ quantifies the dependence between gauges i and

j and its values can vary between -1 and 1:

Σ=



1 c12 · · · c1(m−1) c1m

c21 1
. . .

... c2m

c31 c32
. . .

...
...

...
...

. . . 1 c(m−1)m

cm1 cm2 · · · c(m−1)m 1


(7)

By definition, the dependency between a streamflow gauge and itself is unity, so the diagonal elements of Σ are 1’s. Since Σ115

is symmetric, only m(m−1)/2 values need to be fitted (values in the lower or upper triangle of Σ). The Gaussian copula only

assumes linear correlation after quantile transformation of the marginals with the inverse normal CDF. This does not impose a

linear correlation structure on the marginal distributions, meaning that nonlinear dependence between variables can be captured

at the data level (Bracken et al., 2018).
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There are two main approaches to estimate the unknown parameters of the conditional copula (Hochrainer-Stigler, 2020).120

The first one is called inference functions for margins (IFM). In this approach, the marginal distribution parameters are es-

timated in the first step and the copula parameters in the second step. One major disadvantage of this approach is the loss

of estimation efficiency, as in the first step, the dependence between the marginal distributions is not considered. The sec-

ond approach (hereafter referred to as pseudo-observations fitting) estimates the copula parameters without assuming specific

parametric distribution functions of the marginals, and pseudo-observations are used instead. The framework proposed here125

considers pseudo-observations fitting to estimate the copula dependence parameters.

2.4 Estimation strategy

Inference of the model parameters is done in a Bayesian framework, which can account for parameter uncertainties. The

posterior distributions of the model parameters, θ = [µ, logσ,ξ] and Σ, given the data (3-day spring maximum (May-June)

streamflow at each gauge and covariates) and considering a record length of k days by Bayes’ rule, are130

p(θ,Σ|q,x,u)∝

[
k∏

t=1

(
m∏
i=1

pq (qi (t)|θi,x(t))

)
pu (u(t)|Σ)

]
pθ (θ)pΣ (Σ) (8)

where pq (qi(t)|θi,x(t)) represents the PDF of the GEV for location i and time t, pu (u(t)|Σ) =MVN (u(t)|0,Σ) is the

Gaussian copula PDF for time t, u(t) = [ui (t)]
m
i=1, ui (t) = Φ−1 (Fit [qi(t)]), Φ is the CDF of the standard normal distribution,

Fit(·) is the empirical CDF (pseudo-observations) for location i at time t, and pΣ ( Σ) and pθ (θ) represent the priors of the

GEV regression coefficients and Gaussian copula dependence matrix, respectively. pθ (θ) is defined as135

pθ (θ) = pµ (µ)pσ (logσ)pξ (ξ) (9)

pµ (µ) =

n∏
j=0

MVN
(
αµj

∣∣0,Σαµj

)
pΣαµj

(
Σαµj

)
(10)

pσ (logσ) =

n∏
j=0

MVN
(
ασj

∣∣0,Σασj

)
pΣασj

(
Σασj

)
(11)

pξ (ξ) =MVN
(
αξ0 |0,Σαξ0

)
pΣαξ0

(
Σαξ0

)
, (12)

where MVN
(
αµj

∣∣0,Σαµj

)
, MVN

(
ασj

∣∣0,Σασj

)
, and MVN

(
αξ0 |0,Σαξ0

)
represent probability densities of multi-140

variate normal distributions with mean 0 and covariance matrices Σαµj
, Σασj

, and Σαξ0
correspond to the priors of the GEV

regression coefficients αµj
, ασj

, and αξ0 respectively; and pΣαµj

(
Σαµj

)
, pΣασj

(
Σασj

)
, and pΣαξ0

(
Σαξ0

)
are the priors

of Σαµj
, Σασj

, and Σαξ0
, which based on Gelman and Hill (2006) are assumed to follow an inverse-Wishart distribution to

ensure a positive definite covariance matrix
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Σαµj
∼ Inv wishart(ν,AjI) (13)145

Σασj
∼ Inv wishart(ν,BjI) (14)

Σαξ0
∼ Inv wishart(ν,C0I) . (15)

ν corresponds to the degrees of freedom (m+1), I is an (m+2)× (m+2) identity matrix, and Aj , BJ , and C0 are scalars

properly set for Σαµj
, Σασj

, and Σαξ0
, respectively. The regression coefficients are modeled jointly to capture their spatial

correlations. Finally, pΣ (Σ) represents the prior of the Gaussian copula dependence matrix and is also assumed to follow an150

inverse-Wishart distribution to ensure a positive definite covariance matrix

Σ∼ Inv wishart(ν,Cu) (16)

where Cu corresponds to the covariance matrix of the uniform quantiles obtained from the pseudo-observations.

2.5 Estimation of ensembles of seasonal streamflow projections

The predictive posterior distribution of spring maximum streamflow (ensembles) for the m streamflow gauges can be estimated155

using the posterior distributions (M samples) of GEV regression coefficients, αµj , ασj , and αξ0 , and the Gaussian copula

dependence matrix, Σ, which have been estimated using the estimation strategies presented in the previous section. To estimate

spring maximum streamflow ensemble members, for each posterior sample of all model parameters (αµj
, ασj

, αξ0 , and Σ)

the procedure is as follows:

1. If the posterior PDFs of the slope coefficients of the GEV parameters were found to be significant, compute the GEV160

parameters (µi (t), log(σi (t))) for each year and gauge using αµi
, ασi

, and covariates, x(t), using Eq. (3)-(4).

2. Simulate marginal cumulative distributions, Fit, for the m streamflow gauges from a Gaussian copula with a dependence

matrix, Σ.

3. Compute spring maximum streamflow for each streamflow gauge i at time t using the following expression

qi (t) = µi (t)+
σi (t)

ξi

[
(− log(Fit))

−ξi − 1
]
, i= 1, . . . ,m (17)165

where σi (t) = exp(log(σi (t))

4. Repeat steps 2-4 for each gauge and year of the record.

This procedure has to be repeated M times.
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3 Application of framework to the Upper Colorado River basin

We demonstrate the utility of the framework proposed in the previous section by applying it to project 3-day spring maximum170

(May-June) streamflow at seven gauges in the Upper Colorado River basin (UCRB) with 0 to 2 months lead time (Fig. 2).

The UCRB is located in west-central Colorado, US, and has an area of approximately 25,700 km2. Its headwaters originate at

the Continental Divide in Rocky Mountain National Park. Further downstream, UCRB flows in a westerly direction through

forested mountains and irrigated valleys before it leaves Colorado in Mesa County downstream of the City of Grand Junction

(Colorado’s Decision Support Systems, 2007). The basin has a snowmelt-dominated flow regime, i.e., most of the precipitation175

is accumulated during winter in the form of snow. Over 85% of the basin’s streamflow and flood peaks occur in spring due to

snowmelt. Therefore, using snow information of the basin might provide skillful projections of spring maximum streamflow

several months in advance.

3.1 Streamflow data

Daily spring, May through June, streamflow data were obtained from the US Geological Survey (USGS) using the R package180

dataRetrieval (De Cicco et al., 2018). We selected streamflow gauges located inside the UCRB with no more than 10% or three

consecutive years of missing data from 1965 to 2018. This procedure resulted in the selection of seven streamflow gauges

(Fig. 2 and Table 1). The seven gauges have drainage areas between 14.5 and 432.5 km2, elevations between 2105 and 3179

m.a.s.l., and mean streamflow and mean seasonal (May-June) streamflow range from 1 to 28.3 m3 s−1 and from 0.3 to 8.3

m3 s−1, respectively. The seven catchments are not nested, instead they are individual sub-catchments of the larger UCRB. We185

computed 3-day spring maximum streamflow for each year at each streamflow gauge. For a gauge with missing annual values,

these values were substituted with the gauge’s median value.

Figure 3 shows the spatial dependence of 3-day spring maximum streamflow for the seven gauges, which was assessed using

Kendall’s rank correlation for each pair of stations. The dependence of 3-day spring maximum streamflows between gauges

is generally positive as indicated by Kendall’s rank correlation values higher than 0.4 (significant at 95% confidence level)190

for all station pairs. These significant spatial correlations require the inclusion of a copula in the BHM to capture the spatial

dependence of the data.

3.2 Covariates

It has been shown in previous studies that snow water equivalent (SWE) accumulated until the beginning of spring is the most

skillful predictor of spring-summer seasonal streamflow across mountainous regions, such as the western US (Koster et al.,195

2010; Pagano, 2010; Wood et al., 2016; Livneh and Badger, 2020). Other potentially useful predictors might include sea surface

temperature anomalies or atmospheric teleconnection patterns. For the Colorado River, strong links between annual flow and

large scale climate drivers have been documented – e.g., with Atlantic Multidecadal Oscillation (AMO, McCabe and Dettinger,

1999; Enfield et al., 2001; Hidalgo, 2004; Tootle et al., 2005; McCabe et al., 2007; Timilsena et al., 2009; Nowak et al., 2012),

Pacific Decadal Oscillation (PDO, Hidalgo, 2004; Tootle et al., 2005; Timilsena et al., 2009), and El Nino Southern Oscillation200
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Snow gauges
meteorological stations

Figure 2. Streamflow gauges in the Upper Colorado River basin (UCRB) considered in this study. Light blue squares correspond to the snow

gauges (18) and purple triangles to the meteorological stations (3) considered in this study.

Table 1. Basic data corresponding to the streamflow gauges in the Upper Colorado River basin (UCRB) considered in this study.

USGS Drainage Mean Mean seasonal

Code gauge River area Elevation streamflow streamflow

number (km2) (m.a.s.l.) (m3 s−1) (m3 s−1)

UCRB1 9034900 Bobtail creek 14.5 3179 1.0 0.3

UCRB2 9047700 Keystone gulch 23.7 2850 0.5 0.2

UCRB3 9065500 Gore creek 37.6 2621 3.1 0.8

UCRB4 9066000 Black gore creek 32.4 2789 2.0 0.5

UCRB5 9066200 Booth creek 16.0 2537 1.3 0.3

UCRB6 9066300 Middle creek 15.4 2499 0.7 0.2

UCRB7 9081600 Crystal river 432.5 2105 28.3 8.3

(ENSO, Redmond and Koch, 1991; Kahya and Dracup, 1994; Rajagopalan et al., 2000; Thomson et al., 2003; Timilsena et al.,

2009). However, the relationship of these indices with annual or seasonal extremes has not been explored in-depth and earlier

studies shown modest relationships – e.g. between Southwest US seasonal or annual maximum streamflow and ENSO and

PDO (Sankarasubramanian and Lall, 2003; Werner et al., 2004).

We test the usefulness of both snow-related and climatic drivers within the BHM framework by using SWE and different205

climatic indices as potential covariates of the marginal GEV distributions. Specifically, we tested the following covariates for

9



Figure 3. Pairs plot (lower triangular matrix) and Kendall’s rank correlation coefficients (upper triangular matrix) of spring 3-day maximum

streamflow between the 7 stations in the UCRB. Kendall’s rank correlation is significant (p-values < 0.1), and positive association patterns

are visible for all pairs.

modeling the temporal nonstationarity of the GEV parameters (see Eq. (3)-(4)) for the period 1965-2018: average ENSO,

PDO, and AMO climate indices, spatial average of accumulated snow water equivalent (SASWE) from November to February,

March, or April depending on the lead time (0, 1 or 2 months lead time), and spatial average April mean temperature (SAAMT).

As indicated earlier, we focus on projecting 3-day extreme spring streamflow at lead times of 0-, 1- and 2- months lead time210

corresponding to forecast issuance on May 1st, April 1st and March 1st, respectively Fig. 4. The covariates use all information

prior to forecast issuance. We did not consider spatial average precipitation as covariate since it can not be well predicted ahead

of more than two weeks (Werner and Yeager, 2013).

The potential covariates – monthly ENSO, PDO, and AMO climate indices, monthly accumulated SWE from November to

April, and daily mean temperature for April – were computed using the following data sources:215

1. ENSO, PDO, and AMO climate indices: National Oceanic and Atmospheric Administration (NOAA; https://psl.noaa.

gov/data/climateindices/list/);

2. SWE: Natural Resources Conservation Service (NRCS) Snow Course (https://wcc.sc.egov.usda.gov/reportGenerator/);

3. April’s daily mean temperature: Global Historical Climatology Network (GHCN; Menne et al., 2012).

For SWE and daily mean temperature, we only considered snow gauges (18) and meteorological stations (3) located inside220

the UCRB and full record for the period of interest (1965-2018; see Fig. 2). We then computed the SASWE and SAAMT

10
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Figure 4. Schemes of nonstationary models considered for three different lead times. The dark turquoise box denotes the model for a 0-

month lead time (projections are released on May 1st), the turquoise box the model for a 1-month lead time (projections are released on April

1st), and the light turquoise box the model for a 2-month lead time (projections are released on March 1st). The same color scheme will be

considered for the results section.

covariates as the mean across all snow gauges and meteorological stations for each year, respectively. We considered the

same SWE (SASWE) and April mean temperature (SAMAT) covariates for all the gauges because these regional variables

do not rely on one single station, which may not necessarily stay in operation, and they can capture the spring maximum

streamflow signal for all the station gauges. For example, suppose in the future, a particular snow gauge is out of operation.225

In that case, one can keep using the average of the operative snow gauges and still derive the covariate. Figure 5 displays

the time series of normalized spring maximum streamflow with the SASWE (SAMAT) covariate and the best local SWE

(MAT) covariate, respectively, for the station UCRB1. The two regional covariates can capture the inter-annual variability of

the spring maximum streamflow without an important reduction of the correlation compared to local covariates. The suitability

of the regional covariates is also verified for the other catchments and lead times.230

We assessed the strength of the relationship between the covariates and spring maximum streamflow by computing the

Spearman’s rank correlation coefficient, which is shown in Fig. 6 for a 0-month lead time (covariates were calculated from

November to April). SASWE (Fig. 6a) exhibits a significant and strong positive correlation with spring maximum streamflow

at all the gauges, which was expected and also supports the choice of SASWE as a covariate for all the station gauges. At

the same time, SAAMT (Fig. 6b) shows a significant negative correlation with spring maximum streamflow. This finding was235

also expected since a higher mean April temperature would lead to early melt and therefore less snow availability for melt

later in spring. The ENSO, PDO, and AMO climate indices (Fig. 6c-e ) show a weaker correlation with spring maximum

streamflow than SASWE and SAAMT at almost all the gauges. Similar correlations were found for other lead times (Figs. A1

and A2). For each lead time, we obtained the best nonstationary GEV model as the combination of predictors that resulted in

a minimum deviance information criterion (DIC; Spiegelhalter et al., 2002). The DIC corresponds to a hierarchical modeling240

generalization of the Akaike information criterion (AIC; Akaike, 2011) and facilitates Bayesian model selection. The DIC is

computed for a suite of candidate models with various combinations of covariates and the model with the minimum DIC is

selected for predicting spring maximum streamflow in the UCRB.
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(b) April Mean Temperature (AMT)

Best MAT covariate (R = −0.38) SAAMT (R = −0.38)

Q MAT SAAMT

Figure 5. Times series of normalized 3-day spring maximum streamflow, best covariate, and the spatial average covariate of (a) accumulated

snow water equivalent until April 30 (SWE) and (a) mean April temperature (AMT) for UCRB1. At the bottom of each panel, the correlation

of 3-day maximum streamflow with the regional and the best local (i.e. highest correlation) covariate are displayed.

3.3 Suitability of the GEV distribution and Gaussian copula

We checked the suitability of the GEV distribution as a marginal and of the Gaussian copula as a spatial dependence model245

using their maximum likelihood estimates for 3-day spring maximum streamflow.

To check the validity of the GEV distribution as a marginal distribution, we fitted a stationary GEV distribution at each

gauge using maximum likelihood. Then, we ran two goodness-of-fit tests, the Cramer-von Mises and Anderson-Darling tests

(D’Agostino and Stephens, 1986). The p-values for the two tests were higher than 0.3 for most of the gauges, except for UCRB1

(0.11), which implies that at the 95% confidence level, there is insufficient evidence to reject the null hypothesis that the data250

come from a GEV distribution. Q-Q plots of the stationary GEV distribution fitted to 3-day spring maximum streamflow for

the seven streamflow gauges of UCRB can be found in Fig. A3.

For testing the suitability of the Gaussian copula, we ran three multivariate normality tests using marginal transformations

based on pseudo-observations: Royston’s (Royston, 1982), Mardia’s (Mardia, 1970), and Henze-Zirkler’s tests (Henze and

Zirkler, 1990). The p-values obtained for the three tests were 0.27, 0.45, and 0.6, respectively, which did not reject the null255

hypothesis that the transformed data follow a multivariate normal distribution. As an illustration of the goodness fit of the

Gaussian copula, Figure 7 shows the pairwise dependence structure between gauges UCRB2 and UCRB4 for different copula

families (for more details about the other types of copulas, the reader is referred to Hochrainer-Stigler (2020) or Genest and
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Figure 6. Spearman’s rank correlation coefficient between 3-day spring maximum streamflow and potential covariates for a 0-month lead

time: (a) the spatial average of Nov-April snow water equivalent (SASWE) over the UCRB; (b) the spatial average of April mean temperature

(SAAMT) over the UCRB; (c) mean Nov-April ENSO; (d) mean Nov-April PDO; and (e) mean Nov-April AMO. Big circles indicate that

Spearman’s rank correlation is significant (p-value < 0.1).

Favre (2007)). Black points in each panel (Fig. 7b-g) correspond to the observed CDF values. The simulated contour lines

represent simulated contour lines for different dependence structures, including independence (no copula, Fig. 7b), Gaussian260

(Fig. 7c), Student-t (Fig. 7d), Joe (Fig. 7e), Gumbel (Fig. 7f), and Vine copulas (Fig. 7g). Only Gaussian, Student-t, and Vine

copulas can capture the dependence structure of the data. This visual inspection confirms that the Gaussian copula is suitable

to replicate the dependence structure of the observed data.

3.4 Model structure for the UCRB

The specific structure of the BHM for the UCRB incorporates the covariates described in section 3.2. We modeled the location265

parameter of the GEV at each gauge in a nonstationary way but the scale parameter of the GEV is kept stationary for all gauges.

An initial run of the BHM with a nonstationary scale parameter showed that the regression coefficients (ασj = 0 for j > 0 in

Eq.(4)) were not significant (posterior PDFs contain zero in the 95% credible interval). The priors of the covariance matrix of

αµj
, ασ0

, and αξ0 used are:
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Figure 7. Pairwise dependence structure between UCRB2 and UCRB4 (a) streamflow simulated (b) without a copula and with a (c) Gaussian

copula; (d) Student-t copula; (e) Joe copula; (f) Gumbel copula; and (g) Vine copula. Observations and simulated contour lines are shown as

black points and blue lines, respectively.

Σαµ0
∼ Inv wishart(8,A0I) (18)270

Σαµj
∼ Inv wishart(8,AjI) , j ≥ 1 (19)

Σασ0
∼ Inv wishart(8,B0I) (20)

Σαξ0
∼ Inv wishart(8,C0I) (21)

We considered noninformative priors for the covariance matrix of the GEV regression coefficients by setting A0 = 100,

Aj = 10, B0 = 1, and C0 = 1. Since we fitted different types of BHMs, Σαj
is only considered for nonstationary models. For275

the dependence matrix of the Gaussian copula, we used an informative prior

Σ∼ Inv wishart(8,Cu) (22)
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where Cu corresponds to the covariance matrix of the uniform quantiles obtained from the pseudo-observations of spring

maximum streamflow.

3.5 Implementation and model fitting280

The model was implemented in R (R Core, 2017) using the program JAGS (Just Another Gibbs Sampler; Plummer, 2003)

and the R package rjags (Plummer, 2019), which provides an interface from R to the JAGS library for Bayesian data analysis.

Posterior distributions of the GEV regression coefficients and Gaussian copula matrix were estimated using Gibbs sampling

(Gelman and Hill, 2006; Robert and Casella, 2011) based on the priors assigned in the previous section. The predictive posterior

distributions of spring maximum streamflow (ensembles) for all years were estimated according to section 2.5. We ran three285

parallel chains with different initial values and each simulation was performed for 2,000,000 iterations with a burn-in size

value of 1,000,000 to ensure convergence. To reduce the sample dependence (autocorrelation), the thinning factor was set to

500, which yields 6000 samples (2000 samples from each chain). The scale reduction factor R̂ (Gelman and Rubin, 1992) was

used to check for model convergence, i.e., R̂ values less than the critical value of 1.1 suggest adequate convergence of the

model. In all of our runs, the R̂ values were less than 1.1 in 6000 samples, indicating convergence. Consequently, the posterior290

distributions of the GEV regression coefficients, the Gaussian copula matrix, and the predictive posterior distributions of spring

maximum streamflow consisted of 6000 ensembles.

3.6 Model cross-validation and verification metrics

To test the out-of-sample predictability of the model, we performed leave-one-year-out cross-validation by dropping one year

from the record (1965–2018) and fitting the BHM using the remaining years, also known as the calibration years. The fitted295

model is applied to provide estimates for the one validation year. This cross-validation procedure was repeated 54 times.

As the goal of this study is to provide seasonal streamflow extremes projections for risk-based flood adaptation, we also

implemented this leave-one-year-out cross-validation just for high-flow years in which all the station gauges exceeded their

60th percentile.

We computed the energy skill score (ESS) as our verification metric since we are interested in capturing the spatio-temporal300

dependence of the data. The energy score (ES) assesses probabilistic forecasts of a multivariate quantity (Gneiting and Raftery,

2007; Gneiting et al., 2008):

ES =
1

M

M∑
j=1

∣∣∣∣qj − qo

∣∣∣∣− 1

2M2

M∑
i=1

M∑
j=1

∣∣∣∣qi − qj

∣∣∣∣ (23)

where M = 3000 is the size of the ensemble forecast, qj is the 7× 1 vector of the jth ensemble forecast at year t, qo is

the 7× 1 vector of observed streamflow at year t, and || · || denotes the Euclidean norm. This performance metric is a direct305

generalization of the continuous ranked probability score (CRPS; Gneiting and Raftery, 2007; Gneiting et al., 2008), to which

the energy score reduces in dimension d= 1. Based on ES, the energy skill score (ESS) is defined as
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ESS = 1− ESprojection

ESreference
(24)

where ESprojection is the mean ES of the projection model analyzed and ESreference is the mean ES of the reference projec-

tion. The ESS ranges from −∞ to 1. ESS < 0 indicate that the reference projection has higher skill than the projection model,310

ESS = 0 implies equal skill, and ESS > 0 means that the projection model has a higher skill, with ESS = 1 representing a

perfect score. For this study, we considered the climatology (sampling from the observations) as the reference projection and

benchmark. ESS was computed for both the calibration and validation models.

4 Results

4.1 Selection of the best model for each lead time315

For each lead time, different candidate BHMs were calibrated for the period 1965–2018, and the best BHM was selected based

on the lowest DIC value. Table 2 shows DIC values for different candidate BHMs for a 0-month lead time and the best model

for the other two lead times (last two rows). In the case of a 0-month lead time, the best model corresponds to the first row of

Table 2. For a 0-month lead time, predictive skill resides in SWE and air temperature as this hydro-climatic information relates

well to the streamflow extremes in May-June (see Fig. 6). However, for longer lead times of 1 and 2-months, the large-scale320

climate indices add predictive value. All the models fitted consider a Gaussian copula to model spatial dependence. Detailed

tables with different models fitted for 1-month and 2-months lead times can be found in Tables A1 and A2.

4.2 Ability of the BHM to capture spatio-temporal dependence

To assess the ability of the BHM in capturing spatio-temporal dependence through nonstationary covariates and a Gaussian

copula, we compared the best model for the 0-month lead time selected in the previous section (i.e., SASWE and SAAMT as325

covariates with a Gaussian copula) against three models that do not consider a Gaussian copula: Stationary, nonstationary with

SASWE as covariate, and nonstationary with SASWE and SAAMT as covariates.

Figure 8 shows the Energy Skill Score (ESS) distribution from the calibration (1965-2018) for the four BHMs for a 0-month

lead time. Higher values of the ESS indicate better performance. The stationary model (light grey box) performs poorly in

capturing the spatio-temporal dependence compared to the benchmark (i.e., values below 0). This model also shows a lower330

variability of the skill score than the other Bayesian hierarchical models, which is expected because the stationary model

produces the same projection for each year. When a nonstationary model with SASWE as a covariate is considered (grey box),

the skill is substantially improved compared to the benchmark and the stationary model (i.e., most of the values above 0). This

improvement is consistent with Fig. 6 and previous studies stating that SWE until the beginning of the spring season is the

most skillful predictor of spring-summer seasonal streamflow in mountainous regions (Koster et al., 2010; Livneh and Badger,335

2020). When SAAMT is added as a covariate (dark grey box), there is a significant improvement of ESS compared to the model
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Table 2. DIC values for different candidate BHMs for a 0-month lead time and the best model for the other two lead times. For each model,

the same covariates for the location parameter are considered at all gauges. Candidate BHMs are sorted from the lowest to the highest DIC

value for a 0-month lead time. Scale and shape parameters are considered stationary. All candidate BHMs consider a Gaussian copula to

model spatial dependence.

Lead time Model Covariates DIC

Nonstationary SASWE, SAAMT 1021.5

Nonstationary SASWE, AMO, SAAMT 1030.9

Nonstationary SASWE, ENSO, SAAMT 1032.7

Nonstationary SASWE, PDO, SAAMT 1032.7

Nonstationary SASWE 1034.5

0-month Nonstationary SASWE, ENSO, AMO 1045.3

Nonstationary SASWE, PDO, AMO 1047.6

Nonstationary SASWE, ENSO, PDO 1049.7

Nonstationary SASWE, ENSO 1077.8

Stationary – 1132.8

Nonstationary SASWE, AMO 1151.4

Nonstationary SASWE, PDO 1173

1-month Nonstationary SASWE, PDO 1065.2

2-months Nonstationary SASWE, ENSO 1075.6

with only SASWE. The best model with copula (dark turquoise box) substantially increases model skill. Model skill increases

were tested with a 95 % confidence interval using a nonparametric test for the median (Gibbons and Chakraborti, 1992).

To further highlight the ability of the Gaussian copula to capture spatio-temporal dependence, we computed spatial joint

threshold non-exceedance probabilities for the seven stations and compared them to non-exceedance probabilities derived340

from three models without the copula, i.e., spatially independent models for each streamflow gauge. In Figure 9, we display

the distribution of the probability that all streamflow gauges do not exceed their kth percentile for the observations and the

four models shown in Fig. 8 for a 0-month lead time and the calibration period. The model with nonstationary covariates

and a Gaussian copula (dark turquoise box plots) can almost reproduce the shape of the observed distribution in terms of the

inter-quartile range (boxes), which is an indication that this model can capture the spatio-temporal dependence of the data well.345

Figure 9 also shows that even without considering a copula, a nonstationary model with skillful covariates can partially capture

the spatio-temporal dependence (see in Fig. 9 the difference of the distribution shape for the stationary and nonstationary

models without copula). The ability of nonstationry model to partially capture the spatio-temporal dependence suggests that

with increasing skill of the covariates, the added value of the copula gets smaller. Similar performance was observed for the

nonstationary model with SASWE as a covariate plus a Gaussian copula and for a nonstationary model with a less skillful350

covariate (ENSO) plus a Gaussian copula (not shown here).
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Stationary
SASWE
SASWE+SAAMT
SASWE+SAAMT with Gaussian copula

Figure 8. Energy Skill Score (ESS) distribution for four different BHM versions for a 0-month lead time for the calibration period (1965–

2018). Higher values of the ESS indicate better model performance. The whiskers show the 95% credible intervals, boxes the inter-quartile

range, and horizontal lines inside the boxes, the median. Outliers are not displayed. The light grey box denotes a stationary model, the grey

box a nonstationary model with SASWE as a covariate, the dark grey box a nonstationary model with SASWE and SAAMT as covariates,

and the dark turquoise model adds a Gaussian copula to model spatial dependence.

In order to assess the spatial performance of the BHM, Figure 10 shows the time series of the spatial average projection

of maximum specific streamflow in spring over all seven gauges of the UCRB from the calibration (1965–2018) for the best

model for a 0-month lead time without a Gaussian copula and with a Gaussian copula, respectively. Our results show that

by adding a Gaussian copula to the BHM (Fig. 10b), observations can be better captured by the ensembles’ median; and the355

ensembles represent a higher variability, which allows for capturing some observations that are not captured without the copula

(Fig. 10a). For the remainder of this paper, we use the term “average projection of spring maximum specific streamflow” to

refer to spatial average projection of spring maximum specific streamflow over all seven gauges of the UCRB.
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Observed

Figure 9. Distribution of the probability that all gauges do not exceed their kth percentile for four different versions of the BHM for a

0-month lead time for the calibration period (1965–2018). The whiskers show the 95% credible intervals, boxes the inter-quartile range,

and horizontal lines inside the boxes, the median. Outliers are not displayed. The observations are shown as blue circles and the same color

scheme as in Fig. 8 is considered for the four versions of the BHM.

4.3 Model performance at different lead times

To define the extent to which seasonal streamflow extremes projections for longer lead times can be skillful, we assess the360

performance of the BHM at different lead times for the calibration and leave-1-year-out cross-validation, including cross-

validation focusing on extremes (60th percentile). Covariates considered for each lead time were presented in section 4.1.

Figure 11 displays the Energy Skill Score (ESS) distribution for different lead times from calibration, leave-1-year-out cross-

validation, and leave-1-year-out cross-validation on extremes. EES decreases as the lead time increases indicating a decrease

of model skill with increasing lead time (Fig. 11a). However, the three lead times capture the multivariate dependence better365

than the calibration benchmark (ESS values above 0). For the leave-1-year-out cross-validation (Fig. 11b), there is a substantial

decrease in performance compared to the calibration, except for the 0-month lead time (dark turquoise boxplot). However,

model performance for the 1-month lead time is better than the benchmark (ESS quartiles above 0), and the model for a

2-months lead time shows lower performance than the benchmark only for the third quartile (above 0). Finally, for the leave-

1-year-out validation for extremes (Fig. 11c), all lead times show higher skill than the benchmark (ESS quartiles above 0),370

highlighting the potential usefulness of the model for flood risk assessments.

To assess at site performance, we computed the continuous rank probability skill score (CRPS; Hersbach, 2000; Gneiting

and Raftery, 2007) at each gauge (see Fig. A4). As for the ESS, the CRPSS ranges from −∞ to 1, and its values have the same
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Observations not captured by ensembles
Observations captured by ensembles
Ensembles

Figure 10. Time series of average projected spring maximum specific streamflow over all seven gauges of the UCRB (mmd−1) from the

calibration (1965–2018) for the best model for a 0-month lead time (a) without a Gaussian copula and (b) with a Gaussian copula. Blue

and red points indicate observations captured or not by the ensemble’s variability, respectively. Whiskers indicate the 95% credible intervals,

boxes the inter-quartile range, and horizontal lines inside the boxes, the median. Outliers are not displayed. Ensemble refers to the set of

projections produced for each year.

meaning (see section 3.6). We obtained similar results to ESS (Fig. 11) with the exception of a few gauges for leave-1-year-out

cross-validation and leave-1-year-out cross-validation for extremes where the performance was poorer than the benchmark for375

the cross-validation.

Figure 12 shows the time series of average projected spring maximum specific streamflow ensembles and the distributions

of the Pearson correlation coefficient from the leave-1-year-out cross-validation for the three lead times and the benchmark.

Simulations relying on models with a copula show a similar variability and can capture observed values inside of their en-

sembles’ variability for all three lead times (Fig. 12a-b). The benchmark (Fig. 12d) cannot capture the observations since it380

converges to a stationary model, i.e., it gives the same projection for all years. There is a slight performance reduction for

models with 1- and 2-months lead times compared to the 0-month lead time (Fig. 12e). The medians of the Pearson correlation
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Calibration Cross-validation
all years

Cross-validation only 
high flow years

0-month lead time 1-month lead time 2-months lead time

Figure 11. Energy Skill Score (ESS) distribution for different lead times from (a) calibration; (b) leave-1-year-out cross-validation; and (c)

leave-1-year-out cross-validation for extremes (60th percentile). Dark turquoise boxplots denote a 0-month lead time, turquoise boxplots a

1-month lead time, and light turquoise boxplots a 2-months lead time. Higher values of the ESS indicate better model performance. Whiskers

indicate the 95% credible intervals, boxes the inter-quartile range, and the horizontal lines inside the boxes, the median. Outliers are not

displayed. All the models consider a Gaussian copula.

coefficient for the three lead times vary between 0.37 and 0.5 while the median for the benchmark is close to -1. In addition,

model performance for the calibration (see Fig. A5) is similar to the one of the cross-validation. This result indicates only small

performance reductions for projections and implies that the framework proposed could be useful for the early implementation385

of flood risk adaptation strategies each year.

5 Discussion

Compared to operational forecast models that consider short lead times and seasonal streamflow forecast models that are

useful for reservoir operation with a focus on water availability during the dry season, the proposed BHM proposed here has

the following benefits:390

– It allows for considering potential climate change effects by modeling the margins in a nonstationary setting using

suitable covariates.

– It allows for capturing spatio-temporal dependence by including a Gaussian copula. Consequently, the spatial BHM

captures observations that are not captured by the average projection of spring maximum specific streamflow of a BHM

without a copula.395

– It provides average projections of spring maximum specific streamflow up to 2-months in advance by relying on the

predictive skill of snow accumulated during the winter season.
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Observations not captured by ensembles

Observations captured by ensembles

Ensembles

0-month lead time 
1-month lead time 
2-months lead time 
Benchmark 

Figure 12. Time series of average projected spring maximum specific streamflow, (mmd−1), from the leave-1-year-out cross-validation

for a (a) 0-month lead time; (b) 1-month lead time; (c) 2-months lead time; (d) benchmark; and (e) distributions of the Pearson correlation

coefficient between observed and ensembles of average projection spring maximum specific streamflow over all seven gauges for the different

models. Blue and red points in panels (a) – (d) indicate when observations are captured or not by the ensembles’ variability, respectively.

Whiskers show the 95% credible intervals, boxes the inter-quartile range, and horizontal lines inside the boxes, the median. Outliers are not

displayed. All lead time models consider a Gaussian copula.
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A question coming to mind is: how can the proposed modeling framework be used to deliver interpretable seasonal average

projections? It might be difficult for decision-makers to make decisions based on average spring maximum specific streamflow

over all seven gauges of the UCRB (see Fig. 12). To overcome this difficulty, we propose to provide interpretable average400

projections of spring maximum specific streamflow by providing the first three quartiles of the ensembles along with some

past streamflow values as a reference. Providing reference values can help to make decisions about risk adaptation up to two

months in advance. Reference values can be, e.g., the observed median specific streamflow for an average year without flood

occurrence; the maximum observed specific streamflow on the record; or the lowest observed specific streamflow (threshold)

that can cause flood occurrence. To find the threshold flow that can cause flood occurrence, we computed the ratio between405

average maximum and average spring mean specific streamflow over all seven gauges of the UCRB. Then, we picked the

average spring maximum specific streamflow value of the year with the highest ratio value, which corresponds to the threshold

streamflow. The reason for this is that when the basin is drier (high ratio between peak runoff and total seasonal runoff), even if

the peak streamflow is not so high, a flood can occur. Based on the lowest observed specific streamflow (threshold, qthresh) that

can trigger flood occurrence we define a potential flooding alarm system. This system defines different flooding alarm levels by410

comparing the threshold against the first three quartiles (exceedance probability, q25th, q50th, and q75th) of average projections

of spring maximum specific streamflow for the year analyzed. This potential flooding alarm system is shown in Fig. 13a. Thus,

for each lead time, the flooding alarm is activated with a low risk of flooding if q25th > qthresh; moderate risk of flooding if

q50th > qthresh; or high risk of flooding if q25th > qthresh. In all other cases, the alarm is not activated.

To illustrate this system, Figure 13b-c shows examples of when the potential flooding alarm is successfully activated or not415

activated. Figure 13b presents the average projections of spring maximum specific streamflow of the UCRB for 2011 at three

lead times (0-2 months), which were obtained from the leave-1-year-out cross-validation, along with the three reference values

mentioned above and the observed value for 2011. It can be seen that based on the average projections, The flooding alarm

is activated with a low risk of flooding by March 1st (2-months lead time), moderate risk of flooding by April 1st (1-month

lead time), and high risk of flooding by May 1st (0-month lead time). Thus, the flooding alarm is successfully activated before420

spring since the observed value for 2011 exceeded the threshold streamflow, and actually, flood impacts were documented in

2011 (Werner and Yeager, 2013). In addition, Figure 13c shows the average projection of spring maximum specific streamflow

of the UCRB for 2018 when the flooding alarm is successfully not activated because the three quartiles for each lead time and

the observed streamflow for 2018 are below the threshold streamflow.

The nonstationary and spatial BHM framework proposed here was applied to the UCRB using 3-day maxima. However, the425

framework is flexible and can be applied to other types of maxima such as 1-day maxima, be implemented in other regions, be

applied to other types of extremes such as droughts, or be used under future climate conditions. In order to apply the framework

in another variable or region, the choice of covariates has to be reconsidered and potentially adjusted. In the application

presented here, we only modeled the location parameter as nonstationary. If the framework is applied to another basin, this

modeling choice has to be reconsidered. It is advisable as a first step to do an initial run of the model for defining which430

parameters should be considered nonstationary. If one wishes to apply the framework to predict another type of extreme such

as low-flows, one needs to reconsider distribution choice and to identify suitable covariates. In addition, the framework is not
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Figure 13. (a) Schematic of the potential flooding alarm system proposed. The flooding alarm is activated if q25th > qthresh (low risk of

flooding), q50th > qthresh (moderate risk of flooding), or q75th > qthresh (high risk of flooding). Otherwise, the alarm is not activated. (b) average

projections of spring maximum specific streamflow of UCRB for 2011 when flooding is successfully activated, and (c) average projections

of spring maximum specific streamflow of UCRB for 2018 when flooding is successfully not activated. average projections at a 0-, 1-, and

2-months lead times correspond to dark turquoise, turquoise, and light turquoise, respectively. The blue point corresponds to the observed

specific streamflow for 2018, horizontal lines correspond to the observed highest specific streamflow (qmax, dark blue), observed flooding

threshold specific streamflow (qthresh, blue), and observed average specific streamflow (qave, light blue). For each lead time, the whiskers show

the first and third quartile (q25th and q75th), the point, the median or second quartile (q50th).

limited to projections, it can also be adapted for simulation purposes by considering real-time covariates. In addition, it can be

easily adjusted such that it represents future climate conditions if future projections of the covariates are available. However,

the predictive skill of the model fitted and applied to the UCRB may change under future climate conditions. The relative435

importance of snowmelt and precipitation in causing flood events may change in the future, with precipitation becoming

relatively more important. Consequently, the model’s predictive skill, which heavily relies on SWE as a covariate, might

slightly decrease in future. However, in the case of headwater basins in mountain regions such as the one considered in this
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study, snowmelt will remain the dominant flood generation process in the future, as shown by climate change projections in

the region (Safeeq et al., 2016). Under changing conditions, one may want to reconsider covariate choice and test additional440

potentially skillful covariates such as specific ocean and atmosphere features that are expected to have a stronger relationship

with the basin streamflow and extremes (e.g.; Grantz et al., 2005; Regonda et al., 2006; Bracken et al., 2010). Although this

framework can be applied to a more extensive stream gauges network, we do not recommend that since clusters of different

streamflow behavior will develop as the size of the region of interest increases. In that case, it is more efficient to fit a model

for each cluster than to fit a model for the entire region, which will be more computationally expensive. Fitting a model for445

each cluster allows for using different covariates for each cluster, which may help to provide more skillful estimates than the

non-cluster case.

6 Summary and conclusions

In this study, we presented a Bayesian Hierarchical Model (BHM) to project seasonal streamflow extremes for several catch-

ments in a river basin for several lead times. The streamflow extremes at a number of gauges in a basin are modeled using a450

Gaussian elliptical copula and Generalized Extreme Value (GEV) margins with nonstationary parameters. These parameters

are modeled as a linear function of suitable covariates from the previous season.

We applied this framework to project 3-day spring maximum (May-June) streamflow at seven gauges in the Upper Colorado

River Basin (UCRB) network, at 0-, 1-, and 2-months lead time. As potential covariates, we used indices of large-scale climate

teleconnections – ENSO, AMO, and PDO, regional mean snow water equivalent, and temperature from the preceding winter455

season.

From the analysis of different models for a 0-month lead time, we conclude that:

– The spatial average snow water equivalent (SASWE) accumulated during fall and spring is the most skillful predictor of

spring season maximum streamflow across the UCRB.

– The increase in BHM performance is low when adding other climatic indices such as PDO.460

– Including a copula in the BHM enables capturing the spatio-temporal dependence of streamflow extremes which is not

fully possible with independent marginal models.

The comparative analysis for three different lead times revealed that increasing the lead time from 0 to 2 months only

weakly decreases model skill. This finding implies that the framework proposed could be useful for the early implementation

of flood risk adaptation and preparedness strategies. We propose an alternative to guide decision making by providing average465

projections of spring maximum specific streamflow as the first three quartiles of the ensembles of the average projection of

spring maximum specific streamflow along with past observed specific streamflow values as reference. Such a communication

strategy could help decision-makers to implement adaptation strategies that address the spatial dimension of flooding.
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